1/*
2 * AMD 10Gb Ethernet driver
3 *
4 * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
5 *
6 * This file is available to you under your choice of the following two
7 * licenses:
8 *
9 * License 1: GPLv2
10 *
11 * This file is free software; you may copy, redistribute and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This file is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23 *
24 * This file incorporates work covered by the following copyright and
25 * permission notice:
26 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29 *     and you.
30 *
31 *     The Software IS NOT an item of Licensed Software or Licensed Product
32 *     under any End User Software License Agreement or Agreement for Licensed
33 *     Product with Synopsys or any supplement thereto.  Permission is hereby
34 *     granted, free of charge, to any person obtaining a copy of this software
35 *     annotated with this license and the Software, to deal in the Software
36 *     without restriction, including without limitation the rights to use,
37 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38 *     of the Software, and to permit persons to whom the Software is furnished
39 *     to do so, subject to the following conditions:
40 *
41 *     The above copyright notice and this permission notice shall be included
42 *     in all copies or substantial portions of the Software.
43 *
44 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54 *     THE POSSIBILITY OF SUCH DAMAGE.
55 *
56 *
57 * License 2: Modified BSD
58 *
59 * Redistribution and use in source and binary forms, with or without
60 * modification, are permitted provided that the following conditions are met:
61 *     * Redistributions of source code must retain the above copyright
62 *       notice, this list of conditions and the following disclaimer.
63 *     * Redistributions in binary form must reproduce the above copyright
64 *       notice, this list of conditions and the following disclaimer in the
65 *       documentation and/or other materials provided with the distribution.
66 *     * Neither the name of Advanced Micro Devices, Inc. nor the
67 *       names of its contributors may be used to endorse or promote products
68 *       derived from this software without specific prior written permission.
69 *
70 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
71 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
74 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
75 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
77 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
78 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
79 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
80 *
81 * This file incorporates work covered by the following copyright and
82 * permission notice:
83 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
84 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
85 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
86 *     and you.
87 *
88 *     The Software IS NOT an item of Licensed Software or Licensed Product
89 *     under any End User Software License Agreement or Agreement for Licensed
90 *     Product with Synopsys or any supplement thereto.  Permission is hereby
91 *     granted, free of charge, to any person obtaining a copy of this software
92 *     annotated with this license and the Software, to deal in the Software
93 *     without restriction, including without limitation the rights to use,
94 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
95 *     of the Software, and to permit persons to whom the Software is furnished
96 *     to do so, subject to the following conditions:
97 *
98 *     The above copyright notice and this permission notice shall be included
99 *     in all copies or substantial portions of the Software.
100 *
101 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
102 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
103 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
104 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
105 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
106 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
107 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
108 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
109 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
110 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
111 *     THE POSSIBILITY OF SUCH DAMAGE.
112 */
113
114#include <sys/cdefs.h>
115__FBSDID("$FreeBSD$");
116
117#include "xgbe.h"
118#include "xgbe-common.h"
119
120#include <net/if_dl.h>
121
122static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
123{
124	return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
125}
126
127static unsigned int
128xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
129{
130	unsigned long rate;
131	unsigned int ret;
132
133	rate = pdata->sysclk_rate;
134
135	/*
136	 * Convert the input usec value to the watchdog timer value. Each
137	 * watchdog timer value is equivalent to 256 clock cycles.
138	 * Calculate the required value as:
139	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
140	 */
141	ret = (usec * (rate / 1000000)) / 256;
142
143	return (ret);
144}
145
146static unsigned int
147xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
148{
149	unsigned long rate;
150	unsigned int ret;
151
152	rate = pdata->sysclk_rate;
153
154	/*
155	 * Convert the input watchdog timer value to the usec value. Each
156	 * watchdog timer value is equivalent to 256 clock cycles.
157	 * Calculate the required value as:
158	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
159	 */
160	ret = (riwt * 256) / (rate / 1000000);
161
162	return (ret);
163}
164
165static int
166xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
167{
168	unsigned int pblx8, pbl;
169	unsigned int i;
170
171	pblx8 = DMA_PBL_X8_DISABLE;
172	pbl = pdata->pbl;
173
174	if (pdata->pbl > 32) {
175		pblx8 = DMA_PBL_X8_ENABLE;
176		pbl >>= 3;
177	}
178
179	for (i = 0; i < pdata->channel_count; i++) {
180		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
181		    pblx8);
182
183		if (pdata->channel[i]->tx_ring)
184			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
185			    PBL, pbl);
186
187		if (pdata->channel[i]->rx_ring)
188			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
189			    PBL, pbl);
190	}
191
192	return (0);
193}
194
195static int
196xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
197{
198	unsigned int i;
199
200	for (i = 0; i < pdata->channel_count; i++) {
201		if (!pdata->channel[i]->tx_ring)
202			break;
203
204		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
205		    pdata->tx_osp_mode);
206	}
207
208	return (0);
209}
210
211static int
212xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
213{
214	unsigned int i;
215
216	for (i = 0; i < pdata->rx_q_count; i++)
217		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
218
219	return (0);
220}
221
222static int
223xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
224{
225	unsigned int i;
226
227	for (i = 0; i < pdata->tx_q_count; i++)
228		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
229
230	return (0);
231}
232
233static int
234xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
235{
236	unsigned int i;
237
238	for (i = 0; i < pdata->rx_q_count; i++)
239		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
240
241	return (0);
242}
243
244static int
245xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
246{
247	unsigned int i;
248
249	for (i = 0; i < pdata->tx_q_count; i++)
250		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
251
252	return (0);
253}
254
255static int
256xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
257{
258	unsigned int i;
259
260	for (i = 0; i < pdata->channel_count; i++) {
261		if (!pdata->channel[i]->rx_ring)
262			break;
263
264		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
265		    pdata->rx_riwt);
266	}
267
268	return (0);
269}
270
271static int
272xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
273{
274	return (0);
275}
276
277static void
278xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
279{
280	unsigned int i;
281
282	for (i = 0; i < pdata->channel_count; i++) {
283		if (!pdata->channel[i]->rx_ring)
284			break;
285
286		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
287		    pdata->rx_buf_size);
288	}
289}
290
291static void
292xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
293{
294	unsigned int i;
295
296	int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
297
298	for (i = 0; i < pdata->channel_count; i++) {
299		if (!pdata->channel[i]->tx_ring)
300			break;
301
302		axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
303		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
304	}
305}
306
307static void
308xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
309{
310	unsigned int i;
311	int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
312
313	axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
314	    pdata->sph_enable, sph_enable_flag);
315
316	if (pdata->sph_enable && sph_enable_flag)
317		axgbe_printf(0, "SPH Enabled\n");
318
319	for (i = 0; i < pdata->channel_count; i++) {
320		if (!pdata->channel[i]->rx_ring)
321			break;
322		if (pdata->sph_enable && sph_enable_flag) {
323			/* Enable split header feature */
324			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
325		} else {
326			/* Disable split header feature */
327			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
328		}
329
330		/* per-channel confirmation of SPH being disabled/enabled */
331		int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
332		axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
333		    (val ? "enabled" : "disabled"), i);
334	}
335
336	if (pdata->sph_enable && sph_enable_flag)
337		XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
338}
339
340static int
341xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
342    unsigned int index, unsigned int val)
343{
344	unsigned int wait;
345	int ret = 0;
346
347	mtx_lock(&pdata->rss_mutex);
348
349	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
350		ret = -EBUSY;
351		goto unlock;
352	}
353
354	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
355
356	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
357	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
358	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
359	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
360
361	wait = 1000;
362	while (wait--) {
363		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
364			goto unlock;
365
366		DELAY(1000);
367	}
368
369	ret = -EBUSY;
370
371unlock:
372	mtx_unlock(&pdata->rss_mutex);
