1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-NetBSD
3 *
4 * Copyright (c) 1995, David Greenman
5 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35/*
36 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
37 */
38
39#ifdef HAVE_KERNEL_OPTION_HEADERS
40#include "opt_device_polling.h"
41#endif
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/bus.h>
46#include <sys/endian.h>
47#include <sys/kernel.h>
48#include <sys/mbuf.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/module.h>
52#include <sys/mutex.h>
53#include <sys/rman.h>
54#include <sys/socket.h>
55#include <sys/sockio.h>
56#include <sys/sysctl.h>
57
58#include <net/bpf.h>
59#include <net/ethernet.h>
60#include <net/if.h>
61#include <net/if_var.h>
62#include <net/if_arp.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66#include <net/if_vlan_var.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/ip.h>
71#include <netinet/tcp.h>
72#include <netinet/udp.h>
73
74#include <machine/bus.h>
75#include <machine/in_cksum.h>
76#include <machine/resource.h>
77
78#include <dev/pci/pcivar.h>
79#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
80
81#include <dev/mii/mii.h>
82#include <dev/mii/miivar.h>
83
84#include <dev/fxp/if_fxpreg.h>
85#include <dev/fxp/if_fxpvar.h>
86#include <dev/fxp/rcvbundl.h>
87
88MODULE_DEPEND(fxp, pci, 1, 1, 1);
89MODULE_DEPEND(fxp, ether, 1, 1, 1);
90MODULE_DEPEND(fxp, miibus, 1, 1, 1);
91#include "miibus_if.h"
92
93/*
94 * NOTE!  On !x86 we typically have an alignment constraint.  The
95 * card DMAs the packet immediately following the RFA.  However,
96 * the first thing in the packet is a 14-byte Ethernet header.
97 * This means that the packet is misaligned.  To compensate,
98 * we actually offset the RFA 2 bytes into the cluster.  This
99 * alignes the packet after the Ethernet header at a 32-bit
100 * boundary.  HOWEVER!  This means that the RFA is misaligned!
101 */
102#define	RFA_ALIGNMENT_FUDGE	2
103
104/*
105 * Set initial transmit threshold at 64 (512 bytes). This is
106 * increased by 64 (512 bytes) at a time, to maximum of 192
107 * (1536 bytes), if an underrun occurs.
108 */
109static int tx_threshold = 64;
110
111/*
112 * The configuration byte map has several undefined fields which
113 * must be one or must be zero.  Set up a template for these bits.
114 * The actual configuration is performed in fxp_init_body.
115 *
116 * See struct fxp_cb_config for the bit definitions.
117 */
118static const u_char fxp_cb_config_template[] = {
119	0x0, 0x0,		/* cb_status */
120	0x0, 0x0,		/* cb_command */
121	0x0, 0x0, 0x0, 0x0,	/* link_addr */
122	0x0,	/*  0 */
123	0x0,	/*  1 */
124	0x0,	/*  2 */
125	0x0,	/*  3 */
126	0x0,	/*  4 */
127	0x0,	/*  5 */
128	0x32,	/*  6 */
129	0x0,	/*  7 */
130	0x0,	/*  8 */
131	0x0,	/*  9 */
132	0x6,	/* 10 */
133	0x0,	/* 11 */
134	0x0,	/* 12 */
135	0x0,	/* 13 */
136	0xf2,	/* 14 */
137	0x48,	/* 15 */
138	0x0,	/* 16 */
139	0x40,	/* 17 */
140	0xf0,	/* 18 */
141	0x0,	/* 19 */
142	0x3f,	/* 20 */
143	0x5,	/* 21 */
144	0x0,	/* 22 */
145	0x0,	/* 23 */
146	0x0,	/* 24 */
147	0x0,	/* 25 */
148	0x0,	/* 26 */
149	0x0,	/* 27 */
150	0x0,	/* 28 */
151	0x0,	/* 29 */
152	0x0,	/* 30 */
153	0x0	/* 31 */
154};
155
156/*
157 * Claim various Intel PCI device identifiers for this driver.  The
158 * sub-vendor and sub-device field are extensively used to identify
159 * particular variants, but we don't currently differentiate between
160 * them.
161 */
162static const struct fxp_ident fxp_ident_table[] = {
163    { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
164    { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
165    { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
166    { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
167    { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168    { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169    { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170    { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
171    { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
172    { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
173    { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174    { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175    { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176    { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
177    { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
178    { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
179    { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
180    { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
181    { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
182    { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
183    { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
184    { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
185    { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
186    { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
187    { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
188    { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
189    { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
190    { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
191    { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
192    { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
193    { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
194    { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
195    { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
196    { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
197    { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
198    { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
199    { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
200    { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
201    { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
202    { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
203    { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
204    { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
205    { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
206    { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
207    { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
208    { 0,      0,	-1,	0, NULL },
209};
210
211#ifdef FXP_IP_CSUM_WAR
212#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
213#else
214#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
215#endif
216
217static int		fxp_probe(device_t dev);
218static int		fxp_attach(device_t dev);
219static int		fxp_detach(device_t dev);
220static int		fxp_shutdown(device_t dev);
221static int		fxp_suspend(device_t dev);
222static int		fxp_resume(device_t dev);
223
224static const struct fxp_ident *fxp_find_ident(device_t dev);
225static void		fxp_intr(void *xsc);
226static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
227			    struct mbuf *m, uint16_t status, int pos);
228static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
229			    uint8_t statack, int count);
230static void 		fxp_init(void *xsc);
231static void 		fxp_init_body(struct fxp_softc *sc, int);
232static void 		fxp_tick(void *xsc);
233static void 		fxp_start(if_t ifp);
234static void 		fxp_start_body(if_t ifp);
235static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
236static void		fxp_txeof(struct fxp_softc *sc);
237static void		fxp_stop(struct fxp_softc *sc);
238static void 		fxp_release(struct fxp_softc *sc);
239static int		fxp_ioctl(if_t ifp, u_long command,
240			    caddr_t data);
241static void 		fxp_watchdog(struct fxp_softc *sc);
242static void		fxp_add_rfabuf(struct fxp_softc *sc,
243			    struct fxp_rx *rxp);
244static void		fxp_discard_rfabuf(struct fxp_softc *sc,
245			    struct fxp_rx *rxp);
246static int		fxp_new_rfabuf(struct fxp_softc *sc,
247			    struct fxp_rx *rxp);
248static void		fxp_mc_addrs(struct fxp_softc *sc);
249static void		fxp_mc_setup(struct fxp_softc *sc);
250static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
251			    int autosize);
252static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
253			    uint16_t data);
254static void		fxp_autosize_eeprom(struct fxp_softc *sc);
255static void		fxp_load_eeprom(struct fxp_softc *sc);
256static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
257			    int offset, int words);
258static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
259			    int offset, int words);
260static int		fxp_ifmedia_upd(if_t ifp);
261static void		fxp_ifmedia_sts(if_t ifp,
262			    struct ifmediareq *ifmr);
263static int		fxp_serial_ifmedia_upd(if_t ifp);
264static void		fxp_serial_ifmedia_sts(if_t ifp,
265			    struct ifmediareq *ifmr);
266static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
267static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
268			    int value);
269static void		fxp_miibus_statchg(device_t dev);
270static void		fxp_load_ucode(struct fxp_softc *sc);
271static void		fxp_update_stats(struct fxp_softc *sc);
272static void		fxp_sysctl_node(struct fxp_softc *sc);
273static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
274			    int low, int high);
275static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
276static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
277static void 		fxp_scb_wait(struct fxp_softc *sc);
278static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
279static void		fxp_dma_wait(struct fxp_softc *sc,
280			    volatile uint16_t *status, bus_dma_tag_t dmat,
281			    bus_dmamap_t map);
282
283static device_method_t fxp_methods[] = {
284	/* Device interface */
285	DEVMETHOD(device_probe,		fxp_probe),
286	DEVMETHOD(device_attach,	fxp_attach),
287	DEVMETHOD(device_detach,	fxp_detach),
288	DEVMETHOD(device_shutdown,	fxp_shutdown),
289	DEVMETHOD(device_suspend,	fxp_suspend),
290	DEVMETHOD(device_resume,	fxp_resume),
291
292	/* MII interface */
293	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
294	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
295	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
296
297	DEVMETHOD_END
298};
299
300static driver_t fxp_driver = {
301	"fxp",
302	fxp_methods,
303	sizeof(struct fxp_softc),
304};
305
306static devclass_t fxp_devclass;
307
308DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
309    SI_ORDER_ANY);
310MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
311    nitems(fxp_ident_table) - 1);
312DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
313
314static struct resource_spec fxp_res_spec_mem[] = {
315	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
316	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
317	{ -1, 0 }
318};
319
320static struct resource_spec fxp_res_spec_io[] = {
321	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
322	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
323	{ -1, 0 }
324};
325
326/*
327 * Wait for the previous command to be accepted (but not necessarily
328 * completed).
329 */
330static void
331fxp_scb_wait(struct fxp_softc *sc)
332{
333	union {
334		uint16_t w;
335		uint8_t b[2];
336	} flowctl;
337	int i = 10000;
338
339	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
340		DELAY(2);
341	if (i == 0) {
342		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
343		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
344		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
345		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
346		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
347		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
348	}
349}
350
351static void
352fxp_scb_cmd(struct fxp_softc *sc, int cmd)
353{
354
355	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
356		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
357		fxp_scb_wait(sc);
358	}
359	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
360}
361
362static void
363fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
364    bus_dma_tag_t dmat, bus_dmamap_t map)
365{
366	int i;
367
368	for (i = 10000; i > 0; i--) {
369		DELAY(2);
370		bus_dmamap_sync(dmat, map,
371		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
372		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
373			break;
374	}
375	if (i == 0)
376		device_printf(sc->dev, "DMA timeout\n");
377}
378
379static const struct fxp_ident *
380fxp_find_ident(device_t dev)
381{
382	uint16_t vendor;
383	uint16_t device;
384	uint8_t revid;
385	const struct fxp_ident *ident;
386
387	vendor = pci_get_vendor(dev);
388	device = pci_get_device(dev);
389	revid = pci_get_revid(dev);
390	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
391		if (ident->vendor == vendor && ident->device == device &&
392		    (ident->revid == revid || ident->revid == -1)) {
393			return (ident);
394		}
395	}
396	return (NULL);
397}
398
399/*
400 * Return identification string if this device is ours.
401 */
402static int
403fxp_probe(device_t dev)
404{
405	const struct fxp_ident *ident;
406
407	ident = fxp_find_ident(dev);
408	if (ident != NULL) {
409		device_set_desc(dev, ident->name);
410		return (BUS_PROBE_DEFAULT);
411	}
412	return (ENXIO);
413}
414
415static void
416fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
417{
418	uint32_t *addr;
419
420	if (error)
421		return;
422
423	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
424	addr = arg;
425	*addr = segs->ds_addr;
426}
427
428static int
429fxp_attach(device_t dev)
430{
431	struct fxp_softc *sc;
432	struct fxp_cb_tx *tcbp;
433	struct fxp_tx *txp;
434	struct fxp_rx *rxp;
435	if_t ifp;
436	uint32_t val;
437	uint16_t data;
438	u_char eaddr[ETHER_ADDR_LEN];
439	int error, flags, i, pmc, prefer_iomap;
440
441	error = 0;
442	sc = device_get_softc(dev);
443	sc->dev = dev;
444	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
445	    MTX_DEF);
446	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
447	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
448	    fxp_serial_ifmedia_sts);
449
450	ifp = sc->ifp = if_gethandle(IFT_ETHER);
451	if (ifp == (void *)NULL) {
452		device_printf(dev, "can not if_alloc()\n");
453		error = ENOSPC;
454		goto fail;
455	}
456
457	/*
458	 * Enable bus mastering.
