1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright [2021] Hewlett Packard Enterprise Development LP
32 */
33
34#include <sys/zfs_context.h>
35#include <sys/fm/fs/zfs.h>
36#include <sys/spa.h>
37#include <sys/spa_impl.h>
38#include <sys/bpobj.h>
39#include <sys/dmu.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_dir.h>
42#include <sys/vdev_impl.h>
43#include <sys/vdev_rebuild.h>
44#include <sys/vdev_draid.h>
45#include <sys/uberblock_impl.h>
46#include <sys/metaslab.h>
47#include <sys/metaslab_impl.h>
48#include <sys/space_map.h>
49#include <sys/space_reftree.h>
50#include <sys/zio.h>
51#include <sys/zap.h>
52#include <sys/fs/zfs.h>
53#include <sys/arc.h>
54#include <sys/zil.h>
55#include <sys/dsl_scan.h>
56#include <sys/vdev_raidz.h>
57#include <sys/abd.h>
58#include <sys/vdev_initialize.h>
59#include <sys/vdev_trim.h>
60#include <sys/zvol.h>
61#include <sys/zfs_ratelimit.h>
62
63/*
64 * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
65 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
66 * part of the spa_embedded_log_class.  The metaslab with the most free space
67 * in each vdev is selected for this purpose when the pool is opened (or a
68 * vdev is added).  See vdev_metaslab_init().
69 *
70 * Log blocks can be allocated from the following locations.  Each one is tried
71 * in order until the allocation succeeds:
72 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
73 * 2. embedded slog metaslabs (spa_embedded_log_class)
74 * 3. other metaslabs in normal vdevs (spa_normal_class)
75 *
76 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
77 * than this number of metaslabs in the vdev.  This ensures that we don't set
78 * aside an unreasonable amount of space for the ZIL.  If set to less than
79 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
80 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
81 */
82int zfs_embedded_slog_min_ms = 64;
83
84/* default target for number of metaslabs per top-level vdev */
85int zfs_vdev_default_ms_count = 200;
86
87/* minimum number of metaslabs per top-level vdev */
88int zfs_vdev_min_ms_count = 16;
89
90/* practical upper limit of total metaslabs per top-level vdev */
91int zfs_vdev_ms_count_limit = 1ULL << 17;
92
93/* lower limit for metaslab size (512M) */
94int zfs_vdev_default_ms_shift = 29;
95
96/* upper limit for metaslab size (16G) */
97int zfs_vdev_max_ms_shift = 34;
98
99int vdev_validate_skip = B_FALSE;
100
101/*
102 * Since the DTL space map of a vdev is not expected to have a lot of
103 * entries, we default its block size to 4K.
104 */
105int zfs_vdev_dtl_sm_blksz = (1 << 12);
106
107/*
108 * Rate limit slow IO (delay) events to this many per second.
109 */
110unsigned int zfs_slow_io_events_per_second = 20;
111
112/*
113 * Rate limit checksum events after this many checksum errors per second.
114 */
115unsigned int zfs_checksum_events_per_second = 20;
116
117/*
118 * Ignore errors during scrub/resilver.  Allows to work around resilver
119 * upon import when there are pool errors.
120 */
121int zfs_scan_ignore_errors = 0;
122
123/*
124 * vdev-wide space maps that have lots of entries written to them at
125 * the end of each transaction can benefit from a higher I/O bandwidth
126 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
127 */
128int zfs_vdev_standard_sm_blksz = (1 << 17);
129
130/*
131 * Tunable parameter for debugging or performance analysis. Setting this
132 * will cause pool corruption on power loss if a volatile out-of-order
133 * write cache is enabled.
134 */
135int zfs_nocacheflush = 0;
136
137uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
138uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
139
140/*PRINTFLIKE2*/
141void
142vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
143{
144	va_list adx;
145	char buf[256];
146
147	va_start(adx, fmt);
148	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
149	va_end(adx);
150
151	if (vd->vdev_path != NULL) {
152		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
153		    vd->vdev_path, buf);
154	} else {
155		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
156		    vd->vdev_ops->vdev_op_type,
157		    (u_longlong_t)vd->vdev_id,
158		    (u_longlong_t)vd->vdev_guid, buf);
159	}
160}
161
162void
163vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
164{
165	char state[20];
166
167	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
168		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
169		    vd->vdev_ops->vdev_op_type);
170		return;
171	}
172
173	switch (vd->vdev_state) {
174	case VDEV_STATE_UNKNOWN:
175		(void) snprintf(state, sizeof (state), "unknown");
176		break;
177	case VDEV_STATE_CLOSED:
178		(void) snprintf(state, sizeof (state), "closed");
179		break;
180	case VDEV_STATE_OFFLINE:
181		(void) snprintf(state, sizeof (state), "offline");
182		break;
183	case VDEV_STATE_REMOVED:
184		(void) snprintf(state, sizeof (state), "removed");
185		break;
186	case VDEV_STATE_CANT_OPEN:
187		(void) snprintf(state, sizeof (state), "can't open");
188		break;
189	case VDEV_STATE_FAULTED:
190		(void) snprintf(state, sizeof (state), "faulted");
191		break;
192	case VDEV_STATE_DEGRADED:
193		(void) snprintf(state, sizeof (state), "degraded");
194		break;
195	case VDEV_STATE_HEALTHY:
196		(void) snprintf(state, sizeof (state), "healthy");
197		break;
198	default:
199		(void) snprintf(state, sizeof (state), "<state %u>",
200		    (uint_t)vd->vdev_state);
201	}
202
203	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
204	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
205	    vd->vdev_islog ? " (log)" : "",
206	    (u_longlong_t)vd->vdev_guid,
207	    vd->vdev_path ? vd->vdev_path : "N/A", state);
208
209	for (uint64_t i = 0; i < vd->vdev_children; i++)
210		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
211}
212
213/*
214 * Virtual device management.
215 */
216
217static vdev_ops_t *vdev_ops_table[] = {
218	&vdev_root_ops,
219	&vdev_raidz_ops,
220	&vdev_draid_ops,
221	&vdev_draid_spare_ops,
222	&vdev_mirror_ops,
223	&vdev_replacing_ops,
224	&vdev_spare_ops,
225	&vdev_disk_ops,
226	&vdev_file_ops,
227	&vdev_missing_ops,
228	&vdev_hole_ops,
229	&vdev_indirect_ops,
230	NULL
231};
232
233/*
234 * Given a vdev type, return the appropriate ops vector.
235 */
236static vdev_ops_t *
237vdev_getops(const char *type)
238{
239	vdev_ops_t *ops, **opspp;
240
241	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
242		if (strcmp(ops->vdev_op_type, type) == 0)
243			break;
244
245	return (ops);
246}
247
248/*
249 * Given a vdev and a metaslab class, find which metaslab group we're
250 * interested in. All vdevs may belong to two different metaslab classes.
251 * Dedicated slog devices use only the primary metaslab group, rather than a
252 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
253 */
254metaslab_group_t *
255vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
256{
257	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
258	    vd->vdev_log_mg != NULL)
259		return (vd->vdev_log_mg);
260	else
261		return (vd->vdev_mg);
262}
263
264/* ARGSUSED */
265void
266vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
267    range_seg64_t *physical_rs, range_seg64_t *remain_rs)
268{
269	physical_rs->rs_start = logical_rs->rs_start;
270	physical_rs->rs_end = logical_rs->rs_end;
271}
272
273/*
274 * Derive the enumerated allocation bias from string input.
275 * String origin is either the per-vdev zap or zpool(8).
276 */
277static vdev_alloc_bias_t
278vdev_derive_alloc_bias(const char *bias)
279{
280	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
281
282	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
283		alloc_bias = VDEV_BIAS_LOG;
284	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
285		alloc_bias = VDEV_BIAS_SPECIAL;
286	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
287		alloc_bias = VDEV_BIAS_DEDUP;
288
289	return (alloc_bias);
290}
291
292/*
293 * Default asize function: return the MAX of psize with the asize of
294 * all children.  This is what's used by anything other than RAID-Z.
295 */
296uint64_t
297vdev_default_asize(vdev_t *vd, uint64_t psize)
298{
299	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
300	uint64_t csize;
301
302	for (int c = 0; c < vd->vdev_children; c++) {
303		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
304		asize = MAX(asize, csize);
305	}
306
307	return (asize);
308}
309
310uint64_t
311vdev_default_min_asize(vdev_t *vd)
312{
313	return (vd->vdev_min_asize);
314}
315
316/*
317 * Get the minimum allocatable size. We define the allocatable size as
318 * the vdev's asize rounded to the nearest metaslab. This allows us to
319 * replace or attach devices which don't have the same physical size but
320 * can still satisfy the same number of allocations.
321 */
322uint64_t
323vdev_get_min_asize(vdev_t *vd)
324{
325	vdev_t *pvd = vd->vdev_parent;
326
327	/*
328	 * If our parent is NULL (inactive spare or cache) or is the root,
329	 * just return our own asize.
330	 */
331	if (pvd == NULL)
332		return (vd->vdev_asize);
333
334	/*
335	 * The top-level vdev just returns the allocatable size rounded
336	 * to the nearest metaslab.
337	 */
338	if (vd == vd->vdev_top)
339		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
340
341	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
342}
343
344void
345vdev_set_min_asize(vdev_t *vd)
346{
347	vd->vdev_min_asize = vdev_get_min_asize(vd);
348
349	for (int c = 0; c < vd->vdev_children; c++)
350		vdev_set_min_asize(vd->vdev_child[c]);
351}
352
353/*
354 * Get the minimal allocation size for the top-level vdev.
355 */
356uint64_t
357vdev_get_min_alloc(vdev_t *vd)
358{
359	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
360
361	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
362		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
363
364	return (min_alloc);
365}
366
367/*
368 * Get the parity level for a top-level vdev.
369 */
370uint64_t
371vdev_get_nparity(vdev_t *vd)
372{
373	uint64_t nparity = 0;
374
375	if (vd->vdev_ops->vdev_op_nparity != NULL)
376		nparity = vd->vdev_ops->vdev_op_nparity(vd);
377
378	return (nparity);
379}
380
381/*
382 * Get the number of data disks for a top-level vdev.
383 */
384uint64_t
385vdev_get_ndisks(vdev_t *vd)
386{
387	uint64_t ndisks = 1;
388
389	if (vd->vdev_ops->vdev_op_ndisks != NULL)
390		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
391
392	return (ndisks);
393}
394
395vdev_t *
396vdev_lookup_top(spa_t *spa, uint64_t vdev)
397{
398	vdev_t *rvd = spa->spa_root_vdev;
399
400	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
401
402	if (vdev < rvd->vdev_children) {
403		ASSERT(rvd->vdev_child[vdev] != NULL);
404		return (rvd->vdev_child[vdev]);
405	}
406
407	return (NULL);
408}
409
410vdev_t *
411vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
412{
413	vdev_t *mvd;
414
415	if (vd->vdev_guid == guid)
416		return (vd);
417
418	for (int c = 0; c < vd->vdev_children; c++)
419		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
420		    NULL)
421			return (mvd);
422
423	return (NULL);
424}
425
426static int
427vdev_count_leaves_impl(vdev_t *vd)
428{
429	int n = 0;
430
431	if (vd->vdev_ops->vdev_op_leaf)
432		return (1);
433
434	for (int c = 0; c < vd->vdev_children; c++)
435		n += vdev_count_leaves_impl(vd->vdev_child[c]);
436
437	return (n);
438}
439
440int
441vdev_count_leaves(spa_t *spa)
442{
443	int rc;
444
445	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
446	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
447	spa_config_exit(spa, SCL_VDEV, FTAG);
448
449	return (rc);
450}
451
452void
453vdev_add_child(vdev_t *pvd, vdev_t *cvd)
454{
455	size_t oldsize, newsize;
456	uint64_t id = cvd->vdev_id;
457	vdev_t **newchild;
458
459	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
460	ASSERT(cvd->vdev_parent == NULL);
461
462	cvd->vdev_parent = pvd;
463
464	if (pvd == NULL)
465		return;
466
467	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
468
469	oldsize = pvd->vdev_children * sizeof (vdev_t *);
470	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
471	newsize = pvd->vdev_children * sizeof (vdev_t *);
472
473	newchild = kmem_alloc(newsize, KM_SLEEP);
474	if (pvd->vdev_child != NULL) {
475		bcopy(pvd->vdev_child, newchild, oldsize);
476		kmem_free(pvd->vdev_child, oldsize);
477	}
478
479	pvd->vdev_child = newchild;
480	pvd->vdev_child[id] = cvd;
481
482	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
483	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
484
485	/*
486	 * Walk up all ancestors to update guid sum.
