1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
35 * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
36 * but the driver doesn't currently use any of the ENET advanced features other
37 * than enabling gigabit.
38 *
39 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
40 * (netgraph/ng_fec.c), so we use 'ffec'.
41 *
42 * Requires an FDT entry with at least these properties:
43 *   fec: ethernet@02188000 {
44 *      compatible = "fsl,imxNN-fec";
45 *      reg = <0x02188000 0x4000>;
46 *      interrupts = <150 151>;
47 *      phy-mode = "rgmii";
48 *      phy-disable-preamble; // optional
49 *   };
50 * The second interrupt number is for IEEE-1588, and is not currently used; it
51 * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
52 * There is also an optional property, phy-disable-preamble, which if present
53 * will disable the preamble bits, cutting the size of each mdio transaction
54 * (and thus the busy-wait time) in half.
55 */
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/bus.h>
60#include <sys/endian.h>
61#include <sys/kernel.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mbuf.h>
65#include <sys/module.h>
66#include <sys/mutex.h>
67#include <sys/rman.h>
68#include <sys/socket.h>
69#include <sys/sockio.h>
70#include <sys/sysctl.h>
71
72#include <machine/bus.h>
73
74#include <net/bpf.h>
75#include <net/if.h>
76#include <net/ethernet.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_var.h>
81#include <net/if_vlan_var.h>
82
83#include <dev/fdt/fdt_common.h>
84#include <dev/ffec/if_ffecreg.h>
85#include <dev/ofw/ofw_bus.h>
86#include <dev/ofw/ofw_bus_subr.h>
87#include <dev/mii/mii.h>
88#include <dev/mii/miivar.h>
89#include <dev/mii/mii_fdt.h>
90#include "miibus_if.h"
91
92/*
93 * There are small differences in the hardware on various SoCs.  Not every SoC
94 * we support has its own FECTYPE; most work as GENERIC and only the ones that
95 * need different handling get their own entry.  In addition to the types in
96 * this list, there are some flags below that can be ORed into the upper bits.
97 */
98enum {
99	FECTYPE_NONE,
100	FECTYPE_GENERIC,
101	FECTYPE_IMX53,
102	FECTYPE_IMX6,	/* imx6 and imx7 */
103	FECTYPE_MVF,
104};
105
106/*
107 * Flags that describe general differences between the FEC hardware in various
108 * SoCs.  These are ORed into the FECTYPE enum values in the ofw_compat_data, so
109 * the low 8 bits are reserved for the type enum.  In the softc, the type and
110 * flags are put into separate members, so that you don't need to mask the flags
111 * out of the type to compare it.
112 */
113#define	FECTYPE_MASK		0x000000ff
114#define	FECFLAG_GBE		(1 <<  8)
115#define	FECFLAG_AVB		(1 <<  9)
116#define	FECFLAG_RACC		(1 << 10)
117
118/*
119 * Table of supported FDT compat strings and their associated FECTYPE values.
120 */
121static struct ofw_compat_data compat_data[] = {
122	{"fsl,imx51-fec",	FECTYPE_GENERIC},
123	{"fsl,imx53-fec",	FECTYPE_IMX53},
124	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE },
125	{"fsl,imx6ul-fec",	FECTYPE_IMX6 | FECFLAG_RACC },
126	{"fsl,imx6sx-fec",      FECTYPE_IMX6 | FECFLAG_RACC },
127	{"fsl,imx7d-fec",	FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE |
128				FECFLAG_AVB },
129	{"fsl,mvf600-fec",	FECTYPE_MVF  | FECFLAG_RACC },
130	{"fsl,mvf-fec",		FECTYPE_MVF},
131	{NULL,		 	FECTYPE_NONE},
132};
133
134/*
135 * Driver data and defines.
136 */
137#define	RX_DESC_COUNT	64
138#define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
139#define	TX_DESC_COUNT	64
140#define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
141
142#define	WATCHDOG_TIMEOUT_SECS	5
143
144#define	MAX_IRQ_COUNT 3
145
146struct ffec_bufmap {
147	struct mbuf	*mbuf;
148	bus_dmamap_t	map;
149};
150
151struct ffec_softc {
152	device_t		dev;
153	device_t		miibus;
154	struct mii_data *	mii_softc;
155	struct ifnet		*ifp;
156	int			if_flags;
157	struct mtx		mtx;
158	struct resource		*irq_res[MAX_IRQ_COUNT];
159	struct resource		*mem_res;
160	void *			intr_cookie[MAX_IRQ_COUNT];
161	struct callout		ffec_callout;
162	mii_contype_t		phy_conn_type;
163	uint32_t		fecflags;
164	uint8_t			fectype;
165	boolean_t		link_is_up;
166	boolean_t		is_attached;
167	boolean_t		is_detaching;
168	int			tx_watchdog_count;
169	int			rxbuf_align;
170	int			txbuf_align;
171
172	bus_dma_tag_t		rxdesc_tag;
173	bus_dmamap_t		rxdesc_map;
174	struct ffec_hwdesc	*rxdesc_ring;
175	bus_addr_t		rxdesc_ring_paddr;
176	bus_dma_tag_t		rxbuf_tag;
177	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
178	uint32_t		rx_idx;
179
180	bus_dma_tag_t		txdesc_tag;
181	bus_dmamap_t		txdesc_map;
182	struct ffec_hwdesc	*txdesc_ring;
183	bus_addr_t		txdesc_ring_paddr;
184	bus_dma_tag_t		txbuf_tag;
185	struct ffec_bufmap	txbuf_map[TX_DESC_COUNT];
186	uint32_t		tx_idx_head;
187	uint32_t		tx_idx_tail;
188	int			txcount;
189};
190
191static struct resource_spec irq_res_spec[MAX_IRQ_COUNT + 1] = {
192	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
193	{ SYS_RES_IRQ,		1,	RF_ACTIVE | RF_OPTIONAL },
194	{ SYS_RES_IRQ,		2,	RF_ACTIVE | RF_OPTIONAL },
195	RESOURCE_SPEC_END
196};
197
198#define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
199#define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
200#define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
201	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
202#define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
203#define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
204#define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
205
206static void ffec_init_locked(struct ffec_softc *sc);
207static void ffec_stop_locked(struct ffec_softc *sc);
208static void ffec_txstart_locked(struct ffec_softc *sc);
209static void ffec_txfinish_locked(struct ffec_softc *sc);
210
211static inline uint16_t
212RD2(struct ffec_softc *sc, bus_size_t off)
213{
214
215	return (bus_read_2(sc->mem_res, off));
216}
217
218static inline void
219WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
220{
221
222	bus_write_2(sc->mem_res, off, val);
223}
224
225static inline uint32_t
226RD4(struct ffec_softc *sc, bus_size_t off)
227{
228
229	return (bus_read_4(sc->mem_res, off));
230}
231
232static inline void
233WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
234{
235
236	bus_write_4(sc->mem_res, off, val);
237}
238
239static inline uint32_t
240next_rxidx(struct ffec_softc *sc, uint32_t curidx)
241{
242
243	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
244}
245
246static inline uint32_t
247next_txidx(struct ffec_softc *sc, uint32_t curidx)
248{
249
250	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
251}
252
253static void
254ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
255{
256
257	if (error != 0)
258		return;
259	*(bus_addr_t *)arg = segs[0].ds_addr;
260}
261
262static void
263ffec_miigasket_setup(struct ffec_softc *sc)
264{
265	uint32_t ifmode;
266
267	/*
268	 * We only need the gasket for MII and RMII connections on certain SoCs.
