1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 * $FreeBSD$
34 */
35#ifndef __T4_H__
36#define __T4_H__
37
38#include "common/t4_regs_values.h"
39#include "common/t4_regs.h"
40/*
41 * Fixme: Adding missing defines
42 */
43#define SGE_PF_KDOORBELL 0x0
44#define  QID_MASK    0xffff8000U
45#define  QID_SHIFT   15
46#define  QID(x)      ((x) << QID_SHIFT)
47#define  DBPRIO      0x00004000U
48#define  PIDX_MASK   0x00003fffU
49#define  PIDX_SHIFT  0
50#define  PIDX(x)     ((x) << PIDX_SHIFT)
51
52#define SGE_PF_GTS 0x4
53#define  INGRESSQID_MASK   0xffff0000U
54#define  INGRESSQID_SHIFT  16
55#define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
56#define  TIMERREG_MASK     0x0000e000U
57#define  TIMERREG_SHIFT    13
58#define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
59#define  SEINTARM_MASK     0x00001000U
60#define  SEINTARM_SHIFT    12
61#define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
62#define  CIDXINC_MASK      0x00000fffU
63#define  CIDXINC_SHIFT     0
64#define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
65
66#define T4_MAX_NUM_PD 65536
67#define T4_MAX_MR_SIZE (~0ULL)
68#define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
69#define T4_STAG_UNSET 0xffffffff
70#define T4_FW_MAJ 0
71#define A_PCIE_MA_SYNC 0x30b4
72
73struct t4_status_page {
74	__be32 rsvd1;	/* flit 0 - hw owns */
75	__be16 rsvd2;
76	__be16 qid;
77	__be16 cidx;
78	__be16 pidx;
79	u8 qp_err;	/* flit 1 - sw owns */
80	u8 db_off;
81	u8 pad;
82	u16 host_wq_pidx;
83	u16 host_cidx;
84	u16 host_pidx;
85};
86
87#define T4_EQ_ENTRY_SIZE 64
88
89#define T4_SQ_NUM_SLOTS 5
90#define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
91#define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
92			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
93#define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
94			sizeof(struct fw_ri_immd)))
95#define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
96			sizeof(struct fw_ri_rdma_write_wr) - \
97			sizeof(struct fw_ri_immd)))
98#define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
99			sizeof(struct fw_ri_rdma_write_wr) - \
100			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
101#define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
102			sizeof(struct fw_ri_immd)) & ~31UL)
103#define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
104#define T4_MAX_FR_DSGL 1024
105#define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
106
107static inline int t4_max_fr_depth(int use_dsgl)
108{
109	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
110}
111
112#define T4_RQ_NUM_SLOTS 2
113#define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
114#define T4_MAX_RECV_SGE 4
115
116union t4_wr {
117	struct fw_ri_res_wr res;
118	struct fw_ri_wr ri;
119	struct fw_ri_rdma_write_wr write;
120	struct fw_ri_send_wr send;
121	struct fw_ri_rdma_read_wr read;
122	struct fw_ri_bind_mw_wr bind;
123	struct fw_ri_fr_nsmr_wr fr;
124	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
125	struct fw_ri_inv_lstag_wr inv;
126	struct t4_status_page status;
127	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
128};
129
130union t4_recv_wr {
131	struct fw_ri_recv_wr recv;
132	struct t4_status_page status;
133	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
134};
135
136static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
137			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
138{
139	wqe->send.opcode = (u8)opcode;
140	wqe->send.flags = flags;
141	wqe->send.wrid = wrid;
142	wqe->send.r1[0] = 0;
143	wqe->send.r1[1] = 0;
144	wqe->send.r1[2] = 0;
145	wqe->send.len16 = len16;
146}
147
148/* CQE/AE status codes */
149#define T4_ERR_SUCCESS                     0x0
150#define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
151						/* STAG is offlimt, being 0, */
152						/* or STAG_key mismatch */
153#define T4_ERR_PDID                        0x2	/* PDID mismatch */
154#define T4_ERR_QPID                        0x3	/* QPID mismatch */
155#define T4_ERR_ACCESS                      0x4	/* Invalid access right */
156#define T4_ERR_WRAP                        0x5	/* Wrap error */
157#define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
158#define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
159						/* shared memory region */
160#define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
161						/* shared memory region */
162#define T4_ERR_ECC                         0x9	/* ECC error detected */
163#define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
164						/* reading PSTAG for a MW  */
165						/* Invalidate */
166#define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
167						/* software error */
168#define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
169#define T4_ERR_CRC                         0x10 /* CRC error */
170#define T4_ERR_MARKER                      0x11 /* Marker error */