487	 */
488	for (; pvd != NULL; pvd = pvd->vdev_parent)
489		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
490
491	if (cvd->vdev_ops->vdev_op_leaf) {
492		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
493		cvd->vdev_spa->spa_leaf_list_gen++;
494	}
495}
496
497void
498vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
499{
500	int c;
501	uint_t id = cvd->vdev_id;
502
503	ASSERT(cvd->vdev_parent == pvd);
504
505	if (pvd == NULL)
506		return;
507
508	ASSERT(id < pvd->vdev_children);
509	ASSERT(pvd->vdev_child[id] == cvd);
510
511	pvd->vdev_child[id] = NULL;
512	cvd->vdev_parent = NULL;
513
514	for (c = 0; c < pvd->vdev_children; c++)
515		if (pvd->vdev_child[c])
516			break;
517
518	if (c == pvd->vdev_children) {
519		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
520		pvd->vdev_child = NULL;
521		pvd->vdev_children = 0;
522	}
523
524	if (cvd->vdev_ops->vdev_op_leaf) {
525		spa_t *spa = cvd->vdev_spa;
526		list_remove(&spa->spa_leaf_list, cvd);
527		spa->spa_leaf_list_gen++;
528	}
529
530	/*
531	 * Walk up all ancestors to update guid sum.
532	 */
533	for (; pvd != NULL; pvd = pvd->vdev_parent)
534		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
535}
536
537/*
538 * Remove any holes in the child array.
539 */
540void
541vdev_compact_children(vdev_t *pvd)
542{
543	vdev_t **newchild, *cvd;
544	int oldc = pvd->vdev_children;
545	int newc;
546
547	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
548
549	if (oldc == 0)
550		return;
551
552	for (int c = newc = 0; c < oldc; c++)
553		if (pvd->vdev_child[c])
554			newc++;
555
556	if (newc > 0) {
557		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
558
559		for (int c = newc = 0; c < oldc; c++) {
560			if ((cvd = pvd->vdev_child[c]) != NULL) {
561				newchild[newc] = cvd;
562				cvd->vdev_id = newc++;
563			}
564		}
565	} else {
566		newchild = NULL;
567	}
568
569	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
570	pvd->vdev_child = newchild;
571	pvd->vdev_children = newc;
572}
573
574/*
575 * Allocate and minimally initialize a vdev_t.
576 */
577vdev_t *
578vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
579{
580	vdev_t *vd;
581	vdev_indirect_config_t *vic;
582
583	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
584	vic = &vd->vdev_indirect_config;
585
586	if (spa->spa_root_vdev == NULL) {
587		ASSERT(ops == &vdev_root_ops);
588		spa->spa_root_vdev = vd;
589		spa->spa_load_guid = spa_generate_guid(NULL);
590	}
591
592	if (guid == 0 && ops != &vdev_hole_ops) {
593		if (spa->spa_root_vdev == vd) {
594			/*
595			 * The root vdev's guid will also be the pool guid,
596			 * which must be unique among all pools.
597			 */
598			guid = spa_generate_guid(NULL);
599		} else {
600			/*
601			 * Any other vdev's guid must be unique within the pool.
602			 */
603			guid = spa_generate_guid(spa);
604		}
605		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
606	}
607
608	vd->vdev_spa = spa;
609	vd->vdev_id = id;
610	vd->vdev_guid = guid;
611	vd->vdev_guid_sum = guid;
612	vd->vdev_ops = ops;
613	vd->vdev_state = VDEV_STATE_CLOSED;
614	vd->vdev_ishole = (ops == &vdev_hole_ops);
615	vic->vic_prev_indirect_vdev = UINT64_MAX;
616
617	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
618	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
619	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
620	    0, 0);
621
622	/*
623	 * Initialize rate limit structs for events.  We rate limit ZIO delay
624	 * and checksum events so that we don't overwhelm ZED with thousands
625	 * of events when a disk is acting up.
626	 */
627	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
628	    1);
629	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
630	    1);
631	zfs_ratelimit_init(&vd->vdev_checksum_rl,
632	    &zfs_checksum_events_per_second, 1);
633
634	list_link_init(&vd->vdev_config_dirty_node);
635	list_link_init(&vd->vdev_state_dirty_node);
636	list_link_init(&vd->vdev_initialize_node);
637	list_link_init(&vd->vdev_leaf_node);
638	list_link_init(&vd->vdev_trim_node);
639
640	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
641	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
642	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
643	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
644
645	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
646	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
647	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
648	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
649
650	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
651	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
652	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
653	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
654	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
655	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
656
657	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
658	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
659
660	for (int t = 0; t < DTL_TYPES; t++) {
661		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
662		    0);
663	}
664
665	txg_list_create(&vd->vdev_ms_list, spa,
666	    offsetof(struct metaslab, ms_txg_node));
667	txg_list_create(&vd->vdev_dtl_list, spa,
668	    offsetof(struct vdev, vdev_dtl_node));
669	vd->vdev_stat.vs_timestamp = gethrtime();
670	vdev_queue_init(vd);
671	vdev_cache_init(vd);
672
673	return (vd);
674}
675
676/*
677 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
678 * creating a new vdev or loading an existing one - the behavior is slightly
679 * different for each case.
680 */
681int
682vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
683    int alloctype)
684{
685	vdev_ops_t *ops;
686	char *type;
687	uint64_t guid = 0, islog;
688	vdev_t *vd;
689	vdev_indirect_config_t *vic;
690	char *tmp = NULL;
691	int rc;
692	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
693	boolean_t top_level = (parent && !parent->vdev_parent);
694
695	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
696
697	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
698		return (SET_ERROR(EINVAL));
699
700	if ((ops = vdev_getops(type)) == NULL)
701		return (SET_ERROR(EINVAL));
702
703	/*
704	 * If this is a load, get the vdev guid from the nvlist.
705	 * Otherwise, vdev_alloc_common() will generate one for us.
706	 */
707	if (alloctype == VDEV_ALLOC_LOAD) {
708		uint64_t label_id;
709
710		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
711		    label_id != id)
712			return (SET_ERROR(EINVAL));
713
714		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
715			return (SET_ERROR(EINVAL));
716	} else if (alloctype == VDEV_ALLOC_SPARE) {
717		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
718			return (SET_ERROR(EINVAL));
719	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
720		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
721			return (SET_ERROR(EINVAL));
722	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
723		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
724			return (SET_ERROR(EINVAL));
725	}
726
727	/*
728	 * The first allocated vdev must be of type 'root'.
729	 */
730	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
731		return (SET_ERROR(EINVAL));
732
733	/*
734	 * Determine whether we're a log vdev.
735	 */
736	islog = 0;
737	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
738	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
739		return (SET_ERROR(ENOTSUP));
740
741	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
742		return (SET_ERROR(ENOTSUP));
743
744	if (top_level && alloctype == VDEV_ALLOC_ADD) {
745		char *bias;
746
747		/*
748		 * If creating a top-level vdev, check for allocation
749		 * classes input.
750		 */
751		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
752		    &bias) == 0) {
753			alloc_bias = vdev_derive_alloc_bias(bias);
754
755			/* spa_vdev_add() expects feature to be enabled */
756			if (spa->spa_load_state != SPA_LOAD_CREATE &&
757			    !spa_feature_is_enabled(spa,
758			    SPA_FEATURE_ALLOCATION_CLASSES)) {
759				return (SET_ERROR(ENOTSUP));
760			}
761		}
762
763		/* spa_vdev_add() expects feature to be enabled */
764		if (ops == &vdev_draid_ops &&
765		    spa->spa_load_state != SPA_LOAD_CREATE &&
766		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
767			return (SET_ERROR(ENOTSUP));
768		}
769	}
770
771	/*
772	 * Initialize the vdev specific data.  This is done before calling
773	 * vdev_alloc_common() since it may fail and this simplifies the
774	 * error reporting and cleanup code paths.
775	 */
776	void *tsd = NULL;
777	if (ops->vdev_op_init != NULL) {
778		rc = ops->vdev_op_init(spa, nv, &tsd);
779		if (rc != 0) {
780			return (rc);
781		}
782	}
783
784	vd = vdev_alloc_common(spa, id, guid, ops);
785	vd->vdev_tsd = tsd;
786	vd->vdev_islog = islog;
787
788	if (top_level && alloc_bias != VDEV_BIAS_NONE)
789		vd->vdev_alloc_bias = alloc_bias;
790
791	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
792		vd->vdev_path = spa_strdup(vd->vdev_path);
793
794	/*
795	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
796	 * fault on a vdev and want it to persist across imports (like with
797	 * zpool offline -f).
798	 */
799	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
800	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
801		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
802		vd->vdev_faulted = 1;
803		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
804	}
805
806	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
807		vd->vdev_devid = spa_strdup(vd->vdev_devid);
808	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
809	    &vd->vdev_physpath) == 0)
810		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
811
812	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
813	    &vd->vdev_enc_sysfs_path) == 0)
814		vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
815
816	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
817		vd->vdev_fru = spa_strdup(vd->vdev_fru);
818
819	/*
820	 * Set the whole_disk property.  If it's not specified, leave the value
821	 * as -1.
822	 */
823	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
824	    &vd->vdev_wholedisk) != 0)
825		vd->vdev_wholedisk = -1ULL;
826
827	vic = &vd->vdev_indirect_config;
828
829	ASSERT0(vic->vic_mapping_object);
830	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
831	    &vic->vic_mapping_object);
832	ASSERT0(vic->vic_births_object);
833	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
834	    &vic->vic_births_object);
835	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
836	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
837	    &vic->vic_prev_indirect_vdev);
838
839	/*
840	 * Look for the 'not present' flag.  This will only be set if the device
841	 * was not present at the time of import.
842	 */
843	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
844	    &vd->vdev_not_present);
845
846	/*
847	 * Get the alignment requirement.
848	 */
849	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
850
851	/*
852	 * Retrieve the vdev creation time.
853	 */
854	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
855	    &vd->vdev_crtxg);
856
857	/*
858	 * If we're a top-level vdev, try to load the allocation parameters.
859	 */
860	if (top_level &&
861	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
862		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
863		    &vd->vdev_ms_array);
864		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
865		    &vd->vdev_ms_shift);
866		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
867		    &vd->vdev_asize);
868		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
869		    &vd->vdev_removing);
870		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
871		    &vd->vdev_top_zap);
872	} else {
873		ASSERT0(vd->vdev_top_zap);
874	}
875
876	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
877		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
878		    alloctype == VDEV_ALLOC_ADD ||
879		    alloctype == VDEV_ALLOC_SPLIT ||
880		    alloctype == VDEV_ALLOC_ROOTPOOL);
881		/* Note: metaslab_group_create() is now deferred */
882	}
883
884	if (vd->vdev_ops->vdev_op_leaf &&
885	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
886		(void) nvlist_lookup_uint64(nv,
887		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
888	} else {
889		ASSERT0(vd->vdev_leaf_zap);
890	}
891
892	/*
893	 * If we're a leaf vdev, try to load the DTL object and other state.
894	 */
895
896	if (vd->vdev_ops->vdev_op_leaf &&
897	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
898	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
899		if (alloctype == VDEV_ALLOC_LOAD) {
900			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
901			    &vd->vdev_dtl_object);
902			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
903			    &vd->vdev_unspare);
904		}
905
906		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
907			uint64_t spare = 0;
908
909			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
910			    &spare) == 0 && spare)
911				spa_spare_add(vd);
912		}
913
914		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
915		    &vd->vdev_offline);
916
917		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
918		    &vd->vdev_resilver_txg);
919
920		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
921		    &vd->vdev_rebuild_txg);
922
923		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
924			vdev_defer_resilver(vd);
925
926		/*
927		 * In general, when importing a pool we want to ignore the
928		 * persistent fault state, as the diagnosis made on another
929		 * system may not be valid in the current context.  The only
930		 * exception is if we forced a vdev to a persistently faulted
931		 * state with 'zpool offline -f'.  The persistent fault will
932		 * remain across imports until cleared.
933		 *
934		 * Local vdevs will remain in the faulted state.
935		 */
936		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
937		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
938			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
939			    &vd->vdev_faulted);
940			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
941			    &vd->vdev_degraded);
942			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
943			    &vd->vdev_removed);
944
945			if (vd->vdev_faulted || vd->vdev_degraded) {
946				char *aux;
947
948				vd->vdev_label_aux =
949				    VDEV_AUX_ERR_EXCEEDED;
950				if (nvlist_lookup_string(nv,
951				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
952				    strcmp(aux, "external") == 0)
953					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
954				else
955					vd->vdev_faulted = 0ULL;
956			}
957		}
958	}
959
960	/*
961	 * Add ourselves to the parent's list of children.
962	 */
963	vdev_add_child(parent, vd);
964
965	*vdp = vd;
966
967	return (0);
968}
969
970void
971vdev_free(vdev_t *vd)
972{
973	spa_t *spa = vd->vdev_spa;
974
975	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
976	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
977	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
978	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
979
980	/*
981	 * Scan queues are normally destroyed at the end of a scan. If the
982	 * queue exists here, that implies the vdev is being removed while
983	 * the scan is still running.