459	 */
460	pci_enable_busmaster(dev);
461
462	/*
463	 * Figure out which we should try first - memory mapping or i/o mapping?
464	 * We default to memory mapping. Then we accept an override from the
465	 * command line. Then we check to see which one is enabled.
466	 */
467	prefer_iomap = 0;
468	resource_int_value(device_get_name(dev), device_get_unit(dev),
469	    "prefer_iomap", &prefer_iomap);
470	if (prefer_iomap)
471		sc->fxp_spec = fxp_res_spec_io;
472	else
473		sc->fxp_spec = fxp_res_spec_mem;
474
475	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
476	if (error) {
477		if (sc->fxp_spec == fxp_res_spec_mem)
478			sc->fxp_spec = fxp_res_spec_io;
479		else
480			sc->fxp_spec = fxp_res_spec_mem;
481		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
482	}
483	if (error) {
484		device_printf(dev, "could not allocate resources\n");
485		error = ENXIO;
486		goto fail;
487	}
488
489	if (bootverbose) {
490		device_printf(dev, "using %s space register mapping\n",
491		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
492	}
493
494	/*
495	 * Put CU/RU idle state and prepare full reset.
496	 */
497	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
498	DELAY(10);
499	/* Full reset and disable interrupts. */
500	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
501	DELAY(10);
502	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
503
504	/*
505	 * Find out how large of an SEEPROM we have.
506	 */
507	fxp_autosize_eeprom(sc);
508	fxp_load_eeprom(sc);
509
510	/*
511	 * Find out the chip revision; lump all 82557 revs together.
512	 */
513	sc->ident = fxp_find_ident(dev);
514	if (sc->ident->ich > 0) {
515		/* Assume ICH controllers are 82559. */
516		sc->revision = FXP_REV_82559_A0;
517	} else {
518		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
519		if ((data >> 8) == 1)
520			sc->revision = FXP_REV_82557;
521		else
522			sc->revision = pci_get_revid(dev);
523	}
524
525	/*
526	 * Check availability of WOL. 82559ER does not support WOL.
527	 */
528	if (sc->revision >= FXP_REV_82558_A4 &&
529	    sc->revision != FXP_REV_82559S_A) {
530		data = sc->eeprom[FXP_EEPROM_MAP_ID];
531		if ((data & 0x20) != 0 &&
532		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
533			sc->flags |= FXP_FLAG_WOLCAP;
534	}
535
536	if (sc->revision == FXP_REV_82550_C) {
537		/*
538		 * 82550C with server extension requires microcode to
539		 * receive fragmented UDP datagrams.  However if the
540		 * microcode is used for client-only featured 82550C
541		 * it locks up controller.
542		 */
543		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
544		if ((data & 0x0400) == 0)
545			sc->flags |= FXP_FLAG_NO_UCODE;
546	}
547
548	/* Receiver lock-up workaround detection. */
549	if (sc->revision < FXP_REV_82558_A4) {
550		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
551		if ((data & 0x03) != 0x03) {
552			sc->flags |= FXP_FLAG_RXBUG;
553			device_printf(dev, "Enabling Rx lock-up workaround\n");
554		}
555	}
556
557	/*
558	 * Determine whether we must use the 503 serial interface.
559	 */
560	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
561	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
562	    && (data & FXP_PHY_SERIAL_ONLY))
563		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
564
565	fxp_sysctl_node(sc);
566	/*
567	 * Enable workarounds for certain chip revision deficiencies.
568	 *
569	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
570	 * some systems based a normal 82559 design, have a defect where
571	 * the chip can cause a PCI protocol violation if it receives
572	 * a CU_RESUME command when it is entering the IDLE state.  The
573	 * workaround is to disable Dynamic Standby Mode, so the chip never
574	 * deasserts CLKRUN#, and always remains in an active state.
575	 *
576	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
577	 */
578	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
579	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
580		data = sc->eeprom[FXP_EEPROM_MAP_ID];
581		if (data & 0x02) {			/* STB enable */
582			uint16_t cksum;
583			int i;
584
585			device_printf(dev,
586			    "Disabling dynamic standby mode in EEPROM\n");
587			data &= ~0x02;
588			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
589			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
590			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
591			cksum = 0;
592			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
593				cksum += sc->eeprom[i];
594			i = (1 << sc->eeprom_size) - 1;
595			cksum = 0xBABA - cksum;
596			fxp_write_eeprom(sc, &cksum, i, 1);
597			device_printf(dev,
598			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
599			    i, sc->eeprom[i], cksum);
600			sc->eeprom[i] = cksum;
601			/*
602			 * If the user elects to continue, try the software
603			 * workaround, as it is better than nothing.
604			 */
605			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
606		}
607	}
608
609	/*
610	 * If we are not a 82557 chip, we can enable extended features.
611	 */
612	if (sc->revision != FXP_REV_82557) {
613		/*
614		 * If MWI is enabled in the PCI configuration, and there
615		 * is a valid cacheline size (8 or 16 dwords), then tell
616		 * the board to turn on MWI.
617		 */
618		val = pci_read_config(dev, PCIR_COMMAND, 2);
619		if (val & PCIM_CMD_MWRICEN &&
620		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
621			sc->flags |= FXP_FLAG_MWI_ENABLE;
622
623		/* turn on the extended TxCB feature */
624		sc->flags |= FXP_FLAG_EXT_TXCB;
625
626		/* enable reception of long frames for VLAN */
627		sc->flags |= FXP_FLAG_LONG_PKT_EN;
628	} else {
629		/* a hack to get long VLAN frames on a 82557 */
630		sc->flags |= FXP_FLAG_SAVE_BAD;
631	}
632
633	/* For 82559 or later chips, Rx checksum offload is supported. */
634	if (sc->revision >= FXP_REV_82559_A0) {
635		/* 82559ER does not support Rx checksum offloading. */
636		if (sc->ident->device != 0x1209)
637			sc->flags |= FXP_FLAG_82559_RXCSUM;
638	}
639	/*
640	 * Enable use of extended RFDs and TCBs for 82550
641	 * and later chips. Note: we need extended TXCB support
642	 * too, but that's already enabled by the code above.
643	 * Be careful to do this only on the right devices.
644	 */
645	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
646	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
647	    || sc->revision == FXP_REV_82551_10) {
648		sc->rfa_size = sizeof (struct fxp_rfa);
649		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
650		sc->flags |= FXP_FLAG_EXT_RFA;
651		/* Use extended RFA instead of 82559 checksum mode. */
652		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
653	} else {
654		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
655		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
656	}
657
658	/*
659	 * Allocate DMA tags and DMA safe memory.
660	 */
661	sc->maxtxseg = FXP_NTXSEG;
662	sc->maxsegsize = MCLBYTES;
663	if (sc->flags & FXP_FLAG_EXT_RFA) {
664		sc->maxtxseg--;
665		sc->maxsegsize = FXP_TSO_SEGSIZE;
666	}
667	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
668	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
669	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
670	    sc->maxtxseg, sc->maxsegsize, 0,
671	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
672	if (error) {
673		device_printf(dev, "could not create TX DMA tag\n");
674		goto fail;
675	}
676
677	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
678	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
679	    MCLBYTES, 1, MCLBYTES, 0,
680	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
681	if (error) {
682		device_printf(dev, "could not create RX DMA tag\n");
683		goto fail;
684	}
685
686	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
687	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
688	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
689	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
690	if (error) {
691		device_printf(dev, "could not create stats DMA tag\n");
692		goto fail;
693	}
694
695	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
696	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
697	if (error) {
698		device_printf(dev, "could not allocate stats DMA memory\n");
699		goto fail;
700	}
701	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
702	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
703	    BUS_DMA_NOWAIT);
704	if (error) {
705		device_printf(dev, "could not load the stats DMA buffer\n");
706		goto fail;
707	}
708
709	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
710	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
711	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
712	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
713	if (error) {
714		device_printf(dev, "could not create TxCB DMA tag\n");
715		goto fail;
716	}
717
718	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
719	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
720	if (error) {
721		device_printf(dev, "could not allocate TxCB DMA memory\n");
722		goto fail;
723	}
724
725	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
726	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
727	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
728	if (error) {
729		device_printf(dev, "could not load TxCB DMA buffer\n");
730		goto fail;
731	}
732
733	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
734	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
735	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
736	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
737	if (error) {
738		device_printf(dev,
739		    "could not create multicast setup DMA tag\n");
740		goto fail;
741	}
742
743	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
744	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
745	if (error) {
746		device_printf(dev,
747		    "could not allocate multicast setup DMA memory\n");
748		goto fail;
749	}
750	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
751	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
752	    BUS_DMA_NOWAIT);
753	if (error) {
754		device_printf(dev,
755		    "can't load the multicast setup DMA buffer\n");
756		goto fail;
757	}
758
759	/*
760	 * Pre-allocate the TX DMA maps and setup the pointers to
761	 * the TX command blocks.
762	 */
763	txp = sc->fxp_desc.tx_list;
764	tcbp = sc->fxp_desc.cbl_list;
765	for (i = 0; i < FXP_NTXCB; i++) {
766		txp[i].tx_cb = tcbp + i;
767		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
768		if (error) {
769			device_printf(dev, "can't create DMA map for TX\n");
770			goto fail;
771		}
772	}
773	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
774	if (error) {
775		device_printf(dev, "can't create spare DMA map\n");
776		goto fail;
777	}
778
779	/*
780	 * Pre-allocate our receive buffers.
781	 */
782	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
783	for (i = 0; i < FXP_NRFABUFS; i++) {
784		rxp = &sc->fxp_desc.rx_list[i];
785		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
786		if (error) {
787			device_printf(dev, "can't create DMA map for RX\n");
788			goto fail;
789		}
790		if (fxp_new_rfabuf(sc, rxp) != 0) {
791			error = ENOMEM;
792			goto fail;
793		}
794		fxp_add_rfabuf(sc, rxp);
795	}
796
797	/*
798	 * Read MAC address.
799	 */
800	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
801	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
802	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
803	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
804	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
805	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
806	if (bootverbose) {
807		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
808		    pci_get_vendor(dev), pci_get_device(dev),
809		    pci_get_subvendor(dev), pci_get_subdevice(dev),
810		    pci_get_revid(dev));
811		device_printf(dev, "Dynamic Standby mode is %s\n",
812		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
813		    "disabled");
814	}
815
816	/*
817	 * If this is only a 10Mbps device, then there is no MII, and
818	 * the PHY will use a serial interface instead.
819	 *
820	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
821	 * doesn't have a programming interface of any sort.  The
822	 * media is sensed automatically based on how the link partner
823	 * is configured.  This is, in essence, manual configuration.
824	 */
825	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
826		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
827		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
828	} else {
829		/*
830		 * i82557 wedge when isolating all of their PHYs.