269	 */
270
271	switch (sc->fectype)
272	{
273	case FECTYPE_IMX53:
274		break;
275	default:
276		return;
277	}
278
279	switch (sc->phy_conn_type)
280	{
281	case MII_CONTYPE_MII:
282		ifmode = 0;
283		break;
284	case MII_CONTYPE_RMII:
285		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
286		break;
287	default:
288		return;
289	}
290
291	/*
292	 * Disable the gasket, configure for either MII or RMII, then enable.
293	 */
294
295	WR2(sc, FEC_MIIGSK_ENR, 0);
296	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
297		continue;
298
299	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
300
301	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
302	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
303		continue;
304}
305
306static boolean_t
307ffec_miibus_iowait(struct ffec_softc *sc)
308{
309	uint32_t timeout;
310
311	for (timeout = 10000; timeout != 0; --timeout)
312		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
313			return (true);
314
315	return (false);
316}
317
318static int
319ffec_miibus_readreg(device_t dev, int phy, int reg)
320{
321	struct ffec_softc *sc;
322	int val;
323
324	sc = device_get_softc(dev);
325
326	WR4(sc, FEC_IER_REG, FEC_IER_MII);
327
328	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
329	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
330	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
331	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
332
333	if (!ffec_miibus_iowait(sc)) {
334		device_printf(dev, "timeout waiting for mii read\n");
335		return (-1); /* All-ones is a symptom of bad mdio. */
336	}
337
338	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
339
340	return (val);
341}
342
343static int
344ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
345{
346	struct ffec_softc *sc;
347
348	sc = device_get_softc(dev);
349
350	WR4(sc, FEC_IER_REG, FEC_IER_MII);
351
352	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
353	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
354	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
355	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
356	    (val & FEC_MMFR_DATA_MASK));
357
358	if (!ffec_miibus_iowait(sc)) {
359		device_printf(dev, "timeout waiting for mii write\n");
360		return (-1);
361	}
362
363	return (0);
364}
365
366static void
367ffec_miibus_statchg(device_t dev)
368{
369	struct ffec_softc *sc;
370	struct mii_data *mii;
371	uint32_t ecr, rcr, tcr;
372
373	/*
374	 * Called by the MII bus driver when the PHY establishes link to set the
375	 * MAC interface registers.
376	 */
377
378	sc = device_get_softc(dev);
379
380	FFEC_ASSERT_LOCKED(sc);
381
382	mii = sc->mii_softc;
383
384	if (mii->mii_media_status & IFM_ACTIVE)
385		sc->link_is_up = true;
386	else
387		sc->link_is_up = false;
388
389	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
390	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
391	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
392	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
393
394	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
395	switch (sc->phy_conn_type) {
396	case MII_CONTYPE_RMII:
397		rcr |= FEC_RCR_RMII_MODE;
398		break;
399	case MII_CONTYPE_RGMII:
400	case MII_CONTYPE_RGMII_ID:
401	case MII_CONTYPE_RGMII_RXID:
402	case MII_CONTYPE_RGMII_TXID:
403		rcr |= FEC_RCR_RGMII_EN;
404		break;
405	default:
406		break;
407	}
408
409	switch (IFM_SUBTYPE(mii->mii_media_active)) {
410	case IFM_1000_T:
411	case IFM_1000_SX:
412		ecr |= FEC_ECR_SPEED;
413		break;
414	case IFM_100_TX:
415		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
416		break;
417	case IFM_10_T:
418		rcr |= FEC_RCR_RMII_10T;
419		break;
420	case IFM_NONE:
421		sc->link_is_up = false;
422		return;
423	default:
424		sc->link_is_up = false;
425		device_printf(dev, "Unsupported media %u\n",
426		    IFM_SUBTYPE(mii->mii_media_active));
427		return;
428	}
429
430	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
431		tcr |= FEC_TCR_FDEN;
432	else
433		rcr |= FEC_RCR_DRT;
434
435	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
436		rcr |= FEC_RCR_FCE;
437
438	WR4(sc, FEC_RCR_REG, rcr);
439	WR4(sc, FEC_TCR_REG, tcr);
440	WR4(sc, FEC_ECR_REG, ecr);
441}
442
443static void
444ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
445{
446	struct ffec_softc *sc;
447	struct mii_data *mii;
448
449
450	sc = ifp->if_softc;
451	mii = sc->mii_softc;
452	FFEC_LOCK(sc);
453	mii_pollstat(mii);
454	ifmr->ifm_active = mii->mii_media_active;
455	ifmr->ifm_status = mii->mii_media_status;
456	FFEC_UNLOCK(sc);
457}
458
459static int
460ffec_media_change_locked(struct ffec_softc *sc)
461{
462
463	return (mii_mediachg(sc->mii_softc));
464}
465
466static int
467ffec_media_change(struct ifnet * ifp)
468{
469	struct ffec_softc *sc;
470	int error;
471
472	sc = ifp->if_softc;
473
474	FFEC_LOCK(sc);
475	error = ffec_media_change_locked(sc);
476	FFEC_UNLOCK(sc);
477	return (error);
478}
479
480static void ffec_clear_stats(struct ffec_softc *sc)
481{
482	uint32_t mibc;
483
484	mibc = RD4(sc, FEC_MIBC_REG);
485
486	/*
487	 * On newer hardware the statistic regs are cleared by toggling a bit in
488	 * the mib control register.  On older hardware the clear procedure is
489	 * to disable statistics collection, zero the regs, then re-enable.