984	 */
985	if (vd->vdev_scan_io_queue != NULL) {
986		mutex_enter(&vd->vdev_scan_io_queue_lock);
987		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
988		vd->vdev_scan_io_queue = NULL;
989		mutex_exit(&vd->vdev_scan_io_queue_lock);
990	}
991
992	/*
993	 * vdev_free() implies closing the vdev first.  This is simpler than
994	 * trying to ensure complicated semantics for all callers.
995	 */
996	vdev_close(vd);
997
998	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
999	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1000
1001	/*
1002	 * Free all children.
1003	 */
1004	for (int c = 0; c < vd->vdev_children; c++)
1005		vdev_free(vd->vdev_child[c]);
1006
1007	ASSERT(vd->vdev_child == NULL);
1008	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1009
1010	if (vd->vdev_ops->vdev_op_fini != NULL)
1011		vd->vdev_ops->vdev_op_fini(vd);
1012
1013	/*
1014	 * Discard allocation state.
1015	 */
1016	if (vd->vdev_mg != NULL) {
1017		vdev_metaslab_fini(vd);
1018		metaslab_group_destroy(vd->vdev_mg);
1019		vd->vdev_mg = NULL;
1020	}
1021	if (vd->vdev_log_mg != NULL) {
1022		ASSERT0(vd->vdev_ms_count);
1023		metaslab_group_destroy(vd->vdev_log_mg);
1024		vd->vdev_log_mg = NULL;
1025	}
1026
1027	ASSERT0(vd->vdev_stat.vs_space);
1028	ASSERT0(vd->vdev_stat.vs_dspace);
1029	ASSERT0(vd->vdev_stat.vs_alloc);
1030
1031	/*
1032	 * Remove this vdev from its parent's child list.
1033	 */
1034	vdev_remove_child(vd->vdev_parent, vd);
1035
1036	ASSERT(vd->vdev_parent == NULL);
1037	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1038
1039	/*
1040	 * Clean up vdev structure.
1041	 */
1042	vdev_queue_fini(vd);
1043	vdev_cache_fini(vd);
1044
1045	if (vd->vdev_path)
1046		spa_strfree(vd->vdev_path);
1047	if (vd->vdev_devid)
1048		spa_strfree(vd->vdev_devid);
1049	if (vd->vdev_physpath)
1050		spa_strfree(vd->vdev_physpath);
1051
1052	if (vd->vdev_enc_sysfs_path)
1053		spa_strfree(vd->vdev_enc_sysfs_path);
1054
1055	if (vd->vdev_fru)
1056		spa_strfree(vd->vdev_fru);
1057
1058	if (vd->vdev_isspare)
1059		spa_spare_remove(vd);
1060	if (vd->vdev_isl2cache)
1061		spa_l2cache_remove(vd);
1062
1063	txg_list_destroy(&vd->vdev_ms_list);
1064	txg_list_destroy(&vd->vdev_dtl_list);
1065
1066	mutex_enter(&vd->vdev_dtl_lock);
1067	space_map_close(vd->vdev_dtl_sm);
1068	for (int t = 0; t < DTL_TYPES; t++) {
1069		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1070		range_tree_destroy(vd->vdev_dtl[t]);
1071	}
1072	mutex_exit(&vd->vdev_dtl_lock);
1073
1074	EQUIV(vd->vdev_indirect_births != NULL,
1075	    vd->vdev_indirect_mapping != NULL);
1076	if (vd->vdev_indirect_births != NULL) {
1077		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1078		vdev_indirect_births_close(vd->vdev_indirect_births);
1079	}
1080
1081	if (vd->vdev_obsolete_sm != NULL) {
1082		ASSERT(vd->vdev_removing ||
1083		    vd->vdev_ops == &vdev_indirect_ops);
1084		space_map_close(vd->vdev_obsolete_sm);
1085		vd->vdev_obsolete_sm = NULL;
1086	}
1087	range_tree_destroy(vd->vdev_obsolete_segments);
1088	rw_destroy(&vd->vdev_indirect_rwlock);
1089	mutex_destroy(&vd->vdev_obsolete_lock);
1090
1091	mutex_destroy(&vd->vdev_dtl_lock);
1092	mutex_destroy(&vd->vdev_stat_lock);
1093	mutex_destroy(&vd->vdev_probe_lock);
1094	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1095
1096	mutex_destroy(&vd->vdev_initialize_lock);
1097	mutex_destroy(&vd->vdev_initialize_io_lock);
1098	cv_destroy(&vd->vdev_initialize_io_cv);
1099	cv_destroy(&vd->vdev_initialize_cv);
1100
1101	mutex_destroy(&vd->vdev_trim_lock);
1102	mutex_destroy(&vd->vdev_autotrim_lock);
1103	mutex_destroy(&vd->vdev_trim_io_lock);
1104	cv_destroy(&vd->vdev_trim_cv);
1105	cv_destroy(&vd->vdev_autotrim_cv);
1106	cv_destroy(&vd->vdev_trim_io_cv);
1107
1108	mutex_destroy(&vd->vdev_rebuild_lock);
1109	cv_destroy(&vd->vdev_rebuild_cv);
1110
1111	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1112	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1113	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1114
1115	if (vd == spa->spa_root_vdev)
1116		spa->spa_root_vdev = NULL;
1117
1118	kmem_free(vd, sizeof (vdev_t));
1119}
1120
1121/*
1122 * Transfer top-level vdev state from svd to tvd.
1123 */
1124static void
1125vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1126{
1127	spa_t *spa = svd->vdev_spa;
1128	metaslab_t *msp;
1129	vdev_t *vd;
1130	int t;
1131
1132	ASSERT(tvd == tvd->vdev_top);
1133
1134	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1135	tvd->vdev_ms_array = svd->vdev_ms_array;
1136	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1137	tvd->vdev_ms_count = svd->vdev_ms_count;
1138	tvd->vdev_top_zap = svd->vdev_top_zap;
1139
1140	svd->vdev_ms_array = 0;
1141	svd->vdev_ms_shift = 0;
1142	svd->vdev_ms_count = 0;
1143	svd->vdev_top_zap = 0;
1144
1145	if (tvd->vdev_mg)
1146		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1147	if (tvd->vdev_log_mg)
1148		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1149	tvd->vdev_mg = svd->vdev_mg;
1150	tvd->vdev_log_mg = svd->vdev_log_mg;
1151	tvd->vdev_ms = svd->vdev_ms;
1152
1153	svd->vdev_mg = NULL;
1154	svd->vdev_log_mg = NULL;
1155	svd->vdev_ms = NULL;
1156
1157	if (tvd->vdev_mg != NULL)
1158		tvd->vdev_mg->mg_vd = tvd;
1159	if (tvd->vdev_log_mg != NULL)
1160		tvd->vdev_log_mg->mg_vd = tvd;
1161
1162	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1163	svd->vdev_checkpoint_sm = NULL;
1164
1165	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1166	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1167
1168	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1169	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1170	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1171
1172	svd->vdev_stat.vs_alloc = 0;
1173	svd->vdev_stat.vs_space = 0;
1174	svd->vdev_stat.vs_dspace = 0;
1175
1176	/*
1177	 * State which may be set on a top-level vdev that's in the
1178	 * process of being removed.
1179	 */
1180	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1181	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1182	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1183	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1184	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1185	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1186	ASSERT0(tvd->vdev_removing);
1187	ASSERT0(tvd->vdev_rebuilding);
1188	tvd->vdev_removing = svd->vdev_removing;
1189	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1190	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1191	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1192	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1193	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1194	range_tree_swap(&svd->vdev_obsolete_segments,
1195	    &tvd->vdev_obsolete_segments);
1196	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1197	svd->vdev_indirect_config.vic_mapping_object = 0;
1198	svd->vdev_indirect_config.vic_births_object = 0;
1199	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1200	svd->vdev_indirect_mapping = NULL;
1201	svd->vdev_indirect_births = NULL;
1202	svd->vdev_obsolete_sm = NULL;
1203	svd->vdev_removing = 0;
1204	svd->vdev_rebuilding = 0;
1205
1206	for (t = 0; t < TXG_SIZE; t++) {
1207		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1208			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1209		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1210			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1211		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1212			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1213	}
1214
1215	if (list_link_active(&svd->vdev_config_dirty_node)) {
1216		vdev_config_clean(svd);
1217		vdev_config_dirty(tvd);
1218	}
1219
1220	if (list_link_active(&svd->vdev_state_dirty_node)) {
1221		vdev_state_clean(svd);
1222		vdev_state_dirty(tvd);
1223	}
1224
1225	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1226	svd->vdev_deflate_ratio = 0;
1227
1228	tvd->vdev_islog = svd->vdev_islog;
1229	svd->vdev_islog = 0;
1230
1231	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1232}
1233
1234static void
1235vdev_top_update(vdev_t *tvd, vdev_t *vd)
1236{
1237	if (vd == NULL)
1238		return;
1239
1240	vd->vdev_top = tvd;
1241
1242	for (int c = 0; c < vd->vdev_children; c++)
1243		vdev_top_update(tvd, vd->vdev_child[c]);
1244}
1245
1246/*
1247 * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1248 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1249 */
1250vdev_t *
1251vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1252{
1253	spa_t *spa = cvd->vdev_spa;
1254	vdev_t *pvd = cvd->vdev_parent;
1255	vdev_t *mvd;
1256
1257	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1258
1259	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1260
1261	mvd->vdev_asize = cvd->vdev_asize;
1262	mvd->vdev_min_asize = cvd->vdev_min_asize;
1263	mvd->vdev_max_asize = cvd->vdev_max_asize;
1264	mvd->vdev_psize = cvd->vdev_psize;
1265	mvd->vdev_ashift = cvd->vdev_ashift;
1266	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1267	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1268	mvd->vdev_state = cvd->vdev_state;
1269	mvd->vdev_crtxg = cvd->vdev_crtxg;
1270
1271	vdev_remove_child(pvd, cvd);
1272	vdev_add_child(pvd, mvd);
1273	cvd->vdev_id = mvd->vdev_children;
1274	vdev_add_child(mvd, cvd);
1275	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1276
1277	if (mvd == mvd->vdev_top)
1278		vdev_top_transfer(cvd, mvd);
1279
1280	return (mvd);
1281}
1282
1283/*
1284 * Remove a 1-way mirror/replacing vdev from the tree.
1285 */
1286void
1287vdev_remove_parent(vdev_t *cvd)
1288{
1289	vdev_t *mvd = cvd->vdev_parent;
1290	vdev_t *pvd = mvd->vdev_parent;
1291
1292	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1293
1294	ASSERT(mvd->vdev_children == 1);
1295	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1296	    mvd->vdev_ops == &vdev_replacing_ops ||
1297	    mvd->vdev_ops == &vdev_spare_ops);
1298	cvd->vdev_ashift = mvd->vdev_ashift;
1299	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1300	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1301	vdev_remove_child(mvd, cvd);
1302	vdev_remove_child(pvd, mvd);
1303
1304	/*
1305	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1306	 * Otherwise, we could have detached an offline device, and when we
1307	 * go to import the pool we'll think we have two top-level vdevs,
1308	 * instead of a different version of the same top-level vdev.
1309	 */
1310	if (mvd->vdev_top == mvd) {
1311		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1312		cvd->vdev_orig_guid = cvd->vdev_guid;
1313		cvd->vdev_guid += guid_delta;
1314		cvd->vdev_guid_sum += guid_delta;
1315
1316		/*
1317		 * If pool not set for autoexpand, we need to also preserve
1318		 * mvd's asize to prevent automatic expansion of cvd.
1319		 * Otherwise if we are adjusting the mirror by attaching and
1320		 * detaching children of non-uniform sizes, the mirror could
1321		 * autoexpand, unexpectedly requiring larger devices to
1322		 * re-establish the mirror.
1323		 */
1324		if (!cvd->vdev_spa->spa_autoexpand)
1325			cvd->vdev_asize = mvd->vdev_asize;
1326	}
1327	cvd->vdev_id = mvd->vdev_id;
1328	vdev_add_child(pvd, cvd);
1329	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1330
1331	if (cvd == cvd->vdev_top)
1332		vdev_top_transfer(mvd, cvd);
1333
1334	ASSERT(mvd->vdev_children == 0);
1335	vdev_free(mvd);
1336}
1337
1338void
1339vdev_metaslab_group_create(vdev_t *vd)
1340{
1341	spa_t *spa = vd->vdev_spa;
1342
1343	/*
1344	 * metaslab_group_create was delayed until allocation bias was available
1345	 */
1346	if (vd->vdev_mg == NULL) {
1347		metaslab_class_t *mc;
1348
1349		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1350			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1351
1352		ASSERT3U(vd->vdev_islog, ==,
1353		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1354
1355		switch (vd->vdev_alloc_bias) {
1356		case VDEV_BIAS_LOG:
1357			mc = spa_log_class(spa);
1358			break;
1359		case VDEV_BIAS_SPECIAL:
1360			mc = spa_special_class(spa);
1361			break;
1362		case VDEV_BIAS_DEDUP:
1363			mc = spa_dedup_class(spa);
1364			break;
1365		default:
1366			mc = spa_normal_class(spa);
1367		}
1368
1369		vd->vdev_mg = metaslab_group_create(mc, vd,
1370		    spa->spa_alloc_count);
1371
1372		if (!vd->vdev_islog) {
1373			vd->vdev_log_mg = metaslab_group_create(
1374			    spa_embedded_log_class(spa), vd, 1);
1375		}
1376
1377		/*
1378		 * The spa ashift min/max only apply for the normal metaslab
1379		 * class. Class destination is late binding so ashift boundary
1380		 * setting had to wait until now.
