1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998, 1999
5 *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38/*
39 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40 * series chips and several workalikes including the following:
41 *
42 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44 * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45 * ASIX Electronics AX88140A (www.asix.com.tw)
46 * ASIX Electronics AX88141 (www.asix.com.tw)
47 * ADMtek AL981 (www.admtek.com.tw)
48 * ADMtek AN983 (www.admtek.com.tw)
49 * ADMtek CardBus AN985 (www.admtek.com.tw)
50 * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
51 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
52 * Accton EN1217 (www.accton.com)
53 * Xircom X3201 (www.xircom.com)
54 * Abocom FE2500
55 * Conexant LANfinity (www.conexant.com)
56 * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
57 *
58 * Datasheets for the 21143 are available at developer.intel.com.
59 * Datasheets for the clone parts can be found at their respective sites.
60 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
61 * The PNIC II is essentially a Macronix 98715A chip; the only difference
62 * worth noting is that its multicast hash table is only 128 bits wide
63 * instead of 512.
64 *
65 * Written by Bill Paul <wpaul@ee.columbia.edu>
66 * Electrical Engineering Department
67 * Columbia University, New York City
68 */
69/*
70 * The Intel 21143 is the successor to the DEC 21140. It is basically
71 * the same as the 21140 but with a few new features. The 21143 supports
72 * three kinds of media attachments:
73 *
74 * o MII port, for 10Mbps and 100Mbps support and NWAY
75 *   autonegotiation provided by an external PHY.
76 * o SYM port, for symbol mode 100Mbps support.
77 * o 10baseT port.
78 * o AUI/BNC port.
79 *
80 * The 100Mbps SYM port and 10baseT port can be used together in
81 * combination with the internal NWAY support to create a 10/100
82 * autosensing configuration.
83 *
84 * Note that not all tulip workalikes are handled in this driver: we only
85 * deal with those which are relatively well behaved. The Winbond is
86 * handled separately due to its different register offsets and the
87 * special handling needed for its various bugs. The PNIC is handled
88 * here, but I'm not thrilled about it.
89 *
90 * All of the workalike chips use some form of MII transceiver support
91 * with the exception of the Macronix chips, which also have a SYM port.
92 * The ASIX AX88140A is also documented to have a SYM port, but all
93 * the cards I've seen use an MII transceiver, probably because the
94 * AX88140A doesn't support internal NWAY.
95 */
96
97#ifdef HAVE_KERNEL_OPTION_HEADERS
98#include "opt_device_polling.h"
99#endif
100
101#include <sys/param.h>
102#include <sys/endian.h>
103#include <sys/systm.h>
104#include <sys/sockio.h>
105#include <sys/mbuf.h>
106#include <sys/malloc.h>
107#include <sys/kernel.h>
108#include <sys/module.h>
109#include <sys/socket.h>
110
111#include <net/if.h>
112#include <net/if_var.h>
113#include <net/if_arp.h>
114#include <net/ethernet.h>
115#include <net/if_dl.h>
116#include <net/if_media.h>
117#include <net/if_types.h>
118#include <net/if_vlan_var.h>
119
120#include <net/bpf.h>
121
122#include <machine/bus.h>
123#include <machine/resource.h>
124#include <sys/bus.h>
125#include <sys/rman.h>
126
127#include <dev/mii/mii.h>
128#include <dev/mii/mii_bitbang.h>
129#include <dev/mii/miivar.h>
130
131#include <dev/pci/pcireg.h>
132#include <dev/pci/pcivar.h>
133
134#define	DC_USEIOSPACE
135
136#include <dev/dc/if_dcreg.h>
137
138MODULE_DEPEND(dc, pci, 1, 1, 1);
139MODULE_DEPEND(dc, ether, 1, 1, 1);
140MODULE_DEPEND(dc, miibus, 1, 1, 1);
141
142/*
143 * "device miibus" is required in kernel config.  See GENERIC if you get
144 * errors here.
145 */
146#include "miibus_if.h"
147
148/*
149 * Various supported device vendors/types and their names.
150 */
151static const struct dc_type dc_devs[] = {
152	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
153		"Intel 21143 10/100BaseTX" },
154	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
155		"Davicom DM9009 10/100BaseTX" },
156	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
157		"Davicom DM9100 10/100BaseTX" },
158	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
159		"Davicom DM9102A 10/100BaseTX" },
160	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
161		"Davicom DM9102 10/100BaseTX" },
162	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
163		"ADMtek AL981 10/100BaseTX" },
164	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
165		"ADMtek AN983 10/100BaseTX" },
166	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
167		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
168	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
169		"ADMtek ADM9511 10/100BaseTX" },
170	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
171		"ADMtek ADM9513 10/100BaseTX" },
172	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
173		"ASIX AX88141 10/100BaseTX" },
174	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
175		"ASIX AX88140A 10/100BaseTX" },
176	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
177		"Macronix 98713A 10/100BaseTX" },
178	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
179		"Macronix 98713 10/100BaseTX" },
180	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
181		"Compex RL100-TX 10/100BaseTX" },
182	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
183		"Compex RL100-TX 10/100BaseTX" },
184	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
185		"Macronix 98725 10/100BaseTX" },
186	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
187		"Macronix 98715AEC-C 10/100BaseTX" },
188	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
189		"Macronix 98715/98715A 10/100BaseTX" },
190	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
191		"Macronix 98727/98732 10/100BaseTX" },
192	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
193		"LC82C115 PNIC II 10/100BaseTX" },
194	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
195		"82c169 PNIC 10/100BaseTX" },
196	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
197		"82c168 PNIC 10/100BaseTX" },
198	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
199		"Accton EN1217 10/100BaseTX" },
200	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
201		"Accton EN2242 MiniPCI 10/100BaseTX" },
202	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
203		"Xircom X3201 10/100BaseTX" },
204	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
205		"Neteasy DRP-32TXD Cardbus 10/100" },
206	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
207		"Abocom FE2500 10/100BaseTX" },
208	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
209		"Abocom FE2500MX 10/100BaseTX" },
210	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
211		"Conexant LANfinity MiniPCI 10/100BaseTX" },
212	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
213		"Hawking CB102 CardBus 10/100" },
214	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
215		"PlaneX FNW-3602-T CardBus 10/100" },
216	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
217		"3Com OfficeConnect 10/100B" },
218	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
219		"Microsoft MN-120 CardBus 10/100" },
220	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
221		"Microsoft MN-130 10/100" },
222	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
223		"Linksys PCMPC200 CardBus 10/100" },
224	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
225		"Linksys PCMPC200 CardBus 10/100" },
226	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
227		"ULi M5261 FastEthernet" },
228	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
229		"ULi M5263 FastEthernet" },
230	{ 0, 0, NULL }
231};
232
233static int dc_probe(device_t);
234static int dc_attach(device_t);
235static int dc_detach(device_t);
236static int dc_suspend(device_t);
237static int dc_resume(device_t);
238static const struct dc_type *dc_devtype(device_t);
239static void dc_discard_rxbuf(struct dc_softc *, int);
240static int dc_newbuf(struct dc_softc *, int);
241static int dc_encap(struct dc_softc *, struct mbuf **);
242static void dc_pnic_rx_bug_war(struct dc_softc *, int);
243static int dc_rx_resync(struct dc_softc *);
244static int dc_rxeof(struct dc_softc *);
245static void dc_txeof(struct dc_softc *);
246static void dc_tick(void *);
247static void dc_tx_underrun(struct dc_softc *);
248static void dc_intr(void *);
249static void dc_start(struct ifnet *);
250static void dc_start_locked(struct ifnet *);
251static int dc_ioctl(struct ifnet *, u_long, caddr_t);
252static void dc_init(void *);
253static void dc_init_locked(struct dc_softc *);
254static void dc_stop(struct dc_softc *);
255static void dc_watchdog(void *);
256static int dc_shutdown(device_t);
257static int dc_ifmedia_upd(struct ifnet *);
258static int dc_ifmedia_upd_locked(struct dc_softc *);
259static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
260
261static int dc_dma_alloc(struct dc_softc *);
262static void dc_dma_free(struct dc_softc *);
263static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
264
265static void dc_delay(struct dc_softc *);
266static void dc_eeprom_idle(struct dc_softc *);
267static void dc_eeprom_putbyte(struct dc_softc *, int);
268static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
269static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
270static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
271static void dc_eeprom_width(struct dc_softc *);
272static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
273
274static int dc_miibus_readreg(device_t, int, int);
275static int dc_miibus_writereg(device_t, int, int, int);
276static void dc_miibus_statchg(device_t);
277static void dc_miibus_mediainit(device_t);
278
279static void dc_setcfg(struct dc_softc *, int);
280static void dc_netcfg_wait(struct dc_softc *);
281static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
282static uint32_t dc_mchash_be(const uint8_t *);
283static void dc_setfilt_21143(struct dc_softc *);
284static void dc_setfilt_asix(struct dc_softc *);
285static void dc_setfilt_admtek(struct dc_softc *);
286static void dc_setfilt_uli(struct dc_softc *);
287static void dc_setfilt_xircom(struct dc_softc *);
288
289static void dc_setfilt(struct dc_softc *);
290
291static void dc_reset(struct dc_softc *);
292static int dc_list_rx_init(struct dc_softc *);
293static int dc_list_tx_init(struct dc_softc *);
294
295static int dc_read_srom(struct dc_softc *, int);
296static int dc_parse_21143_srom(struct dc_softc *);
297static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
298static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
299static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
300static void dc_apply_fixup(struct dc_softc *, int);
301static int dc_check_multiport(struct dc_softc *);
302
303/*
304 * MII bit-bang glue
305 */
306static uint32_t dc_mii_bitbang_read(device_t);
307static void dc_mii_bitbang_write(device_t, uint32_t);
308
309static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
310	dc_mii_bitbang_read,
311	dc_mii_bitbang_write,
312	{
313		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
314		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
315		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
316		0,			/* MII_BIT_DIR_HOST_PHY */
317		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
318	}
319};
320
321#ifdef DC_USEIOSPACE
322#define	DC_RES			SYS_RES_IOPORT
323#define	DC_RID			DC_PCI_CFBIO
324#else
325#define	DC_RES			SYS_RES_MEMORY
326#define	DC_RID			DC_PCI_CFBMA
327#endif
328
329static device_method_t dc_methods[] = {
330	/* Device interface */
331	DEVMETHOD(device_probe,		dc_probe),
332	DEVMETHOD(device_attach,	dc_attach),
333	DEVMETHOD(device_detach,	dc_detach),
334	DEVMETHOD(device_suspend,	dc_suspend),
335	DEVMETHOD(device_resume,	dc_resume),
336	DEVMETHOD(device_shutdown,	dc_shutdown),
337
338	/* MII interface */
339	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
340	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
341	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
342	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
343
344	DEVMETHOD_END
345};
346
347static driver_t dc_driver = {
348	"dc",
349	dc_methods,
350	sizeof(struct dc_softc)
351};
352
353static devclass_t dc_devclass;
354
355DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL,
356    SI_ORDER_ANY);
357MODULE_PNP_INFO("W32:vendor/device;U8:revision;D:#", pci, dc, dc_devs,
358    nitems(dc_devs) - 1);
359DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
360
361#define	DC_SETBIT(sc, reg, x)				\
362	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
363
364#define	DC_CLRBIT(sc, reg, x)				\
365	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
366
367#define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
368#define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
369
370static void
371dc_delay(struct dc_softc *sc)
372{
373	int idx;
374
375	for (idx = (300 / 33) + 1; idx > 0; idx--)
376		CSR_READ_4(sc, DC_BUSCTL);
377}
378
379static void
380dc_eeprom_width(struct dc_softc *sc)
381{
382	int i;
383
384	/* Force EEPROM to idle state. */
385	dc_eeprom_idle(sc);
386
387	/* Enter EEPROM access mode. */
388	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
389	dc_delay(sc);
390	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
391	dc_delay(sc);
392	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
393	dc_delay(sc);
394	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
395	dc_delay(sc);
396
397	for (i = 3; i--;) {
398		if (6 & (1 << i))
399			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
400		else
401			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
402		dc_delay(sc);
403		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
404		dc_delay(sc);
405		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
406		dc_delay(sc);
407	}
408
409	for (i = 1; i <= 12; i++) {
410		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411		dc_delay(sc);
412		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
413			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
414			dc_delay(sc);
415			break;
416		}
417		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
418		dc_delay(sc);
419	}
420
421	/* Turn off EEPROM access mode. */
422	dc_eeprom_idle(sc);
423
424	if (i < 4 || i > 12)
425		sc->dc_romwidth = 6;
426	else
427		sc->dc_romwidth = i;
428
429	/* Enter EEPROM access mode. */
430	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
431	dc_delay(sc);
432	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
433	dc_delay(sc);
434	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
435	dc_delay(sc);
436	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
437	dc_delay(sc);
438
439	/* Turn off EEPROM access mode. */
440	dc_eeprom_idle(sc);
441}
442
443static void
444dc_eeprom_idle(struct dc_softc *sc)
445{
446	int i;
447
448	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
449	dc_delay(sc);
450	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
451	dc_delay(sc);
452	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
453	dc_delay(sc);
454	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
455	dc_delay(sc);
456
457	for (i = 0; i < 25; i++) {
458		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
459		dc_delay(sc);
460		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
461		dc_delay(sc);
462	}
463
464	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
465	dc_delay(sc);
466	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
467	dc_delay(sc);
468	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
469}
470
471/*
472 * Send a read command and address to the EEPROM, check for ACK.
473 */
474static void
475dc_eeprom_putbyte(struct dc_softc *sc, int addr)
476{
477	int d, i;
478
479	d = DC_EECMD_READ >> 6;
480	for (i = 3; i--; ) {
481		if (d & (1 << i))
482			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
483		else
484			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
485		dc_delay(sc);
486		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
487		dc_delay(sc);
488		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
489		dc_delay(sc);
490	}
491
492	/*
493	 * Feed in each bit and strobe the clock.
494	 */
495	for (i = sc->dc_romwidth; i--;) {
496		if (addr & (1 << i)) {
497			SIO_SET(DC_SIO_EE_DATAIN);
498		} else {
499			SIO_CLR(DC_SIO_EE_DATAIN);
500		}
501		dc_delay(sc);
502		SIO_SET(DC_SIO_EE_CLK);
503		dc_delay(sc);
504		SIO_CLR(DC_SIO_EE_CLK);
505		dc_delay(sc);
506	}
507}
508
509/*
510 * Read a word of data stored in the EEPROM at address 'addr.'
511 * The PNIC 82c168/82c169 has its own non-standard way to read
512 * the EEPROM.