490	 */
491	if (sc->fectype == FECTYPE_IMX6 || sc->fectype == FECTYPE_MVF) {
492		WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_CLEAR);
493		WR4(sc, FEC_MIBC_REG, mibc & ~FEC_MIBC_CLEAR);
494	} else {
495		WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_DIS);
496
497		WR4(sc, FEC_IEEE_R_DROP, 0);
498		WR4(sc, FEC_IEEE_R_MACERR, 0);
499		WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
500		WR4(sc, FEC_RMON_R_FRAG, 0);
501		WR4(sc, FEC_RMON_R_JAB, 0);
502		WR4(sc, FEC_RMON_R_MC_PKT, 0);
503		WR4(sc, FEC_RMON_R_OVERSIZE, 0);
504		WR4(sc, FEC_RMON_R_PACKETS, 0);
505		WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
506		WR4(sc, FEC_RMON_T_COL, 0);
507		WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
508		WR4(sc, FEC_RMON_T_FRAG, 0);
509		WR4(sc, FEC_RMON_T_JAB, 0);
510		WR4(sc, FEC_RMON_T_MC_PKT, 0);
511		WR4(sc, FEC_RMON_T_OVERSIZE , 0);
512		WR4(sc, FEC_RMON_T_PACKETS, 0);
513		WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
514
515		WR4(sc, FEC_MIBC_REG, mibc);
516	}
517}
518
519static void
520ffec_harvest_stats(struct ffec_softc *sc)
521{
522	struct ifnet *ifp;
523
524	ifp = sc->ifp;
525
526	/*
527	 * - FEC_IEEE_R_DROP is "dropped due to invalid start frame delimiter"
528	 *   so it's really just another type of input error.
529	 * - FEC_IEEE_R_MACERR is "no receive fifo space"; count as input drops.
530	 */
531	if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS));
532	if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT));
533	if_inc_counter(ifp, IFCOUNTER_IERRORS,
534	    RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) +
535	    RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) +
536	    RD4(sc, FEC_RMON_R_JAB) + RD4(sc, FEC_IEEE_R_DROP));
537
538	if_inc_counter(ifp, IFCOUNTER_IQDROPS, RD4(sc, FEC_IEEE_R_MACERR));
539
540	if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS));
541	if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT));
542	if_inc_counter(ifp, IFCOUNTER_OERRORS,
543	    RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) +
544	    RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) +
545	    RD4(sc, FEC_RMON_T_JAB));
546
547	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL));
548
549	ffec_clear_stats(sc);
550}
551
552static void
553ffec_tick(void *arg)
554{
555	struct ffec_softc *sc;
556	struct ifnet *ifp;
557	int link_was_up;
558
559	sc = arg;
560
561	FFEC_ASSERT_LOCKED(sc);
562
563	ifp = sc->ifp;
564
565	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
566	    return;
567
568	/*
569	 * Typical tx watchdog.  If this fires it indicates that we enqueued
570	 * packets for output and never got a txdone interrupt for them.  Maybe
571	 * it's a missed interrupt somehow, just pretend we got one.
572	 */
573	if (sc->tx_watchdog_count > 0) {
574		if (--sc->tx_watchdog_count == 0) {
575			ffec_txfinish_locked(sc);
576		}
577	}
578
579	/* Gather stats from hardware counters. */
580	ffec_harvest_stats(sc);
581
582	/* Check the media status. */
583	link_was_up = sc->link_is_up;
584	mii_tick(sc->mii_softc);
585	if (sc->link_is_up && !link_was_up)
586		ffec_txstart_locked(sc);
587
588	/* Schedule another check one second from now. */
589	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
590}
591
592inline static uint32_t
593ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
594    uint32_t len)
595{
596	uint32_t nidx;
597	uint32_t flags;
598
599	nidx = next_txidx(sc, idx);
600
601	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
602	if (paddr == 0 || len == 0) {
603		flags = 0;
604		--sc->txcount;
605	} else {
606		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
607		++sc->txcount;
608	}
609	if (nidx == 0)
610		flags |= FEC_TXDESC_WRAP;
611
612	/*
613	 * The hardware requires 32-bit physical addresses.  We set up the dma
614	 * tag to indicate that, so the cast to uint32_t should never lose
615	 * significant bits.
616	 */
617	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
618	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
619
620	return (nidx);
621}
622
623static int
624ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
625{
626	struct mbuf * m;
627	int error, nsegs;
628	struct bus_dma_segment seg;
629
630	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
631		return (ENOMEM);
632	*mp = m;
633
634	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
635	    m, &seg, &nsegs, 0);
636	if (error != 0) {
637		return (ENOMEM);
638	}
639	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
640	    BUS_DMASYNC_PREWRITE);
641
642	sc->txbuf_map[idx].mbuf = m;
643	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
644
645	return (0);
646
647}
648
649static void
650ffec_txstart_locked(struct ffec_softc *sc)
651{
652	struct ifnet *ifp;
653	struct mbuf *m;
654	int enqueued;
655
656	FFEC_ASSERT_LOCKED(sc);
657
658	if (!sc->link_is_up)
659		return;
660
661	ifp = sc->ifp;
662
663	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
664		return;
665
666	enqueued = 0;
667
668	for (;;) {
669		if (sc->txcount == (TX_DESC_COUNT-1)) {
670			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
671			break;
672		}
673		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
674		if (m == NULL)
675			break;
676		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
677			IFQ_DRV_PREPEND(&ifp->if_snd, m);
678			break;
679		}
680		BPF_MTAP(ifp, m);
681		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
682		++enqueued;
683	}
684
685	if (enqueued != 0) {
686		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
687		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
688		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
689		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
690	}
691}
692
693static void
694ffec_txstart(struct ifnet *ifp)
695{
696	struct ffec_softc *sc = ifp->if_softc;
697
698	FFEC_LOCK(sc);
699	ffec_txstart_locked(sc);
700	FFEC_UNLOCK(sc);
701}
702
703static void
704ffec_txfinish_locked(struct ffec_softc *sc)
705{
706	struct ifnet *ifp;
707	struct ffec_hwdesc *desc;
708	struct ffec_bufmap *bmap;
709	boolean_t retired_buffer;
710
711	FFEC_ASSERT_LOCKED(sc);
712
713	/* XXX Can't set PRE|POST right now, but we need both. */
714	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD);
715	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD);
716	ifp = sc->ifp;
717	retired_buffer = false;
718	while (sc->tx_idx_tail != sc->tx_idx_head) {
719		desc = &sc->txdesc_ring[sc->tx_idx_tail];
720		if (desc->flags_len & FEC_TXDESC_READY)
721			break;
722		retired_buffer = true;
723		bmap = &sc->txbuf_map[sc->tx_idx_tail];
724		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
725		    BUS_DMASYNC_POSTWRITE);
726		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
727		m_freem(bmap->mbuf);
728		bmap->mbuf = NULL;
729		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
730		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
731	}
732
733	/*
734	 * If we retired any buffers, there will be open tx slots available in
735	 * the descriptor ring, go try to start some new output.
736	 */
737	if (retired_buffer) {
738		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
739		ffec_txstart_locked(sc);
740	}
741
742	/* If there are no buffers outstanding, muzzle the watchdog. */
743	if (sc->tx_idx_tail == sc->tx_idx_head) {
744		sc->tx_watchdog_count = 0;
745	}
746}
747
748inline static uint32_t
749ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
750{
751	uint32_t nidx;
752
753	/*
754	 * The hardware requires 32-bit physical addresses.  We set up the dma
755	 * tag to indicate that, so the cast to uint32_t should never lose
756	 * significant bits.