373
374	return (ret);
375}
376
377static int
378xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
379{
380	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
381	unsigned int *key = (unsigned int *)&pdata->rss_key;
382	int ret;
383
384	while (key_regs--) {
385		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
386		    key_regs, *key++);
387		if (ret)
388			return (ret);
389	}
390
391	return (0);
392}
393
394static int
395xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
396{
397	unsigned int i;
398	int ret;
399
400	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
401		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
402		    pdata->rss_table[i]);
403		if (ret)
404			return (ret);
405	}
406
407	return (0);
408}
409
410static int
411xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
412{
413	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
414
415	return (xgbe_write_rss_hash_key(pdata));
416}
417
418static int
419xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
420{
421	unsigned int i;
422
423	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
424		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
425
426	return (xgbe_write_rss_lookup_table(pdata));
427}
428
429static int
430xgbe_enable_rss(struct xgbe_prv_data *pdata)
431{
432	int ret;
433
434	if (!pdata->hw_feat.rss)
435		return (-EOPNOTSUPP);
436
437	/* Program the hash key */
438	ret = xgbe_write_rss_hash_key(pdata);
439	if (ret)
440		return (ret);
441
442	/* Program the lookup table */
443	ret = xgbe_write_rss_lookup_table(pdata);
444	if (ret)
445		return (ret);
446
447	/* Set the RSS options */
448	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
449
450	/* Enable RSS */
451	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
452
453	axgbe_printf(0, "RSS Enabled\n");
454
455	return (0);
456}
457
458static int
459xgbe_disable_rss(struct xgbe_prv_data *pdata)
460{
461	if (!pdata->hw_feat.rss)
462		return (-EOPNOTSUPP);
463
464	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
465
466	axgbe_printf(0, "RSS Disabled\n");
467
468	return (0);
469}
470
471static void
472xgbe_config_rss(struct xgbe_prv_data *pdata)
473{
474	int ret;
475
476	if (!pdata->hw_feat.rss)
477		return;
478
479	/* Check if the interface has RSS capability */
480	if (pdata->enable_rss)
481		ret = xgbe_enable_rss(pdata);
482	else
483		ret = xgbe_disable_rss(pdata);
484
485	if (ret)
486		axgbe_error("error configuring RSS, RSS disabled\n");
487}
488
489static int
490xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
491{
492	unsigned int max_q_count, q_count;
493	unsigned int reg, reg_val;
494	unsigned int i;
495
496	/* Clear MTL flow control */
497	for (i = 0; i < pdata->rx_q_count; i++)
498		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
499
500	/* Clear MAC flow control */
501	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
502	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
503	reg = MAC_Q0TFCR;
504	for (i = 0; i < q_count; i++) {
505		reg_val = XGMAC_IOREAD(pdata, reg);
506		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
507		XGMAC_IOWRITE(pdata, reg, reg_val);
508
509		reg += MAC_QTFCR_INC;
510	}
511
512	return (0);
513}
514
515static int
516xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
517{
518	unsigned int max_q_count, q_count;
519	unsigned int reg, reg_val;
520	unsigned int i;
521
522	/* Set MTL flow control */
523	for (i = 0; i < pdata->rx_q_count; i++) {
524		unsigned int ehfc = 0;
525
526		if (pdata->rx_rfd[i]) {
527			/* Flow control thresholds are established */
528			/* TODO - enable pfc/ets support */
529			ehfc = 1;
530		}
531
532		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
533
534		axgbe_printf(1, "flow control %s for RXq%u\n",
535		    ehfc ? "enabled" : "disabled", i);
536	}
537
538	/* Set MAC flow control */
539	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
540	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
541	reg = MAC_Q0TFCR;
542	for (i = 0; i < q_count; i++) {
543		reg_val = XGMAC_IOREAD(pdata, reg);
544
545		/* Enable transmit flow control */
546		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
547
548		/* Set pause time */
549		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
550
551		XGMAC_IOWRITE(pdata, reg, reg_val);
552
553		reg += MAC_QTFCR_INC;
554	}
555
556	return (0);
557}
558
559static int
560xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
561{
562	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
563
564	return (0);
565}
566
567static int
568xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
569{
570	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
571
572	return (0);
573}
574
575static int
576xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
577{
578	if (pdata->tx_pause)
579		xgbe_enable_tx_flow_control(pdata);
580	else
581		xgbe_disable_tx_flow_control(pdata);
582
583	return (0);
584}
585
586static int
587xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
588{
589	if (pdata->rx_pause)
590		xgbe_enable_rx_flow_control(pdata);
591	else
592		xgbe_disable_rx_flow_control(pdata);
593
594	return (0);
595}
596
597static void
598xgbe_config_flow_control(struct xgbe_prv_data *pdata)
599{
600	xgbe_config_tx_flow_control(pdata);
601	xgbe_config_rx_flow_control(pdata);
602
603	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
604}
605
606static void
607xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
608{
609	struct xgbe_channel *channel;
610	unsigned int i, ver;
611
612	/* Set the interrupt mode if supported */
613	if (pdata->channel_irq_mode)
614		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
615		    pdata->channel_irq_mode);
616
617	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
618
619	for (i = 0; i < pdata->channel_count; i++) {
620		channel = pdata->channel[i];
621
622		/* Clear all the interrupts which are set */
623		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
624				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
625
626		/* Clear all interrupt enable bits */
627		channel->curr_ier = 0;
628
629		/* Enable following interrupts
630		 *   NIE  - Normal Interrupt Summary Enable
631		 *   AIE  - Abnormal Interrupt Summary Enable
632		 *   FBEE - Fatal Bus Error Enable
633		 */
634		if (ver < 0x21) {
635			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
636			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
637		} else {
638			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
639			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
640		}
641		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
642
643		if (channel->tx_ring) {
644			/* Enable the following Tx interrupts
645			 *   TIE  - Transmit Interrupt Enable (unless using
646			 *	  per channel interrupts in edge triggered
647			 *	  mode)
648			 */
649			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
650				XGMAC_SET_BITS(channel->curr_ier,
651					       DMA_CH_IER, TIE, 1);
652		}
653		if (channel->rx_ring) {
654			/* Enable following Rx interrupts
655			 *   RBUE - Receive Buffer Unavailable Enable
656			 *   RIE  - Receive Interrupt Enable (unless using
657			 *	  per channel interrupts in edge triggered
658			 *	  mode)
659			 */
660			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
661			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
662				XGMAC_SET_BITS(channel->curr_ier,
663					       DMA_CH_IER, RIE, 1);
664		}
665
666		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
667	}
668}
669
670static void
671xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
672{
673	unsigned int mtl_q_isr;
674	unsigned int q_count, i;
675
676	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
677	for (i = 0; i < q_count; i++) {
678		/* Clear all the interrupts which are set */
679		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
680		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
681
682		/* No MTL interrupts to be enabled */
683		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
684	}
685}
686
687static void
688xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
689{
690	unsigned int mac_ier = 0;
691
692	/* Enable Timestamp interrupt */
693	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
694
695	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
696
697	/* Enable all counter interrupts */
698	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
699	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
700
701	/* Enable MDIO single command completion interrupt */
702	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
703}
704
705static int
706xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
707{
708	unsigned int ss;
709
710	switch (speed) {
711	case SPEED_1000:
712		ss = 0x03;
713		break;
714	case SPEED_2500:
715		ss = 0x02;
716		break;
717	case SPEED_10000:
718		ss = 0x00;
719		break;
720	default:
721		return (-EINVAL);
722	}
723
724	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
725		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
726
727	return (0);
728}
729
730static int
731xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
732{
733	/* Put the VLAN tag in the Rx descriptor */
734	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
735
736	/* Don't check the VLAN type */
737	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
738
739	/* Check only C-TAG (0x8100) packets */
740	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
741
742	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
743	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
744
745	/* Enable VLAN tag stripping */
746	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
747
748	axgbe_printf(0, "VLAN Stripping Enabled\n");
749
750	return (0);
751}
752
753static int
754xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
755{
756	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
757
758	axgbe_printf(0, "VLAN Stripping Disabled\n");
759
760	return (0);
761}
762
763static int
764xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
765{
766	/* Enable VLAN filtering */
767	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
768
769	/* Enable VLAN Hash Table filtering */
770	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
771
772	/* Disable VLAN tag inverse matching */
773	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
774
775	/* Only filter on the lower 12-bits of the VLAN tag */
776	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
777
778	/* In order for the VLAN Hash Table filtering to be effective,
779	 * the VLAN tag identifier in the VLAN Tag Register must not
780	 * be zero.  Set the VLAN tag identifier to "1" to enable the
781	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
782	 * 1 will always pass filtering.