513 */
514static void
515dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
516{
517	int i;
518	uint32_t r;
519
520	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
521
522	for (i = 0; i < DC_TIMEOUT; i++) {
523		DELAY(1);
524		r = CSR_READ_4(sc, DC_SIO);
525		if (!(r & DC_PN_SIOCTL_BUSY)) {
526			*dest = (uint16_t)(r & 0xFFFF);
527			return;
528		}
529	}
530}
531
532/*
533 * Read a word of data stored in the EEPROM at address 'addr.'
534 * The Xircom X3201 has its own non-standard way to read
535 * the EEPROM, too.
536 */
537static void
538dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
539{
540
541	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
542
543	addr *= 2;
544	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
545	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
546	addr += 1;
547	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
548	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
549
550	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
551}
552
553/*
554 * Read a word of data stored in the EEPROM at address 'addr.'
555 */
556static void
557dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
558{
559	int i;
560	uint16_t word = 0;
561
562	/* Force EEPROM to idle state. */
563	dc_eeprom_idle(sc);
564
565	/* Enter EEPROM access mode. */
566	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
567	dc_delay(sc);
568	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
569	dc_delay(sc);
570	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
571	dc_delay(sc);
572	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
573	dc_delay(sc);
574
575	/*
576	 * Send address of word we want to read.
577	 */
578	dc_eeprom_putbyte(sc, addr);
579
580	/*
581	 * Start reading bits from EEPROM.
582	 */
583	for (i = 0x8000; i; i >>= 1) {
584		SIO_SET(DC_SIO_EE_CLK);
585		dc_delay(sc);
586		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
587			word |= i;
588		dc_delay(sc);
589		SIO_CLR(DC_SIO_EE_CLK);
590		dc_delay(sc);
591	}
592
593	/* Turn off EEPROM access mode. */
594	dc_eeprom_idle(sc);
595
596	*dest = word;
597}
598
599/*
600 * Read a sequence of words from the EEPROM.
601 */
602static void
603dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
604{
605	int i;
606	uint16_t word = 0, *ptr;
607
608	for (i = 0; i < cnt; i++) {
609		if (DC_IS_PNIC(sc))
610			dc_eeprom_getword_pnic(sc, off + i, &word);
611		else if (DC_IS_XIRCOM(sc))
612			dc_eeprom_getword_xircom(sc, off + i, &word);
613		else
614			dc_eeprom_getword(sc, off + i, &word);
615		ptr = (uint16_t *)(dest + (i * 2));
616		if (be)
617			*ptr = be16toh(word);
618		else
619			*ptr = le16toh(word);
620	}
621}
622
623/*
624 * Write the MII serial port for the MII bit-bang module.
625 */
626static void
627dc_mii_bitbang_write(device_t dev, uint32_t val)
628{
629	struct dc_softc *sc;
630
631	sc = device_get_softc(dev);
632
633	CSR_WRITE_4(sc, DC_SIO, val);
634	CSR_BARRIER_4(sc, DC_SIO,
635	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
636}
637
638/*
639 * Read the MII serial port for the MII bit-bang module.
640 */
641static uint32_t
642dc_mii_bitbang_read(device_t dev)
643{
644	struct dc_softc *sc;
645	uint32_t val;
646
647	sc = device_get_softc(dev);
648
649	val = CSR_READ_4(sc, DC_SIO);
650	CSR_BARRIER_4(sc, DC_SIO,
651	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
652
653	return (val);
654}
655
656static int
657dc_miibus_readreg(device_t dev, int phy, int reg)
658{
659	struct dc_softc *sc;
660	int i, rval, phy_reg = 0;
661
662	sc = device_get_softc(dev);
663
664	if (sc->dc_pmode != DC_PMODE_MII) {
665		if (phy == (MII_NPHY - 1)) {
666			switch (reg) {
667			case MII_BMSR:
668			/*
669			 * Fake something to make the probe
670			 * code think there's a PHY here.
671			 */
672				return (BMSR_MEDIAMASK);
673			case MII_PHYIDR1:
674				if (DC_IS_PNIC(sc))
675					return (DC_VENDORID_LO);
676				return (DC_VENDORID_DEC);
677			case MII_PHYIDR2:
678				if (DC_IS_PNIC(sc))
679					return (DC_DEVICEID_82C168);
680				return (DC_DEVICEID_21143);
681			default:
682				return (0);
683			}
684		} else
685			return (0);
686	}
687
688	if (DC_IS_PNIC(sc)) {
689		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
690		    (phy << 23) | (reg << 18));
691		for (i = 0; i < DC_TIMEOUT; i++) {
692			DELAY(1);
693			rval = CSR_READ_4(sc, DC_PN_MII);
694			if (!(rval & DC_PN_MII_BUSY)) {
695				rval &= 0xFFFF;
696				return (rval == 0xFFFF ? 0 : rval);
697			}
698		}
699		return (0);
700	}
701
702	if (sc->dc_type == DC_TYPE_ULI_M5263) {
703		CSR_WRITE_4(sc, DC_ROM,
704		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
705		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
706		    DC_ULI_PHY_OP_READ);
707		for (i = 0; i < DC_TIMEOUT; i++) {
708			DELAY(1);
709			rval = CSR_READ_4(sc, DC_ROM);
710			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
711				return (rval & DC_ULI_PHY_DATA_MASK);
712			}
713		}
714		if (i == DC_TIMEOUT)
715			device_printf(dev, "phy read timed out\n");
716		return (0);
717	}
718
719	if (DC_IS_COMET(sc)) {
720		switch (reg) {
721		case MII_BMCR:
722			phy_reg = DC_AL_BMCR;
723			break;
724		case MII_BMSR:
725			phy_reg = DC_AL_BMSR;
726			break;
727		case MII_PHYIDR1:
728			phy_reg = DC_AL_VENID;
729			break;
730		case MII_PHYIDR2:
731			phy_reg = DC_AL_DEVID;
732			break;
733		case MII_ANAR:
734			phy_reg = DC_AL_ANAR;
735			break;
736		case MII_ANLPAR:
737			phy_reg = DC_AL_LPAR;
738			break;
739		case MII_ANER:
740			phy_reg = DC_AL_ANER;
741			break;
742		default:
743			device_printf(dev, "phy_read: bad phy register %x\n",
744			    reg);
745			return (0);
746		}
747
748		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
749		if (rval == 0xFFFF)
750			return (0);
751		return (rval);
752	}
753
754	if (sc->dc_type == DC_TYPE_98713) {
755		phy_reg = CSR_READ_4(sc, DC_NETCFG);
756		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
757	}
758	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
759	if (sc->dc_type == DC_TYPE_98713)
760		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
761
762	return (rval);
763}
764
765static int
766dc_miibus_writereg(device_t dev, int phy, int reg, int data)
767{
768	struct dc_softc *sc;
769	int i, phy_reg = 0;
770
771	sc = device_get_softc(dev);
772
773	if (DC_IS_PNIC(sc)) {
774		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
775		    (phy << 23) | (reg << 10) | data);
776		for (i = 0; i < DC_TIMEOUT; i++) {
777			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
778				break;
779		}
780		return (0);
781	}
782
783	if (sc->dc_type == DC_TYPE_ULI_M5263) {
784		CSR_WRITE_4(sc, DC_ROM,
785		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
786		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
787		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
788		    DC_ULI_PHY_OP_WRITE);
789		DELAY(1);
790		return (0);
791	}
792
793	if (DC_IS_COMET(sc)) {
794		switch (reg) {
795		case MII_BMCR:
796			phy_reg = DC_AL_BMCR;
797			break;
798		case MII_BMSR:
799			phy_reg = DC_AL_BMSR;
800			break;
801		case MII_PHYIDR1:
802			phy_reg = DC_AL_VENID;
803			break;
804		case MII_PHYIDR2:
805			phy_reg = DC_AL_DEVID;
806			break;
807		case MII_ANAR:
808			phy_reg = DC_AL_ANAR;
809			break;
810		case MII_ANLPAR:
811			phy_reg = DC_AL_LPAR;
812			break;
813		case MII_ANER:
814			phy_reg = DC_AL_ANER;
815			break;
816		default:
817			device_printf(dev, "phy_write: bad phy register %x\n",
818			    reg);
819			return (0);
820			break;
821		}
822
823		CSR_WRITE_4(sc, phy_reg, data);
824		return (0);
825	}
826
827	if (sc->dc_type == DC_TYPE_98713) {
828		phy_reg = CSR_READ_4(sc, DC_NETCFG);
829		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
830	}
831	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
832	if (sc->dc_type == DC_TYPE_98713)
833		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
834
835	return (0);
836}
837
838static void
839dc_miibus_statchg(device_t dev)
840{
841	struct dc_softc *sc;
842	struct ifnet *ifp;
843	struct mii_data *mii;
844	struct ifmedia *ifm;
845
846	sc = device_get_softc(dev);
847
848	mii = device_get_softc(sc->dc_miibus);
849	ifp = sc->dc_ifp;
850	if (mii == NULL || ifp == NULL ||
851	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
852		return;
853
854	ifm = &mii->mii_media;
855	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
856		dc_setcfg(sc, ifm->ifm_media);
857		return;
858	} else if (!DC_IS_ADMTEK(sc))
859		dc_setcfg(sc, mii->mii_media_active);
860
861	sc->dc_link = 0;
862	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
863	    (IFM_ACTIVE | IFM_AVALID)) {
864		switch (IFM_SUBTYPE(mii->mii_media_active)) {
865		case IFM_10_T:
866		case IFM_100_TX:
867			sc->dc_link = 1;
868			break;
869		}
870	}
871}
872
873/*
874 * Special support for DM9102A cards with HomePNA PHYs. Note:
875 * with the Davicom DM9102A/DM9801 eval board that I have, it seems
876 * to be impossible to talk to the management interface of the DM9801
877 * PHY (its MDIO pin is not connected to anything). Consequently,
878 * the driver has to just 'know' about the additional mode and deal
879 * with it itself. *sigh*
880 */
881static void
882dc_miibus_mediainit(device_t dev)
883{
884	struct dc_softc *sc;
885	struct mii_data *mii;
886	struct ifmedia *ifm;
887	int rev;
888
889	rev = pci_get_revid(dev);
890
891	sc = device_get_softc(dev);
892	mii = device_get_softc(sc->dc_miibus);
893	ifm = &mii->mii_media;
894
895	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
896		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
897}
898
899#define	DC_BITS_512	9
900#define	DC_BITS_128	7
901#define	DC_BITS_64	6
902
903static uint32_t
904dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
905{
906	uint32_t crc;
907
908	/* Compute CRC for the address value. */
909	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
910
911	/*
912	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
913	 * chips is only 128 bits wide.
914	 */
915	if (sc->dc_flags & DC_128BIT_HASH)
916		return (crc & ((1 << DC_BITS_128) - 1));
917
918	/* The hash table on the MX98715BEC is only 64 bits wide. */
919	if (sc->dc_flags & DC_64BIT_HASH)
920		return (crc & ((1 << DC_BITS_64) - 1));
921
922	/* Xircom's hash filtering table is different (read: weird) */
923	/* Xircom uses the LEAST significant bits */
924	if (DC_IS_XIRCOM(sc)) {
925		if ((crc & 0x180) == 0x180)
926			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
927		else
928			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
929			    (12 << 4));
930	}
931
932	return (crc & ((1 << DC_BITS_512) - 1));
933}
934
935/*
936 * Calculate CRC of a multicast group address, return the lower 6 bits.
937 */
938static uint32_t
939dc_mchash_be(const uint8_t *addr)
940{
941	uint32_t crc;
942
943	/* Compute CRC for the address value. */
944	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
945
946	/* Return the filter bit position. */
947	return ((crc >> 26) & 0x0000003F);
948}
949
950/*
951 * 21143-style RX filter setup routine. Filter programming is done by
952 * downloading a special setup frame into the TX engine. 21143, Macronix,
953 * PNIC, PNIC II and Davicom chips are programmed this way.
954 *
955 * We always program the chip using 'hash perfect' mode, i.e. one perfect
956 * address (our node address) and a 512-bit hash filter for multicast
957 * frames. We also sneak the broadcast address into the hash filter since
958 * we need that too.
959 */
960static u_int
961dc_hash_maddr_21143(void *arg, struct sockaddr_dl *sdl, u_int cnt)
962{
963	struct dc_softc *sc = arg;
964	uint32_t h;
965
966	h = dc_mchash_le(sc, LLADDR(sdl));
967	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
968
969	return (1);
970}
971
972static void
973dc_setfilt_21143(struct dc_softc *sc)
974{
975	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
976	struct dc_desc *sframe;
977	uint32_t h, *sp;
978	struct ifnet *ifp;
979	int i;
980
981	ifp = sc->dc_ifp;
982
983	i = sc->dc_cdata.dc_tx_prod;
984	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
985	sc->dc_cdata.dc_tx_cnt++;
986	sframe = &sc->dc_ldata.dc_tx_list[i];
987	sp = sc->dc_cdata.dc_sbuf;
988	bzero(sp, DC_SFRAME_LEN);
989
990	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
991	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
992	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
993
994	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
995
996	/* If we want promiscuous mode, set the allframes bit. */
997	if (ifp->if_flags & IFF_PROMISC)
998		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
999	else
1000		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1001
1002	if (ifp->if_flags & IFF_ALLMULTI)
1003		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1004	else
1005		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1006
1007	if_foreach_llmaddr(ifp, dc_hash_maddr_21143, sp);
1008
1009	if (ifp->if_flags & IFF_BROADCAST) {
1010		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1011		sp[h >> 4] |= htole32(1 << (h & 0xF));
1012	}
1013
1014	/* Set our MAC address. */
1015	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1016	sp[39] = DC_SP_MAC(eaddr[0]);
1017	sp[40] = DC_SP_MAC(eaddr[1]);
1018	sp[41] = DC_SP_MAC(eaddr[2]);
1019
1020	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1021	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1022	    BUS_DMASYNC_PREWRITE);
1023	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1024	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1025
1026	/*
1027	 * The PNIC takes an exceedingly long time to process its
1028	 * setup frame; wait 10ms after posting the setup frame
1029	 * before proceeding, just so it has time to swallow its
1030	 * medicine.
