1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer,
12 *    without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 *    redistribution must be conditioned upon including a substantially
16 *    similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35/*
36 * Driver for the Atheros Wireless LAN controller.
37 *
38 * This software is derived from work of Atsushi Onoe; his contribution
39 * is greatly appreciated.
40 */
41
42#include "opt_inet.h"
43#include "opt_ath.h"
44/*
45 * This is needed for register operations which are performed
46 * by the driver - eg, calls to ath_hal_gettsf32().
47 *
48 * It's also required for any AH_DEBUG checks in here, eg the
49 * module dependencies.
50 */
51#include "opt_ah.h"
52#include "opt_wlan.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysctl.h>
57#include <sys/mbuf.h>
58#include <sys/malloc.h>
59#include <sys/lock.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/socket.h>
63#include <sys/sockio.h>
64#include <sys/errno.h>
65#include <sys/callout.h>
66#include <sys/bus.h>
67#include <sys/endian.h>
68#include <sys/kthread.h>
69#include <sys/taskqueue.h>
70#include <sys/priv.h>
71#include <sys/module.h>
72#include <sys/ktr.h>
73#include <sys/smp.h>	/* for mp_ncpus */
74
75#include <machine/bus.h>
76
77#include <net/if.h>
78#include <net/if_var.h>
79#include <net/if_dl.h>
80#include <net/if_media.h>
81#include <net/if_types.h>
82#include <net/if_arp.h>
83#include <net/ethernet.h>
84#include <net/if_llc.h>
85
86#include <net80211/ieee80211_var.h>
87#include <net80211/ieee80211_regdomain.h>
88#ifdef IEEE80211_SUPPORT_SUPERG
89#include <net80211/ieee80211_superg.h>
90#endif
91#ifdef IEEE80211_SUPPORT_TDMA
92#include <net80211/ieee80211_tdma.h>
93#endif
94
95#include <net/bpf.h>
96
97#ifdef INET
98#include <netinet/in.h>
99#include <netinet/if_ether.h>
100#endif
101
102#include <dev/ath/if_athvar.h>
103#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
104#include <dev/ath/ath_hal/ah_diagcodes.h>
105
106#include <dev/ath/if_ath_debug.h>
107#include <dev/ath/if_ath_misc.h>
108#include <dev/ath/if_ath_tsf.h>
109#include <dev/ath/if_ath_tx.h>
110#include <dev/ath/if_ath_sysctl.h>
111#include <dev/ath/if_ath_led.h>
112#include <dev/ath/if_ath_keycache.h>
113#include <dev/ath/if_ath_rx.h>
114#include <dev/ath/if_ath_beacon.h>
115#include <dev/ath/if_athdfs.h>
116#include <dev/ath/if_ath_descdma.h>
117
118#ifdef ATH_TX99_DIAG
119#include <dev/ath/ath_tx99/ath_tx99.h>
120#endif
121
122#ifdef	ATH_DEBUG_ALQ
123#include <dev/ath/if_ath_alq.h>
124#endif
125
126#include <dev/ath/if_ath_lna_div.h>
127
128/*
129 * Calculate the receive filter according to the
130 * operating mode and state:
131 *
132 * o always accept unicast, broadcast, and multicast traffic
133 * o accept PHY error frames when hardware doesn't have MIB support
134 *   to count and we need them for ANI (sta mode only until recently)
135 *   and we are not scanning (ANI is disabled)
136 *   NB: older hal's add rx filter bits out of sight and we need to
137 *	 blindly preserve them
138 * o probe request frames are accepted only when operating in
139 *   hostap, adhoc, mesh, or monitor modes
140 * o enable promiscuous mode
141 *   - when in monitor mode
142 *   - if interface marked PROMISC (assumes bridge setting is filtered)
143 * o accept beacons:
144 *   - when operating in station mode for collecting rssi data when
145 *     the station is otherwise quiet, or
146 *   - when operating in adhoc mode so the 802.11 layer creates
147 *     node table entries for peers,
148 *   - when scanning
149 *   - when doing s/w beacon miss (e.g. for ap+sta)
150 *   - when operating in ap mode in 11g to detect overlapping bss that
151 *     require protection
152 *   - when operating in mesh mode to detect neighbors
153 * o accept control frames:
154 *   - when in monitor mode
155 * XXX HT protection for 11n
156 */
157u_int32_t
158ath_calcrxfilter(struct ath_softc *sc)
159{
160	struct ieee80211com *ic = &sc->sc_ic;
161	u_int32_t rfilt;
162
163	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
164	if (!sc->sc_needmib && !sc->sc_scanning)
165		rfilt |= HAL_RX_FILTER_PHYERR;
166	if (ic->ic_opmode != IEEE80211_M_STA)
167		rfilt |= HAL_RX_FILTER_PROBEREQ;
168	/* XXX ic->ic_monvaps != 0? */
169	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
170		rfilt |= HAL_RX_FILTER_PROM;
171
172	/*
173	 * Only listen to all beacons if we're scanning.
174	 *
175	 * Otherwise we only really need to hear beacons from
176	 * our own BSSID.
177	 *
178	 * IBSS? software beacon miss? Just receive all beacons.
179	 * We need to hear beacons/probe requests from everyone so
180	 * we can merge ibss.
181	 */
182	if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
183		rfilt |= HAL_RX_FILTER_BEACON;
184	} else if (ic->ic_opmode == IEEE80211_M_STA) {
185		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
186			rfilt |= HAL_RX_FILTER_MYBEACON;
187		} else { /* scanning, non-mybeacon chips */
188			rfilt |= HAL_RX_FILTER_BEACON;
189		}
190	}
191
192	/*
193	 * NB: We don't recalculate the rx filter when
194	 * ic_protmode changes; otherwise we could do
195	 * this only when ic_protmode != NONE.
196	 */
197	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
198	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
199		rfilt |= HAL_RX_FILTER_BEACON;
200
201	/*
202	 * Enable hardware PS-POLL RX only for hostap mode;
203	 * STA mode sends PS-POLL frames but never
204	 * receives them.