831		 */
832		flags = MIIF_NOISOLATE;
833		if (sc->revision >= FXP_REV_82558_A4)
834			flags |= MIIF_DOPAUSE;
835		error = mii_attach(dev, &sc->miibus, ifp,
836		    (ifm_change_cb_t)fxp_ifmedia_upd,
837		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
838		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
839		if (error != 0) {
840			device_printf(dev, "attaching PHYs failed\n");
841			goto fail;
842		}
843	}
844
845	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
846	if_setdev(ifp, dev);
847	if_setinitfn(ifp, fxp_init);
848	if_setsoftc(ifp, sc);
849	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
850	if_setioctlfn(ifp, fxp_ioctl);
851	if_setstartfn(ifp, fxp_start);
852
853	if_setcapabilities(ifp, 0);
854	if_setcapenable(ifp, 0);
855
856	/* Enable checksum offload/TSO for 82550 or better chips */
857	if (sc->flags & FXP_FLAG_EXT_RFA) {
858		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
859		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
860		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
861	}
862
863	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
864		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
865		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
866	}
867
868	if (sc->flags & FXP_FLAG_WOLCAP) {
869		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
870		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
871	}
872
873#ifdef DEVICE_POLLING
874	/* Inform the world we support polling. */
875	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
876#endif
877
878	/*
879	 * Attach the interface.
880	 */
881	ether_ifattach(ifp, eaddr);
882
883	/*
884	 * Tell the upper layer(s) we support long frames.
885	 * Must appear after the call to ether_ifattach() because
886	 * ether_ifattach() sets ifi_hdrlen to the default value.
887	 */
888	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
889	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
890	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
891	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
892		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
893		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
894		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
895		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
896	}
897
898	/*
899	 * Let the system queue as many packets as we have available
900	 * TX descriptors.
901	 */
902	if_setsendqlen(ifp, FXP_NTXCB - 1);
903	if_setsendqready(ifp);
904
905	/*
906	 * Hook our interrupt after all initialization is complete.
907	 */
908	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
909			       NULL, fxp_intr, sc, &sc->ih);
910	if (error) {
911		device_printf(dev, "could not setup irq\n");
912		ether_ifdetach(sc->ifp);
913		goto fail;
914	}
915
916	/*
917	 * Configure hardware to reject magic frames otherwise
918	 * system will hang on recipt of magic frames.
919	 */
920	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
921		FXP_LOCK(sc);
922		/* Clear wakeup events. */
923		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
924		fxp_init_body(sc, 0);
925		fxp_stop(sc);
926		FXP_UNLOCK(sc);
927	}
928
929fail:
930	if (error)
931		fxp_release(sc);
932	return (error);
933}
934
935/*
936 * Release all resources.  The softc lock should not be held and the
937 * interrupt should already be torn down.
938 */
939static void
940fxp_release(struct fxp_softc *sc)
941{
942	struct fxp_rx *rxp;
943	struct fxp_tx *txp;
944	int i;
945
946	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
947	KASSERT(sc->ih == NULL,
948	    ("fxp_release() called with intr handle still active"));
949	if (sc->miibus)
950		device_delete_child(sc->dev, sc->miibus);
951	bus_generic_detach(sc->dev);
952	ifmedia_removeall(&sc->sc_media);
953	if (sc->fxp_desc.cbl_list) {
954		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
955		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
956		    sc->cbl_map);
957	}
958	if (sc->fxp_stats) {
959		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
960		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
961	}
962	if (sc->mcsp) {
963		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
964		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
965	}
966	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
967	if (sc->fxp_rxmtag) {
968		for (i = 0; i < FXP_NRFABUFS; i++) {
969			rxp = &sc->fxp_desc.rx_list[i];
970			if (rxp->rx_mbuf != NULL) {
971				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
972				    BUS_DMASYNC_POSTREAD);
973				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
974				m_freem(rxp->rx_mbuf);
975			}
976			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
977		}
978		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
979		bus_dma_tag_destroy(sc->fxp_rxmtag);
980	}
981	if (sc->fxp_txmtag) {
982		for (i = 0; i < FXP_NTXCB; i++) {
983			txp = &sc->fxp_desc.tx_list[i];
984			if (txp->tx_mbuf != NULL) {
985				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
986				    BUS_DMASYNC_POSTWRITE);
987				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
988				m_freem(txp->tx_mbuf);
989			}
990			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
991		}
992		bus_dma_tag_destroy(sc->fxp_txmtag);
993	}
994	if (sc->fxp_stag)
995		bus_dma_tag_destroy(sc->fxp_stag);
996	if (sc->cbl_tag)
997		bus_dma_tag_destroy(sc->cbl_tag);
998	if (sc->mcs_tag)
999		bus_dma_tag_destroy(sc->mcs_tag);
1000	if (sc->ifp)
1001		if_free(sc->ifp);
1002
1003	mtx_destroy(&sc->sc_mtx);
1004}
1005
1006/*
1007 * Detach interface.
1008 */
1009static int
1010fxp_detach(device_t dev)
1011{
1012	struct fxp_softc *sc = device_get_softc(dev);
1013
1014#ifdef DEVICE_POLLING
1015	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1016		ether_poll_deregister(sc->ifp);
1017#endif
1018
1019	FXP_LOCK(sc);
1020	/*
1021	 * Stop DMA and drop transmit queue, but disable interrupts first.
1022	 */
1023	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1024	fxp_stop(sc);
1025	FXP_UNLOCK(sc);
1026	callout_drain(&sc->stat_ch);
1027
1028	/*
1029	 * Close down routes etc.
1030	 */
1031	ether_ifdetach(sc->ifp);
1032
1033	/*
1034	 * Unhook interrupt before dropping lock. This is to prevent
1035	 * races with fxp_intr().
1036	 */
1037	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1038	sc->ih = NULL;
1039
1040	/* Release our allocated resources. */
1041	fxp_release(sc);
1042	return (0);
1043}
1044
1045/*
1046 * Device shutdown routine. Called at system shutdown after sync. The
1047 * main purpose of this routine is to shut off receiver DMA so that
1048 * kernel memory doesn't get clobbered during warmboot.
1049 */
1050static int
1051fxp_shutdown(device_t dev)
1052{
1053
1054	/*
1055	 * Make sure that DMA is disabled prior to reboot. Not doing
1056	 * do could allow DMA to corrupt kernel memory during the
1057	 * reboot before the driver initializes.
1058	 */
1059	return (fxp_suspend(dev));
1060}
1061
1062/*
1063 * Device suspend routine.  Stop the interface and save some PCI
1064 * settings in case the BIOS doesn't restore them properly on
1065 * resume.
1066 */
1067static int
1068fxp_suspend(device_t dev)
1069{
1070	struct fxp_softc *sc = device_get_softc(dev);
1071	if_t ifp;
1072	int pmc;
1073	uint16_t pmstat;
1074
1075	FXP_LOCK(sc);
1076
1077	ifp = sc->ifp;
1078	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1079		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1080		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1081		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1082			/* Request PME. */
1083			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1084			sc->flags |= FXP_FLAG_WOL;
1085			/* Reconfigure hardware to accept magic frames. */
1086			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1087			fxp_init_body(sc, 0);
1088		}
1089		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1090	}
1091	fxp_stop(sc);
1092
1093	sc->suspended = 1;
1094
1095	FXP_UNLOCK(sc);
1096	return (0);
1097}
1098
1099/*
1100 * Device resume routine. re-enable busmastering, and restart the interface if
1101 * appropriate.
1102 */
1103static int
1104fxp_resume(device_t dev)
1105{
1106	struct fxp_softc *sc = device_get_softc(dev);
1107	if_t ifp = sc->ifp;
1108	int pmc;
1109	uint16_t pmstat;
1110
1111	FXP_LOCK(sc);
1112
1113	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1114		sc->flags &= ~FXP_FLAG_WOL;
1115		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1116		/* Disable PME and clear PME status. */
1117		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1118		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1119		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1120			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1121			    CSR_READ_1(sc, FXP_CSR_PMDR));
1122	}
1123
1124	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1125	DELAY(10);
1126
1127	/* reinitialize interface if necessary */
1128	if (if_getflags(ifp) & IFF_UP)
1129		fxp_init_body(sc, 1);
1130
1131	sc->suspended = 0;
1132
1133	FXP_UNLOCK(sc);
1134	return (0);
1135}
1136
1137static void
1138fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1139{
1140	uint16_t reg;
1141	int x;
1142
1143	/*
1144	 * Shift in data.
1145	 */
1146	for (x = 1 << (length - 1); x; x >>= 1) {
1147		if (data & x)
1148			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1149		else
1150			reg = FXP_EEPROM_EECS;
1151		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1152		DELAY(1);
1153		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1154		DELAY(1);
1155		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1156		DELAY(1);
1157	}
1158}
1159
1160/*
1161 * Read from the serial EEPROM. Basically, you manually shift in
1162 * the read opcode (one bit at a time) and then shift in the address,
1163 * and then you shift out the data (all of this one bit at a time).
1164 * The word size is 16 bits, so you have to provide the address for
1165 * every 16 bits of data.
1166 */
1167static uint16_t
1168fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1169{
1170	uint16_t reg, data;
1171	int x;
1172
1173	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1174	/*
1175	 * Shift in read opcode.
1176	 */
1177	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1178	/*
1179	 * Shift in address.
1180	 */
1181	data = 0;
1182	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1183		if (offset & x)
1184			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1185		else
1186			reg = FXP_EEPROM_EECS;
1187		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1188		DELAY(1);
1189		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1190		DELAY(1);
1191		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1192		DELAY(1);
1193		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1194		data++;
1195		if (autosize && reg == 0) {
1196			sc->eeprom_size = data;
1197			break;
1198		}
1199	}
1200	/*
1201	 * Shift out data.
1202	 */
1203	data = 0;
1204	reg = FXP_EEPROM_EECS;
1205	for (x = 1 << 15; x; x >>= 1) {
1206		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1207		DELAY(1);
1208		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1209			data |= x;
1210		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1211		DELAY(1);
1212	}
1213	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1214	DELAY(1);
1215
1216	return (data);
1217}
1218
1219static void
1220fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1221{
1222	int i;
1223
1224	/*
1225	 * Erase/write enable.
1226	 */
1227	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1228	fxp_eeprom_shiftin(sc, 0x4, 3);
1229	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1230	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1231	DELAY(1);
1232	/*
1233	 * Shift in write opcode, address, data.
1234	 */
1235	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1236	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1237	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1238	fxp_eeprom_shiftin(sc, data, 16);
1239	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1240	DELAY(1);
1241	/*
1242	 * Wait for EEPROM to finish up.
1243	 */
1244	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1245	DELAY(1);
1246	for (i = 0; i < 1000; i++) {
1247		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1248			break;
1249		DELAY(50);
1250	}
1251	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1252	DELAY(1);
1253	/*
1254	 * Erase/write disable.
1255	 */
1256	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1257	fxp_eeprom_shiftin(sc, 0x4, 3);
1258	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1259	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1260	DELAY(1);
1261}
1262
1263/*
1264 * From NetBSD:
1265 *
1266 * Figure out EEPROM size.
1267 *
1268 * 559's can have either 64-word or 256-word EEPROMs, the 558
1269 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1270 * talks about the existence of 16 to 256 word EEPROMs.
1271 *
1272 * The only known sizes are 64 and 256, where the 256 version is used
1273 * by CardBus cards to store CIS information.
1274 *
1275 * The address is shifted in msb-to-lsb, and after the last
1276 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1277 * after which follows the actual data. We try to detect this zero, by
1278 * probing the data-out bit in the EEPROM control register just after
1279 * having shifted in a bit. If the bit is zero, we assume we've
1280 * shifted enough address bits. The data-out should be tri-state,
1281 * before this, which should translate to a logical one.