171#define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
172#define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
173#define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
174#define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
175#define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
176#define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
177#define T4_ERR_MSN                         0x18 /* MSN error */
178#define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
179#define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
180						/* or READ_REQ */
181#define T4_ERR_MSN_GAP                     0x1B
182#define T4_ERR_MSN_RANGE                   0x1C
183#define T4_ERR_IRD_OVERFLOW                0x1D
184#define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
185						/* software error */
186#define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
187						/* mismatch) */
188/*
189 * CQE defs
190 */
191struct t4_cqe {
192	__be32 header;
193	__be32 len;
194	union {
195		struct {
196			__be32 stag;
197			__be32 msn;
198		} rcqe;
199		struct {
200			u32 stag;
201			u16 nada2;
202			u16 cidx;
203		} scqe;
204		struct {
205			__be32 wrid_hi;
206			__be32 wrid_low;
207		} gen;
208		u64 drain_cookie;
209	} u;
210	__be64 reserved;
211	__be64 bits_type_ts;
212};
213
214/* macros for flit 0 of the cqe */
215
216#define S_CQE_QPID        12
217#define M_CQE_QPID        0xFFFFF
218#define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
219#define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
220
221#define S_CQE_SWCQE       11
222#define M_CQE_SWCQE       0x1
223#define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
224#define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
225
226#define S_CQE_STATUS      5
227#define M_CQE_STATUS      0x1F
228#define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
229#define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
230
231#define S_CQE_TYPE        4
232#define M_CQE_TYPE        0x1
233#define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
234#define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
235
236#define S_CQE_OPCODE      0
237#define M_CQE_OPCODE      0xF
238#define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
239#define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
240
241#define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
242#define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
243#define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
244#define SQ_TYPE(x)	  (CQE_TYPE((x)))
245#define RQ_TYPE(x)	  (!CQE_TYPE((x)))
246#define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
247#define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
248
249#define CQE_SEND_OPCODE(x)(\
250	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
251	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
252	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
253	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
254
255#define CQE_LEN(x)        (be32_to_cpu((x)->len))
256
257/* used for RQ completion processing */
258#define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
259#define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
260
261/* used for SQ completion processing */
262#define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
263#define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
264
265/* generic accessor macros */
266#define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
267#define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
268#define CQE_DRAIN_COOKIE(x)	(x)->u.drain_cookie;
269
270/* macros for flit 3 of the cqe */
271#define S_CQE_GENBIT	63
272#define M_CQE_GENBIT	0x1
273#define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
274#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
275
276#define S_CQE_OVFBIT	62
277#define M_CQE_OVFBIT	0x1
278#define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
279
280#define S_CQE_IQTYPE	60
281#define M_CQE_IQTYPE	0x3
282#define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
283
284#define M_CQE_TS	0x0fffffffffffffffULL
285#define G_CQE_TS(x)	((x) & M_CQE_TS)
286
287#define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
288#define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
289#define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
290
291struct t4_swsqe {
292	u64			wr_id;
293	struct t4_cqe		cqe;
294	int			read_len;
295	int			opcode;
296	int			complete;
297	int			signaled;
298	u16			idx;
299	int                     flushed;
300	struct timespec         host_ts;
301	u64                     sge_ts;
302};
303
304static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
305{
306#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
307	return pgprot_writecombine(prot);
308#else