205	 */
206	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
207	    0, NULL) == HAL_OK &&
208	    ic->ic_opmode == IEEE80211_M_HOSTAP)
209		rfilt |= HAL_RX_FILTER_PSPOLL;
210
211	if (sc->sc_nmeshvaps) {
212		rfilt |= HAL_RX_FILTER_BEACON;
213		if (sc->sc_hasbmatch)
214			rfilt |= HAL_RX_FILTER_BSSID;
215		else
216			rfilt |= HAL_RX_FILTER_PROM;
217	}
218	if (ic->ic_opmode == IEEE80211_M_MONITOR)
219		rfilt |= HAL_RX_FILTER_CONTROL;
220
221	/*
222	 * Enable RX of compressed BAR frames only when doing
223	 * 802.11n. Required for A-MPDU.
224	 */
225	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
226		rfilt |= HAL_RX_FILTER_COMPBAR;
227
228	/*
229	 * Enable radar PHY errors if requested by the
230	 * DFS module.
231	 */
232	if (sc->sc_dodfs)
233		rfilt |= HAL_RX_FILTER_PHYRADAR;
234
235	/*
236	 * Enable spectral PHY errors if requested by the
237	 * spectral module.
238	 */
239	if (sc->sc_dospectral)
240		rfilt |= HAL_RX_FILTER_PHYRADAR;
241
242	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
243	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
244	return rfilt;
245}
246
247static int
248ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
249{
250	struct ath_hal *ah = sc->sc_ah;
251	int error;
252	struct mbuf *m;
253	struct ath_desc *ds;
254
255	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
256
257	m = bf->bf_m;
258	if (m == NULL) {
259		/*
260		 * NB: by assigning a page to the rx dma buffer we
261		 * implicitly satisfy the Atheros requirement that
262		 * this buffer be cache-line-aligned and sized to be
263		 * multiple of the cache line size.  Not doing this
264		 * causes weird stuff to happen (for the 5210 at least).
265		 */
266		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
267		if (m == NULL) {
268			DPRINTF(sc, ATH_DEBUG_ANY,
269				"%s: no mbuf/cluster\n", __func__);
270			sc->sc_stats.ast_rx_nombuf++;
271			return ENOMEM;
272		}
273		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
274
275		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
276					     bf->bf_dmamap, m,
277					     bf->bf_segs, &bf->bf_nseg,
278					     BUS_DMA_NOWAIT);
279		if (error != 0) {
280			DPRINTF(sc, ATH_DEBUG_ANY,
281			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
282			    __func__, error);
283			sc->sc_stats.ast_rx_busdma++;
284			m_freem(m);
285			return error;
286		}
287		KASSERT(bf->bf_nseg == 1,
288			("multi-segment packet; nseg %u", bf->bf_nseg));
289		bf->bf_m = m;
290	}
291	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
292
293	/*
294	 * Setup descriptors.  For receive we always terminate
295	 * the descriptor list with a self-linked entry so we'll
296	 * not get overrun under high load (as can happen with a
297	 * 5212 when ANI processing enables PHY error frames).
298	 *
299	 * To insure the last descriptor is self-linked we create
300	 * each descriptor as self-linked and add it to the end.  As
301	 * each additional descriptor is added the previous self-linked
302	 * entry is ``fixed'' naturally.  This should be safe even
303	 * if DMA is happening.  When processing RX interrupts we
304	 * never remove/process the last, self-linked, entry on the
305	 * descriptor list.  This insures the hardware always has
306	 * someplace to write a new frame.
307	 */
308	/*
309	 * 11N: we can no longer afford to self link the last descriptor.
310	 * MAC acknowledges BA status as long as it copies frames to host
311	 * buffer (or rx fifo). This can incorrectly acknowledge packets
312	 * to a sender if last desc is self-linked.
313	 */
314	ds = bf->bf_desc;
315	if (sc->sc_rxslink)
316		ds->ds_link = bf->bf_daddr;	/* link to self */
317	else
318		ds->ds_link = 0;		/* terminate the list */
319	ds->ds_data = bf->bf_segs[0].ds_addr;
320	ath_hal_setuprxdesc(ah, ds
321		, m->m_len		/* buffer size */
322		, 0
323	);
324
325	if (sc->sc_rxlink != NULL)
326		*sc->sc_rxlink = bf->bf_daddr;
327	sc->sc_rxlink = &ds->ds_link;
328	return 0;
329}
330
331/*
332 * Intercept management frames to collect beacon rssi data
333 * and to do ibss merges.
334 */
335void
336ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
337	int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
338{
339	struct ieee80211vap *vap = ni->ni_vap;
340	struct ath_softc *sc = vap->iv_ic->ic_softc;
341	uint64_t tsf_beacon_old, tsf_beacon;
342	uint64_t nexttbtt;
343	int64_t tsf_delta;
344	int32_t tsf_delta_bmiss;
345	int32_t tsf_remainder;
346	uint64_t tsf_beacon_target;
347	int tsf_intval;
348
349	tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
350	tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
351
352#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
353	tsf_intval = 1;
354	if (ni->ni_intval > 0) {
355		tsf_intval = TU_TO_TSF(ni->ni_intval);
356	}
357#undef	TU_TO_TSF
358
359	/*
360	 * Call up first so subsequent work can use information
361	 * potentially stored in the node (e.g. for ibss merge).
362	 */
363	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
364	switch (subtype) {
365	case IEEE80211_FC0_SUBTYPE_BEACON:
366		/*
367		 * Always update the per-node beacon RSSI if we're hearing
368		 * beacons from that node.
369		 */
370		ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgbrssi, rssi);
371
372		/*
373		 * Only do the following processing if it's for
374		 * the current BSS.
375		 *
376		 * In scan and IBSS mode we receive all beacons,
377		 * which means we need to filter out stuff
378		 * that isn't for us or we'll end up constantly
379		 * trying to sync / merge to BSSes that aren't
380		 * actually us.