1031	 */
1032	DELAY(10000);
1033
1034	sc->dc_wdog_timer = 5;
1035}
1036
1037static u_int
1038dc_hash_maddr_admtek_be(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1039{
1040	uint32_t *hashes = arg;
1041	int h = 0;
1042
1043	h = dc_mchash_be(LLADDR(sdl));
1044	if (h < 32)
1045		hashes[0] |= (1 << h);
1046	else
1047		hashes[1] |= (1 << (h - 32));
1048
1049	return (1);
1050}
1051
1052struct dc_hash_maddr_admtek_le_ctx {
1053	struct dc_softc *sc;
1054	uint32_t hashes[2];
1055};
1056
1057static u_int
1058dc_hash_maddr_admtek_le(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1059{
1060	struct dc_hash_maddr_admtek_le_ctx *ctx = arg;
1061	int h = 0;
1062
1063	h = dc_mchash_le(ctx->sc, LLADDR(sdl));
1064	if (h < 32)
1065		ctx->hashes[0] |= (1 << h);
1066	else
1067		ctx->hashes[1] |= (1 << (h - 32));
1068
1069	return (1);
1070}
1071
1072static void
1073dc_setfilt_admtek(struct dc_softc *sc)
1074{
1075	uint8_t eaddr[ETHER_ADDR_LEN];
1076	struct ifnet *ifp;
1077	struct dc_hash_maddr_admtek_le_ctx ctx = { sc, { 0, 0 }};
1078
1079	ifp = sc->dc_ifp;
1080
1081	/* Init our MAC address. */
1082	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1083	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1084	    eaddr[1] << 8 | eaddr[0]);
1085	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1086
1087	/* If we want promiscuous mode, set the allframes bit. */
1088	if (ifp->if_flags & IFF_PROMISC)
1089		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1090	else
1091		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1092
1093	if (ifp->if_flags & IFF_ALLMULTI)
1094		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1095	else
1096		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1097
1098	/* First, zot all the existing hash bits. */
1099	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1100	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1101
1102	/*
1103	 * If we're already in promisc or allmulti mode, we
1104	 * don't have to bother programming the multicast filter.
1105	 */
1106	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1107		return;
1108
1109	/* Now program new ones. */
1110	if (DC_IS_CENTAUR(sc))
1111		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_le, &ctx);
1112	else
1113		if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, &ctx.hashes);
1114
1115	CSR_WRITE_4(sc, DC_AL_MAR0, ctx.hashes[0]);
1116	CSR_WRITE_4(sc, DC_AL_MAR1, ctx.hashes[1]);
1117}
1118
1119static void
1120dc_setfilt_asix(struct dc_softc *sc)
1121{
1122	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1123	struct ifnet *ifp;
1124	uint32_t hashes[2] = { 0, 0 };
1125
1126	ifp = sc->dc_ifp;
1127
1128	/* Init our MAC address. */
1129	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1130	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1131	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1132	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1133	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1134
1135	/* If we want promiscuous mode, set the allframes bit. */
1136	if (ifp->if_flags & IFF_PROMISC)
1137		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1138	else
1139		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1140
1141	if (ifp->if_flags & IFF_ALLMULTI)
1142		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1143	else
1144		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1145
1146	/*
1147	 * The ASIX chip has a special bit to enable reception
1148	 * of broadcast frames.
1149	 */
1150	if (ifp->if_flags & IFF_BROADCAST)
1151		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1152	else
1153		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1154
1155	/* first, zot all the existing hash bits */
1156	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1157	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1158	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1159	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1160
1161	/*
1162	 * If we're already in promisc or allmulti mode, we
1163	 * don't have to bother programming the multicast filter.
1164	 */
1165	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1166		return;
1167
1168	/* now program new ones */
1169	if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, hashes);
1170
1171	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1172	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1173	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1174	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1175}
1176
1177static u_int
1178dc_hash_maddr_uli(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
1179{
1180	uint32_t **sp = arg;
1181	uint8_t *ma;
1182
1183	if (mcnt == DC_ULI_FILTER_NPERF)
1184		return (0);
1185	ma = LLADDR(sdl);
1186	*(*sp)++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1187	*(*sp)++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1188	*(*sp)++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1189
1190	return (1);
1191}
1192
1193static void
1194dc_setfilt_uli(struct dc_softc *sc)
1195{
1196	uint8_t eaddr[ETHER_ADDR_LEN];
1197	struct ifnet *ifp;
1198	struct dc_desc *sframe;
1199	uint32_t filter, *sp;
1200	int i, mcnt;
1201
1202	ifp = sc->dc_ifp;
1203
1204	i = sc->dc_cdata.dc_tx_prod;
1205	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1206	sc->dc_cdata.dc_tx_cnt++;
1207	sframe = &sc->dc_ldata.dc_tx_list[i];
1208	sp = sc->dc_cdata.dc_sbuf;
1209	bzero(sp, DC_SFRAME_LEN);
1210
1211	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1212	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1213	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1214
1215	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1216
1217	/* Set station address. */
1218	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1219	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1220	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1221	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1222
1223	/* Set broadcast address. */
1224	*sp++ = DC_SP_MAC(0xFFFF);
1225	*sp++ = DC_SP_MAC(0xFFFF);
1226	*sp++ = DC_SP_MAC(0xFFFF);
1227
1228	/* Extract current filter configuration. */
1229	filter = CSR_READ_4(sc, DC_NETCFG);
1230	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1231
1232	/* Now build perfect filters. */
1233	mcnt = if_foreach_llmaddr(ifp, dc_hash_maddr_uli, &sp);
1234
1235	if (mcnt == DC_ULI_FILTER_NPERF)
1236		filter |= DC_NETCFG_RX_ALLMULTI;
1237	else
1238		for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1239			*sp++ = DC_SP_MAC(0xFFFF);
1240			*sp++ = DC_SP_MAC(0xFFFF);
1241			*sp++ = DC_SP_MAC(0xFFFF);
1242		}
1243
1244	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1245		CSR_WRITE_4(sc, DC_NETCFG,
1246		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1247	if (ifp->if_flags & IFF_PROMISC)
1248		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1249	if (ifp->if_flags & IFF_ALLMULTI)
1250		filter |= DC_NETCFG_RX_ALLMULTI;
1251	CSR_WRITE_4(sc, DC_NETCFG,
1252	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1253	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1254		CSR_WRITE_4(sc, DC_NETCFG, filter);
1255
1256	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1257	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1258	    BUS_DMASYNC_PREWRITE);
1259	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1260	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1261
1262	/*
1263	 * Wait some time...
1264	 */
1265	DELAY(1000);
1266
1267	sc->dc_wdog_timer = 5;
1268}
1269
1270static u_int
1271dc_hash_maddr_xircom(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1272{
1273	struct dc_softc *sc = arg;
1274	uint32_t h;
1275
1276	h = dc_mchash_le(sc, LLADDR(sdl));
1277	sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
1278	return (1);
1279}
1280
1281static void
1282dc_setfilt_xircom(struct dc_softc *sc)
1283{
1284	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1285	struct ifnet *ifp;
1286	struct dc_desc *sframe;
1287	uint32_t h, *sp;
1288	int i;
1289
1290	ifp = sc->dc_ifp;
1291	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1292
1293	i = sc->dc_cdata.dc_tx_prod;
1294	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1295	sc->dc_cdata.dc_tx_cnt++;
1296	sframe = &sc->dc_ldata.dc_tx_list[i];
1297	sp = sc->dc_cdata.dc_sbuf;
1298	bzero(sp, DC_SFRAME_LEN);
1299
1300	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1301	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1302	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1303
1304	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1305
1306	/* If we want promiscuous mode, set the allframes bit. */
1307	if (ifp->if_flags & IFF_PROMISC)
1308		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1309	else
1310		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1311
1312	if (ifp->if_flags & IFF_ALLMULTI)
1313		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1314	else
1315		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1316
1317	if_foreach_llmaddr(ifp, dc_hash_maddr_xircom, &sp);
1318
1319	if (ifp->if_flags & IFF_BROADCAST) {
1320		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1321		sp[h >> 4] |= htole32(1 << (h & 0xF));
1322	}
1323
1324	/* Set our MAC address. */
1325	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1326	sp[0] = DC_SP_MAC(eaddr[0]);
1327	sp[1] = DC_SP_MAC(eaddr[1]);
1328	sp[2] = DC_SP_MAC(eaddr[2]);
1329
1330	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1331	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1332	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1333	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1334	    BUS_DMASYNC_PREWRITE);
1335	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1336	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1337
1338	/*
1339	 * Wait some time...
1340	 */
1341	DELAY(1000);
1342
1343	sc->dc_wdog_timer = 5;
1344}
1345
1346static void
1347dc_setfilt(struct dc_softc *sc)
1348{
1349
1350	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1351	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1352		dc_setfilt_21143(sc);
1353
1354	if (DC_IS_ASIX(sc))
1355		dc_setfilt_asix(sc);
1356
1357	if (DC_IS_ADMTEK(sc))
1358		dc_setfilt_admtek(sc);
1359
1360	if (DC_IS_ULI(sc))
1361		dc_setfilt_uli(sc);
1362
1363	if (DC_IS_XIRCOM(sc))
1364		dc_setfilt_xircom(sc);
1365}
1366
1367static void
1368dc_netcfg_wait(struct dc_softc *sc)
1369{
1370	uint32_t isr;
1371	int i;
1372
1373	for (i = 0; i < DC_TIMEOUT; i++) {
1374		isr = CSR_READ_4(sc, DC_ISR);
1375		if (isr & DC_ISR_TX_IDLE &&
1376		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1377		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1378			break;
1379		DELAY(10);
1380	}
1381	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1382		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1383			device_printf(sc->dc_dev,
1384			    "%s: failed to force tx to idle state\n", __func__);
1385		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1386		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1387		    !DC_HAS_BROKEN_RXSTATE(sc))
1388			device_printf(sc->dc_dev,
1389			    "%s: failed to force rx to idle state\n", __func__);
1390	}
1391}
1392
1393/*
1394 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1395 * the netconfig register, we first have to put the transmit and/or
1396 * receive logic in the idle state.
1397 */
1398static void
1399dc_setcfg(struct dc_softc *sc, int media)
1400{
1401	int restart = 0, watchdogreg;
1402
1403	if (IFM_SUBTYPE(media) == IFM_NONE)
1404		return;
1405
1406	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1407		restart = 1;
1408		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1409		dc_netcfg_wait(sc);
1410	}
1411
1412	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1413		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1414		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1415		if (sc->dc_pmode == DC_PMODE_MII) {
1416			if (DC_IS_INTEL(sc)) {
1417			/* There's a write enable bit here that reads as 1. */
1418				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1419				watchdogreg &= ~DC_WDOG_CTLWREN;
1420				watchdogreg |= DC_WDOG_JABBERDIS;
1421				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1422			} else {
1423				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1424			}
1425			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1426			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1427			if (sc->dc_type == DC_TYPE_98713)
1428				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1429				    DC_NETCFG_SCRAMBLER));
1430			if (!DC_IS_DAVICOM(sc))
1431				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1432			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1433		} else {
1434			if (DC_IS_PNIC(sc)) {
1435				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1436				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1437				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1438			}
1439			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1440			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1441			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1442		}
1443	}
1444
1445	if (IFM_SUBTYPE(media) == IFM_10_T) {
1446		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1447		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1448		if (sc->dc_pmode == DC_PMODE_MII) {
1449			/* There's a write enable bit here that reads as 1. */
1450			if (DC_IS_INTEL(sc)) {
1451				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1452				watchdogreg &= ~DC_WDOG_CTLWREN;
1453				watchdogreg |= DC_WDOG_JABBERDIS;
1454				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1455			} else {
1456				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1457			}
1458			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1459			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1460			if (sc->dc_type == DC_TYPE_98713)
1461				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1462			if (!DC_IS_DAVICOM(sc))
1463				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1464			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1465		} else {
1466			if (DC_IS_PNIC(sc)) {
1467				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1468				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1469				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1470			}
1471			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1472			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1473			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1474			if (DC_IS_INTEL(sc)) {
1475				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1476				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1477				if ((media & IFM_GMASK) == IFM_FDX)
1478					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1479				else
1480					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1481				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1482				DC_CLRBIT(sc, DC_10BTCTRL,
1483				    DC_TCTL_AUTONEGENBL);
1484				DELAY(20000);
1485			}
1486		}
1487	}
1488
1489	/*
1490	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1491	 * PHY and we want HomePNA mode, set the portsel bit to turn
1492	 * on the external MII port.
1493	 */
1494	if (DC_IS_DAVICOM(sc)) {
1495		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1496			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1497			sc->dc_link = 1;
1498		} else {
1499			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1500		}
1501	}
1502
1503	if ((media & IFM_GMASK) == IFM_FDX) {
1504		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1505		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1506			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1507	} else {
1508		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1509		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1510			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1511	}
1512
1513	if (restart)
1514		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1515}
1516
1517static void
1518dc_reset(struct dc_softc *sc)
1519{
1520	int i;
1521
1522	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1523
1524	for (i = 0; i < DC_TIMEOUT; i++) {
1525		DELAY(10);
1526		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1527			break;
1528	}
1529
1530	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1531	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1532		DELAY(10000);
1533		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1534		i = 0;
1535	}
1536
1537	if (i == DC_TIMEOUT)
1538		device_printf(sc->dc_dev, "reset never completed!\n");
1539
1540	/* Wait a little while for the chip to get its brains in order. */
1541	DELAY(1000);
1542
1543	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1544	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1545	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1546
1547	/*
1548	 * Bring the SIA out of reset. In some cases, it looks
1549	 * like failing to unreset the SIA soon enough gets it
1550	 * into a state where it will never come out of reset
1551	 * until we reset the whole chip again.
1552	 */
1553	if (DC_IS_INTEL(sc)) {
1554		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1555		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1556		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1557	}
1558}
1559
1560static const struct dc_type *
1561dc_devtype(device_t dev)
1562{
1563	const struct dc_type *t;
1564	uint32_t devid;
1565	uint8_t rev;
1566
1567	t = dc_devs;
1568	devid = pci_get_devid(dev);
1569	rev = pci_get_revid(dev);
1570
1571	while (t->dc_name != NULL) {
1572		if (devid == t->dc_devid && rev >= t->dc_minrev)
1573			return (t);
1574		t++;
1575	}
1576
1577	return (NULL);
1578}
1579
1580/*
1581 * Probe for a 21143 or clone chip. Check the PCI vendor and device
1582 * IDs against our list and return a device name if we find a match.
1583 * We do a little bit of extra work to identify the exact type of
1584 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1585 * but different revision IDs. The same is true for 98715/98715A
1586 * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1587 * cases, the exact chip revision affects driver behavior.