1282 */
1283static void
1284fxp_autosize_eeprom(struct fxp_softc *sc)
1285{
1286
1287	/* guess maximum size of 256 words */
1288	sc->eeprom_size = 8;
1289
1290	/* autosize */
1291	(void) fxp_eeprom_getword(sc, 0, 1);
1292}
1293
1294static void
1295fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1296{
1297	int i;
1298
1299	for (i = 0; i < words; i++)
1300		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1301}
1302
1303static void
1304fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1305{
1306	int i;
1307
1308	for (i = 0; i < words; i++)
1309		fxp_eeprom_putword(sc, offset + i, data[i]);
1310}
1311
1312static void
1313fxp_load_eeprom(struct fxp_softc *sc)
1314{
1315	int i;
1316	uint16_t cksum;
1317
1318	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1319	cksum = 0;
1320	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1321		cksum += sc->eeprom[i];
1322	cksum = 0xBABA - cksum;
1323	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1324		device_printf(sc->dev,
1325		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1326		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1327}
1328
1329/*
1330 * Grab the softc lock and call the real fxp_start_body() routine
1331 */
1332static void
1333fxp_start(if_t ifp)
1334{
1335	struct fxp_softc *sc = if_getsoftc(ifp);
1336
1337	FXP_LOCK(sc);
1338	fxp_start_body(ifp);
1339	FXP_UNLOCK(sc);
1340}
1341
1342/*
1343 * Start packet transmission on the interface.
1344 * This routine must be called with the softc lock held, and is an
1345 * internal entry point only.
1346 */
1347static void
1348fxp_start_body(if_t ifp)
1349{
1350	struct fxp_softc *sc = if_getsoftc(ifp);
1351	struct mbuf *mb_head;
1352	int txqueued;
1353
1354	FXP_LOCK_ASSERT(sc, MA_OWNED);
1355
1356	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1357	    IFF_DRV_RUNNING)
1358		return;
1359
1360	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1361		fxp_txeof(sc);
1362	/*
1363	 * We're finished if there is nothing more to add to the list or if
1364	 * we're all filled up with buffers to transmit.
1365	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1366	 *       a NOP command when needed.
1367	 */
1368	txqueued = 0;
1369	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1370
1371		/*
1372		 * Grab a packet to transmit.
1373		 */
1374		mb_head = if_dequeue(ifp);
1375		if (mb_head == NULL)
1376			break;
1377
1378		if (fxp_encap(sc, &mb_head)) {
1379			if (mb_head == NULL)
1380				break;
1381			if_sendq_prepend(ifp, mb_head);
1382			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1383		}
1384		txqueued++;
1385		/*
1386		 * Pass packet to bpf if there is a listener.
1387		 */
1388		if_bpfmtap(ifp, mb_head);
1389	}
1390
1391	/*
1392	 * We're finished. If we added to the list, issue a RESUME to get DMA
1393	 * going again if suspended.
1394	 */
1395	if (txqueued > 0) {
1396		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1397		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1398		fxp_scb_wait(sc);
1399		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1400		/*
1401		 * Set a 5 second timer just in case we don't hear
1402		 * from the card again.
1403		 */
1404		sc->watchdog_timer = 5;
1405	}
1406}
1407
1408static int
1409fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1410{
1411	if_t ifp;
1412	struct mbuf *m;
1413	struct fxp_tx *txp;
1414	struct fxp_cb_tx *cbp;
1415	struct tcphdr *tcp;
1416	bus_dma_segment_t segs[FXP_NTXSEG];
1417	int error, i, nseg, tcp_payload;
1418
1419	FXP_LOCK_ASSERT(sc, MA_OWNED);
1420	ifp = sc->ifp;
1421
1422	tcp_payload = 0;
1423	tcp = NULL;
1424	/*
1425	 * Get pointer to next available tx desc.
1426	 */
1427	txp = sc->fxp_desc.tx_last->tx_next;
1428
1429	/*
1430	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1431	 * Ethernet Controller Family Open Source Software
1432	 * Developer Manual says:
1433	 *   Using software parsing is only allowed with legal
1434	 *   TCP/IP or UDP/IP packets.
1435	 *   ...
1436	 *   For all other datagrams, hardware parsing must
1437	 *   be used.
1438	 * Software parsing appears to truncate ICMP and
1439	 * fragmented UDP packets that contain one to three
1440	 * bytes in the second (and final) mbuf of the packet.
1441	 */
1442	if (sc->flags & FXP_FLAG_EXT_RFA)
1443		txp->tx_cb->ipcb_ip_activation_high =
1444		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1445
1446	m = *m_head;
1447	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1448		/*
1449		 * 82550/82551 requires ethernet/IP/TCP headers must be
1450		 * contained in the first active transmit buffer.
1451		 */
1452		struct ether_header *eh;
1453		struct ip *ip;
1454		uint32_t ip_off, poff;
1455
1456		if (M_WRITABLE(*m_head) == 0) {
1457			/* Get a writable copy. */
1458			m = m_dup(*m_head, M_NOWAIT);
1459			m_freem(*m_head);
1460			if (m == NULL) {
1461				*m_head = NULL;
1462				return (ENOBUFS);
1463			}
1464			*m_head = m;
1465		}
1466		ip_off = sizeof(struct ether_header);
1467		m = m_pullup(*m_head, ip_off);
1468		if (m == NULL) {
1469			*m_head = NULL;
1470			return (ENOBUFS);
1471		}
1472		eh = mtod(m, struct ether_header *);
1473		/* Check the existence of VLAN tag. */
1474		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1475			ip_off = sizeof(struct ether_vlan_header);
1476			m = m_pullup(m, ip_off);
1477			if (m == NULL) {
1478				*m_head = NULL;
1479				return (ENOBUFS);
1480			}
1481		}
1482		m = m_pullup(m, ip_off + sizeof(struct ip));
1483		if (m == NULL) {
1484			*m_head = NULL;
1485			return (ENOBUFS);
1486		}
1487		ip = (struct ip *)(mtod(m, char *) + ip_off);
1488		poff = ip_off + (ip->ip_hl << 2);
1489		m = m_pullup(m, poff + sizeof(struct tcphdr));
1490		if (m == NULL) {
1491			*m_head = NULL;
1492			return (ENOBUFS);
1493		}
1494		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1495		m = m_pullup(m, poff + (tcp->th_off << 2));
1496		if (m == NULL) {
1497			*m_head = NULL;
1498			return (ENOBUFS);
1499		}
1500
1501		/*
1502		 * Since 82550/82551 doesn't modify IP length and pseudo
1503		 * checksum in the first frame driver should compute it.
1504		 */
1505		ip = (struct ip *)(mtod(m, char *) + ip_off);
1506		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1507		ip->ip_sum = 0;
1508		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1509		    (tcp->th_off << 2));
1510		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1511		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1512		    m->m_pkthdr.tso_segsz));
1513		/* Compute total TCP payload. */
1514		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1515		tcp_payload -= tcp->th_off << 2;
1516		*m_head = m;
1517	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1518		/*
1519		 * Deal with TCP/IP checksum offload. Note that
1520		 * in order for TCP checksum offload to work,
1521		 * the pseudo header checksum must have already
1522		 * been computed and stored in the checksum field
1523		 * in the TCP header. The stack should have
1524		 * already done this for us.
1525		 */
1526		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1527		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1528			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1529
1530#ifdef FXP_IP_CSUM_WAR
1531		/*
1532		 * XXX The 82550 chip appears to have trouble
1533		 * dealing with IP header checksums in very small
1534		 * datagrams, namely fragments from 1 to 3 bytes
1535		 * in size. For example, say you want to transmit
1536		 * a UDP packet of 1473 bytes. The packet will be
1537		 * fragmented over two IP datagrams, the latter
1538		 * containing only one byte of data. The 82550 will
1539		 * botch the header checksum on the 1-byte fragment.
1540		 * As long as the datagram contains 4 or more bytes
1541		 * of data, you're ok.
1542		 *
1543                 * The following code attempts to work around this
1544		 * problem: if the datagram is less than 38 bytes
1545		 * in size (14 bytes ether header, 20 bytes IP header,
1546		 * plus 4 bytes of data), we punt and compute the IP
1547		 * header checksum by hand. This workaround doesn't
1548		 * work very well, however, since it can be fooled
1549		 * by things like VLAN tags and IP options that make
1550		 * the header sizes/offsets vary.
1551		 */
1552
1553		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1554			if (m->m_pkthdr.len < 38) {
1555				struct ip *ip;
1556				m->m_data += ETHER_HDR_LEN;
1557				ip = mtod(m, struct ip *);
1558				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1559				m->m_data -= ETHER_HDR_LEN;
1560				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1561			} else {
1562				txp->tx_cb->ipcb_ip_activation_high =
1563				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1564				txp->tx_cb->ipcb_ip_schedule |=
1565				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1566			}
1567		}
1568#endif
1569	}
1570
1571	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1572	    segs, &nseg, 0);
1573	if (error == EFBIG) {
1574		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1575		if (m == NULL) {
1576			m_freem(*m_head);
1577			*m_head = NULL;
1578			return (ENOMEM);
1579		}
1580		*m_head = m;
1581		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1582		    *m_head, segs, &nseg, 0);
1583		if (error != 0) {
1584			m_freem(*m_head);
1585			*m_head = NULL;
1586			return (ENOMEM);
1587		}
1588	} else if (error != 0)
1589		return (error);
1590	if (nseg == 0) {
1591		m_freem(*m_head);
1592		*m_head = NULL;
1593		return (EIO);
1594	}
1595
1596	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1597	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1598
1599	cbp = txp->tx_cb;
1600	for (i = 0; i < nseg; i++) {
1601		/*
1602		 * If this is an 82550/82551, then we're using extended
1603		 * TxCBs _and_ we're using checksum offload. This means
1604		 * that the TxCB is really an IPCB. One major difference
1605		 * between the two is that with plain extended TxCBs,
1606		 * the bottom half of the TxCB contains two entries from
1607		 * the TBD array, whereas IPCBs contain just one entry:
1608		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1609		 * checksum offload control bits. So to make things work
1610		 * right, we have to start filling in the TBD array
1611		 * starting from a different place depending on whether
1612		 * the chip is an 82550/82551 or not.
1613		 */
1614		if (sc->flags & FXP_FLAG_EXT_RFA) {
1615			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1616			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1617		} else {
1618			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1619			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1620		}
1621	}
1622	if (sc->flags & FXP_FLAG_EXT_RFA) {
1623		/* Configure dynamic TBD for 82550/82551. */
1624		cbp->tbd_number = 0xFF;
1625		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1626	} else
1627		cbp->tbd_number = nseg;
1628	/* Configure TSO. */
1629	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1630		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1631		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1632		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1633		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1634		    FXP_IPCB_TCP_PACKET |
1635		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1636	}
1637	/* Configure VLAN hardware tag insertion. */
1638	if ((m->m_flags & M_VLANTAG) != 0) {
1639		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1640		txp->tx_cb->ipcb_ip_activation_high |=
1641		    FXP_IPCB_INSERTVLAN_ENABLE;
1642	}
1643
1644	txp->tx_mbuf = m;
1645	txp->tx_cb->cb_status = 0;
1646	txp->tx_cb->byte_count = 0;
1647	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1648		txp->tx_cb->cb_command =
1649		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1650		    FXP_CB_COMMAND_S);
1651	else
1652		txp->tx_cb->cb_command =
1653		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1654		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1655	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1656		txp->tx_cb->tx_threshold = tx_threshold;
1657
1658	/*
1659	 * Advance the end of list forward.
1660	 */
1661	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1662	sc->fxp_desc.tx_last = txp;
1663
1664	/*
1665	 * Advance the beginning of the list forward if there are
1666	 * no other packets queued (when nothing is queued, tx_first
1667	 * sits on the last TxCB that was sent out).