757	 */
758	nidx = next_rxidx(sc, idx);
759	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
760	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
761		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
762
763	return (nidx);
764}
765
766static int
767ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
768{
769	int error, nsegs;
770	struct bus_dma_segment seg;
771
772	if (!(sc->fecflags & FECFLAG_RACC)) {
773		/*
774		 * The RACC[SHIFT16] feature is not available.  So, we need to
775		 * leave at least ETHER_ALIGN bytes free at the beginning of the
776		 * buffer to allow the data to be re-aligned after receiving it
777		 * (by copying it backwards ETHER_ALIGN bytes in the same
778		 * buffer).  We also have to ensure that the beginning of the
779		 * buffer is aligned to the hardware's requirements.
780		 */
781		m_adj(m, roundup(ETHER_ALIGN, sc->rxbuf_align));
782	}
783
784	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
785	    m, &seg, &nsegs, 0);
786	if (error != 0) {
787		return (error);
788	}
789
790	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
791	    BUS_DMASYNC_PREREAD);
792
793	sc->rxbuf_map[idx].mbuf = m;
794	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
795
796	return (0);
797}
798
799static struct mbuf *
800ffec_alloc_mbufcl(struct ffec_softc *sc)
801{
802	struct mbuf *m;
803
804	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
805	if (m != NULL)
806		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
807
808	return (m);
809}
810
811static void
812ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
813{
814	struct mbuf *m, *newmbuf;
815	struct ffec_bufmap *bmap;
816	uint8_t *dst, *src;
817	int error;
818
819	/*
820	 *  First try to get a new mbuf to plug into this slot in the rx ring.
821	 *  If that fails, drop the current packet and recycle the current
822	 *  mbuf, which is still mapped and loaded.
823	 */
824	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
825		if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
826		ffec_setup_rxdesc(sc, sc->rx_idx,
827		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
828		return;
829	}
830
831	FFEC_UNLOCK(sc);
832
833	bmap = &sc->rxbuf_map[sc->rx_idx];
834	len -= ETHER_CRC_LEN;
835	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
836	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
837	m = bmap->mbuf;
838	bmap->mbuf = NULL;
839	m->m_len = len;
840	m->m_pkthdr.len = len;
841	m->m_pkthdr.rcvif = sc->ifp;
842
843	/*
844	 * Align the protocol headers in the receive buffer on a 32-bit
845	 * boundary.  Newer hardware does the alignment for us.  On hardware
846	 * that doesn't support this feature, we have to copy-align the data.
847	 *
848	 *  XXX for older hardware, could we speed this up by copying just the
849	 *  protocol headers into their own small mbuf then chaining the cluster
850	 *  to it? That way we'd only need to copy like 64 bytes or whatever the
851	 *  biggest header is, instead of the whole 1530ish-byte frame.
852	 */
853	if (sc->fecflags & FECFLAG_RACC) {
854		m->m_data = mtod(m, uint8_t *) + 2;
855	} else {
856		src = mtod(m, uint8_t*);
857		dst = src - ETHER_ALIGN;
858		bcopy(src, dst, len);
859		m->m_data = dst;
860	}
861	sc->ifp->if_input(sc->ifp, m);
862
863	FFEC_LOCK(sc);
864
865	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
866		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
867		/* XXX Now what?  We've got a hole in the rx ring. */
868	}
869
870}
871
872static void
873ffec_rxfinish_locked(struct ffec_softc *sc)
874{
875	struct ffec_hwdesc *desc;
876	int len;
877	boolean_t produced_empty_buffer;
878
879	FFEC_ASSERT_LOCKED(sc);
880
881	/* XXX Can't set PRE|POST right now, but we need both. */
882	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD);
883	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD);
884	produced_empty_buffer = false;
885	for (;;) {
886		desc = &sc->rxdesc_ring[sc->rx_idx];
887		if (desc->flags_len & FEC_RXDESC_EMPTY)
888			break;
889		produced_empty_buffer = true;
890		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
891		if (len < 64) {
892			/*
893			 * Just recycle the descriptor and continue.           .
894			 */
895			ffec_setup_rxdesc(sc, sc->rx_idx,
896			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
897		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
898			/*
899			 * The entire frame is not in this buffer.  Impossible.
900			 * Recycle the descriptor and continue.
901			 *
902			 * XXX what's the right way to handle this? Probably we
903			 * should stop/init the hardware because this should
904			 * just really never happen when we have buffers bigger
905			 * than the maximum frame size.
906			 */
907			device_printf(sc->dev,
908			    "fec_rxfinish: received frame without LAST bit set");
909			ffec_setup_rxdesc(sc, sc->rx_idx,
910			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
911		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
912			/*
913			 *  Something went wrong with receiving the frame, we
914			 *  don't care what (the hardware has counted the error
915			 *  in the stats registers already), we just reuse the
916			 *  same mbuf, which is still dma-mapped, by resetting
917			 *  the rx descriptor.
918			 */
919			ffec_setup_rxdesc(sc, sc->rx_idx,
920			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
921		} else {
922			/*
923			 *  Normal case: a good frame all in one buffer.
924			 */
925			ffec_rxfinish_onebuf(sc, len);
926		}
927		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
928	}
929
930	if (produced_empty_buffer) {
931		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE);
932		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
933		bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE);
934	}
935}
936
937static void
938ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
939{
940	uint32_t palr, paur, rnd;
941
942	/*
943	 * Try to recover a MAC address from the running hardware. If there's
944	 * something non-zero there, assume the bootloader did the right thing
945	 * and just use it.
946	 *
947	 * Otherwise, set the address to a convenient locally assigned address,
948	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
949	 * assigned bit set, and the broadcast/multicast bit clear.
950	 */
951	palr = RD4(sc, FEC_PALR_REG);
952	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
953	if ((palr | paur) != 0) {
954		hwaddr[0] = palr >> 24;
955		hwaddr[1] = palr >> 16;
956		hwaddr[2] = palr >>  8;
957		hwaddr[3] = palr >>  0;
958		hwaddr[4] = paur >> 24;
959		hwaddr[5] = paur >> 16;
960	} else {
961		rnd = arc4random() & 0x00ffffff;
962		hwaddr[0] = 'b';
963		hwaddr[1] = 's';
964		hwaddr[2] = 'd';
965		hwaddr[3] = rnd >> 16;
966		hwaddr[4] = rnd >>  8;
967		hwaddr[5] = rnd >>  0;
968	}
969
970	if (bootverbose) {
971		device_printf(sc->dev,
972		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
973		    hwaddr[0], hwaddr[1], hwaddr[2],
974		    hwaddr[3], hwaddr[4], hwaddr[5]);
975	}
976}
977
978static u_int
979ffec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
980{
981	uint64_t *ghash = arg;
982	uint32_t crc;
983
984	/* 6 bits from MSB in LE CRC32 are used for hash. */
985	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
986	*ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
987
988	return (1);
989}
990
991static void
992ffec_setup_rxfilter(struct ffec_softc *sc)
993{
994	struct ifnet *ifp;
995	uint8_t *eaddr;
996	uint64_t ghash, ihash;
997
998	FFEC_ASSERT_LOCKED(sc);
999
1000	ifp = sc->ifp;
1001
1002	/*
1003	 * Set the multicast (group) filter hash.