1588 */
1589static int
1590dc_probe(device_t dev)
1591{
1592	const struct dc_type *t;
1593
1594	t = dc_devtype(dev);
1595
1596	if (t != NULL) {
1597		device_set_desc(dev, t->dc_name);
1598		return (BUS_PROBE_DEFAULT);
1599	}
1600
1601	return (ENXIO);
1602}
1603
1604static void
1605dc_apply_fixup(struct dc_softc *sc, int media)
1606{
1607	struct dc_mediainfo *m;
1608	uint8_t *p;
1609	int i;
1610	uint32_t reg;
1611
1612	m = sc->dc_mi;
1613
1614	while (m != NULL) {
1615		if (m->dc_media == media)
1616			break;
1617		m = m->dc_next;
1618	}
1619
1620	if (m == NULL)
1621		return;
1622
1623	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1624		reg = (p[0] | (p[1] << 8)) << 16;
1625		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1626	}
1627
1628	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1629		reg = (p[0] | (p[1] << 8)) << 16;
1630		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1631	}
1632}
1633
1634static int
1635dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1636{
1637	struct dc_mediainfo *m;
1638
1639	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1640	if (m == NULL) {
1641		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1642		return (ENOMEM);
1643	}
1644	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1645	case DC_SIA_CODE_10BT:
1646		m->dc_media = IFM_10_T;
1647		break;
1648	case DC_SIA_CODE_10BT_FDX:
1649		m->dc_media = IFM_10_T | IFM_FDX;
1650		break;
1651	case DC_SIA_CODE_10B2:
1652		m->dc_media = IFM_10_2;
1653		break;
1654	case DC_SIA_CODE_10B5:
1655		m->dc_media = IFM_10_5;
1656		break;
1657	default:
1658		break;
1659	}
1660
1661	/*
1662	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1663	 * Things apparently already work for cards that do
1664	 * supply Media Specific Data.
1665	 */
1666	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1667		m->dc_gp_len = 2;
1668		m->dc_gp_ptr =
1669		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1670	} else {
1671		m->dc_gp_len = 2;
1672		m->dc_gp_ptr =
1673		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1674	}
1675
1676	m->dc_next = sc->dc_mi;
1677	sc->dc_mi = m;
1678
1679	sc->dc_pmode = DC_PMODE_SIA;
1680	return (0);
1681}
1682
1683static int
1684dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1685{
1686	struct dc_mediainfo *m;
1687
1688	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1689	if (m == NULL) {
1690		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1691		return (ENOMEM);
1692	}
1693	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1694		m->dc_media = IFM_100_TX;
1695
1696	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1697		m->dc_media = IFM_100_TX | IFM_FDX;
1698
1699	m->dc_gp_len = 2;
1700	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1701
1702	m->dc_next = sc->dc_mi;
1703	sc->dc_mi = m;
1704
1705	sc->dc_pmode = DC_PMODE_SYM;
1706	return (0);
1707}
1708
1709static int
1710dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1711{
1712	struct dc_mediainfo *m;
1713	uint8_t *p;
1714
1715	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1716	if (m == NULL) {
1717		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1718		return (ENOMEM);
1719	}
1720	/* We abuse IFM_AUTO to represent MII. */
1721	m->dc_media = IFM_AUTO;
1722	m->dc_gp_len = l->dc_gpr_len;
1723
1724	p = (uint8_t *)l;
1725	p += sizeof(struct dc_eblock_mii);
1726	m->dc_gp_ptr = p;
1727	p += 2 * l->dc_gpr_len;
1728	m->dc_reset_len = *p;
1729	p++;
1730	m->dc_reset_ptr = p;
1731
1732	m->dc_next = sc->dc_mi;
1733	sc->dc_mi = m;
1734	return (0);
1735}
1736
1737static int
1738dc_read_srom(struct dc_softc *sc, int bits)
1739{
1740	int size;
1741
1742	size = DC_ROM_SIZE(bits);
1743	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1744	if (sc->dc_srom == NULL) {
1745		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1746		return (ENOMEM);
1747	}
1748	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1749	return (0);
1750}
1751
1752static int
1753dc_parse_21143_srom(struct dc_softc *sc)
1754{
1755	struct dc_leaf_hdr *lhdr;
1756	struct dc_eblock_hdr *hdr;
1757	int error, have_mii, i, loff;
1758	char *ptr;
1759
1760	have_mii = 0;
1761	loff = sc->dc_srom[27];
1762	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1763
1764	ptr = (char *)lhdr;
1765	ptr += sizeof(struct dc_leaf_hdr) - 1;
1766	/*
1767	 * Look if we got a MII media block.
1768	 */
1769	for (i = 0; i < lhdr->dc_mcnt; i++) {
1770		hdr = (struct dc_eblock_hdr *)ptr;
1771		if (hdr->dc_type == DC_EBLOCK_MII)
1772		    have_mii++;
1773
1774		ptr += (hdr->dc_len & 0x7F);
1775		ptr++;
1776	}
1777
1778	/*
1779	 * Do the same thing again. Only use SIA and SYM media
1780	 * blocks if no MII media block is available.
1781	 */
1782	ptr = (char *)lhdr;
1783	ptr += sizeof(struct dc_leaf_hdr) - 1;
1784	error = 0;
1785	for (i = 0; i < lhdr->dc_mcnt; i++) {
1786		hdr = (struct dc_eblock_hdr *)ptr;
1787		switch (hdr->dc_type) {
1788		case DC_EBLOCK_MII:
1789			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1790			break;
1791		case DC_EBLOCK_SIA:
1792			if (! have_mii)
1793				error = dc_decode_leaf_sia(sc,
1794				    (struct dc_eblock_sia *)hdr);
1795			break;
1796		case DC_EBLOCK_SYM:
1797			if (! have_mii)
1798				error = dc_decode_leaf_sym(sc,
1799				    (struct dc_eblock_sym *)hdr);
1800			break;
1801		default:
1802			/* Don't care. Yet. */
1803			break;
1804		}
1805		ptr += (hdr->dc_len & 0x7F);
1806		ptr++;
1807	}
1808	return (error);
1809}
1810
1811static void
1812dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1813{
1814	bus_addr_t *paddr;
1815
1816	KASSERT(nseg == 1,
1817	    ("%s: wrong number of segments (%d)", __func__, nseg));
1818	paddr = arg;
1819	*paddr = segs->ds_addr;
1820}
1821
1822static int
1823dc_dma_alloc(struct dc_softc *sc)
1824{
1825	int error, i;
1826
1827	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1828	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1829	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1830	    NULL, NULL, &sc->dc_ptag);
1831	if (error) {
1832		device_printf(sc->dc_dev,
1833		    "failed to allocate parent DMA tag\n");
1834		goto fail;
1835	}
1836
1837	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1838	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1839	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1840	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1841	if (error) {
1842		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1843		goto fail;
1844	}
1845
1846	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1847	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1848	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1849	if (error) {
1850		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1851		goto fail;
1852	}
1853
1854	/* RX descriptor list. */
1855	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1856	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1857	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1858	if (error) {
1859		device_printf(sc->dc_dev,
1860		    "failed to allocate DMA'able memory for RX list\n");
1861		goto fail;
1862	}
1863	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1864	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1865	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1866	if (error) {
1867		device_printf(sc->dc_dev,
1868		    "failed to load DMA'able memory for RX list\n");
1869		goto fail;
1870	}
1871	/* TX descriptor list. */
1872	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1873	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1874	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1875	if (error) {
1876		device_printf(sc->dc_dev,
1877		    "failed to allocate DMA'able memory for TX list\n");
1878		goto fail;
1879	}
1880	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1881	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1882	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1883	if (error) {
1884		device_printf(sc->dc_dev,
1885		    "cannot load DMA'able memory for TX list\n");
1886		goto fail;
1887	}
1888
1889	/*
1890	 * Allocate a busdma tag and DMA safe memory for the multicast
1891	 * setup frame.
1892	 */
1893	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1894	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1895	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1896	    0, NULL, NULL, &sc->dc_stag);
1897	if (error) {
1898		device_printf(sc->dc_dev,
1899		    "failed to create DMA tag for setup frame\n");
1900		goto fail;
1901	}
1902	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1903	    BUS_DMA_NOWAIT, &sc->dc_smap);
1904	if (error) {
1905		device_printf(sc->dc_dev,
1906		    "failed to allocate DMA'able memory for setup frame\n");
1907		goto fail;
1908	}
1909	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1910	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1911	if (error) {
1912		device_printf(sc->dc_dev,
1913		    "cannot load DMA'able memory for setup frame\n");
1914		goto fail;
1915	}
1916
1917	/* Allocate a busdma tag for RX mbufs. */
1918	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1919	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1920	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1921	if (error) {
1922		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1923		goto fail;
1924	}
1925
1926	/* Allocate a busdma tag for TX mbufs. */
1927	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1928	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1929	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1930	    0, NULL, NULL, &sc->dc_tx_mtag);
1931	if (error) {
1932		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1933		goto fail;
1934	}
1935
1936	/* Create the TX/RX busdma maps. */
1937	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1938		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1939		    &sc->dc_cdata.dc_tx_map[i]);
1940		if (error) {
1941			device_printf(sc->dc_dev,
1942			    "failed to create TX mbuf dmamap\n");
1943			goto fail;
1944		}
1945	}
1946	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1947		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1948		    &sc->dc_cdata.dc_rx_map[i]);
1949		if (error) {
1950			device_printf(sc->dc_dev,
1951			    "failed to create RX mbuf dmamap\n");
1952			goto fail;
1953		}
1954	}
1955	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1956	if (error) {
1957		device_printf(sc->dc_dev,
1958		    "failed to create spare RX mbuf dmamap\n");
1959		goto fail;
1960	}
1961
1962fail:
1963	return (error);
1964}
1965
1966static void
1967dc_dma_free(struct dc_softc *sc)
1968{
1969	int i;
1970
1971	/* RX buffers. */
1972	if (sc->dc_rx_mtag != NULL) {
1973		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1974			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1975				bus_dmamap_destroy(sc->dc_rx_mtag,
1976				    sc->dc_cdata.dc_rx_map[i]);
1977		}
1978		if (sc->dc_sparemap != NULL)
1979			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1980		bus_dma_tag_destroy(sc->dc_rx_mtag);
1981	}
1982
1983	/* TX buffers. */
1984	if (sc->dc_rx_mtag != NULL) {
1985		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1986			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1987				bus_dmamap_destroy(sc->dc_tx_mtag,
1988				    sc->dc_cdata.dc_tx_map[i]);
1989		}
1990		bus_dma_tag_destroy(sc->dc_tx_mtag);
1991	}
1992
1993	/* RX descriptor list. */
1994	if (sc->dc_rx_ltag) {
1995		if (sc->dc_ldata.dc_rx_list_paddr != 0)
1996			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
1997		if (sc->dc_ldata.dc_rx_list != NULL)
1998			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
1999			    sc->dc_rx_lmap);
2000		bus_dma_tag_destroy(sc->dc_rx_ltag);
2001	}
2002
2003	/* TX descriptor list. */
2004	if (sc->dc_tx_ltag) {
2005		if (sc->dc_ldata.dc_tx_list_paddr != 0)
2006			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
2007		if (sc->dc_ldata.dc_tx_list != NULL)
2008			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
2009			    sc->dc_tx_lmap);
2010		bus_dma_tag_destroy(sc->dc_tx_ltag);
2011	}
2012
2013	/* multicast setup frame. */
2014	if (sc->dc_stag) {
2015		if (sc->dc_saddr != 0)
2016			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2017		if (sc->dc_cdata.dc_sbuf != NULL)
2018			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2019			    sc->dc_smap);
2020		bus_dma_tag_destroy(sc->dc_stag);
2021	}
2022}
2023
2024/*
2025 * Attach the interface. Allocate softc structures, do ifmedia
2026 * setup and ethernet/BPF attach.
2027 */
2028static int
2029dc_attach(device_t dev)
2030{
2031	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2032	uint32_t command;
2033	struct dc_softc *sc;
2034	struct ifnet *ifp;
2035	struct dc_mediainfo *m;
2036	uint32_t reg, revision;
2037	uint16_t *srom;
2038	int error, mac_offset, n, phy, rid, tmp;
2039	uint8_t *mac;
2040
2041	sc = device_get_softc(dev);
2042	sc->dc_dev = dev;
2043
2044	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2045	    MTX_DEF);
2046
2047	/*
2048	 * Map control/status registers.
2049	 */
2050	pci_enable_busmaster(dev);
2051
2052	rid = DC_RID;
2053	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2054
2055	if (sc->dc_res == NULL) {
2056		device_printf(dev, "couldn't map ports/memory\n");
2057		error = ENXIO;
2058		goto fail;
2059	}
2060
2061	sc->dc_btag = rman_get_bustag(sc->dc_res);
2062	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2063
2064	/* Allocate interrupt. */
2065	rid = 0;
2066	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2067	    RF_SHAREABLE | RF_ACTIVE);
2068
2069	if (sc->dc_irq == NULL) {
2070		device_printf(dev, "couldn't map interrupt\n");
2071		error = ENXIO;
2072		goto fail;
2073	}
2074
2075	/* Need this info to decide on a chip type. */
2076	sc->dc_info = dc_devtype(dev);
2077	revision = pci_get_revid(dev);
2078
2079	error = 0;
2080	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2081	if (sc->dc_info->dc_devid !=
2082	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2083	    sc->dc_info->dc_devid !=
2084	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2085		dc_eeprom_width(sc);
2086
2087	switch (sc->dc_info->dc_devid) {
2088	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2089		sc->dc_type = DC_TYPE_21143;
2090		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2091		sc->dc_flags |= DC_REDUCED_MII_POLL;
2092		/* Save EEPROM contents so we can parse them later. */
2093		error = dc_read_srom(sc, sc->dc_romwidth);
2094		if (error != 0)
2095			goto fail;
2096		break;
2097	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2098	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2099	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2100		sc->dc_type = DC_TYPE_DM9102;
2101		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2102		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2103		sc->dc_flags |= DC_TX_ALIGN;
2104		sc->dc_pmode = DC_PMODE_MII;
2105
2106		/* Increase the latency timer value. */
2107		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2108		break;
2109	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2110		sc->dc_type = DC_TYPE_AL981;
2111		sc->dc_flags |= DC_TX_USE_TX_INTR;
2112		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2113		sc->dc_pmode = DC_PMODE_MII;
2114		error = dc_read_srom(sc, sc->dc_romwidth);
2115		if (error != 0)
2116			goto fail;
2117		break;
2118	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2119	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2120	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2121	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2122	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2123	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2124	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2125	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2126	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2127	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2128	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2129	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2130	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2131	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2132	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2133		sc->dc_type = DC_TYPE_AN983;
2134		sc->dc_flags |= DC_64BIT_HASH;
2135		sc->dc_flags |= DC_TX_USE_TX_INTR;
2136		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2137		sc->dc_pmode = DC_PMODE_MII;
2138		/* Don't read SROM for - auto-loaded on reset */
2139		break;
2140	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2141	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2142		if (revision < DC_REVISION_98713A) {
2143			sc->dc_type = DC_TYPE_98713;
2144		}
2145		if (revision >= DC_REVISION_98713A) {
2146			sc->dc_type = DC_TYPE_98713A;
2147			sc->dc_flags |= DC_21143_NWAY;
2148		}
2149		sc->dc_flags |= DC_REDUCED_MII_POLL;
2150		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2151		break;
2152	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2153	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2154		/*
2155		 * Macronix MX98715AEC-C/D/E parts have only a
2156		 * 128-bit hash table. We need to deal with these
2157		 * in the same manner as the PNIC II so that we
2158		 * get the right number of bits out of the
2159		 * CRC routine.