1381		 */
1382		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1383		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1384			if (vd->vdev_ashift > spa->spa_max_ashift)
1385				spa->spa_max_ashift = vd->vdev_ashift;
1386			if (vd->vdev_ashift < spa->spa_min_ashift)
1387				spa->spa_min_ashift = vd->vdev_ashift;
1388
1389			uint64_t min_alloc = vdev_get_min_alloc(vd);
1390			if (min_alloc < spa->spa_min_alloc)
1391				spa->spa_min_alloc = min_alloc;
1392		}
1393	}
1394}
1395
1396int
1397vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1398{
1399	spa_t *spa = vd->vdev_spa;
1400	uint64_t oldc = vd->vdev_ms_count;
1401	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1402	metaslab_t **mspp;
1403	int error;
1404	boolean_t expanding = (oldc != 0);
1405
1406	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1407
1408	/*
1409	 * This vdev is not being allocated from yet or is a hole.
1410	 */
1411	if (vd->vdev_ms_shift == 0)
1412		return (0);
1413
1414	ASSERT(!vd->vdev_ishole);
1415
1416	ASSERT(oldc <= newc);
1417
1418	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1419
1420	if (expanding) {
1421		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1422		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1423	}
1424
1425	vd->vdev_ms = mspp;
1426	vd->vdev_ms_count = newc;
1427
1428	for (uint64_t m = oldc; m < newc; m++) {
1429		uint64_t object = 0;
1430		/*
1431		 * vdev_ms_array may be 0 if we are creating the "fake"
1432		 * metaslabs for an indirect vdev for zdb's leak detection.
1433		 * See zdb_leak_init().
1434		 */
1435		if (txg == 0 && vd->vdev_ms_array != 0) {
1436			error = dmu_read(spa->spa_meta_objset,
1437			    vd->vdev_ms_array,
1438			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1439			    DMU_READ_PREFETCH);
1440			if (error != 0) {
1441				vdev_dbgmsg(vd, "unable to read the metaslab "
1442				    "array [error=%d]", error);
1443				return (error);
1444			}
1445		}
1446
1447		error = metaslab_init(vd->vdev_mg, m, object, txg,
1448		    &(vd->vdev_ms[m]));
1449		if (error != 0) {
1450			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1451			    error);
1452			return (error);
1453		}
1454	}
1455
1456	/*
1457	 * Find the emptiest metaslab on the vdev and mark it for use for
1458	 * embedded slog by moving it from the regular to the log metaslab
1459	 * group.
1460	 */
1461	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1462	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1463	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1464		uint64_t slog_msid = 0;
1465		uint64_t smallest = UINT64_MAX;
1466
1467		/*
1468		 * Note, we only search the new metaslabs, because the old
1469		 * (pre-existing) ones may be active (e.g. have non-empty
1470		 * range_tree's), and we don't move them to the new
1471		 * metaslab_t.
1472		 */
1473		for (uint64_t m = oldc; m < newc; m++) {
1474			uint64_t alloc =
1475			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1476			if (alloc < smallest) {
1477				slog_msid = m;
1478				smallest = alloc;
1479			}
1480		}
1481		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1482		/*
1483		 * The metaslab was marked as dirty at the end of
1484		 * metaslab_init(). Remove it from the dirty list so that we
1485		 * can uninitialize and reinitialize it to the new class.
1486		 */
1487		if (txg != 0) {
1488			(void) txg_list_remove_this(&vd->vdev_ms_list,
1489			    slog_ms, txg);
1490		}
1491		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1492		metaslab_fini(slog_ms);
1493		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1494		    &vd->vdev_ms[slog_msid]));
1495	}
1496
1497	if (txg == 0)
1498		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1499
1500	/*
1501	 * If the vdev is being removed we don't activate
1502	 * the metaslabs since we want to ensure that no new
1503	 * allocations are performed on this device.
1504	 */
1505	if (!expanding && !vd->vdev_removing) {
1506		metaslab_group_activate(vd->vdev_mg);
1507		if (vd->vdev_log_mg != NULL)
1508			metaslab_group_activate(vd->vdev_log_mg);
1509	}
1510
1511	if (txg == 0)
1512		spa_config_exit(spa, SCL_ALLOC, FTAG);
1513
1514	/*
1515	 * Regardless whether this vdev was just added or it is being
1516	 * expanded, the metaslab count has changed. Recalculate the
1517	 * block limit.
1518	 */
1519	spa_log_sm_set_blocklimit(spa);
1520
1521	return (0);
1522}
1523
1524void
1525vdev_metaslab_fini(vdev_t *vd)
1526{
1527	if (vd->vdev_checkpoint_sm != NULL) {
1528		ASSERT(spa_feature_is_active(vd->vdev_spa,
1529		    SPA_FEATURE_POOL_CHECKPOINT));
1530		space_map_close(vd->vdev_checkpoint_sm);
1531		/*
1532		 * Even though we close the space map, we need to set its
1533		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1534		 * may be called multiple times for certain operations
1535		 * (i.e. when destroying a pool) so we need to ensure that
1536		 * this clause never executes twice. This logic is similar
1537		 * to the one used for the vdev_ms clause below.
1538		 */
1539		vd->vdev_checkpoint_sm = NULL;
1540	}
1541
1542	if (vd->vdev_ms != NULL) {
1543		metaslab_group_t *mg = vd->vdev_mg;
1544
1545		metaslab_group_passivate(mg);
1546		if (vd->vdev_log_mg != NULL) {
1547			ASSERT(!vd->vdev_islog);
1548			metaslab_group_passivate(vd->vdev_log_mg);
1549		}
1550
1551		uint64_t count = vd->vdev_ms_count;
1552		for (uint64_t m = 0; m < count; m++) {
1553			metaslab_t *msp = vd->vdev_ms[m];
1554			if (msp != NULL)
1555				metaslab_fini(msp);
1556		}
1557		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1558		vd->vdev_ms = NULL;
1559		vd->vdev_ms_count = 0;
1560
1561		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1562			ASSERT0(mg->mg_histogram[i]);
1563			if (vd->vdev_log_mg != NULL)
1564				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1565		}
1566	}
1567	ASSERT0(vd->vdev_ms_count);
1568	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1569}
1570
1571typedef struct vdev_probe_stats {
1572	boolean_t	vps_readable;
1573	boolean_t	vps_writeable;
1574	int		vps_flags;
1575} vdev_probe_stats_t;
1576
1577static void
1578vdev_probe_done(zio_t *zio)
1579{
1580	spa_t *spa = zio->io_spa;
1581	vdev_t *vd = zio->io_vd;
1582	vdev_probe_stats_t *vps = zio->io_private;
1583
1584	ASSERT(vd->vdev_probe_zio != NULL);
1585
1586	if (zio->io_type == ZIO_TYPE_READ) {
1587		if (zio->io_error == 0)
1588			vps->vps_readable = 1;
1589		if (zio->io_error == 0 && spa_writeable(spa)) {
1590			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1591			    zio->io_offset, zio->io_size, zio->io_abd,
1592			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1593			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1594		} else {
1595			abd_free(zio->io_abd);
1596		}
1597	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1598		if (zio->io_error == 0)
1599			vps->vps_writeable = 1;
1600		abd_free(zio->io_abd);
1601	} else if (zio->io_type == ZIO_TYPE_NULL) {
1602		zio_t *pio;
1603		zio_link_t *zl;
1604
1605		vd->vdev_cant_read |= !vps->vps_readable;
1606		vd->vdev_cant_write |= !vps->vps_writeable;
1607
1608		if (vdev_readable(vd) &&
1609		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1610			zio->io_error = 0;
1611		} else {
1612			ASSERT(zio->io_error != 0);
1613			vdev_dbgmsg(vd, "failed probe");
1614			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1615			    spa, vd, NULL, NULL, 0);
1616			zio->io_error = SET_ERROR(ENXIO);
1617		}
1618
1619		mutex_enter(&vd->vdev_probe_lock);
1620		ASSERT(vd->vdev_probe_zio == zio);
1621		vd->vdev_probe_zio = NULL;
1622		mutex_exit(&vd->vdev_probe_lock);
1623
1624		zl = NULL;
1625		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1626			if (!vdev_accessible(vd, pio))
1627				pio->io_error = SET_ERROR(ENXIO);
1628
1629		kmem_free(vps, sizeof (*vps));
1630	}
1631}
1632
1633/*
1634 * Determine whether this device is accessible.
1635 *
1636 * Read and write to several known locations: the pad regions of each
1637 * vdev label but the first, which we leave alone in case it contains
1638 * a VTOC.
1639 */
1640zio_t *
1641vdev_probe(vdev_t *vd, zio_t *zio)
1642{
1643	spa_t *spa = vd->vdev_spa;
1644	vdev_probe_stats_t *vps = NULL;
1645	zio_t *pio;
1646
1647	ASSERT(vd->vdev_ops->vdev_op_leaf);
1648
1649	/*
1650	 * Don't probe the probe.
1651	 */
1652	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1653		return (NULL);
1654
1655	/*
1656	 * To prevent 'probe storms' when a device fails, we create
1657	 * just one probe i/o at a time.  All zios that want to probe
1658	 * this vdev will become parents of the probe io.
1659	 */
1660	mutex_enter(&vd->vdev_probe_lock);
1661
1662	if ((pio = vd->vdev_probe_zio) == NULL) {
1663		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1664
1665		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1666		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1667		    ZIO_FLAG_TRYHARD;
1668
1669		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1670			/*
1671			 * vdev_cant_read and vdev_cant_write can only
1672			 * transition from TRUE to FALSE when we have the
1673			 * SCL_ZIO lock as writer; otherwise they can only
1674			 * transition from FALSE to TRUE.  This ensures that
1675			 * any zio looking at these values can assume that
1676			 * failures persist for the life of the I/O.  That's
1677			 * important because when a device has intermittent
1678			 * connectivity problems, we want to ensure that
1679			 * they're ascribed to the device (ENXIO) and not
1680			 * the zio (EIO).
1681			 *
1682			 * Since we hold SCL_ZIO as writer here, clear both
1683			 * values so the probe can reevaluate from first
1684			 * principles.
1685			 */
1686			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1687			vd->vdev_cant_read = B_FALSE;
1688			vd->vdev_cant_write = B_FALSE;
1689		}
1690
1691		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1692		    vdev_probe_done, vps,
1693		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1694
1695		/*
1696		 * We can't change the vdev state in this context, so we
1697		 * kick off an async task to do it on our behalf.
1698		 */
1699		if (zio != NULL) {
1700			vd->vdev_probe_wanted = B_TRUE;
1701			spa_async_request(spa, SPA_ASYNC_PROBE);
1702		}
1703	}
1704
1705	if (zio != NULL)
1706		zio_add_child(zio, pio);
1707
1708	mutex_exit(&vd->vdev_probe_lock);
1709
1710	if (vps == NULL) {
1711		ASSERT(zio != NULL);
1712		return (NULL);
1713	}
1714
1715	for (int l = 1; l < VDEV_LABELS; l++) {
1716		zio_nowait(zio_read_phys(pio, vd,
1717		    vdev_label_offset(vd->vdev_psize, l,
1718		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1719		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1720		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1721		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1722	}
1723
1724	if (zio == NULL)
1725		return (pio);
1726
1727	zio_nowait(pio);
1728	return (NULL);
1729}
1730
1731static void
1732vdev_load_child(void *arg)
1733{
1734	vdev_t *vd = arg;
1735
1736	vd->vdev_load_error = vdev_load(vd);
1737}
1738
1739static void
1740vdev_open_child(void *arg)
1741{
1742	vdev_t *vd = arg;
1743
1744	vd->vdev_open_thread = curthread;
1745	vd->vdev_open_error = vdev_open(vd);
1746	vd->vdev_open_thread = NULL;
1747}
1748
1749static boolean_t
1750vdev_uses_zvols(vdev_t *vd)
1751{
1752#ifdef _KERNEL
1753	if (zvol_is_zvol(vd->vdev_path))
1754		return (B_TRUE);
1755#endif
1756
1757	for (int c = 0; c < vd->vdev_children; c++)
1758		if (vdev_uses_zvols(vd->vdev_child[c]))
1759			return (B_TRUE);
1760
1761	return (B_FALSE);
1762}
1763
1764/*
1765 * Returns B_TRUE if the passed child should be opened.