1004	 */
1005	if ((ifp->if_flags & IFF_ALLMULTI))
1006		ghash = 0xffffffffffffffffLLU;
1007	else {
1008		ghash = 0;
1009		if_foreach_llmaddr(ifp, ffec_hash_maddr, &ghash);
1010	}
1011	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
1012	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
1013
1014	/*
1015	 * Set the individual address filter hash.
1016	 *
1017	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
1018	 * seems to support the concept of MAC address aliases, does such a
1019	 * thing even exist?
1020	 */
1021	if ((ifp->if_flags & IFF_PROMISC))
1022		ihash = 0xffffffffffffffffLLU;
1023	else {
1024		ihash = 0;
1025	}
1026	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
1027	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
1028
1029	/*
1030	 * Set the primary address.
1031	 */
1032	eaddr = IF_LLADDR(ifp);
1033	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
1034	    (eaddr[2] <<  8) | eaddr[3]);
1035	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
1036}
1037
1038static void
1039ffec_stop_locked(struct ffec_softc *sc)
1040{
1041	struct ifnet *ifp;
1042	struct ffec_hwdesc *desc;
1043	struct ffec_bufmap *bmap;
1044	int idx;
1045
1046	FFEC_ASSERT_LOCKED(sc);
1047
1048	ifp = sc->ifp;
1049	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1050	sc->tx_watchdog_count = 0;
1051
1052	/*
1053	 * Stop the hardware, mask all interrupts, and clear all current
1054	 * interrupt status bits.
1055	 */
1056	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1057	WR4(sc, FEC_IEM_REG, 0x00000000);
1058	WR4(sc, FEC_IER_REG, 0xffffffff);
1059
1060	/*
1061	 * Stop the media-check callout.  Do not use callout_drain() because
1062	 * we're holding a mutex the callout acquires, and if it's currently
1063	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1064	 * ffec_tick() routine will return without doing anything when it sees
1065	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1066	 */
1067	callout_stop(&sc->ffec_callout);
1068
1069	/*
1070	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1071	 * it's as if the bits were transmitted and then lost on the wire.
1072	 *
1073	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1074	 * back on the queue for when we get restarted later?
1075	 */
1076	idx = sc->tx_idx_tail;
1077	while (idx != sc->tx_idx_head) {
1078		desc = &sc->txdesc_ring[idx];
1079		bmap = &sc->txbuf_map[idx];
1080		if (desc->buf_paddr != 0) {
1081			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1082			m_freem(bmap->mbuf);
1083			bmap->mbuf = NULL;
1084			ffec_setup_txdesc(sc, idx, 0, 0);
1085		}
1086		idx = next_txidx(sc, idx);
1087	}
1088
1089	/*
1090	 * Discard all unprocessed receive buffers.  This amounts to just
1091	 * pretending that nothing ever got received into them.  We reuse the
1092	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1093	 * back on so they'll get reused when we start up again.
1094	 */
1095	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1096		desc = &sc->rxdesc_ring[idx];
1097		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1098	}
1099}
1100
1101static void
1102ffec_init_locked(struct ffec_softc *sc)
1103{
1104	struct ifnet *ifp = sc->ifp;
1105	uint32_t maxbuf, maxfl, regval;
1106
1107	FFEC_ASSERT_LOCKED(sc);
1108
1109	/*
1110	 * The hardware has a limit of 0x7ff as the max frame length (see
1111	 * comments for MRBR below), and we use mbuf clusters as receive
1112	 * buffers, and we currently are designed to receive an entire frame
1113	 * into a single buffer.
1114	 *
1115	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1116	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1117	 * and then that value has to be rounded up to the hardware's DMA
1118	 * alignment requirements, so all in all our buffer is that much smaller
1119	 * than MCLBYTES.
1120	 *
1121	 * The resulting value is used as the frame truncation length and the
1122	 * max buffer receive buffer size for now.  It'll become more complex
1123	 * when we support jumbo frames and receiving fragments of them into
1124	 * separate buffers.
1125	 */
1126	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, sc->rxbuf_align);
1127	maxfl = min(maxbuf, 0x7ff);
1128
1129	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1130		return;
1131
1132	/* Mask all interrupts and clear all current interrupt status bits. */
1133	WR4(sc, FEC_IEM_REG, 0x00000000);
1134	WR4(sc, FEC_IER_REG, 0xffffffff);
1135
1136	/*
1137	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1138	 */
1139	ffec_setup_rxfilter(sc);
1140
1141	/*
1142	 * TFWR - Transmit FIFO watermark register.
1143	 *
1144	 * Set the transmit fifo watermark register to "store and forward" mode
1145	 * and also set a threshold of 128 bytes in the fifo before transmission
1146	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1147	 * supports STRFWD and when that bit is set, the watermark level in the
1148	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1149	 * to that bit is innocuous, and the TWFR bits get used instead.
1150	 */
1151	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1152
1153	/* RCR - Receive control register.
1154	 *
1155	 * Set max frame length + clean out anything left from u-boot.
1156	 */
1157	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1158
1159	/*
1160	 * TCR - Transmit control register.
1161	 *
1162	 * Clean out anything left from u-boot.  Any necessary values are set in
1163	 * ffec_miibus_statchg() based on the media type.
1164	 */
1165	WR4(sc, FEC_TCR_REG, 0);
1166
1167	/*
1168	 * OPD - Opcode/pause duration.
1169	 *
1170	 * XXX These magic numbers come from u-boot.
1171	 */
1172	WR4(sc, FEC_OPD_REG, 0x00010020);
1173
1174	/*
1175	 * FRSR - Fifo receive start register.
1176	 *
1177	 * This register does not exist on imx6, it is present on earlier
1178	 * hardware. The u-boot code sets this to a non-default value that's 32
1179	 * bytes larger than the default, with no clue as to why.  The default
1180	 * value should work fine, so there's no code to init it here.
1181	 */
1182
1183	/*
1184	 *  MRBR - Max RX buffer size.
1185	 *
1186	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1187	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1188	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1189	 *  receive loop in the hardware, where every rx descriptor in the ring
1190	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1191	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1192	 *  set, like maybe that's what enables jumbo frames, because in general
1193	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1194	 *  compatible" flag.
1195	 */
1196	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1197
1198	/*
1199	 * FTRL - Frame truncation length.
1200	 *
1201	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1202	 */
1203	WR4(sc, FEC_FTRL_REG, maxfl);
1204
1205	/*
1206	 * RDSR / TDSR descriptor ring pointers.