2160		 */
2161		if (revision >= DC_REVISION_98715AEC_C &&
2162		    revision < DC_REVISION_98725)
2163			sc->dc_flags |= DC_128BIT_HASH;
2164		sc->dc_type = DC_TYPE_987x5;
2165		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2166		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2167		break;
2168	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2169		sc->dc_type = DC_TYPE_987x5;
2170		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2171		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2172		break;
2173	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2174		sc->dc_type = DC_TYPE_PNICII;
2175		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2176		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2177		break;
2178	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2179		sc->dc_type = DC_TYPE_PNIC;
2180		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2181		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2182		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2183		if (sc->dc_pnic_rx_buf == NULL) {
2184			device_printf(sc->dc_dev,
2185			    "Could not allocate PNIC RX buffer\n");
2186			error = ENOMEM;
2187			goto fail;
2188		}
2189		if (revision < DC_REVISION_82C169)
2190			sc->dc_pmode = DC_PMODE_SYM;
2191		break;
2192	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2193		sc->dc_type = DC_TYPE_ASIX;
2194		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2195		sc->dc_flags |= DC_REDUCED_MII_POLL;
2196		sc->dc_pmode = DC_PMODE_MII;
2197		break;
2198	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2199		sc->dc_type = DC_TYPE_XIRCOM;
2200		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2201				DC_TX_ALIGN;
2202		/*
2203		 * We don't actually need to coalesce, but we're doing
2204		 * it to obtain a double word aligned buffer.
2205		 * The DC_TX_COALESCE flag is required.
2206		 */
2207		sc->dc_pmode = DC_PMODE_MII;
2208		break;
2209	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2210		sc->dc_type = DC_TYPE_CONEXANT;
2211		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2212		sc->dc_flags |= DC_REDUCED_MII_POLL;
2213		sc->dc_pmode = DC_PMODE_MII;
2214		error = dc_read_srom(sc, sc->dc_romwidth);
2215		if (error != 0)
2216			goto fail;
2217		break;
2218	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2219	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2220		if (sc->dc_info->dc_devid ==
2221		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2222			sc->dc_type = DC_TYPE_ULI_M5261;
2223		else
2224			sc->dc_type = DC_TYPE_ULI_M5263;
2225		/* TX buffers should be aligned on 4 byte boundary. */
2226		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2227		    DC_TX_ALIGN;
2228		sc->dc_pmode = DC_PMODE_MII;
2229		error = dc_read_srom(sc, sc->dc_romwidth);
2230		if (error != 0)
2231			goto fail;
2232		break;
2233	default:
2234		device_printf(dev, "unknown device: %x\n",
2235		    sc->dc_info->dc_devid);
2236		break;
2237	}
2238
2239	/* Save the cache line size. */
2240	if (DC_IS_DAVICOM(sc))
2241		sc->dc_cachesize = 0;
2242	else
2243		sc->dc_cachesize = pci_get_cachelnsz(dev);
2244
2245	/* Reset the adapter. */
2246	dc_reset(sc);
2247
2248	/* Take 21143 out of snooze mode */
2249	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2250		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2251		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2252		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2253	}
2254
2255	/*
2256	 * Try to learn something about the supported media.
2257	 * We know that ASIX and ADMtek and Davicom devices
2258	 * will *always* be using MII media, so that's a no-brainer.
2259	 * The tricky ones are the Macronix/PNIC II and the
2260	 * Intel 21143.
2261	 */
2262	if (DC_IS_INTEL(sc)) {
2263		error = dc_parse_21143_srom(sc);
2264		if (error != 0)
2265			goto fail;
2266	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2267		if (sc->dc_type == DC_TYPE_98713)
2268			sc->dc_pmode = DC_PMODE_MII;
2269		else
2270			sc->dc_pmode = DC_PMODE_SYM;
2271	} else if (!sc->dc_pmode)
2272		sc->dc_pmode = DC_PMODE_MII;
2273
2274	/*
2275	 * Get station address from the EEPROM.
2276	 */
2277	switch(sc->dc_type) {
2278	case DC_TYPE_98713:
2279	case DC_TYPE_98713A:
2280	case DC_TYPE_987x5:
2281	case DC_TYPE_PNICII:
2282		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2283		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2284		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2285		break;
2286	case DC_TYPE_PNIC:
2287		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2288		break;
2289	case DC_TYPE_DM9102:
2290		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2291		break;
2292	case DC_TYPE_21143:
2293	case DC_TYPE_ASIX:
2294		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2295		break;
2296	case DC_TYPE_AL981:
2297	case DC_TYPE_AN983:
2298		reg = CSR_READ_4(sc, DC_AL_PAR0);
2299		mac = (uint8_t *)&eaddr[0];
2300		mac[0] = (reg >> 0) & 0xff;
2301		mac[1] = (reg >> 8) & 0xff;
2302		mac[2] = (reg >> 16) & 0xff;
2303		mac[3] = (reg >> 24) & 0xff;
2304		reg = CSR_READ_4(sc, DC_AL_PAR1);
2305		mac[4] = (reg >> 0) & 0xff;
2306		mac[5] = (reg >> 8) & 0xff;
2307		break;
2308	case DC_TYPE_CONEXANT:
2309		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2310		    ETHER_ADDR_LEN);
2311		break;
2312	case DC_TYPE_XIRCOM:
2313		/* The MAC comes from the CIS. */
2314		mac = pci_get_ether(dev);
2315		if (!mac) {
2316			device_printf(dev, "No station address in CIS!\n");
2317			error = ENXIO;
2318			goto fail;
2319		}
2320		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2321		break;
2322	case DC_TYPE_ULI_M5261:
2323	case DC_TYPE_ULI_M5263:
2324		srom = (uint16_t *)sc->dc_srom;
2325		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2326			/*
2327			 * No valid SROM present, read station address
2328			 * from ID Table.
2329			 */
2330			device_printf(dev,
2331			    "Reading station address from ID Table.\n");
2332			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2333			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2334			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2335			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2336			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2337			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2338			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2339			mac = (uint8_t *)eaddr;
2340			for (n = 0; n < ETHER_ADDR_LEN; n++)
2341				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2342			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2343			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2344			DELAY(10);
2345		} else
2346			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2347			    0);
2348		break;
2349	default:
2350		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2351		break;
2352	}
2353
2354	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2355	/*
2356	 * If we still have invalid station address, see whether we can
2357	 * find station address for chip 0.  Some multi-port controllers
2358	 * just store station address for chip 0 if they have a shared
2359	 * SROM.
2360	 */
2361	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2362	    (sc->dc_eaddr[0] == 0xffffffff &&
2363	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2364		error = dc_check_multiport(sc);
2365		if (error == 0) {
2366			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2367			/* Extract media information. */
2368			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2369				while (sc->dc_mi != NULL) {
2370					m = sc->dc_mi->dc_next;
2371					free(sc->dc_mi, M_DEVBUF);
2372					sc->dc_mi = m;
2373				}
2374				error = dc_parse_21143_srom(sc);
2375				if (error != 0)
2376					goto fail;
2377			}
2378		} else if (error == ENOMEM)
2379			goto fail;
2380		else
2381			error = 0;
2382	}
2383
2384	if ((error = dc_dma_alloc(sc)) != 0)
2385		goto fail;
2386
2387	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2388	if (ifp == NULL) {
2389		device_printf(dev, "can not if_alloc()\n");
2390		error = ENOSPC;
2391		goto fail;
2392	}
2393	ifp->if_softc = sc;
2394	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2395	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2396	ifp->if_ioctl = dc_ioctl;
2397	ifp->if_start = dc_start;
2398	ifp->if_init = dc_init;
2399	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2400	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2401	IFQ_SET_READY(&ifp->if_snd);
2402
2403	/*
2404	 * Do MII setup. If this is a 21143, check for a PHY on the
2405	 * MII bus after applying any necessary fixups to twiddle the
2406	 * GPIO bits. If we don't end up finding a PHY, restore the
2407	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2408	 * driver instead.
2409	 */
2410	tmp = 0;
2411	if (DC_IS_INTEL(sc)) {
2412		dc_apply_fixup(sc, IFM_AUTO);
2413		tmp = sc->dc_pmode;
2414		sc->dc_pmode = DC_PMODE_MII;
2415	}
2416
2417	/*
2418	 * Setup General Purpose port mode and data so the tulip can talk
2419	 * to the MII.  This needs to be done before mii_attach so that
2420	 * we can actually see them.
2421	 */
2422	if (DC_IS_XIRCOM(sc)) {
2423		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2424		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2425		DELAY(10);
2426		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2427		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2428		DELAY(10);
2429	}
2430
2431	phy = MII_PHY_ANY;
2432	/*
2433	 * Note: both the AL981 and AN983 have internal PHYs, however the
2434	 * AL981 provides direct access to the PHY registers while the AN983
2435	 * uses a serial MII interface. The AN983's MII interface is also
2436	 * buggy in that you can read from any MII address (0 to 31), but
2437	 * only address 1 behaves normally. To deal with both cases, we
2438	 * pretend that the PHY is at MII address 1.
2439	 */
2440	if (DC_IS_ADMTEK(sc))
2441		phy = DC_ADMTEK_PHYADDR;
2442
2443	/*
2444	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2445	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2446	 * correct one.
2447	 */
2448	if (DC_IS_CONEXANT(sc))
2449		phy = DC_CONEXANT_PHYADDR;
2450
2451	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2452	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2453
2454	if (error && DC_IS_INTEL(sc)) {
2455		sc->dc_pmode = tmp;
2456		if (sc->dc_pmode != DC_PMODE_SIA)
2457			sc->dc_pmode = DC_PMODE_SYM;
2458		sc->dc_flags |= DC_21143_NWAY;
2459		/*
2460		 * For non-MII cards, we need to have the 21143
2461		 * drive the LEDs. Except there are some systems
2462		 * like the NEC VersaPro NoteBook PC which have no
2463		 * LEDs, and twiddling these bits has adverse effects
2464		 * on them. (I.e. you suddenly can't get a link.)
2465		 */
2466		if (!(pci_get_subvendor(dev) == 0x1033 &&
2467		    pci_get_subdevice(dev) == 0x8028))
2468			sc->dc_flags |= DC_TULIP_LEDS;
2469		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2470		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2471		    MII_OFFSET_ANY, 0);
2472	}
2473
2474	if (error) {
2475		device_printf(dev, "attaching PHYs failed\n");
2476		goto fail;
2477	}
2478
2479	if (DC_IS_ADMTEK(sc)) {
2480		/*
2481		 * Set automatic TX underrun recovery for the ADMtek chips
2482		 */
2483		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2484	}
2485
2486	/*
2487	 * Tell the upper layer(s) we support long frames.
2488	 */
2489	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2490	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2491	ifp->if_capenable = ifp->if_capabilities;
2492#ifdef DEVICE_POLLING
2493	ifp->if_capabilities |= IFCAP_POLLING;
2494#endif
2495
2496	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2497	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2498
2499	/*
2500	 * Call MI attach routine.
2501	 */
2502	ether_ifattach(ifp, (caddr_t)eaddr);
2503
2504	/* Hook interrupt last to avoid having to lock softc */
2505	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2506	    NULL, dc_intr, sc, &sc->dc_intrhand);
2507
2508	if (error) {
2509		device_printf(dev, "couldn't set up irq\n");
2510		ether_ifdetach(ifp);
2511		goto fail;
2512	}
2513
2514fail:
2515	if (error)
2516		dc_detach(dev);
2517	return (error);
2518}
2519
2520/*
2521 * Shutdown hardware and free up resources. This can be called any
2522 * time after the mutex has been initialized. It is called in both
2523 * the error case in attach and the normal detach case so it needs
2524 * to be careful about only freeing resources that have actually been
2525 * allocated.
2526 */
2527static int
2528dc_detach(device_t dev)
2529{
2530	struct dc_softc *sc;
2531	struct ifnet *ifp;
2532	struct dc_mediainfo *m;
2533
2534	sc = device_get_softc(dev);
2535	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2536
2537	ifp = sc->dc_ifp;
2538
2539#ifdef DEVICE_POLLING
2540	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
2541		ether_poll_deregister(ifp);
2542#endif
2543
2544	/* These should only be active if attach succeeded */
2545	if (device_is_attached(dev)) {
2546		DC_LOCK(sc);
2547		dc_stop(sc);
2548		DC_UNLOCK(sc);
2549		callout_drain(&sc->dc_stat_ch);
2550		callout_drain(&sc->dc_wdog_ch);
2551		ether_ifdetach(ifp);
2552	}
2553	if (sc->dc_miibus)
2554		device_delete_child(dev, sc->dc_miibus);
2555	bus_generic_detach(dev);
2556
2557	if (sc->dc_intrhand)
2558		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2559	if (sc->dc_irq)
2560		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2561	if (sc->dc_res)
2562		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2563
2564	if (ifp != NULL)
2565		if_free(ifp);
2566
2567	dc_dma_free(sc);
2568
2569	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2570
2571	while (sc->dc_mi != NULL) {
2572		m = sc->dc_mi->dc_next;
2573		free(sc->dc_mi, M_DEVBUF);
2574		sc->dc_mi = m;
2575	}
2576	free(sc->dc_srom, M_DEVBUF);
2577
2578	mtx_destroy(&sc->dc_mtx);
2579
2580	return (0);
2581}
2582
2583/*
2584 * Initialize the transmit descriptors.
2585 */
2586static int
2587dc_list_tx_init(struct dc_softc *sc)
2588{
2589	struct dc_chain_data *cd;
2590	struct dc_list_data *ld;
2591	int i, nexti;
2592
2593	cd = &sc->dc_cdata;
2594	ld = &sc->dc_ldata;
2595	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2596		if (i == DC_TX_LIST_CNT - 1)
2597			nexti = 0;
2598		else
2599			nexti = i + 1;
2600		ld->dc_tx_list[i].dc_status = 0;
2601		ld->dc_tx_list[i].dc_ctl = 0;
2602		ld->dc_tx_list[i].dc_data = 0;
2603		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2604		cd->dc_tx_chain[i] = NULL;
2605	}
2606
2607	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2608	cd->dc_tx_pkts = 0;
2609	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2610	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2611	return (0);
2612}
2613
2614/*
2615 * Initialize the RX descriptors and allocate mbufs for them. Note that
2616 * we arrange the descriptors in a closed ring, so that the last descriptor
2617 * points back to the first.