1766 */
1767static boolean_t
1768vdev_default_open_children_func(vdev_t *vd)
1769{
1770	return (B_TRUE);
1771}
1772
1773/*
1774 * Open the requested child vdevs.  If any of the leaf vdevs are using
1775 * a ZFS volume then do the opens in a single thread.  This avoids a
1776 * deadlock when the current thread is holding the spa_namespace_lock.
1777 */
1778static void
1779vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1780{
1781	int children = vd->vdev_children;
1782
1783	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1784	    children, children, TASKQ_PREPOPULATE);
1785	vd->vdev_nonrot = B_TRUE;
1786
1787	for (int c = 0; c < children; c++) {
1788		vdev_t *cvd = vd->vdev_child[c];
1789
1790		if (open_func(cvd) == B_FALSE)
1791			continue;
1792
1793		if (tq == NULL || vdev_uses_zvols(vd)) {
1794			cvd->vdev_open_error = vdev_open(cvd);
1795		} else {
1796			VERIFY(taskq_dispatch(tq, vdev_open_child,
1797			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1798		}
1799
1800		vd->vdev_nonrot &= cvd->vdev_nonrot;
1801	}
1802
1803	if (tq != NULL) {
1804		taskq_wait(tq);
1805		taskq_destroy(tq);
1806	}
1807}
1808
1809/*
1810 * Open all child vdevs.
1811 */
1812void
1813vdev_open_children(vdev_t *vd)
1814{
1815	vdev_open_children_impl(vd, vdev_default_open_children_func);
1816}
1817
1818/*
1819 * Conditionally open a subset of child vdevs.
1820 */
1821void
1822vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1823{
1824	vdev_open_children_impl(vd, open_func);
1825}
1826
1827/*
1828 * Compute the raidz-deflation ratio.  Note, we hard-code
1829 * in 128k (1 << 17) because it is the "typical" blocksize.
1830 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1831 * otherwise it would inconsistently account for existing bp's.
1832 */
1833static void
1834vdev_set_deflate_ratio(vdev_t *vd)
1835{
1836	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1837		vd->vdev_deflate_ratio = (1 << 17) /
1838		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1839	}
1840}
1841
1842/*
1843 * Maximize performance by inflating the configured ashift for top level
1844 * vdevs to be as close to the physical ashift as possible while maintaining
1845 * administrator defined limits and ensuring it doesn't go below the
1846 * logical ashift.
1847 */
1848static void
1849vdev_ashift_optimize(vdev_t *vd)
1850{
1851	ASSERT(vd == vd->vdev_top);
1852
1853	if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1854		vd->vdev_ashift = MIN(
1855		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1856		    MAX(zfs_vdev_min_auto_ashift,
1857		    vd->vdev_physical_ashift));
1858	} else {
1859		/*
1860		 * If the logical and physical ashifts are the same, then
1861		 * we ensure that the top-level vdev's ashift is not smaller
1862		 * than our minimum ashift value. For the unusual case
1863		 * where logical ashift > physical ashift, we can't cap
1864		 * the calculated ashift based on max ashift as that
1865		 * would cause failures.
1866		 * We still check if we need to increase it to match
1867		 * the min ashift.
1868		 */
1869		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1870		    vd->vdev_ashift);
1871	}
1872}
1873
1874/*
1875 * Prepare a virtual device for access.
1876 */
1877int
1878vdev_open(vdev_t *vd)
1879{
1880	spa_t *spa = vd->vdev_spa;
1881	int error;
1882	uint64_t osize = 0;
1883	uint64_t max_osize = 0;
1884	uint64_t asize, max_asize, psize;
1885	uint64_t logical_ashift = 0;
1886	uint64_t physical_ashift = 0;
1887
1888	ASSERT(vd->vdev_open_thread == curthread ||
1889	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1890	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1891	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1892	    vd->vdev_state == VDEV_STATE_OFFLINE);
1893
1894	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1895	vd->vdev_cant_read = B_FALSE;
1896	vd->vdev_cant_write = B_FALSE;
1897	vd->vdev_min_asize = vdev_get_min_asize(vd);
1898
1899	/*
1900	 * If this vdev is not removed, check its fault status.  If it's
1901	 * faulted, bail out of the open.
1902	 */
1903	if (!vd->vdev_removed && vd->vdev_faulted) {
1904		ASSERT(vd->vdev_children == 0);
1905		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1906		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1907		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1908		    vd->vdev_label_aux);
1909		return (SET_ERROR(ENXIO));
1910	} else if (vd->vdev_offline) {
1911		ASSERT(vd->vdev_children == 0);
1912		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1913		return (SET_ERROR(ENXIO));
1914	}
1915
1916	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1917	    &logical_ashift, &physical_ashift);
1918	/*
1919	 * Physical volume size should never be larger than its max size, unless
1920	 * the disk has shrunk while we were reading it or the device is buggy
1921	 * or damaged: either way it's not safe for use, bail out of the open.
1922	 */
1923	if (osize > max_osize) {
1924		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1925		    VDEV_AUX_OPEN_FAILED);
1926		return (SET_ERROR(ENXIO));
1927	}
1928
1929	/*
1930	 * Reset the vdev_reopening flag so that we actually close
1931	 * the vdev on error.
1932	 */
1933	vd->vdev_reopening = B_FALSE;
1934	if (zio_injection_enabled && error == 0)
1935		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1936
1937	if (error) {
1938		if (vd->vdev_removed &&
1939		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1940			vd->vdev_removed = B_FALSE;
1941
1942		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1943			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1944			    vd->vdev_stat.vs_aux);
1945		} else {
1946			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1947			    vd->vdev_stat.vs_aux);
1948		}
1949		return (error);
1950	}
1951
1952	vd->vdev_removed = B_FALSE;
1953
1954	/*
1955	 * Recheck the faulted flag now that we have confirmed that
1956	 * the vdev is accessible.  If we're faulted, bail.
1957	 */
1958	if (vd->vdev_faulted) {
1959		ASSERT(vd->vdev_children == 0);
1960		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1961		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1962		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1963		    vd->vdev_label_aux);
1964		return (SET_ERROR(ENXIO));
1965	}
1966
1967	if (vd->vdev_degraded) {
1968		ASSERT(vd->vdev_children == 0);
1969		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1970		    VDEV_AUX_ERR_EXCEEDED);
1971	} else {
1972		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1973	}
1974
1975	/*
1976	 * For hole or missing vdevs we just return success.
1977	 */
1978	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1979		return (0);
1980
1981	for (int c = 0; c < vd->vdev_children; c++) {
1982		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1983			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1984			    VDEV_AUX_NONE);
1985			break;
1986		}
1987	}
1988
1989	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1990	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1991
1992	if (vd->vdev_children == 0) {
1993		if (osize < SPA_MINDEVSIZE) {
1994			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1995			    VDEV_AUX_TOO_SMALL);
1996			return (SET_ERROR(EOVERFLOW));
1997		}
1998		psize = osize;
1999		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2000		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2001		    VDEV_LABEL_END_SIZE);
2002	} else {
2003		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2004		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2005			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2006			    VDEV_AUX_TOO_SMALL);
2007			return (SET_ERROR(EOVERFLOW));
2008		}
2009		psize = 0;
2010		asize = osize;
2011		max_asize = max_osize;
2012	}
2013
2014	/*
2015	 * If the vdev was expanded, record this so that we can re-create the
2016	 * uberblock rings in labels {2,3}, during the next sync.
2017	 */
2018	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2019		vd->vdev_copy_uberblocks = B_TRUE;
2020
2021	vd->vdev_psize = psize;
2022
2023	/*
2024	 * Make sure the allocatable size hasn't shrunk too much.
2025	 */
2026	if (asize < vd->vdev_min_asize) {
2027		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2028		    VDEV_AUX_BAD_LABEL);
2029		return (SET_ERROR(EINVAL));
2030	}
2031
2032	/*
2033	 * We can always set the logical/physical ashift members since
2034	 * their values are only used to calculate the vdev_ashift when
2035	 * the device is first added to the config. These values should
2036	 * not be used for anything else since they may change whenever
2037	 * the device is reopened and we don't store them in the label.
2038	 */
2039	vd->vdev_physical_ashift =
2040	    MAX(physical_ashift, vd->vdev_physical_ashift);
2041	vd->vdev_logical_ashift = MAX(logical_ashift,
2042	    vd->vdev_logical_ashift);
2043
2044	if (vd->vdev_asize == 0) {
2045		/*
2046		 * This is the first-ever open, so use the computed values.
2047		 * For compatibility, a different ashift can be requested.
2048		 */
2049		vd->vdev_asize = asize;
2050		vd->vdev_max_asize = max_asize;
2051
2052		/*
2053		 * If the vdev_ashift was not overridden at creation time,
2054		 * then set it the logical ashift and optimize the ashift.
2055		 */
2056		if (vd->vdev_ashift == 0) {
2057			vd->vdev_ashift = vd->vdev_logical_ashift;
2058
2059			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2060				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2061				    VDEV_AUX_ASHIFT_TOO_BIG);
2062				return (SET_ERROR(EDOM));
2063			}
2064
2065			if (vd->vdev_top == vd) {
2066				vdev_ashift_optimize(vd);
2067			}
2068		}
2069		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2070		    vd->vdev_ashift > ASHIFT_MAX)) {
2071			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2072			    VDEV_AUX_BAD_ASHIFT);
2073			return (SET_ERROR(EDOM));
2074		}
2075	} else {
2076		/*
2077		 * Make sure the alignment required hasn't increased.
2078		 */
2079		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2080		    vd->vdev_ops->vdev_op_leaf) {
2081			(void) zfs_ereport_post(
2082			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2083			    spa, vd, NULL, NULL, 0);
2084			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2085			    VDEV_AUX_BAD_LABEL);
2086			return (SET_ERROR(EDOM));
2087		}
2088		vd->vdev_max_asize = max_asize;
2089	}
2090
2091	/*
2092	 * If all children are healthy we update asize if either:
2093	 * The asize has increased, due to a device expansion caused by dynamic
2094	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2095	 * making the additional space available.
2096	 *
2097	 * The asize has decreased, due to a device shrink usually caused by a
2098	 * vdev replace with a smaller device. This ensures that calculations
2099	 * based of max_asize and asize e.g. esize are always valid. It's safe
2100	 * to do this as we've already validated that asize is greater than
2101	 * vdev_min_asize.
2102	 */
2103	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2104	    ((asize > vd->vdev_asize &&
2105	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2106	    (asize < vd->vdev_asize)))
2107		vd->vdev_asize = asize;
2108
2109	vdev_set_min_asize(vd);
2110
2111	/*
2112	 * Ensure we can issue some IO before declaring the
2113	 * vdev open for business.
2114	 */
2115	if (vd->vdev_ops->vdev_op_leaf &&
2116	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2117		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2118		    VDEV_AUX_ERR_EXCEEDED);
2119		return (error);
2120	}
2121
2122	/*
2123	 * Track the minimum allocation size.
2124	 */
2125	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2126	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2127		uint64_t min_alloc = vdev_get_min_alloc(vd);
2128		if (min_alloc < spa->spa_min_alloc)
2129			spa->spa_min_alloc = min_alloc;
2130	}
2131
2132	/*
2133	 * If this is a leaf vdev, assess whether a resilver is needed.
2134	 * But don't do this if we are doing a reopen for a scrub, since
2135	 * this would just restart the scrub we are already doing.
2136	 */
2137	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2138		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2139
2140	return (0);
2141}
2142
2143static void
2144vdev_validate_child(void *arg)
2145{
2146	vdev_t *vd = arg;
2147
2148	vd->vdev_validate_thread = curthread;
2149	vd->vdev_validate_error = vdev_validate(vd);
2150	vd->vdev_validate_thread = NULL;
2151}
2152
2153/*
2154 * Called once the vdevs are all opened, this routine validates the label
2155 * contents. This needs to be done before vdev_load() so that we don't
2156 * inadvertently do repair I/Os to the wrong device.
2157 *
2158 * This function will only return failure if one of the vdevs indicates that it
2159 * has since been destroyed or exported.  This is only possible if
2160 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2161 * will be updated but the function will return 0.