1207	 *
1208	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1209	 * internal current descriptor index values for both rings, so we zero
1210	 * our index values as well.
1211	 */
1212	sc->rx_idx = 0;
1213	sc->tx_idx_head = sc->tx_idx_tail = 0;
1214	sc->txcount = 0;
1215	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1216	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1217
1218	/*
1219	 * EIM - interrupt mask register.
1220	 *
1221	 * We always enable the same set of interrupts while running; unlike
1222	 * some drivers there's no need to change the mask on the fly depending
1223	 * on what operations are in progress.
1224	 */
1225	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1226
1227	/*
1228	 * MIBC - MIB control (hardware stats); clear all statistics regs, then
1229	 * enable collection of statistics.
1230	 */
1231	regval = RD4(sc, FEC_MIBC_REG);
1232	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1233	ffec_clear_stats(sc);
1234	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1235
1236	if (sc->fecflags & FECFLAG_RACC) {
1237		/*
1238		 * RACC - Receive Accelerator Function Configuration.
1239		 */
1240		regval = RD4(sc, FEC_RACC_REG);
1241		WR4(sc, FEC_RACC_REG, regval | FEC_RACC_SHIFT16);
1242	}
1243
1244	/*
1245	 * ECR - Ethernet control register.
1246	 *
1247	 * This must happen after all the other config registers are set.  If
1248	 * we're running on little-endian hardware, also set the flag for byte-
1249	 * swapping descriptor ring entries.  This flag doesn't exist on older
1250	 * hardware, but it can be safely set -- the bit position it occupies
1251	 * was unused.
1252	 */
1253	regval = RD4(sc, FEC_ECR_REG);
1254#if _BYTE_ORDER == _LITTLE_ENDIAN
1255	regval |= FEC_ECR_DBSWP;
1256#endif
1257	regval |= FEC_ECR_ETHEREN;
1258	WR4(sc, FEC_ECR_REG, regval);
1259
1260	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1261
1262       /*
1263	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1264	* set up the remaining config registers based on the current media.
1265	*/
1266	mii_mediachg(sc->mii_softc);
1267	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1268
1269	/*
1270	 * Tell the hardware that receive buffers are available.  They were made
1271	 * available in ffec_attach() or ffec_stop().
1272	 */
1273	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1274}
1275
1276static void
1277ffec_init(void *if_softc)
1278{
1279	struct ffec_softc *sc = if_softc;
1280
1281	FFEC_LOCK(sc);
1282	ffec_init_locked(sc);
1283	FFEC_UNLOCK(sc);
1284}
1285
1286static void
1287ffec_intr(void *arg)
1288{
1289	struct ffec_softc *sc;
1290	uint32_t ier;
1291
1292	sc = arg;
1293
1294	FFEC_LOCK(sc);
1295
1296	ier = RD4(sc, FEC_IER_REG);
1297
1298	if (ier & FEC_IER_TXF) {
1299		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1300		ffec_txfinish_locked(sc);
1301	}
1302
1303	if (ier & FEC_IER_RXF) {
1304		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1305		ffec_rxfinish_locked(sc);
1306	}
1307
1308	/*
1309	 * We actually don't care about most errors, because the hardware copes
1310	 * with them just fine, discarding the incoming bad frame, or forcing a
1311	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1312	 * stats registers.  The one that really matters is EBERR (DMA bus
1313	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1314	 * have to restart it here.  It should never happen.
1315	 */
1316	if (ier & FEC_IER_EBERR) {
1317		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1318		device_printf(sc->dev,
1319		    "Ethernet DMA error, restarting controller.\n");
1320		ffec_stop_locked(sc);
1321		ffec_init_locked(sc);
1322	}
1323
1324	FFEC_UNLOCK(sc);
1325
1326}
1327
1328static int
1329ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1330{
1331	struct ffec_softc *sc;
1332	struct mii_data *mii;
1333	struct ifreq *ifr;
1334	int mask, error;
1335
1336	sc = ifp->if_softc;
1337	ifr = (struct ifreq *)data;
1338
1339	error = 0;
1340	switch (cmd) {
1341	case SIOCSIFFLAGS:
1342		FFEC_LOCK(sc);
1343		if (ifp->if_flags & IFF_UP) {
1344			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1345				if ((ifp->if_flags ^ sc->if_flags) &
1346				    (IFF_PROMISC | IFF_ALLMULTI))
1347					ffec_setup_rxfilter(sc);
1348			} else {
1349				if (!sc->is_detaching)
1350					ffec_init_locked(sc);
1351			}
1352		} else {
1353			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1354				ffec_stop_locked(sc);
1355		}
1356		sc->if_flags = ifp->if_flags;
1357		FFEC_UNLOCK(sc);
1358		break;
1359
1360	case SIOCADDMULTI:
1361	case SIOCDELMULTI:
1362		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1363			FFEC_LOCK(sc);
1364			ffec_setup_rxfilter(sc);
1365			FFEC_UNLOCK(sc);
1366		}
1367		break;
1368
1369	case SIOCSIFMEDIA:
1370	case SIOCGIFMEDIA:
1371		mii = sc->mii_softc;
1372		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1373		break;
1374
1375	case SIOCSIFCAP:
1376		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1377		if (mask & IFCAP_VLAN_MTU) {
1378			/* No work to do except acknowledge the change took. */
1379			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1380		}
1381		break;
1382
1383	default:
1384		error = ether_ioctl(ifp, cmd, data);
1385		break;
1386	}
1387
1388	return (error);
1389}
1390
1391static int
1392ffec_detach(device_t dev)
1393{
1394	struct ffec_softc *sc;
1395	bus_dmamap_t map;
1396	int idx, irq;
1397
1398	/*
1399	 * NB: This function can be called internally to unwind a failure to
1400	 * attach. Make sure a resource got allocated/created before destroying.