309	return pgprot_noncached(prot);
310#endif
311}
312
313enum {
314	T4_SQ_ONCHIP = (1<<0),
315};
316
317struct t4_sq {
318	union t4_wr *queue;
319	bus_addr_t dma_addr;
320	DEFINE_DMA_UNMAP_ADDR(mapping);
321	unsigned long phys_addr;
322	struct t4_swsqe *sw_sq;
323	struct t4_swsqe *oldest_read;
324	void __iomem *bar2_va;
325	u64 bar2_pa;
326	size_t memsize;
327	u32 bar2_qid;
328	u32 qid;
329	u16 in_use;
330	u16 size;
331	u16 cidx;
332	u16 pidx;
333	u16 wq_pidx;
334	u16 wq_pidx_inc;
335	u16 flags;
336	short flush_cidx;
337};
338
339struct t4_swrqe {
340	u64 wr_id;
341};
342
343struct t4_rq {
344	union  t4_recv_wr *queue;
345	bus_addr_t dma_addr;
346	DEFINE_DMA_UNMAP_ADDR(mapping);
347	unsigned long phys_addr;
348	struct t4_swrqe *sw_rq;
349	void __iomem *bar2_va;
350	u64 bar2_pa;
351	size_t memsize;
352	u32 bar2_qid;
353	u32 qid;
354	u32 msn;
355	u32 rqt_hwaddr;
356	u16 rqt_size;
357	u16 in_use;
358	u16 size;
359	u16 cidx;
360	u16 pidx;
361	u16 wq_pidx;
362	u16 wq_pidx_inc;
363};
364
365struct t4_wq {
366	struct t4_sq sq;
367	struct t4_rq rq;
368	struct c4iw_rdev *rdev;
369	int flushed;
370};
371
372static inline int t4_rqes_posted(struct t4_wq *wq)
373{
374	return wq->rq.in_use;
375}
376
377static inline int t4_rq_empty(struct t4_wq *wq)
378{
379	return wq->rq.in_use == 0;
380}
381
382static inline int t4_rq_full(struct t4_wq *wq)
383{
384	return wq->rq.in_use == (wq->rq.size - 1);
385}
386
387static inline u32 t4_rq_avail(struct t4_wq *wq)
388{
389	return wq->rq.size - 1 - wq->rq.in_use;
390}
391
392static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
393{
394	wq->rq.in_use++;
395	if (++wq->rq.pidx == wq->rq.size)
396		wq->rq.pidx = 0;
397	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
398	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
399		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
400}
401
402static inline void t4_rq_consume(struct t4_wq *wq)
403{
404	wq->rq.in_use--;
405	wq->rq.msn++;
406	if (++wq->rq.cidx == wq->rq.size)
407		wq->rq.cidx = 0;
408}
409
410static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
411{
412	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
413}
414
415static inline u16 t4_rq_wq_size(struct t4_wq *wq)
416{
417	return wq->rq.size * T4_RQ_NUM_SLOTS;
418}
419
420static inline int t4_sq_onchip(struct t4_sq *sq)
421{
422	return sq->flags & T4_SQ_ONCHIP;
423}
424
425static inline int t4_sq_empty(struct t4_wq *wq)
426{
427	return wq->sq.in_use == 0;
428}
429
430static inline int t4_sq_full(struct t4_wq *wq)
431{
432	return wq->sq.in_use == (wq->sq.size - 1);
433}
434
435static inline u32 t4_sq_avail(struct t4_wq *wq)
436{
437	return wq->sq.size - 1 - wq->sq.in_use;
438}
439
440static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
441{
442	wq->sq.in_use++;
443	if (++wq->sq.pidx == wq->sq.size)
444		wq->sq.pidx = 0;
445	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
446	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
447		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
448}
449
450static inline void t4_sq_consume(struct t4_wq *wq)
451{
452	BUG_ON(wq->sq.in_use < 1);
453	if (wq->sq.cidx == wq->sq.flush_cidx)
454		wq->sq.flush_cidx = -1;
455	wq->sq.in_use--;
456	if (++wq->sq.cidx == wq->sq.size)
457		wq->sq.cidx = 0;
458}
459
460static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
461{
462	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
463}
464
465static inline u16 t4_sq_wq_size(struct t4_wq *wq)
466{
467		return wq->sq.size * T4_SQ_NUM_SLOTS;
468}
469
470/* This function copies 64 byte coalesced work request to memory
471 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
472 * from the FIFO instead of from Host.
473 */
474static inline void pio_copy(u64 __iomem *dst, u64 *src)
475{
476	int count = 8;
477
478	while (count) {
479		writeq(*src, dst);
480		src++;
481		dst++;
482		count--;
483	}
484}
485
486static inline void
487t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
488{
489
490	/* Flush host queue memory writes. */
491	wmb();
492	if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
493		CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d",
494				__func__, wq->sq.pidx);
495		pio_copy((u64 __iomem *)
496				((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
497				(u64 *)wqe);
498	} else {
499		CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d",
500				__func__, wq->sq.pidx);
501		writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
502				(void __iomem *)((u64)wq->sq.bar2_va +
503					SGE_UDB_KDOORBELL));
504	}
505
506	/* Flush user doorbell area writes. */
507	wmb();
508	return;
509}
510
511static inline void
512t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
513{
514
515	/* Flush host queue memory writes. */
516	wmb();
517	if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
518		CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d",
519				__func__, wq->rq.pidx);