381		 */
382		if ((vap->iv_opmode != IEEE80211_M_HOSTAP) &&
383		    IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
384			/* update rssi statistics for use by the hal */
385			/* XXX unlocked check against vap->iv_bss? */
386			ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
387
388			tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
389			tsf_beacon |= le32dec(ni->ni_tstamp.data);
390
391			nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
392
393			/*
394			 * Let's calculate the delta and remainder, so we can see
395			 * if the beacon timer from the AP is varying by more than
396			 * a few TU.  (Which would be a huge, huge problem.)
397			 */
398			tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
399
400			tsf_delta_bmiss = tsf_delta / tsf_intval;
401
402			/*
403			 * If our delta is greater than half the beacon interval,
404			 * let's round the bmiss value up to the next beacon
405			 * interval.  Ie, we're running really, really early
406			 * on the next beacon.
407			 */
408			if (tsf_delta % tsf_intval > (tsf_intval / 2))
409				tsf_delta_bmiss ++;
410
411			tsf_beacon_target = tsf_beacon_old +
412			    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
413
414			/*
415			 * The remainder using '%' is between 0 .. intval-1.
416			 * If we're actually running too fast, then the remainder
417			 * will be some large number just under intval-1.
418			 * So we need to look at whether we're running
419			 * before or after the target beacon interval
420			 * and if we are, modify how we do the remainder
421			 * calculation.
422			 */
423			if (tsf_beacon < tsf_beacon_target) {
424				tsf_remainder =
425				    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
426			} else {
427				tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
428			}
429
430			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: old_tsf=%llu (%u), new_tsf=%llu (%u), target_tsf=%llu (%u), delta=%lld, bmiss=%d, remainder=%d\n",
431			    __func__,
432			    ieee80211_get_vap_ifname(vap),
433			    (unsigned long long) tsf_beacon_old,
434			    (unsigned int) (tsf_beacon_old >> 10),
435			    (unsigned long long) tsf_beacon,
436			    (unsigned int ) (tsf_beacon >> 10),
437			    (unsigned long long) tsf_beacon_target,
438			    (unsigned int) (tsf_beacon_target >> 10),
439			    (long long) tsf_delta,
440			    tsf_delta_bmiss,
441			    tsf_remainder);
442
443			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: ni=%6D bssid=%6D tsf=%llu (%u), nexttbtt=%llu (%u), delta=%d\n",
444			    __func__,
445			    ieee80211_get_vap_ifname(vap),
446			    ni->ni_bssid, ":",
447			    vap->iv_bss->ni_bssid, ":",
448			    (unsigned long long) tsf_beacon,
449			    (unsigned int) (tsf_beacon >> 10),
450			    (unsigned long long) nexttbtt,
451			    (unsigned int) (nexttbtt >> 10),
452			    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
453
454			/*
455			 * We only do syncbeacon on STA VAPs; not on IBSS;
456			 * but don't do it with swbmiss enabled or we
457			 * may end up overwriting AP mode beacon config.
458			 *
459			 * The driver (and net80211) should be smarter about
460			 * this..
461			 */
462			if (vap->iv_opmode == IEEE80211_M_STA &&
463			    sc->sc_syncbeacon &&
464			    (!sc->sc_swbmiss) &&
465			    ni == vap->iv_bss &&
466			    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
467				DPRINTF(sc, ATH_DEBUG_BEACON,
468				    "%s: syncbeacon=1; syncing\n",
469				    __func__);
470				/*
471				 * Resync beacon timers using the tsf of the beacon
472				 * frame we just received.
473				 */
474				ath_beacon_config(sc, vap);
475				sc->sc_syncbeacon = 0;
476			}
477		}
478
479		/* fall thru... */
480	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
481		if (vap->iv_opmode == IEEE80211_M_IBSS &&
482		    vap->iv_state == IEEE80211_S_RUN &&
483		    ieee80211_ibss_merge_check(ni)) {
484			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
485			uint64_t tsf = ath_extend_tsf(sc, rstamp,
486				ath_hal_gettsf64(sc->sc_ah));
487			/*
488			 * Handle ibss merge as needed; check the tsf on the
489			 * frame before attempting the merge.  The 802.11 spec
490			 * says the station should change it's bssid to match
491			 * the oldest station with the same ssid, where oldest
492			 * is determined by the tsf.  Note that hardware
493			 * reconfiguration happens through callback to
494			 * ath_newstate as the state machine will go from
495			 * RUN -> RUN when this happens.
496			 */
497			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
498				DPRINTF(sc, ATH_DEBUG_STATE,
499				    "ibss merge, rstamp %u tsf %ju "
500				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
501				    (uintmax_t)ni->ni_tstamp.tsf);
502				(void) ieee80211_ibss_merge(ni);
503			}
504		}
505		break;
506	}
507}
508
509#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
510static void
511ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
512    const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
513{
514
515	/* Fill in the extension bitmap */
516	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
517
518	/* Fill in the vendor header */
519	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
520	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
521	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
522
523	/* XXX what should this be? */
524	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
525	sc->sc_rx_th.wr_vh.vh_skip_len =
526	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
527
528	/* General version info */
529	sc->sc_rx_th.wr_v.vh_version = 1;
530
531	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
532
533	/* rssi */
534	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
535	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
536	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
537	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
538	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
539	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
540
541	/* evm */
542	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
543	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
544	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
545	/* These are only populated from the AR9300 or later */
546	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
547	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
548
549	/* direction */
550	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
551
552	/* RX rate */
553	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
554
555	/* RX flags */
556	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
557
558	if (rs->rs_isaggr)
559		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
560	if (rs->rs_moreaggr)
561		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
562
563	/* phyerr info */
564	if (rs->rs_status & HAL_RXERR_PHY) {
565		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
566		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
567	} else {
568		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
569	}
570	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
571	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
572}
573#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
574
575static void
576ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
577	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
578{
579#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
580#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
581#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
582#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
583	const HAL_RATE_TABLE *rt;
584	uint8_t rix;
585
586	rt = sc->sc_currates;
587	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
588	rix = rt->rateCodeToIndex[rs->rs_rate];
589	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
590	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
591
592	/* 802.11 specific flags */
593	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
594	if (rs->rs_status & HAL_RXERR_PHY) {
595		/*
596		 * PHY error - make sure the channel flags
597		 * reflect the actual channel configuration,
598		 * not the received frame.