1401	 */
1402
1403	sc = device_get_softc(dev);
1404
1405	if (sc->is_attached) {
1406		FFEC_LOCK(sc);
1407		sc->is_detaching = true;
1408		ffec_stop_locked(sc);
1409		FFEC_UNLOCK(sc);
1410		callout_drain(&sc->ffec_callout);
1411		ether_ifdetach(sc->ifp);
1412	}
1413
1414	/* XXX no miibus detach? */
1415
1416	/* Clean up RX DMA resources and free mbufs. */
1417	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1418		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1419			bus_dmamap_unload(sc->rxbuf_tag, map);
1420			bus_dmamap_destroy(sc->rxbuf_tag, map);
1421			m_freem(sc->rxbuf_map[idx].mbuf);
1422		}
1423	}
1424	if (sc->rxbuf_tag != NULL)
1425		bus_dma_tag_destroy(sc->rxbuf_tag);
1426	if (sc->rxdesc_map != NULL) {
1427		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1428		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1429	}
1430	if (sc->rxdesc_tag != NULL)
1431	bus_dma_tag_destroy(sc->rxdesc_tag);
1432
1433	/* Clean up TX DMA resources. */
1434	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1435		if ((map = sc->txbuf_map[idx].map) != NULL) {
1436			/* TX maps are already unloaded. */
1437			bus_dmamap_destroy(sc->txbuf_tag, map);
1438		}
1439	}
1440	if (sc->txbuf_tag != NULL)
1441		bus_dma_tag_destroy(sc->txbuf_tag);
1442	if (sc->txdesc_map != NULL) {
1443		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1444		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1445	}
1446	if (sc->txdesc_tag != NULL)
1447		bus_dma_tag_destroy(sc->txdesc_tag);
1448
1449	/* Release bus resources. */
1450	for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1451		if (sc->intr_cookie[irq] != NULL) {
1452			bus_teardown_intr(dev, sc->irq_res[irq],
1453			    sc->intr_cookie[irq]);
1454		}
1455	}
1456	bus_release_resources(dev, irq_res_spec, sc->irq_res);
1457
1458	if (sc->mem_res != NULL)
1459		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1460
1461	FFEC_LOCK_DESTROY(sc);
1462	return (0);
1463}
1464
1465static int
1466ffec_attach(device_t dev)
1467{
1468	struct ffec_softc *sc;
1469	struct ifnet *ifp = NULL;
1470	struct mbuf *m;
1471	void *dummy;
1472	uintptr_t typeflags;
1473	phandle_t ofw_node;
1474	uint32_t idx, mscr;
1475	int error, phynum, rid, irq;
1476	uint8_t eaddr[ETHER_ADDR_LEN];
1477
1478	sc = device_get_softc(dev);
1479	sc->dev = dev;
1480
1481	FFEC_LOCK_INIT(sc);
1482
1483	/*
1484	 * There are differences in the implementation and features of the FEC
1485	 * hardware on different SoCs, so figure out what type we are.
1486	 */
1487	typeflags = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1488	sc->fectype = (uint8_t)(typeflags & FECTYPE_MASK);
1489	sc->fecflags = (uint32_t)(typeflags & ~FECTYPE_MASK);
1490
1491	if (sc->fecflags & FECFLAG_AVB) {
1492		sc->rxbuf_align = 64;
1493		sc->txbuf_align = 1;
1494	} else {
1495		sc->rxbuf_align = 16;
1496		sc->txbuf_align = 16;
1497	}
1498
1499	/*
1500	 * We have to be told what kind of electrical connection exists between
1501	 * the MAC and PHY or we can't operate correctly.
1502	 */
1503	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1504		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1505		error = ENXIO;
1506		goto out;
1507	}
1508	sc->phy_conn_type = mii_fdt_get_contype(ofw_node);
1509	if (sc->phy_conn_type == MII_CONTYPE_UNKNOWN) {
1510		device_printf(sc->dev, "No valid 'phy-mode' "
1511		    "property found in FDT data for device.\n");
1512		error = ENOATTR;
1513		goto out;
1514	}
1515
1516	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1517
1518	/* Allocate bus resources for accessing the hardware. */
1519	rid = 0;
1520	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1521	    RF_ACTIVE);
1522	if (sc->mem_res == NULL) {
1523		device_printf(dev, "could not allocate memory resources.\n");
1524		error = ENOMEM;
1525		goto out;
1526	}
1527
1528	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
1529	if (error != 0) {
1530		device_printf(dev, "could not allocate interrupt resources\n");
1531		goto out;
1532	}
1533
1534	/*
1535	 * Set up TX descriptor ring, descriptors, and dma maps.
1536	 */
1537	error = bus_dma_tag_create(
1538	    bus_get_dma_tag(dev),	/* Parent tag. */
1539	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1540	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1541	    BUS_SPACE_MAXADDR,		/* highaddr */
1542	    NULL, NULL,			/* filter, filterarg */
1543	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1544	    TX_DESC_SIZE,		/* maxsegsize */
1545	    0,				/* flags */
1546	    NULL, NULL,			/* lockfunc, lockarg */
1547	    &sc->txdesc_tag);
1548	if (error != 0) {
1549		device_printf(sc->dev,
1550		    "could not create TX ring DMA tag.\n");
1551		goto out;
1552	}
1553
1554	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1555	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1556	if (error != 0) {
1557		device_printf(sc->dev,
1558		    "could not allocate TX descriptor ring.\n");
1559		goto out;
1560	}
1561
1562	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1563	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1564	if (error != 0) {
1565		device_printf(sc->dev,
1566		    "could not load TX descriptor ring map.\n");
1567		goto out;
1568	}
1569
1570	error = bus_dma_tag_create(
1571	    bus_get_dma_tag(dev),	/* Parent tag. */
1572	    sc->txbuf_align, 0,		/* alignment, boundary */
1573	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1574	    BUS_SPACE_MAXADDR,		/* highaddr */
1575	    NULL, NULL,			/* filter, filterarg */
1576	    MCLBYTES, 1, 		/* maxsize, nsegments */
1577	    MCLBYTES,			/* maxsegsize */
1578	    0,				/* flags */
1579	    NULL, NULL,			/* lockfunc, lockarg */
1580	    &sc->txbuf_tag);
1581	if (error != 0) {
1582		device_printf(sc->dev,
1583		    "could not create TX ring DMA tag.\n");
1584		goto out;
1585	}
1586
1587	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1588		error = bus_dmamap_create(sc->txbuf_tag, 0,
1589		    &sc->txbuf_map[idx].map);
1590		if (error != 0) {
1591			device_printf(sc->dev,
1592			    "could not create TX buffer DMA map.\n");
1593			goto out;
1594		}
1595		ffec_setup_txdesc(sc, idx, 0, 0);
1596	}
1597
1598	/*
1599	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1600	 */
1601	error = bus_dma_tag_create(
1602	    bus_get_dma_tag(dev),	/* Parent tag. */
1603	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1604	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1605	    BUS_SPACE_MAXADDR,		/* highaddr */
1606	    NULL, NULL,			/* filter, filterarg */
1607	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1608	    RX_DESC_SIZE,		/* maxsegsize */
1609	    0,				/* flags */
1610	    NULL, NULL,			/* lockfunc, lockarg */
1611	    &sc->rxdesc_tag);
1612	if (error != 0) {
1613		device_printf(sc->dev,
1614		    "could not create RX ring DMA tag.\n");
1615		goto out;
1616	}
1617
1618	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1619	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1620	if (error != 0) {
1621		device_printf(sc->dev,
1622		    "could not allocate RX descriptor ring.\n");
1623		goto out;
1624	}
1625
1626	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1627	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1628	if (error != 0) {
1629		device_printf(sc->dev,
1630		    "could not load RX descriptor ring map.\n");
1631		goto out;
1632	}
1633
1634	error = bus_dma_tag_create(
1635	    bus_get_dma_tag(dev),	/* Parent tag. */
1636	    1, 0,			/* alignment, boundary */
1637	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1638	    BUS_SPACE_MAXADDR,		/* highaddr */
1639	    NULL, NULL,			/* filter, filterarg */
1640	    MCLBYTES, 1, 		/* maxsize, nsegments */
1641	    MCLBYTES,			/* maxsegsize */
1642	    0,				/* flags */
1643	    NULL, NULL,			/* lockfunc, lockarg */
1644	    &sc->rxbuf_tag);
1645	if (error != 0) {
1646		device_printf(sc->dev,
1647		    "could not create RX buf DMA tag.\n");
1648		goto out;
1649	}
1650
1651	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1652		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1653		    &sc->rxbuf_map[idx].map);
1654		if (error != 0) {
1655			device_printf(sc->dev,
1656			    "could not create RX buffer DMA map.\n");
1657			goto out;
1658		}
1659		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1660			device_printf(dev, "Could not alloc mbuf\n");
1661			error = ENOMEM;
1662			goto out;
1663		}
1664		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1665			device_printf(sc->dev,
1666			    "could not create new RX buffer.\n");
1667			goto out;
1668		}
1669	}
1670
1671	/* Try to get the MAC address from the hardware before resetting it. */
1672	ffec_get_hwaddr(sc, eaddr);
1673
1674	/*
1675	 * Reset the hardware.  Disables all interrupts.