520		pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
521					SGE_UDB_WCDOORBELL), (u64 *)wqe);
522	} else {
523		CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d",
524				__func__, wq->rq.pidx);
525		writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
526				(void __iomem *)((u64)wq->rq.bar2_va +
527					SGE_UDB_KDOORBELL));
528	}
529
530	/* Flush user doorbell area writes. */
531	wmb();
532	return;
533}
534
535static inline int t4_wq_in_error(struct t4_wq *wq)
536{
537	return wq->rq.queue[wq->rq.size].status.qp_err;
538}
539
540static inline void t4_set_wq_in_error(struct t4_wq *wq)
541{
542	wq->rq.queue[wq->rq.size].status.qp_err = 1;
543}
544
545enum t4_cq_flags {
546	CQ_ARMED	= 1,
547};
548
549struct t4_cq {
550	struct t4_cqe *queue;
551	bus_addr_t dma_addr;
552	DEFINE_DMA_UNMAP_ADDR(mapping);
553	struct t4_cqe *sw_queue;
554	void __iomem *bar2_va;
555	u64 bar2_pa;
556	u32 bar2_qid;
557	struct c4iw_rdev *rdev;
558	size_t memsize;
559	__be64 bits_type_ts;
560	u32 cqid;
561	u32 qid_mask;
562	int vector;
563	u16 size; /* including status page */
564	u16 cidx;
565	u16 sw_pidx;
566	u16 sw_cidx;
567	u16 sw_in_use;
568	u16 cidx_inc;
569	u8 gen;
570	u8 error;
571	unsigned long flags;
572};
573
574static inline void write_gts(struct t4_cq *cq, u32 val)
575{
576	writel(val | V_INGRESSQID(cq->bar2_qid),
577		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
578}
579
580static inline int t4_clear_cq_armed(struct t4_cq *cq)
581{
582	return test_and_clear_bit(CQ_ARMED, &cq->flags);
583}
584
585static inline int t4_arm_cq(struct t4_cq *cq, int se)
586{
587	u32 val;
588
589	set_bit(CQ_ARMED, &cq->flags);
590	while (cq->cidx_inc > CIDXINC_MASK) {
591		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
592		writel(val | V_INGRESSQID(cq->bar2_qid),
593		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
594		cq->cidx_inc -= CIDXINC_MASK;
595	}
596	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
597	writel(val | V_INGRESSQID(cq->bar2_qid),
598		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
599	cq->cidx_inc = 0;
600	return 0;
601}
602
603static inline void t4_swcq_produce(struct t4_cq *cq)
604{
605	cq->sw_in_use++;
606	if (cq->sw_in_use == cq->size) {
607		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
608			 __func__, cq->cqid);
609		cq->error = 1;
610		BUG_ON(1);
611	}
612	if (++cq->sw_pidx == cq->size)
613		cq->sw_pidx = 0;
614}
615
616static inline void t4_swcq_consume(struct t4_cq *cq)
617{
618	BUG_ON(cq->sw_in_use < 1);
619	cq->sw_in_use--;
620	if (++cq->sw_cidx == cq->size)
621		cq->sw_cidx = 0;
622}
623
624static inline void t4_hwcq_consume(struct t4_cq *cq)
625{
626	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
627	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
628		u32 val;
629
630		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
631		write_gts(cq, val);
632		cq->cidx_inc = 0;
633	}
634	if (++cq->cidx == cq->size) {
635		cq->cidx = 0;
636		cq->gen ^= 1;
637	}
638}
639
640static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
641{
642	return (CQE_GENBIT(cqe) == cq->gen);
643}
644
645static inline int t4_cq_notempty(struct t4_cq *cq)
646{
647	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
648}
649
650static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
651{
652	int ret;
653	u16 prev_cidx;
654
655	if (cq->cidx == 0)
656		prev_cidx = cq->size - 1;
657	else
658		prev_cidx = cq->cidx - 1;
659
660	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
661		ret = -EOVERFLOW;
662		cq->error = 1;
663		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
664		BUG_ON(1);
665	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
666
667		/* Ensure CQE is flushed to memory */
668		rmb();
669		*cqe = &cq->queue[cq->cidx];
670		ret = 0;
671	} else
672		ret = -ENODATA;
673	return ret;
674}
675
676static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
677{
678	if (cq->sw_in_use == cq->size) {
679		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
680			 __func__, cq->cqid);
681		cq->error = 1;
682		BUG_ON(1);
683		return NULL;
684	}
685	if (cq->sw_in_use)
686		return &cq->sw_queue[cq->sw_cidx];
687	return NULL;
688}
689
690static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
691{
692	int ret = 0;
693
694	if (cq->error)
695		ret = -ENODATA;
696	else if (cq->sw_in_use)
697		*cqe = &cq->sw_queue[cq->sw_cidx];
698	else
699		ret = t4_next_hw_cqe(cq, cqe);
700	return ret;
701}
702
703static inline int t4_cq_in_error(struct t4_cq *cq)
704{
705	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
706}
707
708static inline void t4_set_cq_in_error(struct t4_cq *cq)
709{
710	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
711}
712struct t4_dev_status_page {
713	u8 db_off;
714	u8 wc_supported;
715	u16 pad2;
716	u32 pad3;
717	u64 qp_start;
718	u64 qp_size;
719	u64 cq_start;
720	u64 cq_size;
721};
722#endif
723