783	 */
784	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
785
786	axgbe_printf(0, "VLAN filtering Enabled\n");
787
788	return (0);
789}
790
791static int
792xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
793{
794	/* Disable VLAN filtering */
795	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
796
797	axgbe_printf(0, "VLAN filtering Disabled\n");
798
799	return (0);
800}
801
802static uint32_t
803xgbe_vid_crc32_le(__le16 vid_le)
804{
805	uint32_t crc = ~0;
806	uint32_t temp = 0;
807	unsigned char *data = (unsigned char *)&vid_le;
808	unsigned char data_byte = 0;
809	int i, bits;
810
811	bits = get_bitmask_order(VLAN_VID_MASK);
812	for (i = 0; i < bits; i++) {
813		if ((i % 8) == 0)
814			data_byte = data[i / 8];
815
816		temp = ((crc & 1) ^ data_byte) & 1;
817		crc >>= 1;
818		data_byte >>= 1;
819
820		if (temp)
821			crc ^= CRC32_POLY_LE;
822	}
823
824	return (crc);
825}
826
827static int
828xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
829{
830	uint32_t crc;
831	uint16_t vid;
832	uint16_t vlan_hash_table = 0;
833	__le16 vid_le = 0;
834
835	axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
836	    XGMAC_IOREAD(pdata, MAC_VLANHTR));
837
838	/* Generate the VLAN Hash Table value */
839	for_each_set_bit(vid, pdata->active_vlans, VLAN_NVID) {
840
841		/* Get the CRC32 value of the VLAN ID */
842		vid_le = cpu_to_le16(vid);
843		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
844
845		vlan_hash_table |= (1 << crc);
846		axgbe_printf(1, "%s: vid 0x%x vid_le 0x%x crc 0x%x "
847		    "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
848		    vlan_hash_table);
849	}
850
851	/* Set the VLAN Hash Table filtering register */
852	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
853
854	axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
855		XGMAC_IOREAD(pdata, MAC_VLANHTR));
856
857	return (0);
858}
859
860static int
861xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
862{
863	unsigned int val = enable ? 1 : 0;
864
865	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
866		return (0);
867
868	axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
869
870	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
871
872	/* Hardware will still perform VLAN filtering in promiscuous mode */
873	if (enable) {
874		axgbe_printf(1, "Disabling rx vlan filtering\n");
875		xgbe_disable_rx_vlan_filtering(pdata);
876	} else {
877		if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
878			axgbe_printf(1, "Enabling rx vlan filtering\n");
879			xgbe_enable_rx_vlan_filtering(pdata);
880		}
881	}
882
883	return (0);
884}
885
886static int
887xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
888{
889	unsigned int val = enable ? 1 : 0;
890
891	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
892		return (0);
893
894	axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
895	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
896
897	return (0);
898}
899
900static void
901xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
902{
903	unsigned int mac_addr_hi, mac_addr_lo;
904	uint8_t *mac_addr;
905
906	mac_addr_lo = 0;
907	mac_addr_hi = 0;
908
909	if (addr) {
910		mac_addr = (uint8_t *)&mac_addr_lo;
911		mac_addr[0] = addr[0];
912		mac_addr[1] = addr[1];
913		mac_addr[2] = addr[2];
914		mac_addr[3] = addr[3];
915		mac_addr = (uint8_t *)&mac_addr_hi;
916		mac_addr[0] = addr[4];
917		mac_addr[1] = addr[5];
918
919		axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
920
921		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
922	}
923
924	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
925	*mac_reg += MAC_MACA_INC;
926	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
927	*mac_reg += MAC_MACA_INC;
928}
929
930static void
931xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
932{
933	unsigned int mac_reg;
934	unsigned int addn_macs;
935
936	mac_reg = MAC_MACA1HR;
937	addn_macs = pdata->hw_feat.addn_mac;
938
939	xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
940	addn_macs--;
941
942	/* Clear remaining additional MAC address entries */
943	while (addn_macs--)
944		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
945}
946
947static int
948xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
949{
950	/* TODO - add support to set mac hash table */
951	xgbe_set_mac_addn_addrs(pdata);
952
953	return (0);
954}
955
956static int
957xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
958{
959	unsigned int mac_addr_hi, mac_addr_lo;
960
961	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
962	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
963		      (addr[1] <<  8) | (addr[0] <<  0);
964
965	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
966	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
967
968	return (0);
969}
970
971static int
972xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
973{
974	unsigned int pr_mode, am_mode;
975
976	pr_mode = ((pdata->netdev->if_flags & IFF_PPROMISC) != 0);
977	am_mode = ((pdata->netdev->if_flags & IFF_ALLMULTI) != 0);
978
979	xgbe_set_promiscuous_mode(pdata, pr_mode);
980	xgbe_set_all_multicast_mode(pdata, am_mode);
981
982	xgbe_add_mac_addresses(pdata);
983
984	return (0);
985}
986
987static int
988xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
989{
990	unsigned int reg;
991
992	if (gpio > 15)
993		return (-EINVAL);
994
995	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
996
997	reg &= ~(1 << (gpio + 16));
998	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
999
1000	return (0);
1001}
1002
1003static int
1004xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1005{
1006	unsigned int reg;
1007
1008	if (gpio > 15)
1009		return (-EINVAL);
1010
1011	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1012
1013	reg |= (1 << (gpio + 16));
1014	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1015
1016	return (0);
1017}
1018
1019static int
1020xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1021{
1022	unsigned long flags;
1023	unsigned int mmd_address, index, offset;
1024	int mmd_data;
1025
1026	if (mmd_reg & MII_ADDR_C45)
1027		mmd_address = mmd_reg & ~MII_ADDR_C45;
1028	else
1029		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1030
1031	/* The PCS registers are accessed using mmio. The underlying
1032	 * management interface uses indirect addressing to access the MMD
1033	 * register sets. This requires accessing of the PCS register in two
1034	 * phases, an address phase and a data phase.
1035	 *
1036	 * The mmio interface is based on 16-bit offsets and values. All
1037	 * register offsets must therefore be adjusted by left shifting the
1038	 * offset 1 bit and reading 16 bits of data.
1039	 */
1040	mmd_address <<= 1;
1041	index = mmd_address & ~pdata->xpcs_window_mask;
1042	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1043
1044	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1045	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1046	mmd_data = XPCS16_IOREAD(pdata, offset);
1047	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1048
1049	return (mmd_data);
1050}
1051
1052static void
1053xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1054    int mmd_data)
1055{
1056	unsigned long flags;
1057	unsigned int mmd_address, index, offset;
1058
1059	if (mmd_reg & MII_ADDR_C45)
1060		mmd_address = mmd_reg & ~MII_ADDR_C45;
1061	else
1062		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1063
1064	/* The PCS registers are accessed using mmio. The underlying
1065	 * management interface uses indirect addressing to access the MMD
1066	 * register sets. This requires accessing of the PCS register in two
1067	 * phases, an address phase and a data phase.
1068	 *
1069	 * The mmio interface is based on 16-bit offsets and values. All
1070	 * register offsets must therefore be adjusted by left shifting the
1071	 * offset 1 bit and writing 16 bits of data.
1072	 */
1073	mmd_address <<= 1;
1074	index = mmd_address & ~pdata->xpcs_window_mask;
1075	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1076
1077	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1078	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1079	XPCS16_IOWRITE(pdata, offset, mmd_data);
1080	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1081}
1082
1083static int
1084xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1085{
1086	unsigned long flags;
1087	unsigned int mmd_address;
1088	int mmd_data;
1089
1090	if (mmd_reg & MII_ADDR_C45)
1091		mmd_address = mmd_reg & ~MII_ADDR_C45;
1092	else
1093		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1094
1095	/* The PCS registers are accessed using mmio. The underlying APB3
1096	 * management interface uses indirect addressing to access the MMD
1097	 * register sets. This requires accessing of the PCS register in two
1098	 * phases, an address phase and a data phase.
1099	 *
1100	 * The mmio interface is based on 32-bit offsets and values. All
1101	 * register offsets must therefore be adjusted by left shifting the
1102	 * offset 2 bits and reading 32 bits of data.
1103	 */
1104	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1105	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1106	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1107	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1108
1109	return (mmd_data);
1110}
1111
1112static void
1113xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1114    int mmd_data)
1115{
1116	unsigned int mmd_address;
1117	unsigned long flags;
1118
1119	if (mmd_reg & MII_ADDR_C45)
1120		mmd_address = mmd_reg & ~MII_ADDR_C45;
1121	else
1122		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1123
1124	/* The PCS registers are accessed using mmio. The underlying APB3
1125	 * management interface uses indirect addressing to access the MMD
1126	 * register sets. This requires accessing of the PCS register in two
1127	 * phases, an address phase and a data phase.
1128	 *
1129	 * The mmio interface is based on 32-bit offsets and values. All
1130	 * register offsets must therefore be adjusted by left shifting the
1131	 * offset 2 bits and writing 32 bits of data.