1668	 */
1669	if (sc->tx_queued == 0)
1670		sc->fxp_desc.tx_first = txp;
1671
1672	sc->tx_queued++;
1673
1674	return (0);
1675}
1676
1677#ifdef DEVICE_POLLING
1678static poll_handler_t fxp_poll;
1679
1680static int
1681fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1682{
1683	struct fxp_softc *sc = if_getsoftc(ifp);
1684	uint8_t statack;
1685	int rx_npkts = 0;
1686
1687	FXP_LOCK(sc);
1688	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1689		FXP_UNLOCK(sc);
1690		return (rx_npkts);
1691	}
1692
1693	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1694	    FXP_SCB_STATACK_FR;
1695	if (cmd == POLL_AND_CHECK_STATUS) {
1696		uint8_t tmp;
1697
1698		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1699		if (tmp == 0xff || tmp == 0) {
1700			FXP_UNLOCK(sc);
1701			return (rx_npkts); /* nothing to do */
1702		}
1703		tmp &= ~statack;
1704		/* ack what we can */
1705		if (tmp != 0)
1706			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1707		statack |= tmp;
1708	}
1709	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1710	FXP_UNLOCK(sc);
1711	return (rx_npkts);
1712}
1713#endif /* DEVICE_POLLING */
1714
1715/*
1716 * Process interface interrupts.
1717 */
1718static void
1719fxp_intr(void *xsc)
1720{
1721	struct fxp_softc *sc = xsc;
1722	if_t ifp = sc->ifp;
1723	uint8_t statack;
1724
1725	FXP_LOCK(sc);
1726	if (sc->suspended) {
1727		FXP_UNLOCK(sc);
1728		return;
1729	}
1730
1731#ifdef DEVICE_POLLING
1732	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1733		FXP_UNLOCK(sc);
1734		return;
1735	}
1736#endif
1737	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1738		/*
1739		 * It should not be possible to have all bits set; the
1740		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1741		 * all bits are set, this may indicate that the card has
1742		 * been physically ejected, so ignore it.
1743		 */
1744		if (statack == 0xff) {
1745			FXP_UNLOCK(sc);
1746			return;
1747		}
1748
1749		/*
1750		 * First ACK all the interrupts in this pass.
1751		 */
1752		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1753		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1754			fxp_intr_body(sc, ifp, statack, -1);
1755	}
1756	FXP_UNLOCK(sc);
1757}
1758
1759static void
1760fxp_txeof(struct fxp_softc *sc)
1761{
1762	if_t ifp;
1763	struct fxp_tx *txp;
1764
1765	ifp = sc->ifp;
1766	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1767	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1768	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1769	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1770	    txp = txp->tx_next) {
1771		if (txp->tx_mbuf != NULL) {
1772			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1773			    BUS_DMASYNC_POSTWRITE);
1774			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1775			m_freem(txp->tx_mbuf);
1776			txp->tx_mbuf = NULL;
1777			/* clear this to reset csum offload bits */
1778			txp->tx_cb->tbd[0].tb_addr = 0;
1779		}
1780		sc->tx_queued--;
1781		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1782	}
1783	sc->fxp_desc.tx_first = txp;
1784	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1785	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1786	if (sc->tx_queued == 0)
1787		sc->watchdog_timer = 0;
1788}
1789
1790static void
1791fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1792    uint16_t status, int pos)
1793{
1794	struct ether_header *eh;
1795	struct ip *ip;
1796	struct udphdr *uh;
1797	int32_t hlen, len, pktlen, temp32;
1798	uint16_t csum, *opts;
1799
1800	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1801		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1802			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1803				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1804			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1805				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1806			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1807			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1808				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1809				    CSUM_PSEUDO_HDR;
1810				m->m_pkthdr.csum_data = 0xffff;
1811			}
1812		}
1813		return;
1814	}
1815
1816	pktlen = m->m_pkthdr.len;
1817	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1818		return;
1819	eh = mtod(m, struct ether_header *);
1820	if (eh->ether_type != htons(ETHERTYPE_IP))
1821		return;
1822	ip = (struct ip *)(eh + 1);
1823	if (ip->ip_v != IPVERSION)
1824		return;
1825
1826	hlen = ip->ip_hl << 2;
1827	pktlen -= sizeof(struct ether_header);
1828	if (hlen < sizeof(struct ip))
1829		return;
1830	if (ntohs(ip->ip_len) < hlen)
1831		return;
1832	if (ntohs(ip->ip_len) != pktlen)
1833		return;
1834	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1835		return;	/* can't handle fragmented packet */
1836
1837	switch (ip->ip_p) {
1838	case IPPROTO_TCP:
1839		if (pktlen < (hlen + sizeof(struct tcphdr)))
1840			return;
1841		break;
1842	case IPPROTO_UDP:
1843		if (pktlen < (hlen + sizeof(struct udphdr)))
1844			return;
1845		uh = (struct udphdr *)((caddr_t)ip + hlen);
1846		if (uh->uh_sum == 0)
1847			return; /* no checksum */
1848		break;
1849	default:
1850		return;
1851	}
1852	/* Extract computed checksum. */
1853	csum = be16dec(mtod(m, char *) + pos);
1854	/* checksum fixup for IP options */
1855	len = hlen - sizeof(struct ip);
1856	if (len > 0) {
1857		opts = (uint16_t *)(ip + 1);
1858		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1859			temp32 = csum - *opts;
1860			temp32 = (temp32 >> 16) + (temp32 & 65535);
1861			csum = temp32 & 65535;
1862		}
1863	}
1864	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1865	m->m_pkthdr.csum_data = csum;
1866}
1867
1868static int
1869fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1870    int count)
1871{
1872	struct mbuf *m;
1873	struct fxp_rx *rxp;
1874	struct fxp_rfa *rfa;
1875	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1876	int rx_npkts;
1877	uint16_t status;
1878
1879	rx_npkts = 0;
1880	FXP_LOCK_ASSERT(sc, MA_OWNED);
1881
1882	if (rnr)
1883		sc->rnr++;
1884#ifdef DEVICE_POLLING
1885	/* Pick up a deferred RNR condition if `count' ran out last time. */
1886	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1887		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1888		rnr = 1;
1889	}
1890#endif
1891
1892	/*
1893	 * Free any finished transmit mbuf chains.
1894	 *
1895	 * Handle the CNA event likt a CXTNO event. It used to
1896	 * be that this event (control unit not ready) was not
1897	 * encountered, but it is now with the SMPng modifications.
1898	 * The exact sequence of events that occur when the interface
1899	 * is brought up are different now, and if this event
1900	 * goes unhandled, the configuration/rxfilter setup sequence
1901	 * can stall for several seconds. The result is that no
1902	 * packets go out onto the wire for about 5 to 10 seconds
1903	 * after the interface is ifconfig'ed for the first time.
1904	 */
1905	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1906		fxp_txeof(sc);
1907
1908	/*
1909	 * Try to start more packets transmitting.
1910	 */
1911	if (!if_sendq_empty(ifp))
1912		fxp_start_body(ifp);
1913
1914	/*
1915	 * Just return if nothing happened on the receive side.
1916	 */
1917	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1918		return (rx_npkts);
1919
1920	/*
1921	 * Process receiver interrupts. If a no-resource (RNR)
1922	 * condition exists, get whatever packets we can and
1923	 * re-start the receiver.
1924	 *
1925	 * When using polling, we do not process the list to completion,
1926	 * so when we get an RNR interrupt we must defer the restart
1927	 * until we hit the last buffer with the C bit set.
1928	 * If we run out of cycles and rfa_headm has the C bit set,
1929	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1930	 * that the info will be used in the subsequent polling cycle.
1931	 */
1932	for (;;) {
1933		rxp = sc->fxp_desc.rx_head;
1934		m = rxp->rx_mbuf;
1935		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1936		    RFA_ALIGNMENT_FUDGE);
1937		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1938		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1939
1940#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1941		if (count >= 0 && count-- == 0) {
1942			if (rnr) {
1943				/* Defer RNR processing until the next time. */
1944				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1945				rnr = 0;
1946			}
1947			break;
1948		}
1949#endif /* DEVICE_POLLING */
1950
1951		status = le16toh(rfa->rfa_status);
1952		if ((status & FXP_RFA_STATUS_C) == 0)
1953			break;
1954
1955		if ((status & FXP_RFA_STATUS_RNR) != 0)
1956			rnr++;
1957		/*
1958		 * Advance head forward.
1959		 */
1960		sc->fxp_desc.rx_head = rxp->rx_next;
1961
1962		/*
1963		 * Add a new buffer to the receive chain.
1964		 * If this fails, the old buffer is recycled
1965		 * instead.
1966		 */
1967		if (fxp_new_rfabuf(sc, rxp) == 0) {
1968			int total_len;
1969
1970			/*
1971			 * Fetch packet length (the top 2 bits of
1972			 * actual_size are flags set by the controller
1973			 * upon completion), and drop the packet in case
1974			 * of bogus length or CRC errors.
1975			 */
1976			total_len = le16toh(rfa->actual_size) & 0x3fff;
1977			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1978			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1979				/* Adjust for appended checksum bytes. */
1980				total_len -= 2;
1981			}
1982			if (total_len < (int)sizeof(struct ether_header) ||
1983			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1984			    sc->rfa_size) ||
1985			    status & (FXP_RFA_STATUS_CRC |
1986			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1987				m_freem(m);
1988				fxp_add_rfabuf(sc, rxp);
1989				continue;
1990			}
1991
1992			m->m_pkthdr.len = m->m_len = total_len;
1993			if_setrcvif(m, ifp);
1994
1995                        /* Do IP checksum checking. */
1996			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1997				fxp_rxcsum(sc, ifp, m, status, total_len);
1998			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1999			    (status & FXP_RFA_STATUS_VLAN) != 0) {
2000				m->m_pkthdr.ether_vtag =
2001				    ntohs(rfa->rfax_vlan_id);
2002				m->m_flags |= M_VLANTAG;
2003			}
2004			/*
2005			 * Drop locks before calling if_input() since it
2006			 * may re-enter fxp_start() in the netisr case.
2007			 * This would result in a lock reversal.  Better
2008			 * performance might be obtained by chaining all
2009			 * packets received, dropping the lock, and then
2010			 * calling if_input() on each one.
2011			 */
2012			FXP_UNLOCK(sc);
2013			if_input(ifp, m);
2014			FXP_LOCK(sc);
2015			rx_npkts++;
2016			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2017				return (rx_npkts);
2018		} else {
2019			/* Reuse RFA and loaded DMA map. */
2020			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2021			fxp_discard_rfabuf(sc, rxp);
2022		}
2023		fxp_add_rfabuf(sc, rxp);
2024	}
2025	if (rnr) {
2026		fxp_scb_wait(sc);
2027		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2028		    sc->fxp_desc.rx_head->rx_addr);
2029		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2030	}
2031	return (rx_npkts);
2032}
2033
2034static void
2035fxp_update_stats(struct fxp_softc *sc)
2036{
2037	if_t ifp = sc->ifp;
2038	struct fxp_stats *sp = sc->fxp_stats;
2039	struct fxp_hwstats *hsp;
2040	uint32_t *status;
2041
2042	FXP_LOCK_ASSERT(sc, MA_OWNED);
2043
2044	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2045	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2046	/* Update statistical counters. */
2047	if (sc->revision >= FXP_REV_82559_A0)
2048		status = &sp->completion_status;
2049	else if (sc->revision >= FXP_REV_82558_A4)
2050		status = (uint32_t *)&sp->tx_tco;
2051	else
2052		status = &sp->tx_pause;
2053	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2054		hsp = &sc->fxp_hwstats;
2055		hsp->tx_good += le32toh(sp->tx_good);
2056		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2057		hsp->tx_latecols += le32toh(sp->tx_latecols);
2058		hsp->tx_underruns += le32toh(sp->tx_underruns);
2059		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2060		hsp->tx_deffered += le32toh(sp->tx_deffered);
2061		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2062		hsp->tx_multiple_collisions +=
2063		    le32toh(sp->tx_multiple_collisions);
2064		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2065		hsp->rx_good += le32toh(sp->rx_good);
2066		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2067		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2068		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2069		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2070		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2071		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2072		hsp->tx_pause += le32toh(sp->tx_pause);
2073		hsp->rx_pause += le32toh(sp->rx_pause);
2074		hsp->rx_controls += le32toh(sp->rx_controls);
2075		hsp->tx_tco += le16toh(sp->tx_tco);
2076		hsp->rx_tco += le16toh(sp->rx_tco);
2077
2078		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2079		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2080		    le32toh(sp->tx_total_collisions));
2081		if (sp->rx_good) {
2082			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2083			    le32toh(sp->rx_good));
2084			sc->rx_idle_secs = 0;
2085		} else if (sc->flags & FXP_FLAG_RXBUG) {
2086			/*
2087			 * Receiver's been idle for another second.