2162 */
2163int
2164vdev_validate(vdev_t *vd)
2165{
2166	spa_t *spa = vd->vdev_spa;
2167	taskq_t *tq = NULL;
2168	nvlist_t *label;
2169	uint64_t guid = 0, aux_guid = 0, top_guid;
2170	uint64_t state;
2171	nvlist_t *nvl;
2172	uint64_t txg;
2173	int children = vd->vdev_children;
2174
2175	if (vdev_validate_skip)
2176		return (0);
2177
2178	if (children > 0) {
2179		tq = taskq_create("vdev_validate", children, minclsyspri,
2180		    children, children, TASKQ_PREPOPULATE);
2181	}
2182
2183	for (uint64_t c = 0; c < children; c++) {
2184		vdev_t *cvd = vd->vdev_child[c];
2185
2186		if (tq == NULL || vdev_uses_zvols(cvd)) {
2187			vdev_validate_child(cvd);
2188		} else {
2189			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2190			    TQ_SLEEP) != TASKQID_INVALID);
2191		}
2192	}
2193	if (tq != NULL) {
2194		taskq_wait(tq);
2195		taskq_destroy(tq);
2196	}
2197	for (int c = 0; c < children; c++) {
2198		int error = vd->vdev_child[c]->vdev_validate_error;
2199
2200		if (error != 0)
2201			return (SET_ERROR(EBADF));
2202	}
2203
2204
2205	/*
2206	 * If the device has already failed, or was marked offline, don't do
2207	 * any further validation.  Otherwise, label I/O will fail and we will
2208	 * overwrite the previous state.
2209	 */
2210	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2211		return (0);
2212
2213	/*
2214	 * If we are performing an extreme rewind, we allow for a label that
2215	 * was modified at a point after the current txg.
2216	 * If config lock is not held do not check for the txg. spa_sync could
2217	 * be updating the vdev's label before updating spa_last_synced_txg.
2218	 */
2219	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2220	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2221		txg = UINT64_MAX;
2222	else
2223		txg = spa_last_synced_txg(spa);
2224
2225	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2226		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2227		    VDEV_AUX_BAD_LABEL);
2228		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2229		    "txg %llu", (u_longlong_t)txg);
2230		return (0);
2231	}
2232
2233	/*
2234	 * Determine if this vdev has been split off into another
2235	 * pool.  If so, then refuse to open it.
2236	 */
2237	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2238	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2239		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2240		    VDEV_AUX_SPLIT_POOL);
2241		nvlist_free(label);
2242		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2243		return (0);
2244	}
2245
2246	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2247		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2248		    VDEV_AUX_CORRUPT_DATA);
2249		nvlist_free(label);
2250		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2251		    ZPOOL_CONFIG_POOL_GUID);
2252		return (0);
2253	}
2254
2255	/*
2256	 * If config is not trusted then ignore the spa guid check. This is
2257	 * necessary because if the machine crashed during a re-guid the new
2258	 * guid might have been written to all of the vdev labels, but not the
2259	 * cached config. The check will be performed again once we have the
2260	 * trusted config from the MOS.
2261	 */
2262	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2263		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2264		    VDEV_AUX_CORRUPT_DATA);
2265		nvlist_free(label);
2266		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2267		    "match config (%llu != %llu)", (u_longlong_t)guid,
2268		    (u_longlong_t)spa_guid(spa));
2269		return (0);
2270	}
2271
2272	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2273	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2274	    &aux_guid) != 0)
2275		aux_guid = 0;
2276
2277	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2278		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2279		    VDEV_AUX_CORRUPT_DATA);
2280		nvlist_free(label);
2281		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2282		    ZPOOL_CONFIG_GUID);
2283		return (0);
2284	}
2285
2286	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2287	    != 0) {
2288		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2289		    VDEV_AUX_CORRUPT_DATA);
2290		nvlist_free(label);
2291		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2292		    ZPOOL_CONFIG_TOP_GUID);
2293		return (0);
2294	}
2295
2296	/*
2297	 * If this vdev just became a top-level vdev because its sibling was
2298	 * detached, it will have adopted the parent's vdev guid -- but the
2299	 * label may or may not be on disk yet. Fortunately, either version
2300	 * of the label will have the same top guid, so if we're a top-level
2301	 * vdev, we can safely compare to that instead.
2302	 * However, if the config comes from a cachefile that failed to update
2303	 * after the detach, a top-level vdev will appear as a non top-level
2304	 * vdev in the config. Also relax the constraints if we perform an
2305	 * extreme rewind.
2306	 *
2307	 * If we split this vdev off instead, then we also check the
2308	 * original pool's guid. We don't want to consider the vdev
2309	 * corrupt if it is partway through a split operation.
2310	 */
2311	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2312		boolean_t mismatch = B_FALSE;
2313		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2314			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2315				mismatch = B_TRUE;
2316		} else {
2317			if (vd->vdev_guid != top_guid &&
2318			    vd->vdev_top->vdev_guid != guid)
2319				mismatch = B_TRUE;
2320		}
2321
2322		if (mismatch) {
2323			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2324			    VDEV_AUX_CORRUPT_DATA);
2325			nvlist_free(label);
2326			vdev_dbgmsg(vd, "vdev_validate: config guid "
2327			    "doesn't match label guid");
2328			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2329			    (u_longlong_t)vd->vdev_guid,
2330			    (u_longlong_t)vd->vdev_top->vdev_guid);
2331			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2332			    "aux_guid %llu", (u_longlong_t)guid,
2333			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2334			return (0);
2335		}
2336	}
2337
2338	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2339	    &state) != 0) {
2340		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2341		    VDEV_AUX_CORRUPT_DATA);
2342		nvlist_free(label);
2343		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2344		    ZPOOL_CONFIG_POOL_STATE);
2345		return (0);
2346	}
2347
2348	nvlist_free(label);
2349
2350	/*
2351	 * If this is a verbatim import, no need to check the
2352	 * state of the pool.
2353	 */
2354	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2355	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2356	    state != POOL_STATE_ACTIVE) {
2357		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2358		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2359		return (SET_ERROR(EBADF));
2360	}
2361
2362	/*
2363	 * If we were able to open and validate a vdev that was
2364	 * previously marked permanently unavailable, clear that state
2365	 * now.
2366	 */
2367	if (vd->vdev_not_present)
2368		vd->vdev_not_present = 0;
2369
2370	return (0);
2371}
2372
2373static void
2374vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2375{
2376	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2377		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2378			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2379			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2380			    dvd->vdev_path, svd->vdev_path);
2381			spa_strfree(dvd->vdev_path);
2382			dvd->vdev_path = spa_strdup(svd->vdev_path);
2383		}
2384	} else if (svd->vdev_path != NULL) {
2385		dvd->vdev_path = spa_strdup(svd->vdev_path);
2386		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2387		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2388	}
2389}
2390
2391/*
2392 * Recursively copy vdev paths from one vdev to another. Source and destination
2393 * vdev trees must have same geometry otherwise return error. Intended to copy
2394 * paths from userland config into MOS config.
2395 */
2396int
2397vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2398{
2399	if ((svd->vdev_ops == &vdev_missing_ops) ||
2400	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2401	    (dvd->vdev_ops == &vdev_indirect_ops))
2402		return (0);
2403
2404	if (svd->vdev_ops != dvd->vdev_ops) {
2405		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2406		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2407		return (SET_ERROR(EINVAL));
2408	}
2409
2410	if (svd->vdev_guid != dvd->vdev_guid) {
2411		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2412		    "%llu)", (u_longlong_t)svd->vdev_guid,
2413		    (u_longlong_t)dvd->vdev_guid);
2414		return (SET_ERROR(EINVAL));
2415	}
2416
2417	if (svd->vdev_children != dvd->vdev_children) {
2418		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2419		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2420		    (u_longlong_t)dvd->vdev_children);
2421		return (SET_ERROR(EINVAL));
2422	}
2423
2424	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2425		int error = vdev_copy_path_strict(svd->vdev_child[i],
2426		    dvd->vdev_child[i]);
2427		if (error != 0)
2428			return (error);
2429	}
2430
2431	if (svd->vdev_ops->vdev_op_leaf)
2432		vdev_copy_path_impl(svd, dvd);
2433
2434	return (0);
2435}
2436
2437static void
2438vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2439{
2440	ASSERT(stvd->vdev_top == stvd);
2441	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2442
2443	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2444		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2445	}
2446
2447	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2448		return;
2449
2450	/*
2451	 * The idea here is that while a vdev can shift positions within
2452	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2453	 * step outside of it.
2454	 */
2455	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2456
2457	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2458		return;
2459
2460	ASSERT(vd->vdev_ops->vdev_op_leaf);
2461
2462	vdev_copy_path_impl(vd, dvd);
2463}
2464
2465/*
2466 * Recursively copy vdev paths from one root vdev to another. Source and
2467 * destination vdev trees may differ in geometry. For each destination leaf
2468 * vdev, search a vdev with the same guid and top vdev id in the source.
2469 * Intended to copy paths from userland config into MOS config.
2470 */
2471void
2472vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2473{
2474	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2475	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2476	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2477
2478	for (uint64_t i = 0; i < children; i++) {
2479		vdev_copy_path_search(srvd->vdev_child[i],
2480		    drvd->vdev_child[i]);
2481	}
2482}
2483
2484/*
2485 * Close a virtual device.
2486 */
2487void
2488vdev_close(vdev_t *vd)
2489{
2490	vdev_t *pvd = vd->vdev_parent;
2491	spa_t *spa __maybe_unused = vd->vdev_spa;
2492
2493	ASSERT(vd != NULL);
2494	ASSERT(vd->vdev_open_thread == curthread ||
2495	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2496
2497	/*
2498	 * If our parent is reopening, then we are as well, unless we are
2499	 * going offline.
2500	 */
2501	if (pvd != NULL && pvd->vdev_reopening)
2502		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2503
2504	vd->vdev_ops->vdev_op_close(vd);
2505
2506	vdev_cache_purge(vd);
2507
2508	/*
2509	 * We record the previous state before we close it, so that if we are
2510	 * doing a reopen(), we don't generate FMA ereports if we notice that
2511	 * it's still faulted.
2512	 */
2513	vd->vdev_prevstate = vd->vdev_state;
2514
2515	if (vd->vdev_offline)
2516		vd->vdev_state = VDEV_STATE_OFFLINE;
2517	else
2518		vd->vdev_state = VDEV_STATE_CLOSED;
2519	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2520}
2521
2522void
2523vdev_hold(vdev_t *vd)
2524{
2525	spa_t *spa = vd->vdev_spa;
2526
2527	ASSERT(spa_is_root(spa));
2528	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2529		return;
2530
2531	for (int c = 0; c < vd->vdev_children; c++)
2532		vdev_hold(vd->vdev_child[c]);
2533
2534	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2535		vd->vdev_ops->vdev_op_hold(vd);
2536}
2537
2538void
2539vdev_rele(vdev_t *vd)
2540{
2541	ASSERT(spa_is_root(vd->vdev_spa));
2542	for (int c = 0; c < vd->vdev_children; c++)
2543		vdev_rele(vd->vdev_child[c]);
2544
2545	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2546		vd->vdev_ops->vdev_op_rele(vd);
2547}
2548
2549/*
2550 * Reopen all interior vdevs and any unopened leaves.  We don't actually
2551 * reopen leaf vdevs which had previously been opened as they might deadlock
2552 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2553 * If the leaf has never been opened then open it, as usual.
2554 */
2555void
2556vdev_reopen(vdev_t *vd)
2557{
2558	spa_t *spa = vd->vdev_spa;
2559
2560	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2561
2562	/* set the reopening flag unless we're taking the vdev offline */
2563	vd->vdev_reopening = !vd->vdev_offline;
2564	vdev_close(vd);
2565	(void) vdev_open(vd);
2566
2567	/*
2568	 * Call vdev_validate() here to make sure we have the same device.
2569	 * Otherwise, a device with an invalid label could be successfully
2570	 * opened in response to vdev_reopen().
2571	 */
2572	if (vd->vdev_aux) {
2573		(void) vdev_validate_aux(vd);
2574		if (vdev_readable(vd) && vdev_writeable(vd) &&
2575		    vd->vdev_aux == &spa->spa_l2cache) {
2576			/*
2577			 * In case the vdev is present we should evict all ARC
2578			 * buffers and pointers to log blocks and reclaim their
2579			 * space before restoring its contents to L2ARC.
2580			 */
2581			if (l2arc_vdev_present(vd)) {
2582				l2arc_rebuild_vdev(vd, B_TRUE);
2583			} else {
2584				l2arc_add_vdev(spa, vd);
2585			}
2586			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2587			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2588		}
2589	} else {
2590		(void) vdev_validate(vd);
2591	}
2592
2593	/*
2594	 * Reassess parent vdev's health.
2595	 */
2596	vdev_propagate_state(vd);
2597}
2598
2599int
2600vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2601{
2602	int error;
2603
2604	/*
2605	 * Normally, partial opens (e.g. of a mirror) are allowed.
2606	 * For a create, however, we want to fail the request if
2607	 * there are any components we can't open.