599		 */
600		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
601			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
602		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
603			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
604		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
605			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
606	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
607		struct ieee80211com *ic = &sc->sc_ic;
608
609		if ((rs->rs_flags & HAL_RX_2040) == 0)
610			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
611		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
612			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
613		else
614			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
615
616		if (rs->rs_flags & HAL_RX_GI)
617			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
618	}
619
620	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
621	if (rs->rs_status & HAL_RXERR_CRC)
622		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
623	/* XXX propagate other error flags from descriptor */
624	sc->sc_rx_th.wr_antnoise = nf;
625	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
626	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
627#undef CHAN_HT
628#undef CHAN_HT20
629#undef CHAN_HT40U
630#undef CHAN_HT40D
631}
632
633static void
634ath_handle_micerror(struct ieee80211com *ic,
635	struct ieee80211_frame *wh, int keyix)
636{
637	struct ieee80211_node *ni;
638
639	/* XXX recheck MIC to deal w/ chips that lie */
640	/* XXX discard MIC errors on !data frames */
641	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
642	if (ni != NULL) {
643		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
644		ieee80211_free_node(ni);
645	}
646}
647
648/*
649 * Process a single packet.
650 *
651 * The mbuf must already be synced, unmapped and removed from bf->bf_m
652 * by this stage.
653 *
654 * The mbuf must be consumed by this routine - either passed up the
655 * net80211 stack, put on the holding queue, or freed.
656 */
657int
658ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
659    uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
660    struct mbuf *m)
661{
662	uint64_t rstamp;
663	/* XXX TODO: make this an mbuf tag? */
664	struct ieee80211_rx_stats rxs;
665	int len, type, i;
666	struct ieee80211com *ic = &sc->sc_ic;
667	struct ieee80211_node *ni;
668	int is_good = 0;
669	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
670
671	NET_EPOCH_ASSERT();
672
673	/*
674	 * Calculate the correct 64 bit TSF given
675	 * the TSF64 register value and rs_tstamp.
676	 */
677	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
678
679	/* 802.11 return codes - These aren't specifically errors */
680	if (rs->rs_flags & HAL_RX_GI)
681		sc->sc_stats.ast_rx_halfgi++;
682	if (rs->rs_flags & HAL_RX_2040)
683		sc->sc_stats.ast_rx_2040++;
684	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
685		sc->sc_stats.ast_rx_pre_crc_err++;
686	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
687		sc->sc_stats.ast_rx_post_crc_err++;
688	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
689		sc->sc_stats.ast_rx_decrypt_busy_err++;
690	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
691		sc->sc_stats.ast_rx_hi_rx_chain++;
692	if (rs->rs_flags & HAL_RX_STBC)
693		sc->sc_stats.ast_rx_stbc++;
694
695	if (rs->rs_status != 0) {
696		if (rs->rs_status & HAL_RXERR_CRC)
697			sc->sc_stats.ast_rx_crcerr++;
698		if (rs->rs_status & HAL_RXERR_FIFO)
699			sc->sc_stats.ast_rx_fifoerr++;
700		if (rs->rs_status & HAL_RXERR_PHY) {
701			sc->sc_stats.ast_rx_phyerr++;
702			/* Process DFS radar events */
703			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
704			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
705				/* Now pass it to the radar processing code */
706				ath_dfs_process_phy_err(sc, m, rstamp, rs);
707			}
708
709			/*
710			 * Be suitably paranoid about receiving phy errors
711			 * out of the stats array bounds
712			 */
713			if (rs->rs_phyerr < ATH_IOCTL_STATS_NUM_RX_PHYERR)
714				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
715			goto rx_error;	/* NB: don't count in ierrors */
716		}
717		if (rs->rs_status & HAL_RXERR_DECRYPT) {
718			/*
719			 * Decrypt error.  If the error occurred
720			 * because there was no hardware key, then
721			 * let the frame through so the upper layers
722			 * can process it.  This is necessary for 5210
723			 * parts which have no way to setup a ``clear''
724			 * key cache entry.
725			 *
726			 * XXX do key cache faulting
727			 */
728			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
729				goto rx_accept;
730			sc->sc_stats.ast_rx_badcrypt++;
731		}
732		/*
733		 * Similar as above - if the failure was a keymiss
734		 * just punt it up to the upper layers for now.
735		 */
736		if (rs->rs_status & HAL_RXERR_KEYMISS) {
737			sc->sc_stats.ast_rx_keymiss++;
738			goto rx_accept;
739		}
740		if (rs->rs_status & HAL_RXERR_MIC) {
741			sc->sc_stats.ast_rx_badmic++;
742			/*
743			 * Do minimal work required to hand off
744			 * the 802.11 header for notification.
745			 */
746			/* XXX frag's and qos frames */
747			len = rs->rs_datalen;
748			if (len >= sizeof (struct ieee80211_frame)) {
749				ath_handle_micerror(ic,
750				    mtod(m, struct ieee80211_frame *),
751				    sc->sc_splitmic ?
752					rs->rs_keyix-32 : rs->rs_keyix);
753			}
754		}
755		counter_u64_add(ic->ic_ierrors, 1);
756rx_error:
757		/*
758		 * Cleanup any pending partial frame.
759		 */
760		if (re->m_rxpending != NULL) {
761			m_freem(re->m_rxpending);
762			re->m_rxpending = NULL;
763		}
764		/*
765		 * When a tap is present pass error frames
766		 * that have been requested.  By default we
767		 * pass decrypt+mic errors but others may be
768		 * interesting (e.g. crc).