1676	 *
1677	 * When the FEC is connected to the AXI bus (indicated by AVB flag), a
1678	 * MAC reset while a bus transaction is pending can hang the bus.
1679	 * Instead of resetting, turn off the ENABLE bit, which allows the
1680	 * hardware to complete any in-progress transfers (appending a bad CRC
1681	 * to any partial packet) and release the AXI bus.  This could probably
1682	 * be done unconditionally for all hardware variants, but that hasn't
1683	 * been tested.
1684	 */
1685	if (sc->fecflags & FECFLAG_AVB)
1686		WR4(sc, FEC_ECR_REG, 0);
1687	else
1688		WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1689
1690	/* Setup interrupt handler. */
1691	for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1692		if (sc->irq_res[irq] != NULL) {
1693			error = bus_setup_intr(dev, sc->irq_res[irq],
1694			    INTR_TYPE_NET | INTR_MPSAFE, NULL, ffec_intr, sc,
1695			    &sc->intr_cookie[irq]);
1696			if (error != 0) {
1697				device_printf(dev,
1698				    "could not setup interrupt handler.\n");
1699				goto out;
1700			}
1701		}
1702	}
1703
1704	/*
1705	 * Set up the PHY control register.
1706	 *
1707	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1708	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1709	 *
1710	 * XXX - Revisit this...
1711	 *
1712	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1713	 * code uses 10.  Both values seem to work, but I suspect many modern
1714	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1715	 *
1716	 * Different imx manuals use confusingly different terminology (things
1717	 * like "system clock" and "internal module clock") with examples that
1718	 * use frequencies that have nothing to do with ethernet, giving the
1719	 * vague impression that maybe the clock in question is the periphclock
1720	 * or something.  In fact, on an imx53 development board (FEC),
1721	 * measuring the mdio clock at the pin on the PHY and playing with
1722	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1723	 * aka periphclock) and 13 was the right divisor.
1724	 *
1725	 * All in all, it seems likely that 13 is a safe divisor for now,
1726	 * because if we really do need to base it on the peripheral clock
1727	 * speed, then we need a platform-independant get-clock-freq API.
1728	 */
1729	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1730	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1731		mscr |= FEC_MSCR_DIS_PRE;
1732		if (bootverbose)
1733			device_printf(dev, "PHY preamble disabled\n");
1734	}
1735	WR4(sc, FEC_MSCR_REG, mscr);
1736
1737	/* Set up the ethernet interface. */
1738	sc->ifp = ifp = if_alloc(IFT_ETHER);
1739
1740	ifp->if_softc = sc;
1741	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1742	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1743	ifp->if_capabilities = IFCAP_VLAN_MTU;
1744	ifp->if_capenable = ifp->if_capabilities;
1745	ifp->if_start = ffec_txstart;
1746	ifp->if_ioctl = ffec_ioctl;
1747	ifp->if_init = ffec_init;
1748	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1749	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1750	IFQ_SET_READY(&ifp->if_snd);
1751	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1752
1753#if 0 /* XXX The hardware keeps stats we could use for these. */
1754	ifp->if_linkmib = &sc->mibdata;
1755	ifp->if_linkmiblen = sizeof(sc->mibdata);
1756#endif
1757
1758	/* Set up the miigasket hardware (if any). */
1759	ffec_miigasket_setup(sc);
1760
1761	/* Attach the mii driver. */
1762	if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) {
1763		phynum = MII_PHY_ANY;
1764	}
1765	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1766	    ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY,
1767	    (sc->fecflags & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1768	if (error != 0) {
1769		device_printf(dev, "PHY attach failed\n");
1770		goto out;
1771	}
1772	sc->mii_softc = device_get_softc(sc->miibus);
1773
1774	/* All ready to run, attach the ethernet interface. */
1775	ether_ifattach(ifp, eaddr);
1776	sc->is_attached = true;
1777
1778	error = 0;
1779out:
1780
1781	if (error != 0)
1782		ffec_detach(dev);
1783
1784	return (error);
1785}
1786
1787static int
1788ffec_probe(device_t dev)
1789{
1790	uintptr_t fectype;
1791
1792	if (!ofw_bus_status_okay(dev))
1793		return (ENXIO);
1794
1795	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1796	if (fectype == FECTYPE_NONE)
1797		return (ENXIO);
1798
1799	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1800	    "Freescale Gigabit Ethernet Controller" :
1801	    "Freescale Fast Ethernet Controller");
1802
1803	return (BUS_PROBE_DEFAULT);
1804}
1805
1806
1807static device_method_t ffec_methods[] = {
1808	/* Device interface. */
1809	DEVMETHOD(device_probe,		ffec_probe),
1810	DEVMETHOD(device_attach,	ffec_attach),
1811	DEVMETHOD(device_detach,	ffec_detach),
1812
1813/*
1814	DEVMETHOD(device_shutdown,	ffec_shutdown),
1815	DEVMETHOD(device_suspend,	ffec_suspend),
1816	DEVMETHOD(device_resume,	ffec_resume),
1817*/
1818
1819	/* MII interface. */
1820	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1821	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1822	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1823
1824	DEVMETHOD_END
1825};
1826
1827static driver_t ffec_driver = {
1828	"ffec",
1829	ffec_methods,
1830	sizeof(struct ffec_softc)
1831};
1832
1833static devclass_t ffec_devclass;
1834
1835DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1836DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1837
1838MODULE_DEPEND(ffec, ether, 1, 1, 1);
1839MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1840