2088			 */
2089			sc->rx_idle_secs++;
2090		}
2091		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2092		    le32toh(sp->rx_crc_errors) +
2093		    le32toh(sp->rx_alignment_errors) +
2094		    le32toh(sp->rx_rnr_errors) +
2095		    le32toh(sp->rx_overrun_errors));
2096		/*
2097		 * If any transmit underruns occurred, bump up the transmit
2098		 * threshold by another 512 bytes (64 * 8).
2099		 */
2100		if (sp->tx_underruns) {
2101			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2102			    le32toh(sp->tx_underruns));
2103			if (tx_threshold < 192)
2104				tx_threshold += 64;
2105		}
2106		*status = 0;
2107		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2108		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2109	}
2110}
2111
2112/*
2113 * Update packet in/out/collision statistics. The i82557 doesn't
2114 * allow you to access these counters without doing a fairly
2115 * expensive DMA to get _all_ of the statistics it maintains, so
2116 * we do this operation here only once per second. The statistics
2117 * counters in the kernel are updated from the previous dump-stats
2118 * DMA and then a new dump-stats DMA is started. The on-chip
2119 * counters are zeroed when the DMA completes. If we can't start
2120 * the DMA immediately, we don't wait - we just prepare to read
2121 * them again next time.
2122 */
2123static void
2124fxp_tick(void *xsc)
2125{
2126	struct fxp_softc *sc = xsc;
2127	if_t ifp = sc->ifp;
2128
2129	FXP_LOCK_ASSERT(sc, MA_OWNED);
2130
2131	/* Update statistical counters. */
2132	fxp_update_stats(sc);
2133
2134	/*
2135	 * Release any xmit buffers that have completed DMA. This isn't
2136	 * strictly necessary to do here, but it's advantagous for mbufs
2137	 * with external storage to be released in a timely manner rather
2138	 * than being defered for a potentially long time. This limits
2139	 * the delay to a maximum of one second.
2140	 */
2141	fxp_txeof(sc);
2142
2143	/*
2144	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2145	 * then assume the receiver has locked up and attempt to clear
2146	 * the condition by reprogramming the multicast filter. This is
2147	 * a work-around for a bug in the 82557 where the receiver locks
2148	 * up if it gets certain types of garbage in the synchronization
2149	 * bits prior to the packet header. This bug is supposed to only
2150	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2151	 * mode as well (perhaps due to a 10/100 speed transition).
2152	 */
2153	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2154		sc->rx_idle_secs = 0;
2155		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2156			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2157			fxp_init_body(sc, 1);
2158		}
2159		return;
2160	}
2161	/*
2162	 * If there is no pending command, start another stats
2163	 * dump. Otherwise punt for now.
2164	 */
2165	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2166		/*
2167		 * Start another stats dump.
2168		 */
2169		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2170	}
2171	if (sc->miibus != NULL)
2172		mii_tick(device_get_softc(sc->miibus));
2173
2174	/*
2175	 * Check that chip hasn't hung.
2176	 */
2177	fxp_watchdog(sc);
2178
2179	/*
2180	 * Schedule another timeout one second from now.
2181	 */
2182	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2183}
2184
2185/*
2186 * Stop the interface. Cancels the statistics updater and resets
2187 * the interface.
2188 */
2189static void
2190fxp_stop(struct fxp_softc *sc)
2191{
2192	if_t ifp = sc->ifp;
2193	struct fxp_tx *txp;
2194	int i;
2195
2196	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2197	sc->watchdog_timer = 0;
2198
2199	/*
2200	 * Cancel stats updater.
2201	 */
2202	callout_stop(&sc->stat_ch);
2203
2204	/*
2205	 * Preserve PCI configuration, configure, IA/multicast
2206	 * setup and put RU and CU into idle state.
2207	 */
2208	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2209	DELAY(50);
2210	/* Disable interrupts. */
2211	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2212
2213	fxp_update_stats(sc);
2214
2215	/*
2216	 * Release any xmit buffers.
2217	 */
2218	txp = sc->fxp_desc.tx_list;
2219	for (i = 0; i < FXP_NTXCB; i++) {
2220		if (txp[i].tx_mbuf != NULL) {
2221			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2222			    BUS_DMASYNC_POSTWRITE);
2223			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2224			m_freem(txp[i].tx_mbuf);
2225			txp[i].tx_mbuf = NULL;
2226			/* clear this to reset csum offload bits */
2227			txp[i].tx_cb->tbd[0].tb_addr = 0;
2228		}
2229	}
2230	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2231	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2232	sc->tx_queued = 0;
2233}
2234
2235/*
2236 * Watchdog/transmission transmit timeout handler. Called when a
2237 * transmission is started on the interface, but no interrupt is
2238 * received before the timeout. This usually indicates that the
2239 * card has wedged for some reason.
2240 */
2241static void
2242fxp_watchdog(struct fxp_softc *sc)
2243{
2244	if_t ifp = sc->ifp;
2245
2246	FXP_LOCK_ASSERT(sc, MA_OWNED);
2247
2248	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2249		return;
2250
2251	device_printf(sc->dev, "device timeout\n");
2252	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2253
2254	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2255	fxp_init_body(sc, 1);
2256}
2257
2258/*
2259 * Acquire locks and then call the real initialization function.  This
2260 * is necessary because ether_ioctl() calls if_init() and this would
2261 * result in mutex recursion if the mutex was held.
2262 */
2263static void
2264fxp_init(void *xsc)
2265{
2266	struct fxp_softc *sc = xsc;
2267
2268	FXP_LOCK(sc);
2269	fxp_init_body(sc, 1);
2270	FXP_UNLOCK(sc);
2271}
2272
2273/*
2274 * Perform device initialization. This routine must be called with the
2275 * softc lock held.
2276 */
2277static void
2278fxp_init_body(struct fxp_softc *sc, int setmedia)
2279{
2280	if_t ifp = sc->ifp;
2281	struct mii_data *mii;
2282	struct fxp_cb_config *cbp;
2283	struct fxp_cb_ias *cb_ias;
2284	struct fxp_cb_tx *tcbp;
2285	struct fxp_tx *txp;
2286	int i, prm;
2287
2288	FXP_LOCK_ASSERT(sc, MA_OWNED);
2289
2290	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2291		return;
2292
2293	/*
2294	 * Cancel any pending I/O
2295	 */
2296	fxp_stop(sc);
2297
2298	/*
2299	 * Issue software reset, which also unloads the microcode.
2300	 */
2301	sc->flags &= ~FXP_FLAG_UCODE;
2302	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2303	DELAY(50);
2304
2305	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2306
2307	/*
2308	 * Initialize base of CBL and RFA memory. Loading with zero
2309	 * sets it up for regular linear addressing.
2310	 */
2311	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2312	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2313
2314	fxp_scb_wait(sc);
2315	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2316
2317	/*
2318	 * Initialize base of dump-stats buffer.
2319	 */
2320	fxp_scb_wait(sc);
2321	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2322	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2323	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2324	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2325	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2326
2327	/*
2328	 * Attempt to load microcode if requested.
2329	 * For ICH based controllers do not load microcode.
2330	 */
2331	if (sc->ident->ich == 0) {
2332		if (if_getflags(ifp) & IFF_LINK0 &&
2333		    (sc->flags & FXP_FLAG_UCODE) == 0)
2334			fxp_load_ucode(sc);
2335	}
2336
2337	/*
2338	 * Set IFF_ALLMULTI status. It's needed in configure action
2339	 * command.
2340	 */
2341	fxp_mc_addrs(sc);
2342
2343	/*
2344	 * We temporarily use memory that contains the TxCB list to
2345	 * construct the config CB. The TxCB list memory is rebuilt
2346	 * later.
2347	 */
2348	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2349
2350	/*
2351	 * This bcopy is kind of disgusting, but there are a bunch of must be
2352	 * zero and must be one bits in this structure and this is the easiest
2353	 * way to initialize them all to proper values.
2354	 */
2355	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2356
2357	cbp->cb_status =	0;
2358	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2359	    FXP_CB_COMMAND_EL);
2360	cbp->link_addr =	0xffffffff;	/* (no) next command */
2361	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2362	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2363	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2364	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2365	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2366	cbp->type_enable =	0;	/* actually reserved */
2367	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2368	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2369	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2370	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2371	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2372	cbp->late_scb =		0;	/* (don't) defer SCB update */
2373	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2374	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2375	cbp->ci_int =		1;	/* interrupt on CU idle */
2376	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2377	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2378	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2379	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2380	cbp->disc_short_rx =	!prm;	/* discard short packets */
2381	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2382	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2383	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2384	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2385	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2386	cbp->csma_dis =		0;	/* (don't) disable link */
2387	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2388	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2389	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2390	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2391	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2392	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2393	cbp->nsai =		1;	/* (don't) disable source addr insert */
2394	cbp->preamble_length =	2;	/* (7 byte) preamble */
2395	cbp->loopback =		0;	/* (don't) loopback */
2396	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2397	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2398	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2399	cbp->promiscuous =	prm;	/* promiscuous mode */
2400	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2401	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2402	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2403	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2404	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2405
2406	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2407	cbp->padding =		1;	/* (do) pad short tx packets */
2408	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2409	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2410	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2411	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2412	cbp->force_fdx =	0;	/* (don't) force full duplex */
2413	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2414	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2415	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2416	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2417	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2418	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2419
2420	if (sc->revision == FXP_REV_82557) {
2421		/*
2422		 * The 82557 has no hardware flow control, the values
2423		 * below are the defaults for the chip.