1132	 */
1133	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1134	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1135	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1136	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1137}
1138
1139static int
1140xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1141{
1142	switch (pdata->vdata->xpcs_access) {
1143	case XGBE_XPCS_ACCESS_V1:
1144		return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
1145
1146	case XGBE_XPCS_ACCESS_V2:
1147	default:
1148		return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
1149	}
1150}
1151
1152static void
1153xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1154    int mmd_data)
1155{
1156	switch (pdata->vdata->xpcs_access) {
1157	case XGBE_XPCS_ACCESS_V1:
1158		return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
1159
1160	case XGBE_XPCS_ACCESS_V2:
1161	default:
1162		return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
1163	}
1164}
1165
1166static unsigned int
1167xgbe_create_mdio_sca(int port, int reg)
1168{
1169	unsigned int mdio_sca, da;
1170
1171	da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1172
1173	mdio_sca = 0;
1174	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1175	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1176	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1177
1178	return (mdio_sca);
1179}
1180
1181static int
1182xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
1183    uint16_t val)
1184{
1185	unsigned int mdio_sca, mdio_sccd;
1186
1187	mtx_lock_spin(&pdata->mdio_mutex);
1188
1189	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1190	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1191
1192	mdio_sccd = 0;
1193	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1194	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1195	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1196	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1197
1198	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1199	    EWOULDBLOCK) {
1200		axgbe_error("%s: MDIO write error\n", __func__);
1201		mtx_unlock_spin(&pdata->mdio_mutex);
1202		return (-ETIMEDOUT);
1203	}
1204
1205	mtx_unlock_spin(&pdata->mdio_mutex);
1206	return (0);
1207}
1208
1209static int
1210xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
1211{
1212	unsigned int mdio_sca, mdio_sccd;
1213
1214	mtx_lock_spin(&pdata->mdio_mutex);
1215
1216	mdio_sca = xgbe_create_mdio_sca(addr, reg);
1217	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1218
1219	mdio_sccd = 0;
1220	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1221	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1222	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1223
1224	if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1225	    EWOULDBLOCK) {
1226		axgbe_error("%s: MDIO read error\n", __func__);
1227		mtx_unlock_spin(&pdata->mdio_mutex);
1228		return (-ETIMEDOUT);
1229	}
1230
1231	mtx_unlock_spin(&pdata->mdio_mutex);
1232
1233	return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
1234}
1235
1236static int
1237xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1238    enum xgbe_mdio_mode mode)
1239{
1240	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1241
1242	switch (mode) {
1243	case XGBE_MDIO_MODE_CL22:
1244		if (port > XGMAC_MAX_C22_PORT)
1245			return (-EINVAL);
1246		reg_val |= (1 << port);
1247		break;
1248	case XGBE_MDIO_MODE_CL45:
1249		break;
1250	default:
1251		return (-EINVAL);
1252	}
1253
1254	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1255
1256	return (0);
1257}
1258
1259static int
1260xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1261{
1262	return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
1263}
1264
1265static int
1266xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1267{
1268	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1269
1270	axgbe_printf(0, "Receive checksum offload Disabled\n");
1271	return (0);
1272}
1273
1274static int
1275xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1276{
1277	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1278
1279	axgbe_printf(0, "Receive checksum offload Enabled\n");
1280	return (0);
1281}
1282
1283static void
1284xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1285{
1286	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1287
1288	/* Reset the Tx descriptor
1289	 *   Set buffer 1 (lo) address to zero
1290	 *   Set buffer 1 (hi) address to zero
1291	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1292	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1293	 */
1294	rdesc->desc0 = 0;
1295	rdesc->desc1 = 0;
1296	rdesc->desc2 = 0;
1297	rdesc->desc3 = 0;
1298
1299	wmb();
1300}
1301
1302static void
1303xgbe_tx_desc_init(struct xgbe_channel *channel)
1304{
1305	struct xgbe_ring *ring = channel->tx_ring;
1306	struct xgbe_ring_data *rdata;
1307	int i;
1308	int start_index = ring->cur;
1309
1310	/* Initialze all descriptors */
1311	for (i = 0; i < ring->rdesc_count; i++) {
1312		rdata = XGBE_GET_DESC_DATA(ring, i);
1313
1314		/* Initialize Tx descriptor */
1315		xgbe_tx_desc_reset(rdata);
1316	}
1317
1318	/* Update the total number of Tx descriptors */
1319	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1320
1321	/* Update the starting address of descriptor ring */
1322	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1323	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1324	    upper_32_bits(rdata->rdata_paddr));
1325	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1326	    lower_32_bits(rdata->rdata_paddr));
1327}
1328
1329static void
1330xgbe_rx_desc_init(struct xgbe_channel *channel)
1331{
1332	struct xgbe_ring *ring = channel->rx_ring;
1333	struct xgbe_ring_data *rdata;
1334	unsigned int start_index = ring->cur;
1335
1336	/*
1337	 * Just set desc_count and the starting address of the desc list
1338	 * here. Rest will be done as part of the txrx path.
1339	 */
1340
1341	/* Update the total number of Rx descriptors */
1342	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1343
1344	/* Update the starting address of descriptor ring */
1345	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1346	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1347	    upper_32_bits(rdata->rdata_paddr));
1348	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1349	    lower_32_bits(rdata->rdata_paddr));
1350}
1351
1352static int
1353xgbe_dev_read(struct xgbe_channel *channel)
1354{
1355	struct xgbe_prv_data *pdata = channel->pdata;
1356	struct xgbe_ring *ring = channel->rx_ring;
1357	struct xgbe_ring_data *rdata;
1358	struct xgbe_ring_desc *rdesc;
1359	struct xgbe_packet_data *packet = &ring->packet_data;
1360	unsigned int err, etlt, l34t = 0;
1361
1362	axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
1363
1364	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1365	rdesc = rdata->rdesc;
1366
1367	/* Check for data availability */
1368	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1369		return (1);
1370
1371	rmb();
1372
1373	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1374		/* TODO - Timestamp Context Descriptor */
1375		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1376		    CONTEXT, 1);
1377		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1378		    CONTEXT_NEXT, 0);
1379		return (0);
1380	}
1381
1382	/* Normal Descriptor, be sure Context Descriptor bit is off */
1383	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1384
1385	/* Indicate if a Context Descriptor is next */
1386	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1387		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1388		    CONTEXT_NEXT, 1);
1389
1390	/* Get the header length */
1391	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1392		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1393		    FIRST, 1);
1394		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1395		    RX_NORMAL_DESC2, HL);
1396		if (rdata->rx.hdr_len)
1397			pdata->ext_stats.rx_split_header_packets++;
1398	} else
1399		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1400		    FIRST, 0);
1401
1402	/* Get the RSS hash */
1403	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1404		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1405		    RSS_HASH, 1);
1406
1407		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1408
1409		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1410		switch (l34t) {
1411		case RX_DESC3_L34T_IPV4_TCP:
1412			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
1413			break;
1414		case RX_DESC3_L34T_IPV4_UDP:
1415			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
1416			break;
1417		case RX_DESC3_L34T_IPV6_TCP:
1418			packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
1419			break;
1420		case RX_DESC3_L34T_IPV6_UDP:
1421			packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
1422			break;
1423		default:
1424			packet->rss_hash_type = M_HASHTYPE_OPAQUE;
1425			break;
1426		}
1427	}
1428
1429	/* Not all the data has been transferred for this packet */
1430	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1431		/* This is not the last of the data for this packet */
1432		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1433		    LAST, 0);
1434		return (0);
1435	}
1436
1437	/* This is the last of the data for this packet */
1438	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1439	    LAST, 1);
1440
1441	/* Get the packet length */
1442	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1443
1444	/* Set checksum done indicator as appropriate */
1445	/* TODO - add tunneling support */
1446	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1447	    CSUM_DONE, 1);
1448
1449	/* Check for errors (only valid in last descriptor) */
1450	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1451	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1452	axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
1453
1454	if (!err || !etlt) {
1455		/* No error if err is 0 or etlt is 0 */
1456		if (etlt == 0x09) {
1457			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1458			    VLAN_CTAG, 1);