769		 */
770		if (ieee80211_radiotap_active(ic) &&
771		    (rs->rs_status & sc->sc_monpass)) {
772			/* NB: bpf needs the mbuf length setup */
773			len = rs->rs_datalen;
774			m->m_pkthdr.len = m->m_len = len;
775			ath_rx_tap(sc, m, rs, rstamp, nf);
776#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
777			ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
778#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
779			ieee80211_radiotap_rx_all(ic, m);
780		}
781		/* XXX pass MIC errors up for s/w reclaculation */
782		m_freem(m); m = NULL;
783		goto rx_next;
784	}
785rx_accept:
786	len = rs->rs_datalen;
787	m->m_len = len;
788
789	if (rs->rs_more) {
790		/*
791		 * Frame spans multiple descriptors; save
792		 * it for the next completed descriptor, it
793		 * will be used to construct a jumbogram.
794		 */
795		if (re->m_rxpending != NULL) {
796			/* NB: max frame size is currently 2 clusters */
797			sc->sc_stats.ast_rx_toobig++;
798			m_freem(re->m_rxpending);
799		}
800		m->m_pkthdr.len = len;
801		re->m_rxpending = m;
802		m = NULL;
803		goto rx_next;
804	} else if (re->m_rxpending != NULL) {
805		/*
806		 * This is the second part of a jumbogram,
807		 * chain it to the first mbuf, adjust the
808		 * frame length, and clear the rxpending state.
809		 */
810		re->m_rxpending->m_next = m;
811		re->m_rxpending->m_pkthdr.len += len;
812		m = re->m_rxpending;
813		re->m_rxpending = NULL;
814	} else {
815		/*
816		 * Normal single-descriptor receive; setup packet length.
817		 */
818		m->m_pkthdr.len = len;
819	}
820
821	/*
822	 * Validate rs->rs_antenna.
823	 *
824	 * Some users w/ AR9285 NICs have reported crashes
825	 * here because rs_antenna field is bogusly large.
826	 * Let's enforce the maximum antenna limit of 8
827	 * (and it shouldn't be hard coded, but that's a
828	 * separate problem) and if there's an issue, print
829	 * out an error and adjust rs_antenna to something
830	 * sensible.
831	 *
832	 * This code should be removed once the actual
833	 * root cause of the issue has been identified.
834	 * For example, it may be that the rs_antenna
835	 * field is only valid for the last frame of
836	 * an aggregate and it just happens that it is
837	 * "mostly" right. (This is a general statement -
838	 * the majority of the statistics are only valid
839	 * for the last frame in an aggregate.
840	 */
841	if (rs->rs_antenna >= ATH_IOCTL_STATS_NUM_RX_ANTENNA) {
842		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
843		    __func__, rs->rs_antenna);
844#ifdef	ATH_DEBUG
845		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
846#endif /* ATH_DEBUG */
847		rs->rs_antenna = 0;	/* XXX better than nothing */
848	}
849
850	/*
851	 * If this is an AR9285/AR9485, then the receive and LNA
852	 * configuration is stored in RSSI[2] / EXTRSSI[2].
853	 * We can extract this out to build a much better
854	 * receive antenna profile.
855	 *
856	 * Yes, this just blurts over the above RX antenna field
857	 * for now.  It's fine, the AR9285 doesn't really use
858	 * that.
859	 *
860	 * Later on we should store away the fine grained LNA
861	 * information and keep separate counters just for
862	 * that.  It'll help when debugging the AR9285/AR9485
863	 * combined diversity code.
864	 */
865	if (sc->sc_rx_lnamixer) {
866		rs->rs_antenna = 0;
867
868		/* Bits 0:1 - the LNA configuration used */
869		rs->rs_antenna |=
870		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
871		      >> HAL_RX_LNA_CFG_USED_S);
872
873		/* Bit 2 - the external RX antenna switch */
874		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
875			rs->rs_antenna |= 0x4;
876	}
877
878	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
879
880	/*
881	 * Populate the rx status block.  When there are bpf
882	 * listeners we do the additional work to provide
883	 * complete status.  Otherwise we fill in only the
884	 * material required by ieee80211_input.  Note that
885	 * noise setting is filled in above.
886	 */
887	if (ieee80211_radiotap_active(ic)) {
888		ath_rx_tap(sc, m, rs, rstamp, nf);
889#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
890		ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
891#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
892	}
893
894	/*
895	 * From this point on we assume the frame is at least
896	 * as large as ieee80211_frame_min; verify that.
897	 */
898	if (len < IEEE80211_MIN_LEN) {
899		if (!ieee80211_radiotap_active(ic)) {
900			DPRINTF(sc, ATH_DEBUG_RECV,
901			    "%s: short packet %d\n", __func__, len);
902			sc->sc_stats.ast_rx_tooshort++;
903		} else {
904			/* NB: in particular this captures ack's */
905			ieee80211_radiotap_rx_all(ic, m);
906		}
907		m_freem(m); m = NULL;
908		goto rx_next;
909	}
910
911	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
912		const HAL_RATE_TABLE *rt = sc->sc_currates;
913		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
914
915		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
916		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
917	}
918
919	m_adj(m, -IEEE80211_CRC_LEN);
920
921	/*
922	 * Locate the node for sender, track state, and then
923	 * pass the (referenced) node up to the 802.11 layer
924	 * for its use.
925	 */
926	ni = ieee80211_find_rxnode_withkey(ic,
927		mtod(m, const struct ieee80211_frame_min *),
928		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
929			IEEE80211_KEYIX_NONE : rs->rs_keyix);
930	sc->sc_lastrs = rs;
931
932	if (rs->rs_isaggr)
933		sc->sc_stats.ast_rx_agg++;
934
935	/*
936	 * Populate the per-chain RSSI values where appropriate.
937	 */
938	bzero(&rxs, sizeof(rxs));
939	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI |
940	    IEEE80211_R_C_CHAIN |
941	    IEEE80211_R_C_NF |
942	    IEEE80211_R_C_RSSI |
943	    IEEE80211_R_TSF64 |
944	    IEEE80211_R_TSF_START;	/* XXX TODO: validate */
945	rxs.c_rssi = rs->rs_rssi;
946	rxs.c_nf = nf;
947	rxs.c_chain = 3;	/* XXX TODO: check */
948	rxs.c_rx_tsf = rstamp;
949
950	for (i = 0; i < 3; i++) {
951		rxs.c_rssi_ctl[i] = rs->rs_rssi_ctl[i];
952		rxs.c_rssi_ext[i] = rs->rs_rssi_ext[i];
953		/*
954		 * XXX note: we currently don't track
955		 * per-chain noisefloor.