2424		 */
2425		cbp->fc_delay_lsb =	0;
2426		cbp->fc_delay_msb =	0x40;
2427		cbp->pri_fc_thresh =	3;
2428		cbp->tx_fc_dis =	0;
2429		cbp->rx_fc_restop =	0;
2430		cbp->rx_fc_restart =	0;
2431		cbp->fc_filter =	0;
2432		cbp->pri_fc_loc =	1;
2433	} else {
2434		/* Set pause RX FIFO threshold to 1KB. */
2435		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2436		/* Set pause time. */
2437		cbp->fc_delay_lsb =	0xff;
2438		cbp->fc_delay_msb =	0xff;
2439		cbp->pri_fc_thresh =	3;
2440		mii = device_get_softc(sc->miibus);
2441		if ((IFM_OPTIONS(mii->mii_media_active) &
2442		    IFM_ETH_TXPAUSE) != 0)
2443			/* enable transmit FC */
2444			cbp->tx_fc_dis = 0;
2445		else
2446			/* disable transmit FC */
2447			cbp->tx_fc_dis = 1;
2448		if ((IFM_OPTIONS(mii->mii_media_active) &
2449		    IFM_ETH_RXPAUSE) != 0) {
2450			/* enable FC restart/restop frames */
2451			cbp->rx_fc_restart = 1;
2452			cbp->rx_fc_restop = 1;
2453		} else {
2454			/* disable FC restart/restop frames */
2455			cbp->rx_fc_restart = 0;
2456			cbp->rx_fc_restop = 0;
2457		}
2458		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2459		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2460	}
2461
2462	/* Enable 82558 and 82559 extended statistics functionality. */
2463	if (sc->revision >= FXP_REV_82558_A4) {
2464		if (sc->revision >= FXP_REV_82559_A0) {
2465			/*
2466			 * Extend configuration table size to 32
2467			 * to include TCO configuration.
2468			 */
2469			cbp->byte_count = 32;
2470			cbp->ext_stats_dis = 1;
2471			/* Enable TCO stats. */
2472			cbp->tno_int_or_tco_en = 1;
2473			cbp->gamla_rx = 1;
2474		} else
2475			cbp->ext_stats_dis = 0;
2476	}
2477
2478	/*
2479	 * Start the config command/DMA.
2480	 */
2481	fxp_scb_wait(sc);
2482	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2483	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2484	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2485	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2486	/* ...and wait for it to complete. */
2487	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2488
2489	/*
2490	 * Now initialize the station address. Temporarily use the TxCB
2491	 * memory area like we did above for the config CB.
2492	 */
2493	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2494	cb_ias->cb_status = 0;
2495	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2496	cb_ias->link_addr = 0xffffffff;
2497	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2498
2499	/*
2500	 * Start the IAS (Individual Address Setup) command/DMA.
2501	 */
2502	fxp_scb_wait(sc);
2503	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2504	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2505	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2506	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2507	/* ...and wait for it to complete. */
2508	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2509
2510	/*
2511	 * Initialize the multicast address list.
2512	 */
2513	fxp_mc_setup(sc);
2514
2515	/*
2516	 * Initialize transmit control block (TxCB) list.
2517	 */
2518	txp = sc->fxp_desc.tx_list;
2519	tcbp = sc->fxp_desc.cbl_list;
2520	bzero(tcbp, FXP_TXCB_SZ);
2521	for (i = 0; i < FXP_NTXCB; i++) {
2522		txp[i].tx_mbuf = NULL;
2523		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2524		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2525		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2526		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2527		if (sc->flags & FXP_FLAG_EXT_TXCB)
2528			tcbp[i].tbd_array_addr =
2529			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2530		else
2531			tcbp[i].tbd_array_addr =
2532			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2533		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2534	}
2535	/*
2536	 * Set the suspend flag on the first TxCB and start the control
2537	 * unit. It will execute the NOP and then suspend.
2538	 */
2539	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2540	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2541	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2542	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2543	sc->tx_queued = 1;
2544
2545	fxp_scb_wait(sc);
2546	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2547	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2548
2549	/*
2550	 * Initialize receiver buffer area - RFA.
2551	 */
2552	fxp_scb_wait(sc);
2553	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2554	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2555
2556	if (sc->miibus != NULL && setmedia != 0)
2557		mii_mediachg(device_get_softc(sc->miibus));
2558
2559	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2560
2561	/*
2562	 * Enable interrupts.
2563	 */
2564#ifdef DEVICE_POLLING
2565	/*
2566	 * ... but only do that if we are not polling. And because (presumably)
2567	 * the default is interrupts on, we need to disable them explicitly!
2568	 */
2569	if (if_getcapenable(ifp) & IFCAP_POLLING )
2570		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2571	else
2572#endif /* DEVICE_POLLING */
2573	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2574
2575	/*
2576	 * Start stats updater.
2577	 */
2578	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2579}
2580
2581static int
2582fxp_serial_ifmedia_upd(if_t ifp)
2583{
2584
2585	return (0);
2586}
2587
2588static void
2589fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2590{
2591
2592	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2593}
2594
2595/*
2596 * Change media according to request.
2597 */
2598static int
2599fxp_ifmedia_upd(if_t ifp)
2600{
2601	struct fxp_softc *sc = if_getsoftc(ifp);
2602	struct mii_data *mii;
2603	struct mii_softc	*miisc;
2604
2605	mii = device_get_softc(sc->miibus);
2606	FXP_LOCK(sc);
2607	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2608		PHY_RESET(miisc);
2609	mii_mediachg(mii);
2610	FXP_UNLOCK(sc);
2611	return (0);
2612}
2613
2614/*
2615 * Notify the world which media we're using.
2616 */
2617static void
2618fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2619{
2620	struct fxp_softc *sc = if_getsoftc(ifp);
2621	struct mii_data *mii;
2622
2623	mii = device_get_softc(sc->miibus);
2624	FXP_LOCK(sc);
2625	mii_pollstat(mii);
2626	ifmr->ifm_active = mii->mii_media_active;
2627	ifmr->ifm_status = mii->mii_media_status;
2628	FXP_UNLOCK(sc);
2629}
2630
2631/*
2632 * Add a buffer to the end of the RFA buffer list.
2633 * Return 0 if successful, 1 for failure. A failure results in
2634 * reusing the RFA buffer.
2635 * The RFA struct is stuck at the beginning of mbuf cluster and the
2636 * data pointer is fixed up to point just past it.
2637 */
2638static int
2639fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2640{
2641	struct mbuf *m;
2642	struct fxp_rfa *rfa;
2643	bus_dmamap_t tmp_map;
2644	int error;
2645
2646	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2647	if (m == NULL)
2648		return (ENOBUFS);
2649
2650	/*
2651	 * Move the data pointer up so that the incoming data packet
2652	 * will be 32-bit aligned.
2653	 */
2654	m->m_data += RFA_ALIGNMENT_FUDGE;
2655
2656	/*
2657	 * Get a pointer to the base of the mbuf cluster and move
2658	 * data start past it.
2659	 */
2660	rfa = mtod(m, struct fxp_rfa *);
2661	m->m_data += sc->rfa_size;
2662	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2663
2664	rfa->rfa_status = 0;
2665	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2666	rfa->actual_size = 0;
2667	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2668	    sc->rfa_size;
2669
2670	/*
2671	 * Initialize the rest of the RFA.  Note that since the RFA
2672	 * is misaligned, we cannot store values directly.  We're thus
2673	 * using the le32enc() function which handles endianness and
2674	 * is also alignment-safe.
2675	 */
2676	le32enc(&rfa->link_addr, 0xffffffff);
2677	le32enc(&rfa->rbd_addr, 0xffffffff);
2678
2679	/* Map the RFA into DMA memory. */
2680	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2681	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2682	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2683	if (error) {
2684		m_freem(m);
2685		return (error);
2686	}
2687
2688	if (rxp->rx_mbuf != NULL)
2689		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2690	tmp_map = sc->spare_map;
2691	sc->spare_map = rxp->rx_map;
2692	rxp->rx_map = tmp_map;
2693	rxp->rx_mbuf = m;
2694
2695	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2696	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2697	return (0);
2698}
2699
2700static void
2701fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2702{
2703	struct fxp_rfa *p_rfa;
2704	struct fxp_rx *p_rx;
2705
2706	/*
2707	 * If there are other buffers already on the list, attach this
2708	 * one to the end by fixing up the tail to point to this one.
2709	 */
2710	if (sc->fxp_desc.rx_head != NULL) {
2711		p_rx = sc->fxp_desc.rx_tail;
2712		p_rfa = (struct fxp_rfa *)
2713		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2714		p_rx->rx_next = rxp;
2715		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2716		p_rfa->rfa_control = 0;
2717		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2718		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2719	} else {
2720		rxp->rx_next = NULL;
2721		sc->fxp_desc.rx_head = rxp;
2722	}
2723	sc->fxp_desc.rx_tail = rxp;
2724}
2725
2726static void
2727fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2728{
2729	struct mbuf *m;
2730	struct fxp_rfa *rfa;
2731
2732	m = rxp->rx_mbuf;
2733	m->m_data = m->m_ext.ext_buf;
2734	/*
2735	 * Move the data pointer up so that the incoming data packet
2736	 * will be 32-bit aligned.
2737	 */
2738	m->m_data += RFA_ALIGNMENT_FUDGE;
2739
2740	/*
2741	 * Get a pointer to the base of the mbuf cluster and move
2742	 * data start past it.
2743	 */
2744	rfa = mtod(m, struct fxp_rfa *);
2745	m->m_data += sc->rfa_size;
2746	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2747
2748	rfa->rfa_status = 0;
2749	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2750	rfa->actual_size = 0;
2751
2752	/*
2753	 * Initialize the rest of the RFA.  Note that since the RFA
2754	 * is misaligned, we cannot store values directly.  We're thus
2755	 * using the le32enc() function which handles endianness and
2756	 * is also alignment-safe.
2757	 */
2758	le32enc(&rfa->link_addr, 0xffffffff);
2759	le32enc(&rfa->rbd_addr, 0xffffffff);
2760
2761	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2762	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2763}
2764
2765static int
2766fxp_miibus_readreg(device_t dev, int phy, int reg)
2767{
2768	struct fxp_softc *sc = device_get_softc(dev);
2769	int count = 10000;
2770	int value;
2771
2772	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2773	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2774
2775	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2776	    && count--)
2777		DELAY(10);
2778
2779	if (count <= 0)
2780		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2781
2782	return (value & 0xffff);
2783}
2784
2785static int
2786fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2787{
2788	struct fxp_softc *sc = device_get_softc(dev);
2789	int count = 10000;
2790
2791	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2792	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2793	    (value & 0xffff));
2794
2795	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2796	    count--)
2797		DELAY(10);
2798
2799	if (count <= 0)
2800		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2801	return (0);
2802}
2803
2804static void
2805fxp_miibus_statchg(device_t dev)
2806{
2807	struct fxp_softc *sc;
2808	struct mii_data *mii;
2809	if_t ifp;
2810
2811	sc = device_get_softc(dev);
2812	mii = device_get_softc(sc->miibus);
2813	ifp = sc->ifp;
2814	if (mii == NULL || ifp == (void *)NULL ||
2815	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2816	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2817	    (IFM_AVALID | IFM_ACTIVE))
2818		return;
2819
2820	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2821	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2822		sc->cu_resume_bug = 1;
2823	else
2824		sc->cu_resume_bug = 0;
2825	/*
2826	 * Call fxp_init_body in order to adjust the flow control settings.
2827	 * Note that the 82557 doesn't support hardware flow control.
2828	 */
2829	if (sc->revision == FXP_REV_82557)
2830		return;
2831	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2832	fxp_init_body(sc, 0);
2833}
2834
2835static int
2836fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2837{
2838	struct fxp_softc *sc = if_getsoftc(ifp);
2839	struct ifreq *ifr = (struct ifreq *)data;
2840	struct mii_data *mii;
2841	int flag, mask, error = 0, reinit;
2842
2843	switch (command) {
2844	case SIOCSIFFLAGS:
2845		FXP_LOCK(sc);
2846		/*
2847		 * If interface is marked up and not running, then start it.
2848		 * If it is marked down and running, stop it.
2849		 * XXX If it's up then re-initialize it. This is so flags
2850		 * such as IFF_PROMISC are handled.