1459			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1460			    RX_NORMAL_DESC0, OVT);
1461			axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
1462		}
1463	} else {
1464		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
1465		    RX_PACKET_ATTRIBUTES, TNP);
1466
1467		if ((etlt == 0x05) || (etlt == 0x06)) {
1468			axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
1469			    __func__, l34t, err, etlt);
1470			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1471			    CSUM_DONE, 0);
1472			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1473			    TNPCSUM_DONE, 0);
1474			pdata->ext_stats.rx_csum_errors++;
1475		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
1476			axgbe_printf(1, "%s: err2  l34t %d err 0x%x etlt 0x%x\n",
1477			    __func__, l34t, err, etlt);
1478			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1479			    CSUM_DONE, 0);
1480			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1481			    TNPCSUM_DONE, 0);
1482			pdata->ext_stats.rx_vxlan_csum_errors++;
1483		} else {
1484			axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
1485			    __func__, tnp, l34t, err, etlt);
1486			axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
1487			    __func__, channel->queue_index,
1488			    XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
1489		 	    XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
1490			axgbe_printf(1, "%s: ring cur %d dirty %d\n",
1491			    __func__, ring->cur, ring->dirty);
1492			axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
1493			    __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
1494			    rdesc->desc3);
1495			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1496			    FRAME, 1);
1497		}
1498	}
1499
1500	axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
1501	    channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
1502
1503	return (0);
1504}
1505
1506static int
1507xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1508{
1509	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1510	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
1511}
1512
1513static int
1514xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1515{
1516	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1517	return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
1518}
1519
1520static int
1521xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1522{
1523	struct xgbe_prv_data *pdata = channel->pdata;
1524
1525	axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
1526	    channel->curr_ier);
1527
1528	switch (int_id) {
1529	case XGMAC_INT_DMA_CH_SR_TI:
1530		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1531		break;
1532	case XGMAC_INT_DMA_CH_SR_TPS:
1533		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
1534		break;
1535	case XGMAC_INT_DMA_CH_SR_TBU:
1536		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
1537		break;
1538	case XGMAC_INT_DMA_CH_SR_RI:
1539		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1540		break;
1541	case XGMAC_INT_DMA_CH_SR_RBU:
1542		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
1543		break;
1544	case XGMAC_INT_DMA_CH_SR_RPS:
1545		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
1546		break;
1547	case XGMAC_INT_DMA_CH_SR_TI_RI:
1548		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1549		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1550		break;
1551	case XGMAC_INT_DMA_CH_SR_FBE:
1552		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
1553		break;
1554	case XGMAC_INT_DMA_ALL:
1555		channel->curr_ier |= channel->saved_ier;
1556		break;
1557	default:
1558		return (-1);
1559	}
1560
1561	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1562
1563	axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
1564	    channel->curr_ier);
1565
1566	return (0);
1567}
1568
1569static int
1570xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1571{
1572	struct xgbe_prv_data *pdata = channel->pdata;
1573
1574	axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
1575	    channel->curr_ier);
1576
1577	switch (int_id) {
1578	case XGMAC_INT_DMA_CH_SR_TI:
1579		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1580		break;
1581	case XGMAC_INT_DMA_CH_SR_TPS:
1582		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
1583		break;
1584	case XGMAC_INT_DMA_CH_SR_TBU:
1585		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
1586		break;
1587	case XGMAC_INT_DMA_CH_SR_RI:
1588		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1589		break;
1590	case XGMAC_INT_DMA_CH_SR_RBU:
1591		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
1592		break;
1593	case XGMAC_INT_DMA_CH_SR_RPS:
1594		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
1595		break;
1596	case XGMAC_INT_DMA_CH_SR_TI_RI:
1597		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1598		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1599		break;
1600	case XGMAC_INT_DMA_CH_SR_FBE:
1601		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
1602		break;
1603	case XGMAC_INT_DMA_ALL:
1604		channel->saved_ier = channel->curr_ier;
1605		channel->curr_ier = 0;
1606		break;
1607	default:
1608		return (-1);
1609	}
1610
1611	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1612
1613	axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
1614	    channel->curr_ier);
1615
1616	return (0);
1617}
1618
1619static int
1620__xgbe_exit(struct xgbe_prv_data *pdata)
1621{
1622	unsigned int count = 2000;
1623
1624	/* Issue a software reset */
1625	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1626	DELAY(10);
1627
1628	/* Poll Until Poll Condition */
1629	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1630		DELAY(500);
1631
1632	if (!count)
1633		return (-EBUSY);
1634
1635	return (0);
1636}
1637
1638static int
1639xgbe_exit(struct xgbe_prv_data *pdata)
1640{
1641	int ret;
1642
1643	/* To guard against possible incorrectly generated interrupts,
1644	 * issue the software reset twice.
1645	 */
1646	ret = __xgbe_exit(pdata);
1647	if (ret) {
1648		axgbe_error("%s: exit error %d\n", __func__, ret);
1649		return (ret);
1650	}
1651
1652	return (__xgbe_exit(pdata));
1653}
1654
1655static int
1656xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1657{
1658	unsigned int i, count;
1659
1660	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1661		return (0);
1662
1663	for (i = 0; i < pdata->tx_q_count; i++)
1664		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1665
1666	/* Poll Until Poll Condition */
1667	for (i = 0; i < pdata->tx_q_count; i++) {
1668		count = 2000;
1669		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1670							MTL_Q_TQOMR, FTQ))
1671			DELAY(500);
1672
1673		if (!count)
1674			return (-EBUSY);
1675	}
1676
1677	return (0);
1678}
1679
1680static void
1681xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1682{
1683	unsigned int sbmr;
1684
1685	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
1686
1687	/* Set enhanced addressing mode */
1688	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
1689
1690	/* Set the System Bus mode */
1691	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
1692	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
1693	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
1694	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
1695	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
1696
1697	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
1698
1699	/* Set descriptor fetching threshold */
1700	if (pdata->vdata->tx_desc_prefetch)
1701		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
1702		    pdata->vdata->tx_desc_prefetch);
1703
1704	if (pdata->vdata->rx_desc_prefetch)
1705		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
1706		    pdata->vdata->rx_desc_prefetch);
1707}
1708
1709static void
1710xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1711{
1712	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
1713	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
1714	if (pdata->awarcr)
1715		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
1716}
1717
1718static void
1719xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1720{
1721	unsigned int i;
1722
1723	/* Set Tx to weighted round robin scheduling algorithm */
1724	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1725
1726	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1727	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1728		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1729		    MTL_TSA_ETS);
1730		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1731	}
1732
1733	/* Set Rx to strict priority algorithm */
1734	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1735}
1736
1737static void
1738xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
1739    unsigned int queue, unsigned int q_fifo_size)
1740{
1741	unsigned int frame_fifo_size;
1742	unsigned int rfa, rfd;
1743
1744	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
1745	axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
1746	    __func__, queue, q_fifo_size, frame_fifo_size);
1747
1748	/* TODO - add pfc/ets related support */
1749
1750	/* This path deals with just maximum frame sizes which are
1751	 * limited to a jumbo frame of 9,000 (plus headers, etc.)
1752	 * so we can never exceed the maximum allowable RFA/RFD
1753	 * values.
1754	 */
1755	if (q_fifo_size <= 2048) {
1756		/* rx_rfd to zero to signal no flow control */
1757		pdata->rx_rfa[queue] = 0;
1758		pdata->rx_rfd[queue] = 0;
1759		return;
1760	}
1761
1762	if (q_fifo_size <= 4096) {
1763		/* Between 2048 and 4096 */
1764		pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
1765		pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
1766		return;
1767	}
1768
1769	if (q_fifo_size <= frame_fifo_size) {
1770		/* Between 4096 and max-frame */
1771		pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
1772		pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
1773		return;
1774	}
1775
1776	if (q_fifo_size <= (frame_fifo_size * 3)) {
1777		/* Between max-frame and 3 max-frames,
1778		 * trigger if we get just over a frame of data and
1779		 * resume when we have just under half a frame left.