2608	 */
2609	error = vdev_open(vd);
2610
2611	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2612		vdev_close(vd);
2613		return (error ? error : SET_ERROR(ENXIO));
2614	}
2615
2616	/*
2617	 * Recursively load DTLs and initialize all labels.
2618	 */
2619	if ((error = vdev_dtl_load(vd)) != 0 ||
2620	    (error = vdev_label_init(vd, txg, isreplacing ?
2621	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2622		vdev_close(vd);
2623		return (error);
2624	}
2625
2626	return (0);
2627}
2628
2629void
2630vdev_metaslab_set_size(vdev_t *vd)
2631{
2632	uint64_t asize = vd->vdev_asize;
2633	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2634	uint64_t ms_shift;
2635
2636	/*
2637	 * There are two dimensions to the metaslab sizing calculation:
2638	 * the size of the metaslab and the count of metaslabs per vdev.
2639	 *
2640	 * The default values used below are a good balance between memory
2641	 * usage (larger metaslab size means more memory needed for loaded
2642	 * metaslabs; more metaslabs means more memory needed for the
2643	 * metaslab_t structs), metaslab load time (larger metaslabs take
2644	 * longer to load), and metaslab sync time (more metaslabs means
2645	 * more time spent syncing all of them).
2646	 *
2647	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2648	 * The range of the dimensions are as follows:
2649	 *
2650	 *	2^29 <= ms_size  <= 2^34
2651	 *	  16 <= ms_count <= 131,072
2652	 *
2653	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2654	 * at least 512MB (2^29) to minimize fragmentation effects when
2655	 * testing with smaller devices.  However, the count constraint
2656	 * of at least 16 metaslabs will override this minimum size goal.
2657	 *
2658	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2659	 * size of 16GB.  However, we will cap the total count to 2^17
2660	 * metaslabs to keep our memory footprint in check and let the
2661	 * metaslab size grow from there if that limit is hit.
2662	 *
2663	 * The net effect of applying above constrains is summarized below.
2664	 *
2665	 *   vdev size       metaslab count
2666	 *  --------------|-----------------
2667	 *      < 8GB        ~16
2668	 *  8GB   - 100GB   one per 512MB
2669	 *  100GB - 3TB     ~200
2670	 *  3TB   - 2PB     one per 16GB
2671	 *      > 2PB       ~131,072
2672	 *  --------------------------------
2673	 *
2674	 *  Finally, note that all of the above calculate the initial
2675	 *  number of metaslabs. Expanding a top-level vdev will result
2676	 *  in additional metaslabs being allocated making it possible
2677	 *  to exceed the zfs_vdev_ms_count_limit.
2678	 */
2679
2680	if (ms_count < zfs_vdev_min_ms_count)
2681		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2682	else if (ms_count > zfs_vdev_default_ms_count)
2683		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2684	else
2685		ms_shift = zfs_vdev_default_ms_shift;
2686
2687	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2688		ms_shift = SPA_MAXBLOCKSHIFT;
2689	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2690		ms_shift = zfs_vdev_max_ms_shift;
2691		/* cap the total count to constrain memory footprint */
2692		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2693			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2694	}
2695
2696	vd->vdev_ms_shift = ms_shift;
2697	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2698}
2699
2700void
2701vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2702{
2703	ASSERT(vd == vd->vdev_top);
2704	/* indirect vdevs don't have metaslabs or dtls */
2705	ASSERT(vdev_is_concrete(vd) || flags == 0);
2706	ASSERT(ISP2(flags));
2707	ASSERT(spa_writeable(vd->vdev_spa));
2708
2709	if (flags & VDD_METASLAB)
2710		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2711
2712	if (flags & VDD_DTL)
2713		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2714
2715	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2716}
2717
2718void
2719vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2720{
2721	for (int c = 0; c < vd->vdev_children; c++)
2722		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2723
2724	if (vd->vdev_ops->vdev_op_leaf)
2725		vdev_dirty(vd->vdev_top, flags, vd, txg);
2726}
2727
2728/*
2729 * DTLs.
2730 *
2731 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2732 * the vdev has less than perfect replication.  There are four kinds of DTL:
2733 *
2734 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2735 *
2736 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2737 *
2738 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2739 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2740 *	txgs that was scrubbed.
2741 *
2742 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2743 *	persistent errors or just some device being offline.
2744 *	Unlike the other three, the DTL_OUTAGE map is not generally
2745 *	maintained; it's only computed when needed, typically to
2746 *	determine whether a device can be detached.
2747 *
2748 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2749 * either has the data or it doesn't.
2750 *
2751 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2752 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2753 * if any child is less than fully replicated, then so is its parent.
2754 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2755 * comprising only those txgs which appear in 'maxfaults' or more children;
2756 * those are the txgs we don't have enough replication to read.  For example,
2757 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2758 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2759 * two child DTL_MISSING maps.
2760 *
2761 * It should be clear from the above that to compute the DTLs and outage maps
2762 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2763 * Therefore, that is all we keep on disk.  When loading the pool, or after
2764 * a configuration change, we generate all other DTLs from first principles.
2765 */
2766void
2767vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2768{
2769	range_tree_t *rt = vd->vdev_dtl[t];
2770
2771	ASSERT(t < DTL_TYPES);
2772	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2773	ASSERT(spa_writeable(vd->vdev_spa));
2774
2775	mutex_enter(&vd->vdev_dtl_lock);
2776	if (!range_tree_contains(rt, txg, size))
2777		range_tree_add(rt, txg, size);
2778	mutex_exit(&vd->vdev_dtl_lock);
2779}
2780
2781boolean_t
2782vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2783{
2784	range_tree_t *rt = vd->vdev_dtl[t];
2785	boolean_t dirty = B_FALSE;
2786
2787	ASSERT(t < DTL_TYPES);
2788	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2789
2790	/*
2791	 * While we are loading the pool, the DTLs have not been loaded yet.
2792	 * This isn't a problem but it can result in devices being tried
2793	 * which are known to not have the data.  In which case, the import
2794	 * is relying on the checksum to ensure that we get the right data.
2795	 * Note that while importing we are only reading the MOS, which is
2796	 * always checksummed.
2797	 */
2798	mutex_enter(&vd->vdev_dtl_lock);
2799	if (!range_tree_is_empty(rt))
2800		dirty = range_tree_contains(rt, txg, size);
2801	mutex_exit(&vd->vdev_dtl_lock);
2802
2803	return (dirty);
2804}
2805
2806boolean_t
2807vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2808{
2809	range_tree_t *rt = vd->vdev_dtl[t];
2810	boolean_t empty;
2811
2812	mutex_enter(&vd->vdev_dtl_lock);
2813	empty = range_tree_is_empty(rt);
2814	mutex_exit(&vd->vdev_dtl_lock);
2815
2816	return (empty);
2817}
2818
2819/*
2820 * Check if the txg falls within the range which must be
2821 * resilvered.  DVAs outside this range can always be skipped.
2822 */
2823boolean_t
2824vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2825    uint64_t phys_birth)
2826{
2827	/* Set by sequential resilver. */
2828	if (phys_birth == TXG_UNKNOWN)
2829		return (B_TRUE);
2830
2831	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2832}
2833
2834/*
2835 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2836 */
2837boolean_t
2838vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2839    uint64_t phys_birth)
2840{
2841	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2842
2843	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2844	    vd->vdev_ops->vdev_op_leaf)
2845		return (B_TRUE);
2846
2847	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2848	    phys_birth));
2849}
2850
2851/*
2852 * Returns the lowest txg in the DTL range.
2853 */
2854static uint64_t
2855vdev_dtl_min(vdev_t *vd)
2856{
2857	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2858	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2859	ASSERT0(vd->vdev_children);
2860
2861	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2862}
2863
2864/*
2865 * Returns the highest txg in the DTL.
2866 */
2867static uint64_t
2868vdev_dtl_max(vdev_t *vd)
2869{
2870	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2871	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2872	ASSERT0(vd->vdev_children);
2873
2874	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2875}
2876
2877/*
2878 * Determine if a resilvering vdev should remove any DTL entries from
2879 * its range. If the vdev was resilvering for the entire duration of the
2880 * scan then it should excise that range from its DTLs. Otherwise, this
2881 * vdev is considered partially resilvered and should leave its DTL
2882 * entries intact. The comment in vdev_dtl_reassess() describes how we
2883 * excise the DTLs.
2884 */
2885static boolean_t
2886vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2887{
2888	ASSERT0(vd->vdev_children);
2889
2890	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2891		return (B_FALSE);
2892
2893	if (vd->vdev_resilver_deferred)
2894		return (B_FALSE);
2895
2896	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2897		return (B_TRUE);
2898
2899	if (rebuild_done) {
2900		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2901		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2902
2903		/* Rebuild not initiated by attach */
2904		if (vd->vdev_rebuild_txg == 0)
2905			return (B_TRUE);
2906
2907		/*
2908		 * When a rebuild completes without error then all missing data
2909		 * up to the rebuild max txg has been reconstructed and the DTL
2910		 * is eligible for excision.
2911		 */
2912		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2913		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2914			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2915			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2916			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2917			return (B_TRUE);
2918		}
2919	} else {
2920		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2921		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2922
2923		/* Resilver not initiated by attach */
2924		if (vd->vdev_resilver_txg == 0)
2925			return (B_TRUE);
2926
2927		/*
2928		 * When a resilver is initiated the scan will assign the
2929		 * scn_max_txg value to the highest txg value that exists
2930		 * in all DTLs. If this device's max DTL is not part of this
2931		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2932		 * then it is not eligible for excision.
2933		 */
2934		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2935			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2936			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2937			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2938			return (B_TRUE);
2939		}
2940	}
2941
2942	return (B_FALSE);
2943}
2944
2945/*
2946 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2947 * write operations will be issued to the pool.
2948 */
2949void
2950vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2951    boolean_t scrub_done, boolean_t rebuild_done)
2952{
2953	spa_t *spa = vd->vdev_spa;
2954	avl_tree_t reftree;
2955	int minref;
2956
2957	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2958
2959	for (int c = 0; c < vd->vdev_children; c++)
2960		vdev_dtl_reassess(vd->vdev_child[c], txg,
2961		    scrub_txg, scrub_done, rebuild_done);
2962
2963	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2964		return;
2965
2966	if (vd->vdev_ops->vdev_op_leaf) {
2967		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2968		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2969		boolean_t check_excise = B_FALSE;
2970		boolean_t wasempty = B_TRUE;
2971
2972		mutex_enter(&vd->vdev_dtl_lock);
2973
2974		/*
2975		 * If requested, pretend the scan or rebuild completed cleanly.
2976		 */
2977		if (zfs_scan_ignore_errors) {
2978			if (scn != NULL)
2979				scn->scn_phys.scn_errors = 0;
2980			if (vr != NULL)
2981				vr->vr_rebuild_phys.vrp_errors = 0;
2982		}
2983
2984		if (scrub_txg != 0 &&
2985		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2986			wasempty = B_FALSE;
2987			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2988			    "dtl:%llu/%llu errors:%llu",
2989			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2990			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2991			    (u_longlong_t)vdev_dtl_min(vd),
2992			    (u_longlong_t)vdev_dtl_max(vd),
2993			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2994		}
2995
2996		/*
2997		 * If we've completed a scrub/resilver or a rebuild cleanly
2998		 * then determine if this vdev should remove any DTLs. We
2999		 * only want to excise regions on vdevs that were available
3000		 * during the entire duration of this scan.
3001		 */
3002		if (rebuild_done &&
3003		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3004			check_excise = B_TRUE;
3005		} else {
3006			if (spa->spa_scrub_started ||
3007			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3008				check_excise = B_TRUE;
3009			}
3010		}
3011
3012		if (scrub_txg && check_excise &&
3013		    vdev_dtl_should_excise(vd, rebuild_done)) {
3014			/*
3015			 * We completed a scrub, resilver or rebuild up to
3016			 * scrub_txg.  If we did it without rebooting, then
3017			 * the scrub dtl will be valid, so excise the old
3018			 * region and fold in the scrub dtl.  Otherwise,
3019			 * leave the dtl as-is if there was an error.
3020			 *
3021			 * There's little trick here: to excise the beginning
3022			 * of the DTL_MISSING map, we put it into a reference
3023			 * tree and then add a segment with refcnt -1 that
3024			 * covers the range [0, scrub_txg).  This means
3025			 * that each txg in that range has refcnt -1 or 0.
3026			 * We then add DTL_SCRUB with a refcnt of 2, so that
3027			 * entries in the range [0, scrub_txg) will have a
3028			 * positive refcnt -- either 1 or 2.  We then convert
3029			 * the reference tree into the new DTL_MISSING map.