2618 */
2619static int
2620dc_list_rx_init(struct dc_softc *sc)
2621{
2622	struct dc_chain_data *cd;
2623	struct dc_list_data *ld;
2624	int i, nexti;
2625
2626	cd = &sc->dc_cdata;
2627	ld = &sc->dc_ldata;
2628
2629	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2630		if (dc_newbuf(sc, i) != 0)
2631			return (ENOBUFS);
2632		if (i == DC_RX_LIST_CNT - 1)
2633			nexti = 0;
2634		else
2635			nexti = i + 1;
2636		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2637	}
2638
2639	cd->dc_rx_prod = 0;
2640	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2641	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2642	return (0);
2643}
2644
2645/*
2646 * Initialize an RX descriptor and attach an MBUF cluster.
2647 */
2648static int
2649dc_newbuf(struct dc_softc *sc, int i)
2650{
2651	struct mbuf *m;
2652	bus_dmamap_t map;
2653	bus_dma_segment_t segs[1];
2654	int error, nseg;
2655
2656	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2657	if (m == NULL)
2658		return (ENOBUFS);
2659	m->m_len = m->m_pkthdr.len = MCLBYTES;
2660	m_adj(m, sizeof(u_int64_t));
2661
2662	/*
2663	 * If this is a PNIC chip, zero the buffer. This is part
2664	 * of the workaround for the receive bug in the 82c168 and
2665	 * 82c169 chips.
2666	 */
2667	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2668		bzero(mtod(m, char *), m->m_len);
2669
2670	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2671	    m, segs, &nseg, 0);
2672	if (error) {
2673		m_freem(m);
2674		return (error);
2675	}
2676	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2677	    nseg));
2678	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2679		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2680
2681	map = sc->dc_cdata.dc_rx_map[i];
2682	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2683	sc->dc_sparemap = map;
2684	sc->dc_cdata.dc_rx_chain[i] = m;
2685	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2686	    BUS_DMASYNC_PREREAD);
2687
2688	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2689	sc->dc_ldata.dc_rx_list[i].dc_data =
2690	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2691	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2692	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2693	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2694	return (0);
2695}
2696
2697/*
2698 * Grrrrr.
2699 * The PNIC chip has a terrible bug in it that manifests itself during
2700 * periods of heavy activity. The exact mode of failure if difficult to
2701 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2702 * will happen on slow machines. The bug is that sometimes instead of
2703 * uploading one complete frame during reception, it uploads what looks
2704 * like the entire contents of its FIFO memory. The frame we want is at
2705 * the end of the whole mess, but we never know exactly how much data has
2706 * been uploaded, so salvaging the frame is hard.
2707 *
2708 * There is only one way to do it reliably, and it's disgusting.
2709 * Here's what we know:
2710 *
2711 * - We know there will always be somewhere between one and three extra
2712 *   descriptors uploaded.
2713 *
2714 * - We know the desired received frame will always be at the end of the
2715 *   total data upload.
2716 *
2717 * - We know the size of the desired received frame because it will be
2718 *   provided in the length field of the status word in the last descriptor.
2719 *
2720 * Here's what we do:
2721 *
2722 * - When we allocate buffers for the receive ring, we bzero() them.
2723 *   This means that we know that the buffer contents should be all
2724 *   zeros, except for data uploaded by the chip.
2725 *
2726 * - We also force the PNIC chip to upload frames that include the
2727 *   ethernet CRC at the end.
2728 *
2729 * - We gather all of the bogus frame data into a single buffer.
2730 *
2731 * - We then position a pointer at the end of this buffer and scan
2732 *   backwards until we encounter the first non-zero byte of data.
2733 *   This is the end of the received frame. We know we will encounter
2734 *   some data at the end of the frame because the CRC will always be
2735 *   there, so even if the sender transmits a packet of all zeros,
2736 *   we won't be fooled.
2737 *
2738 * - We know the size of the actual received frame, so we subtract
2739 *   that value from the current pointer location. This brings us
2740 *   to the start of the actual received packet.
2741 *
2742 * - We copy this into an mbuf and pass it on, along with the actual
2743 *   frame length.
2744 *
2745 * The performance hit is tremendous, but it beats dropping frames all
2746 * the time.
2747 */
2748
2749#define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2750static void
2751dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2752{
2753	struct dc_desc *cur_rx;
2754	struct dc_desc *c = NULL;
2755	struct mbuf *m = NULL;
2756	unsigned char *ptr;
2757	int i, total_len;
2758	uint32_t rxstat = 0;
2759
2760	i = sc->dc_pnic_rx_bug_save;
2761	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2762	ptr = sc->dc_pnic_rx_buf;
2763	bzero(ptr, DC_RXLEN * 5);
2764
2765	/* Copy all the bytes from the bogus buffers. */
2766	while (1) {
2767		c = &sc->dc_ldata.dc_rx_list[i];
2768		rxstat = le32toh(c->dc_status);
2769		m = sc->dc_cdata.dc_rx_chain[i];
2770		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2771		ptr += DC_RXLEN;
2772		/* If this is the last buffer, break out. */
2773		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2774			break;
2775		dc_discard_rxbuf(sc, i);
2776		DC_INC(i, DC_RX_LIST_CNT);
2777	}
2778
2779	/* Find the length of the actual receive frame. */
2780	total_len = DC_RXBYTES(rxstat);
2781
2782	/* Scan backwards until we hit a non-zero byte. */
2783	while (*ptr == 0x00)
2784		ptr--;
2785
2786	/* Round off. */
2787	if ((uintptr_t)(ptr) & 0x3)
2788		ptr -= 1;
2789
2790	/* Now find the start of the frame. */
2791	ptr -= total_len;
2792	if (ptr < sc->dc_pnic_rx_buf)
2793		ptr = sc->dc_pnic_rx_buf;
2794
2795	/*
2796	 * Now copy the salvaged frame to the last mbuf and fake up
2797	 * the status word to make it look like a successful
2798	 * frame reception.
2799	 */
2800	bcopy(ptr, mtod(m, char *), total_len);
2801	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2802}
2803
2804/*
2805 * This routine searches the RX ring for dirty descriptors in the
2806 * event that the rxeof routine falls out of sync with the chip's
2807 * current descriptor pointer. This may happen sometimes as a result
2808 * of a "no RX buffer available" condition that happens when the chip
2809 * consumes all of the RX buffers before the driver has a chance to
2810 * process the RX ring. This routine may need to be called more than
2811 * once to bring the driver back in sync with the chip, however we
2812 * should still be getting RX DONE interrupts to drive the search
2813 * for new packets in the RX ring, so we should catch up eventually.
2814 */
2815static int
2816dc_rx_resync(struct dc_softc *sc)
2817{
2818	struct dc_desc *cur_rx;
2819	int i, pos;
2820
2821	pos = sc->dc_cdata.dc_rx_prod;
2822
2823	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2824		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2825		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2826			break;
2827		DC_INC(pos, DC_RX_LIST_CNT);
2828	}
2829
2830	/* If the ring really is empty, then just return. */
2831	if (i == DC_RX_LIST_CNT)
2832		return (0);
2833
2834	/* We've fallen behing the chip: catch it. */
2835	sc->dc_cdata.dc_rx_prod = pos;
2836
2837	return (EAGAIN);
2838}
2839
2840static void
2841dc_discard_rxbuf(struct dc_softc *sc, int i)
2842{
2843	struct mbuf *m;
2844
2845	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2846		m = sc->dc_cdata.dc_rx_chain[i];
2847		bzero(mtod(m, char *), m->m_len);
2848	}
2849
2850	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2851	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2852	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2853	    BUS_DMASYNC_PREWRITE);
2854}
2855
2856/*
2857 * A frame has been uploaded: pass the resulting mbuf chain up to
2858 * the higher level protocols.
2859 */
2860static int
2861dc_rxeof(struct dc_softc *sc)
2862{
2863	struct mbuf *m;
2864	struct ifnet *ifp;
2865	struct dc_desc *cur_rx;
2866	int i, total_len, rx_npkts;
2867	uint32_t rxstat;
2868
2869	DC_LOCK_ASSERT(sc);
2870
2871	ifp = sc->dc_ifp;
2872	rx_npkts = 0;
2873
2874	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2875	    BUS_DMASYNC_POSTWRITE);
2876	for (i = sc->dc_cdata.dc_rx_prod;
2877	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2878	    DC_INC(i, DC_RX_LIST_CNT)) {
2879#ifdef DEVICE_POLLING
2880		if (ifp->if_capenable & IFCAP_POLLING) {
2881			if (sc->rxcycles <= 0)
2882				break;
2883			sc->rxcycles--;
2884		}
2885#endif
2886		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2887		rxstat = le32toh(cur_rx->dc_status);
2888		if ((rxstat & DC_RXSTAT_OWN) != 0)
2889			break;
2890		m = sc->dc_cdata.dc_rx_chain[i];
2891		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2892		    BUS_DMASYNC_POSTREAD);
2893		total_len = DC_RXBYTES(rxstat);
2894		rx_npkts++;
2895
2896		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2897			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2898				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2899					sc->dc_pnic_rx_bug_save = i;
2900				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2901					continue;
2902				dc_pnic_rx_bug_war(sc, i);
2903				rxstat = le32toh(cur_rx->dc_status);
2904				total_len = DC_RXBYTES(rxstat);
2905			}
2906		}
2907
2908		/*
2909		 * If an error occurs, update stats, clear the
2910		 * status word and leave the mbuf cluster in place:
2911		 * it should simply get re-used next time this descriptor
2912		 * comes up in the ring.  However, don't report long
2913		 * frames as errors since they could be vlans.
2914		 */
2915		if ((rxstat & DC_RXSTAT_RXERR)) {
2916			if (!(rxstat & DC_RXSTAT_GIANT) ||
2917			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2918				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2919				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2920				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2921				if (rxstat & DC_RXSTAT_COLLSEEN)
2922					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2923				dc_discard_rxbuf(sc, i);
2924				if (rxstat & DC_RXSTAT_CRCERR)
2925					continue;
2926				else {
2927					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2928					dc_init_locked(sc);
2929					return (rx_npkts);
2930				}
2931			}
2932		}
2933
2934		/* No errors; receive the packet. */
2935		total_len -= ETHER_CRC_LEN;
2936#ifdef __NO_STRICT_ALIGNMENT
2937		/*
2938		 * On architectures without alignment problems we try to
2939		 * allocate a new buffer for the receive ring, and pass up
2940		 * the one where the packet is already, saving the expensive
2941		 * copy done in m_devget().
2942		 * If we are on an architecture with alignment problems, or
2943		 * if the allocation fails, then use m_devget and leave the
2944		 * existing buffer in the receive ring.
2945		 */
2946		if (dc_newbuf(sc, i) != 0) {
2947			dc_discard_rxbuf(sc, i);
2948			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2949			continue;
2950		}
2951		m->m_pkthdr.rcvif = ifp;
2952		m->m_pkthdr.len = m->m_len = total_len;
2953#else
2954		{
2955			struct mbuf *m0;
2956
2957			m0 = m_devget(mtod(m, char *), total_len,
2958				ETHER_ALIGN, ifp, NULL);
2959			dc_discard_rxbuf(sc, i);
2960			if (m0 == NULL) {
2961				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2962				continue;
2963			}
2964			m = m0;
2965		}
2966#endif
2967
2968		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2969		DC_UNLOCK(sc);
2970		(*ifp->if_input)(ifp, m);
2971		DC_LOCK(sc);
2972	}
2973
2974	sc->dc_cdata.dc_rx_prod = i;
2975	return (rx_npkts);
2976}
2977
2978/*
2979 * A frame was downloaded to the chip. It's safe for us to clean up
2980 * the list buffers.
2981 */
2982static void
2983dc_txeof(struct dc_softc *sc)
2984{
2985	struct dc_desc *cur_tx;
2986	struct ifnet *ifp;
2987	int idx, setup;
2988	uint32_t ctl, txstat;
2989
2990	if (sc->dc_cdata.dc_tx_cnt == 0)
2991		return;
2992
2993	ifp = sc->dc_ifp;
2994
2995	/*
2996	 * Go through our tx list and free mbufs for those
2997	 * frames that have been transmitted.
2998	 */
2999	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
3000	    BUS_DMASYNC_POSTWRITE);
3001	setup = 0;
3002	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
3003	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
3004		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
3005		txstat = le32toh(cur_tx->dc_status);
3006		ctl = le32toh(cur_tx->dc_ctl);
3007
3008		if (txstat & DC_TXSTAT_OWN)
3009			break;
3010
3011		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3012			continue;
3013
3014		if (ctl & DC_TXCTL_SETUP) {
3015			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3016			setup++;
3017			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3018			    BUS_DMASYNC_POSTWRITE);
3019			/*
3020			 * Yes, the PNIC is so brain damaged
3021			 * that it will sometimes generate a TX
3022			 * underrun error while DMAing the RX
3023			 * filter setup frame. If we detect this,
3024			 * we have to send the setup frame again,
3025			 * or else the filter won't be programmed
3026			 * correctly.
3027			 */
3028			if (DC_IS_PNIC(sc)) {
3029				if (txstat & DC_TXSTAT_ERRSUM)
3030					dc_setfilt(sc);
3031			}
3032			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3033			continue;
3034		}
3035
3036		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3037			/*
3038			 * XXX: Why does my Xircom taunt me so?
3039			 * For some reason it likes setting the CARRLOST flag
3040			 * even when the carrier is there. wtf?!?
3041			 * Who knows, but Conexant chips have the
3042			 * same problem. Maybe they took lessons
3043			 * from Xircom.
3044			 */
3045			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3046			    sc->dc_pmode == DC_PMODE_MII &&
3047			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3048			    DC_TXSTAT_NOCARRIER)))
3049				txstat &= ~DC_TXSTAT_ERRSUM;
3050		} else {
3051			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3052			    sc->dc_pmode == DC_PMODE_MII &&
3053			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3054			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3055				txstat &= ~DC_TXSTAT_ERRSUM;
3056		}
3057
3058		if (txstat & DC_TXSTAT_ERRSUM) {
3059			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3060			if (txstat & DC_TXSTAT_EXCESSCOLL)
3061				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3062			if (txstat & DC_TXSTAT_LATECOLL)
3063				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3064			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3065				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3066				dc_init_locked(sc);
3067				return;
3068			}
3069		} else
3070			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3071		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3072
3073		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3074		    BUS_DMASYNC_POSTWRITE);
3075		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3076		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3077		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3078	}
3079	sc->dc_cdata.dc_tx_cons = idx;
3080
3081	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3082		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3083		if (sc->dc_cdata.dc_tx_cnt == 0)
3084			sc->dc_wdog_timer = 0;
3085	}
3086	if (setup > 0)
3087		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3088		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3089}
3090
3091static void
3092dc_tick(void *xsc)
3093{
3094	struct dc_softc *sc;
3095	struct mii_data *mii;
3096	struct ifnet *ifp;
3097	uint32_t r;
3098
3099	sc = xsc;
3100	DC_LOCK_ASSERT(sc);
3101	ifp = sc->dc_ifp;
3102	mii = device_get_softc(sc->dc_miibus);
3103
3104	/*
3105	 * Reclaim transmitted frames for controllers that do
3106	 * not generate TX completion interrupt for every frame.