956		 */
957		rxs.c_nf_ctl[i] = nf;
958		rxs.c_nf_ext[i] = nf;
959	}
960
961	if (ni != NULL) {
962		/*
963		 * Only punt packets for ampdu reorder processing for
964		 * 11n nodes; net80211 enforces that M_AMPDU is only
965		 * set for 11n nodes.
966		 */
967		if (ni->ni_flags & IEEE80211_NODE_HT)
968			m->m_flags |= M_AMPDU;
969
970		/*
971		 * Inform rate control about the received RSSI.
972		 * It can then use this information to potentially drastically
973		 * alter the available rate based on the RSSI estimate.
974		 *
975		 * This is super important when associating to a far away station;
976		 * you don't want to waste time trying higher rates at some low
977		 * packet exchange rate (like during DHCP) just to establish
978		 * that higher MCS rates aren't available.
979		 */
980		ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgrssi,
981		    rs->rs_rssi);
982		ath_rate_update_rx_rssi(sc, ATH_NODE(ni),
983		    ATH_RSSI(ATH_NODE(ni)->an_node_stats.ns_avgrssi));
984
985		/*
986		 * Sending station is known, dispatch directly.
987		 */
988		(void) ieee80211_add_rx_params(m, &rxs);
989		type = ieee80211_input_mimo(ni, m);
990		ieee80211_free_node(ni);
991		m = NULL;
992		/*
993		 * Arrange to update the last rx timestamp only for
994		 * frames from our ap when operating in station mode.
995		 * This assumes the rx key is always setup when
996		 * associated.
997		 */
998		if (ic->ic_opmode == IEEE80211_M_STA &&
999		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
1000			is_good = 1;
1001	} else {
1002		(void) ieee80211_add_rx_params(m, &rxs);
1003		type = ieee80211_input_mimo_all(ic, m);
1004		m = NULL;
1005	}
1006
1007	/*
1008	 * At this point we have passed the frame up the stack; thus
1009	 * the mbuf is no longer ours.
1010	 */
1011
1012	/*
1013	 * Track legacy station RX rssi and do any rx antenna management.
1014	 */
1015	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
1016	if (sc->sc_diversity) {
1017		/*
1018		 * When using fast diversity, change the default rx
1019		 * antenna if diversity chooses the other antenna 3
1020		 * times in a row.
1021		 */
1022		if (sc->sc_defant != rs->rs_antenna) {
1023			if (++sc->sc_rxotherant >= 3)
1024				ath_setdefantenna(sc, rs->rs_antenna);
1025		} else
1026			sc->sc_rxotherant = 0;
1027	}
1028
1029	/* Handle slow diversity if enabled */
1030	if (sc->sc_dolnadiv) {
1031		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
1032	}
1033
1034	if (sc->sc_softled) {
1035		/*
1036		 * Blink for any data frame.  Otherwise do a
1037		 * heartbeat-style blink when idle.  The latter
1038		 * is mainly for station mode where we depend on
1039		 * periodic beacon frames to trigger the poll event.
1040		 */
1041		if (type == IEEE80211_FC0_TYPE_DATA) {
1042			const HAL_RATE_TABLE *rt = sc->sc_currates;
1043			ath_led_event(sc,
1044			    rt->rateCodeToIndex[rs->rs_rate]);
1045		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1046			ath_led_event(sc, 0);
1047		}
1048rx_next:
1049	/*
1050	 * Debugging - complain if we didn't NULL the mbuf pointer
1051	 * here.
1052	 */
1053	if (m != NULL) {
1054		device_printf(sc->sc_dev,
1055		    "%s: mbuf %p should've been freed!\n",
1056		    __func__,
1057		    m);
1058	}
1059	return (is_good);
1060}
1061
1062#define	ATH_RX_MAX		128
1063
1064/*
1065 * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
1066 * the EDMA code does.
1067 *
1068 * XXX TODO: then, do all of the RX list management stuff inside
1069 * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
1070 * code is doing it right.
1071 */
1072static void
1073ath_rx_proc(struct ath_softc *sc, int resched)
1074{
1075#define	PA2DESC(_sc, _pa) \
1076	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1077		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1078	struct ath_buf *bf;
1079	struct ath_hal *ah = sc->sc_ah;
1080#ifdef IEEE80211_SUPPORT_SUPERG
1081	struct ieee80211com *ic = &sc->sc_ic;
1082#endif
1083	struct ath_desc *ds;
1084	struct ath_rx_status *rs;
1085	struct mbuf *m;
1086	int ngood;
1087	HAL_STATUS status;
1088	int16_t nf;
1089	u_int64_t tsf;
1090	int npkts = 0;
1091	int kickpcu = 0;
1092	int ret;
1093
1094	NET_EPOCH_ASSERT();
1095
1096	/* XXX we must not hold the ATH_LOCK here */
1097	ATH_UNLOCK_ASSERT(sc);
1098	ATH_PCU_UNLOCK_ASSERT(sc);
1099
1100	ATH_PCU_LOCK(sc);
1101	sc->sc_rxproc_cnt++;
1102	kickpcu = sc->sc_kickpcu;
1103	ATH_PCU_UNLOCK(sc);
1104
1105	ATH_LOCK(sc);
1106	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1107	ATH_UNLOCK(sc);
1108
1109	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1110	ngood = 0;
1111	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1112	sc->sc_stats.ast_rx_noise = nf;
1113	tsf = ath_hal_gettsf64(ah);
1114	do {
1115		/*
1116		 * Don't process too many packets at a time; give the
1117		 * TX thread time to also run - otherwise the TX
1118		 * latency can jump by quite a bit, causing throughput
1119		 * degredation.