1780		 */
1781		rfa = q_fifo_size - frame_fifo_size;
1782		rfd = rfa + (frame_fifo_size / 2);
1783	} else {
1784		/* Above 3 max-frames - trigger when just over
1785		 * 2 frames of space available
1786		 */
1787		rfa = frame_fifo_size * 2;
1788		rfa += XGMAC_FLOW_CONTROL_UNIT;
1789		rfd = rfa + frame_fifo_size;
1790	}
1791
1792	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
1793	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
1794	axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
1795	    queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
1796}
1797
1798static void
1799xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
1800    unsigned int *fifo)
1801{
1802	unsigned int q_fifo_size;
1803	unsigned int i;
1804
1805	for (i = 0; i < pdata->rx_q_count; i++) {
1806		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
1807
1808		axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
1809		    __func__, i, fifo[i], q_fifo_size);
1810		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
1811	}
1812}
1813
1814static void
1815xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
1816{
1817	unsigned int i;
1818
1819	for (i = 0; i < pdata->rx_q_count; i++) {
1820		axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
1821		    pdata->rx_rfa[i], pdata->rx_rfd[i]);
1822
1823		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
1824				       pdata->rx_rfa[i]);
1825		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
1826				       pdata->rx_rfd[i]);
1827
1828		axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
1829		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
1830	}
1831}
1832
1833static unsigned int
1834xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
1835{
1836	/* The configured value may not be the actual amount of fifo RAM */
1837	return (min_t(unsigned int, pdata->tx_max_fifo_size,
1838	    pdata->hw_feat.tx_fifo_size));
1839}
1840
1841static unsigned int
1842xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
1843{
1844	/* The configured value may not be the actual amount of fifo RAM */
1845	return (min_t(unsigned int, pdata->rx_max_fifo_size,
1846	    pdata->hw_feat.rx_fifo_size));
1847}
1848
1849static void
1850xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
1851    unsigned int *fifo)
1852{
1853	unsigned int q_fifo_size;
1854	unsigned int p_fifo;
1855	unsigned int i;
1856
1857	q_fifo_size = fifo_size / queue_count;
1858
1859	/* Calculate the fifo setting by dividing the queue's fifo size
1860	 * by the fifo allocation increment (with 0 representing the
1861	 * base allocation increment so decrement the result by 1).
1862	 */
1863	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
1864	if (p_fifo)
1865		p_fifo--;
1866
1867	/* Distribute the fifo equally amongst the queues */
1868	for (i = 0; i < queue_count; i++)
1869		fifo[i] = p_fifo;
1870}
1871
1872static unsigned int
1873xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
1874    unsigned int *fifo)
1875{
1876	unsigned int i;
1877
1878	MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
1879
1880	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
1881		return (fifo_size);
1882
1883	/* Rx queues 9 and up are for specialized packets,
1884	 * such as PTP or DCB control packets, etc. and
1885	 * don't require a large fifo
1886	 */
1887	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
1888		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
1889		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
1890	}
1891
1892	return (fifo_size);
1893}
1894
1895static void
1896xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1897{
1898	unsigned int fifo_size;
1899	unsigned int fifo[XGBE_MAX_QUEUES];
1900	unsigned int i;
1901
1902	fifo_size = xgbe_get_tx_fifo_size(pdata);
1903	axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
1904
1905	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
1906
1907	for (i = 0; i < pdata->tx_q_count; i++) {
1908		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
1909		axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
1910		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
1911	}
1912
1913	axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
1914	    pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1915}
1916
1917static void
1918xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1919{
1920	unsigned int fifo_size;
1921	unsigned int fifo[XGBE_MAX_QUEUES];
1922	unsigned int prio_queues;
1923	unsigned int i;
1924
1925	/* TODO - add pfc/ets related support */
1926
1927	/* Clear any DCB related fifo/queue information */
1928	fifo_size = xgbe_get_rx_fifo_size(pdata);
1929	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1930	axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
1931	    fifo_size, pdata->rx_q_count, prio_queues);
1932
1933	/* Assign a minimum fifo to the non-VLAN priority queues */
1934	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
1935
1936	xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
1937
1938	for (i = 0; i < pdata->rx_q_count; i++) {
1939		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
1940		axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
1941		    XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
1942	}
1943
1944	xgbe_calculate_flow_control_threshold(pdata, fifo);
1945	xgbe_config_flow_control_threshold(pdata);
1946
1947	axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
1948	    pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1949}
1950
1951static void
1952xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1953{
1954	unsigned int qptc, qptc_extra, queue;
1955	unsigned int prio_queues;
1956	unsigned int ppq, ppq_extra, prio;
1957	unsigned int mask;
1958	unsigned int i, j, reg, reg_val;
1959
1960	/* Map the MTL Tx Queues to Traffic Classes
1961	 *   Note: Tx Queues >= Traffic Classes
1962	 */
1963	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
1964	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
1965
1966	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
1967		for (j = 0; j < qptc; j++) {
1968			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1969			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1970			    Q2TCMAP, i);
1971			pdata->q2tc_map[queue++] = i;
1972		}
1973
1974		if (i < qptc_extra) {
1975			axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1976			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1977			    Q2TCMAP, i);
1978			pdata->q2tc_map[queue++] = i;
1979		}
1980	}
1981
1982	/* Map the 8 VLAN priority values to available MTL Rx queues */
1983	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1984	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
1985	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
1986
1987	reg = MAC_RQC2R;
1988	reg_val = 0;
1989	for (i = 0, prio = 0; i < prio_queues;) {
1990		mask = 0;
1991		for (j = 0; j < ppq; j++) {
1992			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1993			mask |= (1 << prio);
1994			pdata->prio2q_map[prio++] = i;
1995		}
1996
1997		if (i < ppq_extra) {
1998			axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1999			mask |= (1 << prio);
2000			pdata->prio2q_map[prio++] = i;
2001		}
2002
2003		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2004
2005		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2006			continue;
2007
2008		XGMAC_IOWRITE(pdata, reg, reg_val);
2009		reg += MAC_RQC2_INC;
2010		reg_val = 0;
2011	}
2012
2013	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2014	reg = MTL_RQDCM0R;
2015	reg_val = 0;
2016	for (i = 0; i < pdata->rx_q_count;) {
2017		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2018
2019		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2020			continue;
2021
2022		XGMAC_IOWRITE(pdata, reg, reg_val);
2023
2024		reg += MTL_RQDCM_INC;
2025		reg_val = 0;
2026	}
2027}
2028
2029static void
2030xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2031{
2032	xgbe_set_mac_address(pdata, IF_LLADDR(pdata->netdev));
2033
2034	/* Filtering is done using perfect filtering and hash filtering */
2035	if (pdata->hw_feat.hash_table_size) {
2036		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2037		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2038		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2039	}
2040}
2041
2042static void
2043xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2044{
2045	unsigned int val;
2046
2047	val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2048
2049	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2050}
2051
2052static void
2053xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2054{
2055	xgbe_set_speed(pdata, pdata->phy_speed);
2056}
2057
2058static void
2059xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2060{
2061	if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
2062		xgbe_enable_rx_csum(pdata);
2063	else
2064		xgbe_disable_rx_csum(pdata);
2065}
2066
2067static void
2068xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2069{
2070	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2071	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2072	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2073
2074	/* Set the current VLAN Hash Table register value */
2075	xgbe_update_vlan_hash_table(pdata);
2076
2077	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
2078		axgbe_printf(1, "Enabling rx vlan filtering\n");
2079		xgbe_enable_rx_vlan_filtering(pdata);
2080	} else {
2081		axgbe_printf(1, "Disabling rx vlan filtering\n");
2082		xgbe_disable_rx_vlan_filtering(pdata);
2083	}
2084
2085	if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
2086		axgbe_printf(1, "Enabling rx vlan stripping\n");
2087		xgbe_enable_rx_vlan_stripping(pdata);
2088	} else {
2089		axgbe_printf(1, "Disabling rx vlan stripping\n");
2090		xgbe_disable_rx_vlan_stripping(pdata);
2091	}
2092}
2093
2094static uint64_t
2095xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2096{
2097	bool read_hi;
2098	uint64_t val;
2099
2100	if (pdata->vdata->mmc_64bit) {
2101		switch (reg_lo) {
2102		/* These registers are always 32 bit */
2103		case MMC_RXRUNTERROR:
2104		case MMC_RXJABBERERROR:
2105		case MMC_RXUNDERSIZE_G:
2106		case MMC_RXOVERSIZE_G:
2107		case MMC_RXWATCHDOGERROR:
2108			read_hi = false;
2109			break;
2110
2111		default:
2112			read_hi = true;
2113		}
2114	} else {
2115		switch (reg_lo) {
2116		/* These registers are always 64 bit */
2117		case MMC_TXOCTETCOUNT_GB_LO:
2118		case MMC_TXOCTETCOUNT_G_LO:
2119		case MMC_RXOCTETCOUNT_GB_LO:
2120		case MMC_RXOCTETCOUNT_G_LO:
2121			read_hi = true;
2122			break;
2123
2124		default:
2125			read_hi = false;
2126		}
2127	}
2128
2129	val = XGMAC_IOREAD(pdata, reg_lo);
2130
2131	if (read_hi)
2132		val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2133
2134	return (val);
2135}
2136
2137static void
2138xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2139{
2140	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2141	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2142
2143	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2144		stats->txoctetcount_gb +=
2145		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2146
2147	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2148		stats->txframecount_gb +=
2149		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2150
2151	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2152		stats->txbroadcastframes_g +=
2153		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2154
2155	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2156		stats->txmulticastframes_g +=
2157		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2158
2159	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2160		stats->tx64octets_gb +=
2161		    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2162
2163	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2164		stats->tx65to127octets_gb +=
2165		    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2166
2167	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2168		stats->tx128to255octets_gb +=
2169		    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2170
2171	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2172		stats->tx256to511octets_gb +=
2173		    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2174
2175	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2176		stats->tx512to1023octets_gb +=
2177		    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2178
2179	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2180		stats->tx1024tomaxoctets_gb +=
2181		    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2182
2183	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2184		stats->txunicastframes_gb +=
2185		    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2186
2187	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2188		stats->txmulticastframes_gb +=
2189		    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2190
2191	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2192		stats->txbroadcastframes_g +=
2193		    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2194