3107	 */
3108	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3109		dc_txeof(sc);
3110
3111	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3112		if (sc->dc_flags & DC_21143_NWAY) {
3113			r = CSR_READ_4(sc, DC_10BTSTAT);
3114			if (IFM_SUBTYPE(mii->mii_media_active) ==
3115			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3116				sc->dc_link = 0;
3117				mii_mediachg(mii);
3118			}
3119			if (IFM_SUBTYPE(mii->mii_media_active) ==
3120			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3121				sc->dc_link = 0;
3122				mii_mediachg(mii);
3123			}
3124			if (sc->dc_link == 0)
3125				mii_tick(mii);
3126		} else {
3127			/*
3128			 * For NICs which never report DC_RXSTATE_WAIT, we
3129			 * have to bite the bullet...
3130			 */
3131			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3132			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3133			    sc->dc_cdata.dc_tx_cnt == 0)
3134				mii_tick(mii);
3135		}
3136	} else
3137		mii_tick(mii);
3138
3139	/*
3140	 * When the init routine completes, we expect to be able to send
3141	 * packets right away, and in fact the network code will send a
3142	 * gratuitous ARP the moment the init routine marks the interface
3143	 * as running. However, even though the MAC may have been initialized,
3144	 * there may be a delay of a few seconds before the PHY completes
3145	 * autonegotiation and the link is brought up. Any transmissions
3146	 * made during that delay will be lost. Dealing with this is tricky:
3147	 * we can't just pause in the init routine while waiting for the
3148	 * PHY to come ready since that would bring the whole system to
3149	 * a screeching halt for several seconds.
3150	 *
3151	 * What we do here is prevent the TX start routine from sending
3152	 * any packets until a link has been established. After the
3153	 * interface has been initialized, the tick routine will poll
3154	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3155	 * that time, packets will stay in the send queue, and once the
3156	 * link comes up, they will be flushed out to the wire.
3157	 */
3158	if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3159		dc_start_locked(ifp);
3160
3161	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3162		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3163	else
3164		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3165}
3166
3167/*
3168 * A transmit underrun has occurred.  Back off the transmit threshold,
3169 * or switch to store and forward mode if we have to.
3170 */
3171static void
3172dc_tx_underrun(struct dc_softc *sc)
3173{
3174	uint32_t netcfg, isr;
3175	int i, reinit;
3176
3177	reinit = 0;
3178	netcfg = CSR_READ_4(sc, DC_NETCFG);
3179	device_printf(sc->dc_dev, "TX underrun -- ");
3180	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3181		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3182			printf("using store and forward mode\n");
3183			netcfg |= DC_NETCFG_STORENFWD;
3184		} else {
3185			printf("increasing TX threshold\n");
3186			sc->dc_txthresh += DC_TXTHRESH_INC;
3187			netcfg &= ~DC_NETCFG_TX_THRESH;
3188			netcfg |= sc->dc_txthresh;
3189		}
3190
3191		if (DC_IS_INTEL(sc)) {
3192			/*
3193			 * The real 21143 requires that the transmitter be idle
3194			 * in order to change the transmit threshold or store
3195			 * and forward state.
3196			 */
3197			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3198
3199			for (i = 0; i < DC_TIMEOUT; i++) {
3200				isr = CSR_READ_4(sc, DC_ISR);
3201				if (isr & DC_ISR_TX_IDLE)
3202					break;
3203				DELAY(10);
3204			}
3205			if (i == DC_TIMEOUT) {
3206				device_printf(sc->dc_dev,
3207				    "%s: failed to force tx to idle state\n",
3208				    __func__);
3209				reinit++;
3210			}
3211		}
3212	} else {
3213		printf("resetting\n");
3214		reinit++;
3215	}
3216
3217	if (reinit == 0) {
3218		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3219		if (DC_IS_INTEL(sc))
3220			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3221	} else {
3222		sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3223		dc_init_locked(sc);
3224	}
3225}
3226
3227#ifdef DEVICE_POLLING
3228static poll_handler_t dc_poll;
3229
3230static int
3231dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3232{
3233	struct dc_softc *sc = ifp->if_softc;
3234	int rx_npkts = 0;
3235
3236	DC_LOCK(sc);
3237
3238	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3239		DC_UNLOCK(sc);
3240		return (rx_npkts);
3241	}
3242
3243	sc->rxcycles = count;
3244	rx_npkts = dc_rxeof(sc);
3245	dc_txeof(sc);
3246	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3247	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3248		dc_start_locked(ifp);
3249
3250	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3251		uint32_t	status;
3252
3253		status = CSR_READ_4(sc, DC_ISR);
3254		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3255			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3256			DC_ISR_BUS_ERR);
3257		if (!status) {
3258			DC_UNLOCK(sc);
3259			return (rx_npkts);
3260		}
3261		/* ack what we have */
3262		CSR_WRITE_4(sc, DC_ISR, status);
3263
3264		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3265			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3266			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3267
3268			if (dc_rx_resync(sc))
3269				dc_rxeof(sc);
3270		}
3271		/* restart transmit unit if necessary */
3272		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3273			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3274
3275		if (status & DC_ISR_TX_UNDERRUN)
3276			dc_tx_underrun(sc);
3277
3278		if (status & DC_ISR_BUS_ERR) {
3279			if_printf(ifp, "%s: bus error\n", __func__);
3280			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3281			dc_init_locked(sc);
3282		}
3283	}
3284	DC_UNLOCK(sc);
3285	return (rx_npkts);
3286}
3287#endif /* DEVICE_POLLING */
3288
3289static void
3290dc_intr(void *arg)
3291{
3292	struct dc_softc *sc;
3293	struct ifnet *ifp;
3294	uint32_t r, status;
3295	int n;
3296
3297	sc = arg;
3298
3299	if (sc->suspended)
3300		return;
3301
3302	DC_LOCK(sc);
3303	status = CSR_READ_4(sc, DC_ISR);
3304	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3305		DC_UNLOCK(sc);
3306		return;
3307	}
3308	ifp = sc->dc_ifp;
3309#ifdef DEVICE_POLLING
3310	if (ifp->if_capenable & IFCAP_POLLING) {
3311		DC_UNLOCK(sc);
3312		return;
3313	}
3314#endif
3315	/* Disable interrupts. */
3316	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3317
3318	for (n = 16; n > 0; n--) {
3319		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3320			break;
3321		/* Ack interrupts. */
3322		CSR_WRITE_4(sc, DC_ISR, status);
3323
3324		if (status & DC_ISR_RX_OK) {
3325			if (dc_rxeof(sc) == 0) {
3326				while (dc_rx_resync(sc))
3327					dc_rxeof(sc);
3328			}
3329		}
3330
3331		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3332			dc_txeof(sc);
3333
3334		if (status & DC_ISR_TX_IDLE) {
3335			dc_txeof(sc);
3336			if (sc->dc_cdata.dc_tx_cnt) {
3337				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3338				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3339			}
3340		}
3341
3342		if (status & DC_ISR_TX_UNDERRUN)
3343			dc_tx_underrun(sc);
3344
3345		if ((status & DC_ISR_RX_WATDOGTIMEO)
3346		    || (status & DC_ISR_RX_NOBUF)) {
3347			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3348			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3349			if (dc_rxeof(sc) == 0) {
3350				while (dc_rx_resync(sc))
3351					dc_rxeof(sc);
3352			}
3353		}
3354
3355		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3356			dc_start_locked(ifp);
3357
3358		if (status & DC_ISR_BUS_ERR) {
3359			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3360			dc_init_locked(sc);
3361			DC_UNLOCK(sc);
3362			return;
3363		}
3364		status = CSR_READ_4(sc, DC_ISR);
3365		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3366			break;
3367	}
3368
3369	/* Re-enable interrupts. */
3370	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3371		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3372
3373	DC_UNLOCK(sc);
3374}
3375
3376/*
3377 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3378 * pointers to the fragment pointers.
3379 */
3380static int
3381dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3382{
3383	bus_dma_segment_t segs[DC_MAXFRAGS];
3384	bus_dmamap_t map;
3385	struct dc_desc *f;
3386	struct mbuf *m;
3387	int cur, defragged, error, first, frag, i, idx, nseg;
3388
3389	m = NULL;
3390	defragged = 0;
3391	if (sc->dc_flags & DC_TX_COALESCE &&
3392	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3393		m = m_defrag(*m_head, M_NOWAIT);
3394		defragged = 1;
3395	} else {
3396		/*
3397		 * Count the number of frags in this chain to see if we
3398		 * need to m_collapse.  Since the descriptor list is shared
3399		 * by all packets, we'll m_collapse long chains so that they
3400		 * do not use up the entire list, even if they would fit.
3401		 */
3402		i = 0;
3403		for (m = *m_head; m != NULL; m = m->m_next)
3404			i++;
3405		if (i > DC_TX_LIST_CNT / 4 ||
3406		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3407		    DC_TX_LIST_RSVD) {
3408			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3409			defragged = 1;
3410		}
3411	}
3412	if (defragged != 0) {
3413		if (m == NULL) {
3414			m_freem(*m_head);
3415			*m_head = NULL;
3416			return (ENOBUFS);
3417		}
3418		*m_head = m;
3419	}
3420
3421	idx = sc->dc_cdata.dc_tx_prod;
3422	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3423	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3424	if (error == EFBIG) {
3425		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3426		    DC_MAXFRAGS)) == NULL) {
3427			m_freem(*m_head);
3428			*m_head = NULL;
3429			return (defragged != 0 ? error : ENOBUFS);
3430		}
3431		*m_head = m;
3432		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3433		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3434		if (error != 0) {
3435			m_freem(*m_head);
3436			*m_head = NULL;
3437			return (error);
3438		}
3439	} else if (error != 0)
3440		return (error);
3441	KASSERT(nseg <= DC_MAXFRAGS,
3442	    ("%s: wrong number of segments (%d)", __func__, nseg));
3443	if (nseg == 0) {
3444		m_freem(*m_head);
3445		*m_head = NULL;
3446		return (EIO);
3447	}
3448
3449	/* Check descriptor overruns. */
3450	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3451		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3452		return (ENOBUFS);
3453	}
3454	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3455	    BUS_DMASYNC_PREWRITE);
3456
3457	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3458	for (i = 0; i < nseg; i++) {
3459		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3460		    (frag == (DC_TX_LIST_CNT - 1)) &&
3461		    (first != sc->dc_cdata.dc_tx_first)) {
3462			bus_dmamap_unload(sc->dc_tx_mtag,
3463			    sc->dc_cdata.dc_tx_map[first]);
3464			m_freem(*m_head);
3465			*m_head = NULL;
3466			return (ENOBUFS);
3467		}
3468
3469		f = &sc->dc_ldata.dc_tx_list[frag];
3470		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3471		if (i == 0) {
3472			f->dc_status = 0;
3473			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3474		} else
3475			f->dc_status = htole32(DC_TXSTAT_OWN);
3476		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3477		cur = frag;
3478		DC_INC(frag, DC_TX_LIST_CNT);
3479	}
3480
3481	sc->dc_cdata.dc_tx_prod = frag;
3482	sc->dc_cdata.dc_tx_cnt += nseg;
3483	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3484	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3485	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3486		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3487		    htole32(DC_TXCTL_FINT);
3488	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3489		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3490	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3491	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3492		sc->dc_cdata.dc_tx_pkts = 0;
3493		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3494	}
3495	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3496
3497	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3498	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3499
3500	/*
3501	 * Swap the last and the first dmamaps to ensure the map for
3502	 * this transmission is placed at the last descriptor.
3503	 */
3504	map = sc->dc_cdata.dc_tx_map[cur];
3505	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3506	sc->dc_cdata.dc_tx_map[first] = map;
3507
3508	return (0);
3509}
3510
3511static void
3512dc_start(struct ifnet *ifp)
3513{
3514	struct dc_softc *sc;
3515
3516	sc = ifp->if_softc;
3517	DC_LOCK(sc);
3518	dc_start_locked(ifp);
3519	DC_UNLOCK(sc);
3520}
3521
3522/*
3523 * Main transmit routine
3524 * To avoid having to do mbuf copies, we put pointers to the mbuf data
3525 * regions directly in the transmit lists.  We also save a copy of the
3526 * pointers since the transmit list fragment pointers are physical
3527 * addresses.
3528 */
3529static void
3530dc_start_locked(struct ifnet *ifp)
3531{
3532	struct dc_softc *sc;
3533	struct mbuf *m_head;
3534	int queued;
3535
3536	sc = ifp->if_softc;
3537
3538	DC_LOCK_ASSERT(sc);
3539
3540	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3541	    IFF_DRV_RUNNING || sc->dc_link == 0)
3542		return;
3543
3544	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3545
3546	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
3547		/*
3548		 * If there's no way we can send any packets, return now.
3549		 */
3550		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3551			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3552			break;
3553		}
3554		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3555		if (m_head == NULL)
3556			break;
3557
3558		if (dc_encap(sc, &m_head)) {
3559			if (m_head == NULL)
3560				break;
3561			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3562			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3563			break;
3564		}
3565
3566		queued++;
3567		/*
3568		 * If there's a BPF listener, bounce a copy of this frame
3569		 * to him.
3570		 */
3571		BPF_MTAP(ifp, m_head);
3572	}
3573
3574	if (queued > 0) {
3575		/* Transmit */
3576		if (!(sc->dc_flags & DC_TX_POLL))
3577			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3578
3579		/*
3580		 * Set a timeout in case the chip goes out to lunch.
3581		 */
3582		sc->dc_wdog_timer = 5;
3583	}
3584}
3585
3586static void
3587dc_init(void *xsc)
3588{
3589	struct dc_softc *sc = xsc;
3590
3591	DC_LOCK(sc);
3592	dc_init_locked(sc);
3593	DC_UNLOCK(sc);
3594}
3595
3596static void
3597dc_init_locked(struct dc_softc *sc)
3598{
3599	struct ifnet *ifp = sc->dc_ifp;
3600	struct mii_data *mii;
3601	struct ifmedia *ifm;
3602
3603	DC_LOCK_ASSERT(sc);
3604
3605	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3606		return;
3607
3608	mii = device_get_softc(sc->dc_miibus);
3609
3610	/*
3611	 * Cancel pending I/O and free all RX/TX buffers.