2851		 */
2852		if (if_getflags(ifp) & IFF_UP) {
2853			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2854			    ((if_getflags(ifp) ^ sc->if_flags) &
2855			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2856				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2857				fxp_init_body(sc, 0);
2858			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2859				fxp_init_body(sc, 1);
2860		} else {
2861			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2862				fxp_stop(sc);
2863		}
2864		sc->if_flags = if_getflags(ifp);
2865		FXP_UNLOCK(sc);
2866		break;
2867
2868	case SIOCADDMULTI:
2869	case SIOCDELMULTI:
2870		FXP_LOCK(sc);
2871		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2872			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2873			fxp_init_body(sc, 0);
2874		}
2875		FXP_UNLOCK(sc);
2876		break;
2877
2878	case SIOCSIFMEDIA:
2879	case SIOCGIFMEDIA:
2880		if (sc->miibus != NULL) {
2881			mii = device_get_softc(sc->miibus);
2882                        error = ifmedia_ioctl(ifp, ifr,
2883                            &mii->mii_media, command);
2884		} else {
2885                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2886		}
2887		break;
2888
2889	case SIOCSIFCAP:
2890		reinit = 0;
2891		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2892#ifdef DEVICE_POLLING
2893		if (mask & IFCAP_POLLING) {
2894			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2895				error = ether_poll_register(fxp_poll, ifp);
2896				if (error)
2897					return(error);
2898				FXP_LOCK(sc);
2899				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2900				    FXP_SCB_INTR_DISABLE);
2901				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2902				FXP_UNLOCK(sc);
2903			} else {
2904				error = ether_poll_deregister(ifp);
2905				/* Enable interrupts in any case */
2906				FXP_LOCK(sc);
2907				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2908				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2909				FXP_UNLOCK(sc);
2910			}
2911		}
2912#endif
2913		FXP_LOCK(sc);
2914		if ((mask & IFCAP_TXCSUM) != 0 &&
2915		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2916			if_togglecapenable(ifp, IFCAP_TXCSUM);
2917			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2918				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2919			else
2920				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2921		}
2922		if ((mask & IFCAP_RXCSUM) != 0 &&
2923		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2924			if_togglecapenable(ifp, IFCAP_RXCSUM);
2925			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2926				reinit++;
2927		}
2928		if ((mask & IFCAP_TSO4) != 0 &&
2929		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2930			if_togglecapenable(ifp, IFCAP_TSO4);
2931			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2932				if_sethwassistbits(ifp, CSUM_TSO, 0);
2933			else
2934				if_sethwassistbits(ifp, 0, CSUM_TSO);
2935		}
2936		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2937		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2938			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2939		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2940		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2941			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2942			if (sc->revision != FXP_REV_82557)
2943				flag = FXP_FLAG_LONG_PKT_EN;
2944			else /* a hack to get long frames on the old chip */
2945				flag = FXP_FLAG_SAVE_BAD;
2946			sc->flags ^= flag;
2947			if (if_getflags(ifp) & IFF_UP)
2948				reinit++;
2949		}
2950		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2951		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2952			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2953		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2954		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2955			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2956		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2957		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2958			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2959			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2960				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2961				    IFCAP_VLAN_HWCSUM);
2962			reinit++;
2963		}
2964		if (reinit > 0 &&
2965		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2966			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2967			fxp_init_body(sc, 0);
2968		}
2969		FXP_UNLOCK(sc);
2970		if_vlancap(ifp);
2971		break;
2972
2973	default:
2974		error = ether_ioctl(ifp, command, data);
2975	}
2976	return (error);
2977}
2978
2979static u_int
2980fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2981{
2982	struct fxp_softc *sc = arg;
2983	struct fxp_cb_mcs *mcsp = sc->mcsp;
2984
2985	if (mcsp->mc_cnt < MAXMCADDR)
2986		bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2987		    ETHER_ADDR_LEN);
2988	mcsp->mc_cnt++;
2989	return (1);
2990}
2991
2992/*
2993 * Fill in the multicast address list and return number of entries.
2994 */
2995static void
2996fxp_mc_addrs(struct fxp_softc *sc)
2997{
2998	struct fxp_cb_mcs *mcsp = sc->mcsp;
2999	if_t ifp = sc->ifp;
3000
3001	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
3002		mcsp->mc_cnt = 0;
3003		if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
3004		if (mcsp->mc_cnt >= MAXMCADDR) {
3005			if_setflagbits(ifp, IFF_ALLMULTI, 0);
3006			mcsp->mc_cnt = 0;
3007		}
3008	}
3009	mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
3010}
3011
3012/*
3013 * Program the multicast filter.
3014 *
3015 * We have an artificial restriction that the multicast setup command
3016 * must be the first command in the chain, so we take steps to ensure
3017 * this. By requiring this, it allows us to keep up the performance of
3018 * the pre-initialized command ring (esp. link pointers) by not actually
3019 * inserting the mcsetup command in the ring - i.e. its link pointer
3020 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3021 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3022 * lead into the regular TxCB ring when it completes.
3023 */
3024static void
3025fxp_mc_setup(struct fxp_softc *sc)
3026{
3027	struct fxp_cb_mcs *mcsp;
3028	int count;
3029
3030	FXP_LOCK_ASSERT(sc, MA_OWNED);
3031
3032	mcsp = sc->mcsp;
3033	mcsp->cb_status = 0;
3034	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3035	mcsp->link_addr = 0xffffffff;
3036	fxp_mc_addrs(sc);
3037
3038	/*
3039	 * Wait until command unit is idle. This should never be the
3040	 * case when nothing is queued, but make sure anyway.
3041	 */
3042	count = 100;
3043	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3044	    FXP_SCB_CUS_IDLE && --count)
3045		DELAY(10);
3046	if (count == 0) {
3047		device_printf(sc->dev, "command queue timeout\n");
3048		return;
3049	}
3050
3051	/*
3052	 * Start the multicast setup command.
3053	 */
3054	fxp_scb_wait(sc);
3055	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3056	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3057	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3058	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3059	/* ...and wait for it to complete. */
3060	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3061}
3062
3063static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3064static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3065static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3066static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3067static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3068static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3069static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3070
3071#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3072
3073static const struct ucode {
3074	uint32_t	revision;
3075	uint32_t	*ucode;
3076	int		length;
3077	u_short		int_delay_offset;
3078	u_short		bundle_max_offset;
3079} ucode_table[] = {
3080	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3081	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3082	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3083	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3084	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3085	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3086	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3087	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3088	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3089	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3090	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3091	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3092	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3093	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3094	{ 0, NULL, 0, 0, 0 }
3095};
3096
3097static void
3098fxp_load_ucode(struct fxp_softc *sc)
3099{
3100	const struct ucode *uc;
3101	struct fxp_cb_ucode *cbp;
3102	int i;
3103
3104	if (sc->flags & FXP_FLAG_NO_UCODE)
3105		return;
3106
3107	for (uc = ucode_table; uc->ucode != NULL; uc++)
3108		if (sc->revision == uc->revision)
3109			break;
3110	if (uc->ucode == NULL)
3111		return;
3112	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3113	cbp->cb_status = 0;
3114	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3115	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3116	for (i = 0; i < uc->length; i++)
3117		cbp->ucode[i] = htole32(uc->ucode[i]);
3118	if (uc->int_delay_offset)
3119		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3120		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3121	if (uc->bundle_max_offset)
3122		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3123		    htole16(sc->tunable_bundle_max);
3124	/*
3125	 * Download the ucode to the chip.
3126	 */
3127	fxp_scb_wait(sc);
3128	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3129	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3130	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3131	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3132	/* ...and wait for it to complete. */
3133	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3134	device_printf(sc->dev,
3135	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3136	    sc->tunable_int_delay,
3137	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3138	sc->flags |= FXP_FLAG_UCODE;
3139	bzero(cbp, FXP_TXCB_SZ);
3140}
3141
3142#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3143	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3144
3145static void
3146fxp_sysctl_node(struct fxp_softc *sc)
3147{
3148	struct sysctl_ctx_list *ctx;
3149	struct sysctl_oid_list *child, *parent;
3150	struct sysctl_oid *tree;
3151	struct fxp_hwstats *hsp;
3152
3153	ctx = device_get_sysctl_ctx(sc->dev);
3154	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3155
3156	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3157	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3158	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3159	    "FXP driver receive interrupt microcode bundling delay");
3160	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3161	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3162	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3163	    "FXP driver receive interrupt microcode bundle size limit");
3164	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3165	    "FXP RNR events");
3166
3167	/*
3168	 * Pull in device tunables.
3169	 */
3170	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3171	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3172	(void) resource_int_value(device_get_name(sc->dev),
3173	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3174	(void) resource_int_value(device_get_name(sc->dev),
3175	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3176	sc->rnr = 0;
3177
3178	hsp = &sc->fxp_hwstats;
3179	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3180	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3181	parent = SYSCTL_CHILDREN(tree);
3182
3183	/* Rx MAC statistics. */
3184	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3185	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3186	child = SYSCTL_CHILDREN(tree);
3187	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3188	    &hsp->rx_good, "Good frames");
3189	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3190	    &hsp->rx_crc_errors, "CRC errors");
3191	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3192	    &hsp->rx_alignment_errors, "Alignment errors");
3193	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3194	    &hsp->rx_rnr_errors, "RNR errors");
3195	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3196	    &hsp->rx_overrun_errors, "Overrun errors");
3197	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3198	    &hsp->rx_cdt_errors, "Collision detect errors");
3199	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3200	    &hsp->rx_shortframes, "Short frame errors");
3201	if (sc->revision >= FXP_REV_82558_A4) {
3202		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3203		    &hsp->rx_pause, "Pause frames");
3204		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3205		    &hsp->rx_controls, "Unsupported control frames");
3206	}
3207	if (sc->revision >= FXP_REV_82559_A0)
3208		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3209		    &hsp->rx_tco, "TCO frames");
3210
3211	/* Tx MAC statistics. */
3212	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3213	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3214	child = SYSCTL_CHILDREN(tree);
3215	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3216	    &hsp->tx_good, "Good frames");
3217	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3218	    &hsp->tx_maxcols, "Maximum collisions errors");
3219	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3220	    &hsp->tx_latecols, "Late collisions errors");
3221	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3222	    &hsp->tx_underruns, "Underrun errors");
3223	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3224	    &hsp->tx_lostcrs, "Lost carrier sense");
3225	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3226	    &hsp->tx_deffered, "Deferred");
3227	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3228	    &hsp->tx_single_collisions, "Single collisions");
3229	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3230	    &hsp->tx_multiple_collisions, "Multiple collisions");
3231	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3232	    &hsp->tx_total_collisions, "Total collisions");
3233	if (sc->revision >= FXP_REV_82558_A4)
3234		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3235		    &hsp->tx_pause, "Pause frames");
3236	if (sc->revision >= FXP_REV_82559_A0)
3237		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3238		    &hsp->tx_tco, "TCO frames");
3239}
3240
3241#undef FXP_SYSCTL_STAT_ADD
3242
3243static int
3244sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3245{
3246	int error, value;
3247
3248	value = *(int *)arg1;
3249	error = sysctl_handle_int(oidp, &value, 0, req);
3250	if (error || !req->newptr)
3251		return (error);
3252	if (value < low || value > high)
3253		return (EINVAL);
3254	*(int *)arg1 = value;
3255	return (0);
3256}
3257
3258/*
3259 * Interrupt delay is expressed in microseconds, a multiplier is used
3260 * to convert this to the appropriate clock ticks before using.
3261 */
3262static int
3263sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3264{
3265
3266	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3267}
3268
3269static int
3270sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3271{
3272
3273	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3274}
3275