2195	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2196		stats->txunderflowerror +=
2197		    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2198
2199	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2200		stats->txoctetcount_g +=
2201		    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2202
2203	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2204		stats->txframecount_g +=
2205		    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2206
2207	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2208		stats->txpauseframes +=
2209		    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2210
2211	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2212		stats->txvlanframes_g +=
2213		    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2214}
2215
2216static void
2217xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2218{
2219	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2220	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2221
2222	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2223		stats->rxframecount_gb +=
2224		    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2225
2226	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2227		stats->rxoctetcount_gb +=
2228		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2229
2230	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2231		stats->rxoctetcount_g +=
2232		    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2233
2234	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2235		stats->rxbroadcastframes_g +=
2236		    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2237
2238	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2239		stats->rxmulticastframes_g +=
2240		    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2241
2242	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2243		stats->rxcrcerror +=
2244		    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2245
2246	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2247		stats->rxrunterror +=
2248		    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2249
2250	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2251		stats->rxjabbererror +=
2252		    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2253
2254	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2255		stats->rxundersize_g +=
2256		    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2257
2258	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2259		stats->rxoversize_g +=
2260		    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2261
2262	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2263		stats->rx64octets_gb +=
2264		    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2265
2266	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2267		stats->rx65to127octets_gb +=
2268		    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2269
2270	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2271		stats->rx128to255octets_gb +=
2272		    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2273
2274	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2275		stats->rx256to511octets_gb +=
2276		    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2277
2278	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2279		stats->rx512to1023octets_gb +=
2280		    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2281
2282	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2283		stats->rx1024tomaxoctets_gb +=
2284		    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2285
2286	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2287		stats->rxunicastframes_g +=
2288		    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2289
2290	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2291		stats->rxlengtherror +=
2292		    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2293
2294	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2295		stats->rxoutofrangetype +=
2296		    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2297
2298	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2299		stats->rxpauseframes +=
2300		    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2301
2302	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2303		stats->rxfifooverflow +=
2304		    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2305
2306	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2307		stats->rxvlanframes_gb +=
2308		    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2309
2310	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2311		stats->rxwatchdogerror +=
2312		    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2313}
2314
2315static void
2316xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2317{
2318	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2319
2320	/* Freeze counters */
2321	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2322
2323	stats->txoctetcount_gb +=
2324	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2325
2326	stats->txframecount_gb +=
2327	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2328
2329	stats->txbroadcastframes_g +=
2330	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2331
2332	stats->txmulticastframes_g +=
2333	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2334
2335	stats->tx64octets_gb +=
2336	    xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2337
2338	stats->tx65to127octets_gb +=
2339	    xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2340
2341	stats->tx128to255octets_gb +=
2342	    xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2343
2344	stats->tx256to511octets_gb +=
2345	    xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2346
2347	stats->tx512to1023octets_gb +=
2348	    xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2349
2350	stats->tx1024tomaxoctets_gb +=
2351	    xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2352
2353	stats->txunicastframes_gb +=
2354	    xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2355
2356	stats->txmulticastframes_gb +=
2357	    xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2358
2359	stats->txbroadcastframes_gb +=
2360	    xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2361
2362	stats->txunderflowerror +=
2363	    xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2364
2365	stats->txoctetcount_g +=
2366	    xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2367
2368	stats->txframecount_g +=
2369	    xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2370
2371	stats->txpauseframes +=
2372	    xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2373
2374	stats->txvlanframes_g +=
2375	    xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2376
2377	stats->rxframecount_gb +=
2378	    xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2379
2380	stats->rxoctetcount_gb +=
2381	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2382
2383	stats->rxoctetcount_g +=
2384	    xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2385
2386	stats->rxbroadcastframes_g +=
2387	    xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2388
2389	stats->rxmulticastframes_g +=
2390	    xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2391
2392	stats->rxcrcerror +=
2393	    xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2394
2395	stats->rxrunterror +=
2396	    xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2397
2398	stats->rxjabbererror +=
2399	    xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2400
2401	stats->rxundersize_g +=
2402	    xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2403
2404	stats->rxoversize_g +=
2405	    xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2406
2407	stats->rx64octets_gb +=
2408	    xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2409
2410	stats->rx65to127octets_gb +=
2411	    xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2412
2413	stats->rx128to255octets_gb +=
2414	    xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2415
2416	stats->rx256to511octets_gb +=
2417	    xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2418
2419	stats->rx512to1023octets_gb +=
2420	    xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2421
2422	stats->rx1024tomaxoctets_gb +=
2423	    xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2424
2425	stats->rxunicastframes_g +=
2426	    xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2427
2428	stats->rxlengtherror +=
2429	    xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2430
2431	stats->rxoutofrangetype +=
2432	    xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2433
2434	stats->rxpauseframes +=
2435	    xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2436
2437	stats->rxfifooverflow +=
2438	    xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2439
2440	stats->rxvlanframes_gb +=
2441	    xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2442
2443	stats->rxwatchdogerror +=
2444	    xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2445
2446	/* Un-freeze counters */
2447	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2448}
2449
2450static void
2451xgbe_config_mmc(struct xgbe_prv_data *pdata)
2452{
2453	/* Set counters to reset on read */
2454	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2455
2456	/* Reset the counters */
2457	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2458}
2459
2460static void
2461xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2462{
2463	unsigned int tx_status;
2464	unsigned long tx_timeout;
2465
2466	/* The Tx engine cannot be stopped if it is actively processing
2467	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
2468	 * wait forever though...
2469	 */
2470	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2471	while (ticks < tx_timeout) {
2472		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
2473		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
2474		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
2475			break;
2476
2477		DELAY(500);
2478	}
2479
2480	if (ticks >= tx_timeout)
2481		axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
2482		    queue);
2483}
2484
2485static void
2486xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2487{
2488	unsigned int tx_dsr, tx_pos, tx_qidx;
2489	unsigned int tx_status;
2490	unsigned long tx_timeout;
2491
2492	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
2493		return (xgbe_txq_prepare_tx_stop(pdata, queue));
2494
2495	/* Calculate the status register to read and the position within */
2496	if (queue < DMA_DSRX_FIRST_QUEUE) {
2497		tx_dsr = DMA_DSR0;
2498		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
2499	} else {
2500		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
2501
2502		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2503		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2504			 DMA_DSRX_TPS_START;
2505	}
2506
2507	/* The Tx engine cannot be stopped if it is actively processing
2508	 * descriptors. Wait for the Tx engine to enter the stopped or
2509	 * suspended state.  Don't wait forever though...
2510	 */
2511	tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2512	while (ticks < tx_timeout) {
2513		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2514		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2515		if ((tx_status == DMA_TPS_STOPPED) ||
2516		    (tx_status == DMA_TPS_SUSPENDED))
2517			break;
2518
2519		DELAY(500);
2520	}
2521
2522	if (ticks >= tx_timeout)
2523		axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
2524		    queue);
2525}
2526
2527static void
2528xgbe_enable_tx(struct xgbe_prv_data *pdata)
2529{
2530	unsigned int i;
2531
2532	/* Enable each Tx DMA channel */
2533	for (i = 0; i < pdata->channel_count; i++) {
2534		if (!pdata->channel[i]->tx_ring)
2535			break;
2536
2537		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2538	}
2539
2540	/* Enable each Tx queue */
2541	for (i = 0; i < pdata->tx_q_count; i++)
2542		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2543		    MTL_Q_ENABLED);
2544
2545	/* Enable MAC Tx */
2546	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2547}
2548
2549static void
2550xgbe_disable_tx(struct xgbe_prv_data *pdata)
2551{
2552	unsigned int i;
2553
2554	/* Prepare for Tx DMA channel stop */
2555	for (i = 0; i < pdata->tx_q_count; i++)
2556		xgbe_prepare_tx_stop(pdata, i);
2557
2558	/* Disable MAC Tx */
2559	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2560
2561	/* Disable each Tx queue */
2562	for (i = 0; i < pdata->tx_q_count; i++)
2563		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2564
2565	/* Disable each Tx DMA channel */
2566	for (i = 0; i < pdata->channel_count; i++) {
2567		if (!pdata->channel[i]->tx_ring)
2568			break;
2569
2570		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2571	}
2572}
2573
2574static void
2575xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2576{
2577	unsigned int rx_status;
2578	unsigned long rx_timeout;
2579
2580	/* The Rx engine cannot be stopped if it is actively processing
2581	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
2582	 * wait forever though...