3612	 */
3613	dc_stop(sc);
3614	dc_reset(sc);
3615	if (DC_IS_INTEL(sc)) {
3616		ifm = &mii->mii_media;
3617		dc_apply_fixup(sc, ifm->ifm_media);
3618	}
3619
3620	/*
3621	 * Set cache alignment and burst length.
3622	 */
3623	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3624		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3625	else
3626		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3627	/*
3628	 * Evenly share the bus between receive and transmit process.
3629	 */
3630	if (DC_IS_INTEL(sc))
3631		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3632	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3633		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3634	} else {
3635		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3636	}
3637	if (sc->dc_flags & DC_TX_POLL)
3638		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3639	switch(sc->dc_cachesize) {
3640	case 32:
3641		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3642		break;
3643	case 16:
3644		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3645		break;
3646	case 8:
3647		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3648		break;
3649	case 0:
3650	default:
3651		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3652		break;
3653	}
3654
3655	if (sc->dc_flags & DC_TX_STORENFWD)
3656		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3657	else {
3658		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3659			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3660		} else {
3661			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3662			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3663		}
3664	}
3665
3666	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3667	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3668
3669	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3670		/*
3671		 * The app notes for the 98713 and 98715A say that
3672		 * in order to have the chips operate properly, a magic
3673		 * number must be written to CSR16. Macronix does not
3674		 * document the meaning of these bits so there's no way
3675		 * to know exactly what they do. The 98713 has a magic
3676		 * number all its own; the rest all use a different one.
3677		 */
3678		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3679		if (sc->dc_type == DC_TYPE_98713)
3680			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3681		else
3682			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3683	}
3684
3685	if (DC_IS_XIRCOM(sc)) {
3686		/*
3687		 * setup General Purpose Port mode and data so the tulip
3688		 * can talk to the MII.
3689		 */
3690		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3691			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3692		DELAY(10);
3693		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3694			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3695		DELAY(10);
3696	}
3697
3698	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3699	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3700
3701	/* Init circular RX list. */
3702	if (dc_list_rx_init(sc) == ENOBUFS) {
3703		device_printf(sc->dc_dev,
3704		    "initialization failed: no memory for rx buffers\n");
3705		dc_stop(sc);
3706		return;
3707	}
3708
3709	/*
3710	 * Init TX descriptors.
3711	 */
3712	dc_list_tx_init(sc);
3713
3714	/*
3715	 * Load the address of the RX list.
3716	 */
3717	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3718	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3719
3720	/*
3721	 * Enable interrupts.
3722	 */
3723#ifdef DEVICE_POLLING
3724	/*
3725	 * ... but only if we are not polling, and make sure they are off in
3726	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3727	 * after a reset.
3728	 */
3729	if (ifp->if_capenable & IFCAP_POLLING)
3730		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3731	else
3732#endif
3733	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3734	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3735
3736	/* Initialize TX jabber and RX watchdog timer. */
3737	if (DC_IS_ULI(sc))
3738		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3739		    DC_WDOG_HOSTUNJAB);
3740
3741	/* Enable transmitter. */
3742	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3743
3744	/*
3745	 * If this is an Intel 21143 and we're not using the
3746	 * MII port, program the LED control pins so we get
3747	 * link and activity indications.
3748	 */
3749	if (sc->dc_flags & DC_TULIP_LEDS) {
3750		CSR_WRITE_4(sc, DC_WATCHDOG,
3751		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3752		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3753	}
3754
3755	/*
3756	 * Load the RX/multicast filter. We do this sort of late
3757	 * because the filter programming scheme on the 21143 and
3758	 * some clones requires DMAing a setup frame via the TX
3759	 * engine, and we need the transmitter enabled for that.
3760	 */
3761	dc_setfilt(sc);
3762
3763	/* Enable receiver. */
3764	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3765	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3766
3767	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3768	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3769
3770	dc_ifmedia_upd_locked(sc);
3771
3772	/* Clear missed frames and overflow counter. */
3773	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3774
3775	/* Don't start the ticker if this is a homePNA link. */
3776	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3777		sc->dc_link = 1;
3778	else {
3779		if (sc->dc_flags & DC_21143_NWAY)
3780			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3781		else
3782			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3783	}
3784
3785	sc->dc_wdog_timer = 0;
3786	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3787}
3788
3789/*
3790 * Set media options.
3791 */
3792static int
3793dc_ifmedia_upd(struct ifnet *ifp)
3794{
3795	struct dc_softc *sc;
3796	int error;
3797
3798	sc = ifp->if_softc;
3799	DC_LOCK(sc);
3800	error = dc_ifmedia_upd_locked(sc);
3801	DC_UNLOCK(sc);
3802	return (error);
3803}
3804
3805static int
3806dc_ifmedia_upd_locked(struct dc_softc *sc)
3807{
3808	struct mii_data *mii;
3809	struct ifmedia *ifm;
3810	int error;
3811
3812	DC_LOCK_ASSERT(sc);
3813
3814	sc->dc_link = 0;
3815	mii = device_get_softc(sc->dc_miibus);
3816	error = mii_mediachg(mii);
3817	if (error == 0) {
3818		ifm = &mii->mii_media;
3819		if (DC_IS_INTEL(sc))
3820			dc_setcfg(sc, ifm->ifm_media);
3821		else if (DC_IS_DAVICOM(sc) &&
3822		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3823			dc_setcfg(sc, ifm->ifm_media);
3824	}
3825
3826	return (error);
3827}
3828
3829/*
3830 * Report current media status.
3831 */
3832static void
3833dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3834{
3835	struct dc_softc *sc;
3836	struct mii_data *mii;
3837	struct ifmedia *ifm;
3838
3839	sc = ifp->if_softc;
3840	mii = device_get_softc(sc->dc_miibus);
3841	DC_LOCK(sc);
3842	mii_pollstat(mii);
3843	ifm = &mii->mii_media;
3844	if (DC_IS_DAVICOM(sc)) {
3845		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3846			ifmr->ifm_active = ifm->ifm_media;
3847			ifmr->ifm_status = 0;
3848			DC_UNLOCK(sc);
3849			return;
3850		}
3851	}
3852	ifmr->ifm_active = mii->mii_media_active;
3853	ifmr->ifm_status = mii->mii_media_status;
3854	DC_UNLOCK(sc);
3855}
3856
3857static int
3858dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3859{
3860	struct dc_softc *sc = ifp->if_softc;
3861	struct ifreq *ifr = (struct ifreq *)data;
3862	struct mii_data *mii;
3863	int error = 0;
3864
3865	switch (command) {
3866	case SIOCSIFFLAGS:
3867		DC_LOCK(sc);
3868		if (ifp->if_flags & IFF_UP) {
3869			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3870				(IFF_PROMISC | IFF_ALLMULTI);
3871
3872			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3873				if (need_setfilt)
3874					dc_setfilt(sc);
3875			} else {
3876				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3877				dc_init_locked(sc);
3878			}
3879		} else {
3880			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3881				dc_stop(sc);
3882		}
3883		sc->dc_if_flags = ifp->if_flags;
3884		DC_UNLOCK(sc);
3885		break;
3886	case SIOCADDMULTI:
3887	case SIOCDELMULTI:
3888		DC_LOCK(sc);
3889		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3890			dc_setfilt(sc);
3891		DC_UNLOCK(sc);
3892		break;
3893	case SIOCGIFMEDIA:
3894	case SIOCSIFMEDIA:
3895		mii = device_get_softc(sc->dc_miibus);
3896		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3897		break;
3898	case SIOCSIFCAP:
3899#ifdef DEVICE_POLLING
3900		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3901		    !(ifp->if_capenable & IFCAP_POLLING)) {
3902			error = ether_poll_register(dc_poll, ifp);
3903			if (error)
3904				return(error);
3905			DC_LOCK(sc);
3906			/* Disable interrupts */
3907			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3908			ifp->if_capenable |= IFCAP_POLLING;
3909			DC_UNLOCK(sc);
3910			return (error);
3911		}
3912		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3913		    ifp->if_capenable & IFCAP_POLLING) {
3914			error = ether_poll_deregister(ifp);
3915			/* Enable interrupts. */
3916			DC_LOCK(sc);
3917			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3918			ifp->if_capenable &= ~IFCAP_POLLING;
3919			DC_UNLOCK(sc);
3920			return (error);
3921		}
3922#endif /* DEVICE_POLLING */
3923		break;
3924	default:
3925		error = ether_ioctl(ifp, command, data);
3926		break;
3927	}
3928
3929	return (error);
3930}
3931
3932static void
3933dc_watchdog(void *xsc)
3934{
3935	struct dc_softc *sc = xsc;
3936	struct ifnet *ifp;
3937
3938	DC_LOCK_ASSERT(sc);
3939
3940	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3941		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3942		return;
3943	}
3944
3945	ifp = sc->dc_ifp;
3946	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3947	device_printf(sc->dc_dev, "watchdog timeout\n");
3948
3949	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3950	dc_init_locked(sc);
3951
3952	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3953		dc_start_locked(ifp);
3954}
3955
3956/*
3957 * Stop the adapter and free any mbufs allocated to the
3958 * RX and TX lists.
3959 */
3960static void
3961dc_stop(struct dc_softc *sc)
3962{
3963	struct ifnet *ifp;
3964	struct dc_list_data *ld;
3965	struct dc_chain_data *cd;
3966	int i;
3967	uint32_t ctl, netcfg;
3968
3969	DC_LOCK_ASSERT(sc);
3970
3971	ifp = sc->dc_ifp;
3972	ld = &sc->dc_ldata;
3973	cd = &sc->dc_cdata;
3974
3975	callout_stop(&sc->dc_stat_ch);
3976	callout_stop(&sc->dc_wdog_ch);
3977	sc->dc_wdog_timer = 0;
3978	sc->dc_link = 0;
3979
3980	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3981
3982	netcfg = CSR_READ_4(sc, DC_NETCFG);
3983	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3984		CSR_WRITE_4(sc, DC_NETCFG,
3985		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3986	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3987	/* Wait the completion of TX/RX SM. */
3988	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3989		dc_netcfg_wait(sc);
3990
3991	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3992	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3993
3994	/*
3995	 * Free data in the RX lists.
3996	 */
3997	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3998		if (cd->dc_rx_chain[i] != NULL) {
3999			bus_dmamap_sync(sc->dc_rx_mtag,
4000			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
4001			bus_dmamap_unload(sc->dc_rx_mtag,
4002			    cd->dc_rx_map[i]);
4003			m_freem(cd->dc_rx_chain[i]);
4004			cd->dc_rx_chain[i] = NULL;
4005		}
4006	}
4007	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
4008	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
4009	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4010
4011	/*
4012	 * Free the TX list buffers.
4013	 */
4014	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4015		if (cd->dc_tx_chain[i] != NULL) {
4016			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4017			if (ctl & DC_TXCTL_SETUP) {
4018				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4019				    BUS_DMASYNC_POSTWRITE);
4020			} else {
4021				bus_dmamap_sync(sc->dc_tx_mtag,
4022				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4023				bus_dmamap_unload(sc->dc_tx_mtag,
4024				    cd->dc_tx_map[i]);
4025				m_freem(cd->dc_tx_chain[i]);
4026			}
4027			cd->dc_tx_chain[i] = NULL;
4028		}
4029	}
4030	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4031	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4032	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4033}
4034
4035/*
4036 * Device suspend routine.  Stop the interface and save some PCI
4037 * settings in case the BIOS doesn't restore them properly on
4038 * resume.
4039 */
4040static int
4041dc_suspend(device_t dev)
4042{
4043	struct dc_softc *sc;
4044
4045	sc = device_get_softc(dev);
4046	DC_LOCK(sc);
4047	dc_stop(sc);
4048	sc->suspended = 1;
4049	DC_UNLOCK(sc);
4050
4051	return (0);
4052}
4053
4054/*
4055 * Device resume routine.  Restore some PCI settings in case the BIOS
4056 * doesn't, re-enable busmastering, and restart the interface if
4057 * appropriate.
4058 */
4059static int
4060dc_resume(device_t dev)
4061{
4062	struct dc_softc *sc;
4063	struct ifnet *ifp;
4064
4065	sc = device_get_softc(dev);
4066	ifp = sc->dc_ifp;
4067
4068	/* reinitialize interface if necessary */
4069	DC_LOCK(sc);
4070	if (ifp->if_flags & IFF_UP)
4071		dc_init_locked(sc);
4072
4073	sc->suspended = 0;
4074	DC_UNLOCK(sc);
4075
4076	return (0);
4077}
4078
4079/*
4080 * Stop all chip I/O so that the kernel's probe routines don't
4081 * get confused by errant DMAs when rebooting.
4082 */
4083static int
4084dc_shutdown(device_t dev)
4085{
4086	struct dc_softc *sc;
4087
4088	sc = device_get_softc(dev);
4089
4090	DC_LOCK(sc);
4091	dc_stop(sc);
4092	DC_UNLOCK(sc);
4093
4094	return (0);
4095}
4096
4097static int
4098dc_check_multiport(struct dc_softc *sc)
4099{
4100	struct dc_softc *dsc;
4101	devclass_t dc;
4102	device_t child;
4103	uint8_t *eaddr;
4104	int unit;
4105
4106	dc = devclass_find("dc");
4107	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4108		child = devclass_get_device(dc, unit);
4109		if (child == NULL)
4110			continue;
4111		if (child == sc->dc_dev)
4112			continue;
4113		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4114			continue;
4115		if (unit > device_get_unit(sc->dc_dev))
4116			continue;
4117		if (device_is_attached(child) == 0)
4118			continue;
4119		dsc = device_get_softc(child);
4120		device_printf(sc->dc_dev,
4121		    "Using station address of %s as base\n",
4122		    device_get_nameunit(child));
4123		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4124		eaddr = (uint8_t *)sc->dc_eaddr;
4125		eaddr[5]++;
4126		/* Prepare SROM to parse again. */
4127		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4128		    sc->dc_romwidth != 0) {
4129			free(sc->dc_srom, M_DEVBUF);
4130			sc->dc_romwidth = dsc->dc_romwidth;
4131			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4132			    M_DEVBUF, M_NOWAIT);
4133			if (sc->dc_srom == NULL) {
4134				device_printf(sc->dc_dev,
4135				    "Could not allocate SROM buffer\n");
4136				return (ENOMEM);
4137			}
4138			bcopy(dsc->dc_srom, sc->dc_srom,
4139			    DC_ROM_SIZE(sc->dc_romwidth));
4140		}
4141		return (0);
4142	}
4143	return (ENOENT);
4144}
4145