1120		 */
1121		if (!kickpcu && npkts >= ATH_RX_MAX)
1122			break;
1123
1124		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1125		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1126			device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
1127			break;
1128		} else if (bf == NULL) {
1129			/*
1130			 * End of List:
1131			 * this can happen for non-self-linked RX chains
1132			 */
1133			sc->sc_stats.ast_rx_hitqueueend++;
1134			break;
1135		}
1136		m = bf->bf_m;
1137		if (m == NULL) {		/* NB: shouldn't happen */
1138			/*
1139			 * If mbuf allocation failed previously there
1140			 * will be no mbuf; try again to re-populate it.
1141			 */
1142			/* XXX make debug msg */
1143			device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
1144			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1145			goto rx_proc_next;
1146		}
1147		ds = bf->bf_desc;
1148		if (ds->ds_link == bf->bf_daddr) {
1149			/* NB: never process the self-linked entry at the end */
1150			sc->sc_stats.ast_rx_hitqueueend++;
1151			break;
1152		}
1153		/* XXX sync descriptor memory */
1154		/*
1155		 * Must provide the virtual address of the current
1156		 * descriptor, the physical address, and the virtual
1157		 * address of the next descriptor in the h/w chain.
1158		 * This allows the HAL to look ahead to see if the
1159		 * hardware is done with a descriptor by checking the
1160		 * done bit in the following descriptor and the address
1161		 * of the current descriptor the DMA engine is working
1162		 * on.  All this is necessary because of our use of
1163		 * a self-linked list to avoid rx overruns.
1164		 */
1165		rs = &bf->bf_status.ds_rxstat;
1166		status = ath_hal_rxprocdesc(ah, ds,
1167				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1168#ifdef ATH_DEBUG
1169		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1170			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1171#endif
1172
1173#ifdef	ATH_DEBUG_ALQ
1174		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1175		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1176		    sc->sc_rx_statuslen, (char *) ds);
1177#endif	/* ATH_DEBUG_ALQ */
1178
1179		if (status == HAL_EINPROGRESS)
1180			break;
1181
1182		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1183		npkts++;
1184
1185		/*
1186		 * Process a single frame.
1187		 */
1188		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1189		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1190		bf->bf_m = NULL;
1191		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1192			ngood++;
1193rx_proc_next:
1194		/*
1195		 * If there's a holding buffer, insert that onto
1196		 * the RX list; the hardware is now definitely not pointing
1197		 * to it now.
1198		 */
1199		ret = 0;
1200		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1201			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1202			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1203			    bf_list);
1204			ret = ath_rxbuf_init(sc,
1205			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1206		}
1207		/*
1208		 * Next, throw our buffer into the holding entry.  The hardware
1209		 * may use the descriptor to read the link pointer before
1210		 * DMAing the next descriptor in to write out a packet.
1211		 */
1212		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1213	} while (ret == 0);
1214
1215	/* rx signal state monitoring */
1216	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1217	if (ngood)
1218		sc->sc_lastrx = tsf;
1219
1220	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1221	/* Queue DFS tasklet if needed */
1222	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1223		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1224
1225	/*
1226	 * Now that all the RX frames were handled that
1227	 * need to be handled, kick the PCU if there's
1228	 * been an RXEOL condition.
1229	 */
1230	if (resched && kickpcu) {
1231		ATH_PCU_LOCK(sc);
1232		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1233		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1234		    __func__, npkts);
1235
1236		/*
1237		 * Go through the process of fully tearing down
1238		 * the RX buffers and reinitialising them.
1239		 *
1240		 * There's a hardware bug that causes the RX FIFO
1241		 * to get confused under certain conditions and
1242		 * constantly write over the same frame, leading
1243		 * the RX driver code here to get heavily confused.
1244		 */
1245		/*
1246		 * XXX Has RX DMA stopped enough here to just call
1247		 *     ath_startrecv()?
1248		 * XXX Do we need to use the holding buffer to restart
1249		 *     RX DMA by appending entries to the final
1250		 *     descriptor?  Quite likely.
1251		 */
1252#if 1
1253		ath_startrecv(sc);
1254#else
1255		/*
1256		 * Disabled for now - it'd be nice to be able to do
1257		 * this in order to limit the amount of CPU time spent
1258		 * reinitialising the RX side (and thus minimise RX
1259		 * drops) however there's a hardware issue that
1260		 * causes things to get too far out of whack.
1261		 */
1262		/*
1263		 * XXX can we hold the PCU lock here?
1264		 * Are there any net80211 buffer calls involved?
1265		 */
1266		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1267		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1268		ath_hal_rxena(ah);		/* enable recv descriptors */
1269		ath_mode_init(sc);		/* set filters, etc. */
1270		ath_hal_startpcurecv(ah, (!! sc->sc_scanning));	/* re-enable PCU/DMA engine */
1271#endif
1272
1273		ath_hal_intrset(ah, sc->sc_imask);
1274		sc->sc_kickpcu = 0;
1275		ATH_PCU_UNLOCK(sc);
1276	}
1277
1278#ifdef IEEE80211_SUPPORT_SUPERG
1279	if (resched)
1280		ieee80211_ff_age_all(ic, 100);
1281#endif
1282
1283	/*
1284	 * Put the hardware to sleep again if we're done with it.
1285	 */
1286	ATH_LOCK(sc);
1287	ath_power_restore_power_state(sc);
1288	ATH_UNLOCK(sc);
1289
1290	/*
1291	 * If we hit the maximum number of frames in this round,
1292	 * reschedule for another immediate pass.  This gives
1293	 * the TX and TX completion routines time to run, which
1294	 * will reduce latency.
1295	 */
1296	if (npkts >= ATH_RX_MAX)
1297		sc->sc_rx.recv_sched(sc, resched);
1298
1299	ATH_PCU_LOCK(sc);
1300	sc->sc_rxproc_cnt--;
1301	ATH_PCU_UNLOCK(sc);
1302}
1303#undef	PA2DESC
1304#undef	ATH_RX_MAX
1305
1306/*
1307 * Only run the RX proc if it's not already running.
1308 * Since this may get run as part of the reset/flush path,
1309 * the task can't clash with an existing, running tasklet.