2583	 */
2584	rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2585	while (ticks < rx_timeout) {
2586		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
2587		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
2588		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
2589			break;
2590
2591		DELAY(500);
2592	}
2593
2594	if (ticks >= rx_timeout)
2595		axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
2596		    queue);
2597}
2598
2599static void
2600xgbe_enable_rx(struct xgbe_prv_data *pdata)
2601{
2602	unsigned int reg_val, i;
2603
2604	/* Enable each Rx DMA channel */
2605	for (i = 0; i < pdata->channel_count; i++) {
2606		if (!pdata->channel[i]->rx_ring)
2607			break;
2608
2609		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2610	}
2611
2612	/* Enable each Rx queue */
2613	reg_val = 0;
2614	for (i = 0; i < pdata->rx_q_count; i++)
2615		reg_val |= (0x02 << (i << 1));
2616	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2617
2618	/* Enable MAC Rx */
2619	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2620	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2621	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2622	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2623}
2624
2625static void
2626xgbe_disable_rx(struct xgbe_prv_data *pdata)
2627{
2628	unsigned int i;
2629
2630	/* Disable MAC Rx */
2631	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2632	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2633	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2634	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2635
2636	/* Prepare for Rx DMA channel stop */
2637	for (i = 0; i < pdata->rx_q_count; i++)
2638		xgbe_prepare_rx_stop(pdata, i);
2639
2640	/* Disable each Rx queue */
2641	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2642
2643	/* Disable each Rx DMA channel */
2644	for (i = 0; i < pdata->channel_count; i++) {
2645		if (!pdata->channel[i]->rx_ring)
2646			break;
2647
2648		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2649	}
2650}
2651
2652static void
2653xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2654{
2655	unsigned int i;
2656
2657	/* Enable each Tx DMA channel */
2658	for (i = 0; i < pdata->channel_count; i++) {
2659		if (!pdata->channel[i]->tx_ring)
2660			break;
2661
2662		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2663	}
2664
2665	/* Enable MAC Tx */
2666	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2667}
2668
2669static void
2670xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2671{
2672	unsigned int i;
2673
2674	/* Prepare for Tx DMA channel stop */
2675	for (i = 0; i < pdata->tx_q_count; i++)
2676		xgbe_prepare_tx_stop(pdata, i);
2677
2678	/* Disable MAC Tx */
2679	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2680
2681	/* Disable each Tx DMA channel */
2682	for (i = 0; i < pdata->channel_count; i++) {
2683		if (!pdata->channel[i]->tx_ring)
2684			break;
2685
2686		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2687	}
2688}
2689
2690static void
2691xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2692{
2693	unsigned int i;
2694
2695	/* Enable each Rx DMA channel */
2696	for (i = 0; i < pdata->channel_count; i++) {
2697		if (!pdata->channel[i]->rx_ring)
2698			break;
2699
2700		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2701	}
2702}
2703
2704static void
2705xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2706{
2707	unsigned int i;
2708
2709	/* Disable each Rx DMA channel */
2710	for (i = 0; i < pdata->channel_count; i++) {
2711		if (!pdata->channel[i]->rx_ring)
2712			break;
2713
2714		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2715	}
2716}
2717
2718static int
2719xgbe_init(struct xgbe_prv_data *pdata)
2720{
2721	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2722	int ret;
2723
2724	/* Flush Tx queues */
2725	ret = xgbe_flush_tx_queues(pdata);
2726	if (ret) {
2727		axgbe_error("error flushing TX queues\n");
2728		return (ret);
2729	}
2730
2731	/*
2732	 * Initialize DMA related features
2733	 */
2734	xgbe_config_dma_bus(pdata);
2735	xgbe_config_dma_cache(pdata);
2736	xgbe_config_osp_mode(pdata);
2737	xgbe_config_pbl_val(pdata);
2738	xgbe_config_rx_coalesce(pdata);
2739	xgbe_config_tx_coalesce(pdata);
2740	xgbe_config_rx_buffer_size(pdata);
2741	xgbe_config_tso_mode(pdata);
2742	xgbe_config_sph_mode(pdata);
2743	xgbe_config_rss(pdata);
2744	desc_if->wrapper_tx_desc_init(pdata);
2745	desc_if->wrapper_rx_desc_init(pdata);
2746	xgbe_enable_dma_interrupts(pdata);
2747
2748	/*
2749	 * Initialize MTL related features
2750	 */
2751	xgbe_config_mtl_mode(pdata);
2752	xgbe_config_queue_mapping(pdata);
2753	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2754	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2755	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2756	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2757	xgbe_config_tx_fifo_size(pdata);
2758	xgbe_config_rx_fifo_size(pdata);
2759	/*TODO: Error Packet and undersized good Packet forwarding enable
2760		(FEP and FUP)
2761	 */
2762	xgbe_enable_mtl_interrupts(pdata);
2763
2764	/*
2765	 * Initialize MAC related features
2766	 */
2767	xgbe_config_mac_address(pdata);
2768	xgbe_config_rx_mode(pdata);
2769	xgbe_config_jumbo_enable(pdata);
2770	xgbe_config_flow_control(pdata);
2771	xgbe_config_mac_speed(pdata);
2772	xgbe_config_checksum_offload(pdata);
2773	xgbe_config_vlan_support(pdata);
2774	xgbe_config_mmc(pdata);
2775	xgbe_enable_mac_interrupts(pdata);
2776
2777	return (0);
2778}
2779
2780void
2781xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2782{
2783
2784	hw_if->tx_complete = xgbe_tx_complete;
2785
2786	hw_if->set_mac_address = xgbe_set_mac_address;
2787	hw_if->config_rx_mode = xgbe_config_rx_mode;
2788
2789	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2790	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2791
2792	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2793	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2794	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2795	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2796	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2797
2798	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2799	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2800
2801	hw_if->set_speed = xgbe_set_speed;
2802
2803	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
2804	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
2805	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
2806
2807	hw_if->set_gpio = xgbe_set_gpio;
2808	hw_if->clr_gpio = xgbe_clr_gpio;
2809
2810	hw_if->enable_tx = xgbe_enable_tx;
2811	hw_if->disable_tx = xgbe_disable_tx;
2812	hw_if->enable_rx = xgbe_enable_rx;
2813	hw_if->disable_rx = xgbe_disable_rx;
2814
2815	hw_if->powerup_tx = xgbe_powerup_tx;
2816	hw_if->powerdown_tx = xgbe_powerdown_tx;
2817	hw_if->powerup_rx = xgbe_powerup_rx;
2818	hw_if->powerdown_rx = xgbe_powerdown_rx;
2819
2820	hw_if->dev_read = xgbe_dev_read;
2821	hw_if->enable_int = xgbe_enable_int;
2822	hw_if->disable_int = xgbe_disable_int;
2823	hw_if->init = xgbe_init;
2824	hw_if->exit = xgbe_exit;
2825
2826	/* Descriptor related Sequences have to be initialized here */
2827	hw_if->tx_desc_init = xgbe_tx_desc_init;
2828	hw_if->rx_desc_init = xgbe_rx_desc_init;
2829	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2830	hw_if->is_last_desc = xgbe_is_last_desc;
2831	hw_if->is_context_desc = xgbe_is_context_desc;
2832
2833	/* For FLOW ctrl */
2834	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2835	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2836
2837	/* For RX coalescing */
2838	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2839	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2840	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2841	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2842
2843	/* For RX and TX threshold config */
2844	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2845	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2846
2847	/* For RX and TX Store and Forward Mode config */
2848	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2849	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2850
2851	/* For TX DMA Operating on Second Frame config */
2852	hw_if->config_osp_mode = xgbe_config_osp_mode;
2853
2854	/* For MMC statistics support */
2855	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2856	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2857	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2858
2859	/* For Receive Side Scaling */
2860	hw_if->enable_rss = xgbe_enable_rss;
2861	hw_if->disable_rss = xgbe_disable_rss;
2862	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2863	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2864}
2865