1310 */
1311static void
1312ath_legacy_rx_tasklet(void *arg, int npending)
1313{
1314	struct ath_softc *sc = arg;
1315	struct epoch_tracker et;
1316
1317	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1318	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1319	ATH_PCU_LOCK(sc);
1320	if (sc->sc_inreset_cnt > 0) {
1321		device_printf(sc->sc_dev,
1322		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1323		ATH_PCU_UNLOCK(sc);
1324		return;
1325	}
1326	ATH_PCU_UNLOCK(sc);
1327
1328	NET_EPOCH_ENTER(et);
1329	ath_rx_proc(sc, 1);
1330	NET_EPOCH_EXIT(et);
1331}
1332
1333static void
1334ath_legacy_flushrecv(struct ath_softc *sc)
1335{
1336	struct epoch_tracker et;
1337	NET_EPOCH_ENTER(et);
1338	ath_rx_proc(sc, 0);
1339	NET_EPOCH_EXIT(et);
1340}
1341
1342static void
1343ath_legacy_flush_rxpending(struct ath_softc *sc)
1344{
1345
1346	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1347
1348	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1349		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1350		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1351	}
1352	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1353		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1354		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1355	}
1356}
1357
1358static int
1359ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1360{
1361	struct ath_buf *bf;
1362
1363	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1364	/*
1365	 * If there are RX holding buffers, free them here and return
1366	 * them to the list.
1367	 *
1368	 * XXX should just verify that bf->bf_m is NULL, as it must
1369	 * be at this point!
1370	 */
1371	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1372	if (bf != NULL) {
1373		if (bf->bf_m != NULL)
1374			m_freem(bf->bf_m);
1375		bf->bf_m = NULL;
1376		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1377		(void) ath_rxbuf_init(sc, bf);
1378	}
1379	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1380
1381	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1382	if (bf != NULL) {
1383		if (bf->bf_m != NULL)
1384			m_freem(bf->bf_m);
1385		bf->bf_m = NULL;
1386		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1387		(void) ath_rxbuf_init(sc, bf);
1388	}
1389	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1390
1391	return (0);
1392}
1393
1394/*
1395 * Disable the receive h/w in preparation for a reset.
1396 */
1397static void
1398ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1399{
1400#define	PA2DESC(_sc, _pa) \
1401	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1402		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1403	struct ath_hal *ah = sc->sc_ah;
1404
1405	ATH_RX_LOCK(sc);
1406
1407	ath_hal_stoppcurecv(ah);	/* disable PCU */
1408	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1409	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1410	/*
1411	 * TODO: see if this particular DELAY() is required; it may be
1412	 * masking some missing FIFO flush or DMA sync.
1413	 */
1414#if 0
1415	if (dodelay)
1416#endif
1417		DELAY(3000);		/* 3ms is long enough for 1 frame */
1418#ifdef ATH_DEBUG
1419	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1420		struct ath_buf *bf;
1421		u_int ix;
1422
1423		device_printf(sc->sc_dev,
1424		    "%s: rx queue %p, link %p\n",
1425		    __func__,
1426		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1427		    sc->sc_rxlink);
1428		ix = 0;
1429		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1430			struct ath_desc *ds = bf->bf_desc;
1431			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1432			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1433				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1434			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1435				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1436			ix++;
1437		}
1438	}
1439#endif
1440
1441	(void) ath_legacy_flush_rxpending(sc);
1442	(void) ath_legacy_flush_rxholdbf(sc);
1443
1444	sc->sc_rxlink = NULL;		/* just in case */
1445
1446	ATH_RX_UNLOCK(sc);
1447#undef PA2DESC
1448}
1449
1450/*
1451 * XXX TODO: something was calling startrecv without calling
1452 * stoprecv.  Let's figure out what/why.  It was showing up
1453 * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1454 */
1455
1456/*
1457 * Enable the receive h/w following a reset.
1458 */
1459static int
1460ath_legacy_startrecv(struct ath_softc *sc)
1461{
1462	struct ath_hal *ah = sc->sc_ah;
1463	struct ath_buf *bf;
1464
1465	ATH_RX_LOCK(sc);
1466
1467	/*
1468	 * XXX should verify these are already all NULL!
1469	 */
1470	sc->sc_rxlink = NULL;
1471	(void) ath_legacy_flush_rxpending(sc);
1472	(void) ath_legacy_flush_rxholdbf(sc);
1473
1474	/*
1475	 * Re-chain all of the buffers in the RX buffer list.
1476	 */
1477	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1478		int error = ath_rxbuf_init(sc, bf);
1479		if (error != 0) {
1480			DPRINTF(sc, ATH_DEBUG_RECV,
1481				"%s: ath_rxbuf_init failed %d\n",
1482				__func__, error);
1483			return error;
1484		}
1485	}
1486
1487	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1488	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1489	ath_hal_rxena(ah);		/* enable recv descriptors */
1490	ath_mode_init(sc);		/* set filters, etc. */
1491	ath_hal_startpcurecv(ah, (!! sc->sc_scanning));	/* re-enable PCU/DMA engine */
1492
1493	ATH_RX_UNLOCK(sc);
1494	return 0;
1495}
1496
1497static int
1498ath_legacy_dma_rxsetup(struct ath_softc *sc)
1499{
1500	int error;
1501
1502	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1503	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1504	if (error != 0)
1505		return (error);
1506
1507	return (0);
1508}
1509
1510static int
1511ath_legacy_dma_rxteardown(struct ath_softc *sc)
1512{
1513
1514	if (sc->sc_rxdma.dd_desc_len != 0)
1515		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1516	return (0);
1517}
1518
1519static void
1520ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1521{
1522
1523	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1524}
1525
1526static void
1527ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1528    int dosched)
1529{
1530
1531	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1532}
1533
1534void
1535ath_recv_setup_legacy(struct ath_softc *sc)
1536{
1537
1538	/* Sensible legacy defaults */
1539	/*
1540	 * XXX this should be changed to properly support the
1541	 * exact RX descriptor size for each HAL.
1542	 */
1543	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1544
1545	sc->sc_rx.recv_start = ath_legacy_startrecv;
1546	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1547	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1548	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1549	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1550
1551	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1552	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1553	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1554	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1555}
1556