3030			 */
3031			space_reftree_create(&reftree);
3032			space_reftree_add_map(&reftree,
3033			    vd->vdev_dtl[DTL_MISSING], 1);
3034			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3035			space_reftree_add_map(&reftree,
3036			    vd->vdev_dtl[DTL_SCRUB], 2);
3037			space_reftree_generate_map(&reftree,
3038			    vd->vdev_dtl[DTL_MISSING], 1);
3039			space_reftree_destroy(&reftree);
3040
3041			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3042				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3043				    (u_longlong_t)vdev_dtl_min(vd),
3044				    (u_longlong_t)vdev_dtl_max(vd));
3045			} else if (!wasempty) {
3046				zfs_dbgmsg("DTL_MISSING is now empty");
3047			}
3048		}
3049		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3050		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3051		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3052		if (scrub_done)
3053			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3054		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3055		if (!vdev_readable(vd))
3056			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3057		else
3058			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3059			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3060
3061		/*
3062		 * If the vdev was resilvering or rebuilding and no longer
3063		 * has any DTLs then reset the appropriate flag and dirty
3064		 * the top level so that we persist the change.
3065		 */
3066		if (txg != 0 &&
3067		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3068		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3069			if (vd->vdev_rebuild_txg != 0) {
3070				vd->vdev_rebuild_txg = 0;
3071				vdev_config_dirty(vd->vdev_top);
3072			} else if (vd->vdev_resilver_txg != 0) {
3073				vd->vdev_resilver_txg = 0;
3074				vdev_config_dirty(vd->vdev_top);
3075			}
3076		}
3077
3078		mutex_exit(&vd->vdev_dtl_lock);
3079
3080		if (txg != 0)
3081			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3082		return;
3083	}
3084
3085	mutex_enter(&vd->vdev_dtl_lock);
3086	for (int t = 0; t < DTL_TYPES; t++) {
3087		/* account for child's outage in parent's missing map */
3088		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3089		if (t == DTL_SCRUB)
3090			continue;			/* leaf vdevs only */
3091		if (t == DTL_PARTIAL)
3092			minref = 1;			/* i.e. non-zero */
3093		else if (vdev_get_nparity(vd) != 0)
3094			minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3095		else
3096			minref = vd->vdev_children;	/* any kind of mirror */
3097		space_reftree_create(&reftree);
3098		for (int c = 0; c < vd->vdev_children; c++) {
3099			vdev_t *cvd = vd->vdev_child[c];
3100			mutex_enter(&cvd->vdev_dtl_lock);
3101			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3102			mutex_exit(&cvd->vdev_dtl_lock);
3103		}
3104		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3105		space_reftree_destroy(&reftree);
3106	}
3107	mutex_exit(&vd->vdev_dtl_lock);
3108}
3109
3110int
3111vdev_dtl_load(vdev_t *vd)
3112{
3113	spa_t *spa = vd->vdev_spa;
3114	objset_t *mos = spa->spa_meta_objset;
3115	range_tree_t *rt;
3116	int error = 0;
3117
3118	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3119		ASSERT(vdev_is_concrete(vd));
3120
3121		error = space_map_open(&vd->vdev_dtl_sm, mos,
3122		    vd->vdev_dtl_object, 0, -1ULL, 0);
3123		if (error)
3124			return (error);
3125		ASSERT(vd->vdev_dtl_sm != NULL);
3126
3127		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3128		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3129		if (error == 0) {
3130			mutex_enter(&vd->vdev_dtl_lock);
3131			range_tree_walk(rt, range_tree_add,
3132			    vd->vdev_dtl[DTL_MISSING]);
3133			mutex_exit(&vd->vdev_dtl_lock);
3134		}
3135
3136		range_tree_vacate(rt, NULL, NULL);
3137		range_tree_destroy(rt);
3138
3139		return (error);
3140	}
3141
3142	for (int c = 0; c < vd->vdev_children; c++) {
3143		error = vdev_dtl_load(vd->vdev_child[c]);
3144		if (error != 0)
3145			break;
3146	}
3147
3148	return (error);
3149}
3150
3151static void
3152vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3153{
3154	spa_t *spa = vd->vdev_spa;
3155	objset_t *mos = spa->spa_meta_objset;
3156	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3157	const char *string;
3158
3159	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3160
3161	string =
3162	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3163	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3164	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3165
3166	ASSERT(string != NULL);
3167	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3168	    1, strlen(string) + 1, string, tx));
3169
3170	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3171		spa_activate_allocation_classes(spa, tx);
3172	}
3173}
3174
3175void
3176vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3177{
3178	spa_t *spa = vd->vdev_spa;
3179
3180	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3181	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3182	    zapobj, tx));
3183}
3184
3185uint64_t
3186vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3187{
3188	spa_t *spa = vd->vdev_spa;
3189	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3190	    DMU_OT_NONE, 0, tx);
3191
3192	ASSERT(zap != 0);
3193	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3194	    zap, tx));
3195
3196	return (zap);
3197}
3198
3199void
3200vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3201{
3202	if (vd->vdev_ops != &vdev_hole_ops &&
3203	    vd->vdev_ops != &vdev_missing_ops &&
3204	    vd->vdev_ops != &vdev_root_ops &&
3205	    !vd->vdev_top->vdev_removing) {
3206		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3207			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3208		}
3209		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3210			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3211			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3212				vdev_zap_allocation_data(vd, tx);
3213		}
3214	}
3215
3216	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3217		vdev_construct_zaps(vd->vdev_child[i], tx);
3218	}
3219}
3220
3221static void
3222vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3223{
3224	spa_t *spa = vd->vdev_spa;
3225	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3226	objset_t *mos = spa->spa_meta_objset;
3227	range_tree_t *rtsync;
3228	dmu_tx_t *tx;
3229	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3230
3231	ASSERT(vdev_is_concrete(vd));
3232	ASSERT(vd->vdev_ops->vdev_op_leaf);
3233
3234	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3235
3236	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3237		mutex_enter(&vd->vdev_dtl_lock);
3238		space_map_free(vd->vdev_dtl_sm, tx);
3239		space_map_close(vd->vdev_dtl_sm);
3240		vd->vdev_dtl_sm = NULL;
3241		mutex_exit(&vd->vdev_dtl_lock);
3242
3243		/*
3244		 * We only destroy the leaf ZAP for detached leaves or for
3245		 * removed log devices. Removed data devices handle leaf ZAP
3246		 * cleanup later, once cancellation is no longer possible.
3247		 */
3248		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3249		    vd->vdev_top->vdev_islog)) {
3250			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3251			vd->vdev_leaf_zap = 0;
3252		}
3253
3254		dmu_tx_commit(tx);
3255		return;
3256	}
3257
3258	if (vd->vdev_dtl_sm == NULL) {
3259		uint64_t new_object;
3260
3261		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3262		VERIFY3U(new_object, !=, 0);
3263
3264		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3265		    0, -1ULL, 0));
3266		ASSERT(vd->vdev_dtl_sm != NULL);
3267	}
3268
3269	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3270
3271	mutex_enter(&vd->vdev_dtl_lock);
3272	range_tree_walk(rt, range_tree_add, rtsync);
3273	mutex_exit(&vd->vdev_dtl_lock);
3274
3275	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3276	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3277	range_tree_vacate(rtsync, NULL, NULL);
3278
3279	range_tree_destroy(rtsync);
3280
3281	/*
3282	 * If the object for the space map has changed then dirty
3283	 * the top level so that we update the config.
3284	 */
3285	if (object != space_map_object(vd->vdev_dtl_sm)) {
3286		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3287		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3288		    (u_longlong_t)object,
3289		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3290		vdev_config_dirty(vd->vdev_top);
3291	}
3292
3293	dmu_tx_commit(tx);
3294}
3295
3296/*
3297 * Determine whether the specified vdev can be offlined/detached/removed
3298 * without losing data.
3299 */
3300boolean_t
3301vdev_dtl_required(vdev_t *vd)
3302{
3303	spa_t *spa = vd->vdev_spa;
3304	vdev_t *tvd = vd->vdev_top;
3305	uint8_t cant_read = vd->vdev_cant_read;
3306	boolean_t required;
3307
3308	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3309
3310	if (vd == spa->spa_root_vdev || vd == tvd)
3311		return (B_TRUE);
3312
3313	/*
3314	 * Temporarily mark the device as unreadable, and then determine
3315	 * whether this results in any DTL outages in the top-level vdev.
3316	 * If not, we can safely offline/detach/remove the device.
3317	 */
3318	vd->vdev_cant_read = B_TRUE;
3319	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3320	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3321	vd->vdev_cant_read = cant_read;
3322	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3323
3324	if (!required && zio_injection_enabled) {
3325		required = !!zio_handle_device_injection(vd, NULL,
3326		    SET_ERROR(ECHILD));
3327	}
3328
3329	return (required);
3330}
3331
3332/*
3333 * Determine if resilver is needed, and if so the txg range.
3334 */
3335boolean_t
3336vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3337{
3338	boolean_t needed = B_FALSE;
3339	uint64_t thismin = UINT64_MAX;
3340	uint64_t thismax = 0;
3341
3342	if (vd->vdev_children == 0) {
3343		mutex_enter(&vd->vdev_dtl_lock);
3344		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3345		    vdev_writeable(vd)) {
3346
3347			thismin = vdev_dtl_min(vd);
3348			thismax = vdev_dtl_max(vd);
3349			needed = B_TRUE;
3350		}
3351		mutex_exit(&vd->vdev_dtl_lock);
3352	} else {
3353		for (int c = 0; c < vd->vdev_children; c++) {
3354			vdev_t *cvd = vd->vdev_child[c];
3355			uint64_t cmin, cmax;
3356
3357			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3358				thismin = MIN(thismin, cmin);
3359				thismax = MAX(thismax, cmax);
3360				needed = B_TRUE;
3361			}
3362		}
3363	}
3364
3365	if (needed && minp) {
3366		*minp = thismin;
3367		*maxp = thismax;
3368	}
3369	return (needed);
3370}
3371
3372/*
3373 * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3374 * will contain either the checkpoint spacemap object or zero if none exists.
3375 * All other errors are returned to the caller.
3376 */
3377int
3378vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3379{
3380	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3381
3382	if (vd->vdev_top_zap == 0) {
3383		*sm_obj = 0;
3384		return (0);
3385	}
3386
3387	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3388	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3389	if (error == ENOENT) {
3390		*sm_obj = 0;
3391		error = 0;
3392	}
3393
3394	return (error);
3395}
3396
3397int
3398vdev_load(vdev_t *vd)
3399{
3400	int children = vd->vdev_children;
3401	int error = 0;
3402	taskq_t *tq = NULL;
3403
3404	/*
3405	 * It's only worthwhile to use the taskq for the root vdev, because the
3406	 * slow part is metaslab_init, and that only happens for top-level
3407	 * vdevs.
3408	 */
3409	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3410		tq = taskq_create("vdev_load", children, minclsyspri,
3411		    children, children, TASKQ_PREPOPULATE);
3412	}
3413
3414	/*
3415	 * Recursively load all children.
3416	 */
3417	for (int c = 0; c < vd->vdev_children; c++) {
3418		vdev_t *cvd = vd->vdev_child[c];
3419
3420		if (tq == NULL || vdev_uses_zvols(cvd)) {
3421			cvd->vdev_load_error = vdev_load(cvd);
3422		} else {
3423			VERIFY(taskq_dispatch(tq, vdev_load_child,
3424			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3425		}
3426	}
3427
3428	if (tq != NULL) {
3429		taskq_wait(tq);
3430		taskq_destroy(tq);
3431	}
3432
3433	for (int c = 0; c < vd->vdev_children; c++) {
3434		int error = vd->vdev_child[c]->vdev_load_error;
3435
3436		if (error != 0)
3437			return (error);
3438	}
3439
3440	vdev_set_deflate_ratio(vd);
3441
3442	/*
3443	 * On spa_load path, grab the allocation bias from our zap
3444	 */
3445	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3446		spa_t *spa = vd->vdev_spa;
3447		char bias_str[64];
3448
3449		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3450		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3451		    bias_str);
3452		if (error == 0) {
3453			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3454			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3455		} else if (error != ENOENT) {
3456			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3457			    VDEV_AUX_CORRUPT_DATA);
3458			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3459			    "failed [error=%d]", vd->vdev_top_zap, error);
3460			return (error);
3461		}
3462	}
3463
3464	/*
3465	 * Load any rebuild state from the top-level vdev zap.
3466	 */
3467	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3468		error = vdev_rebuild_load(vd);
3469		if (error && error != ENOTSUP) {
3470			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3471			    VDEV_AUX_CORRUPT_DATA);
3472			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3473			    "failed [error=%d]", error);
3474			return (error);
3475		}
3476	}
3477
3478	/*
3479	 * If this is a top-level vdev, initialize its metaslabs.
3480	 */
3481	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3482		vdev_metaslab_group_create(vd);
3483
3484		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3485			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3486			    VDEV_AUX_CORRUPT_DATA);
3487			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3488			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3489			    (u_longlong_t)vd->vdev_asize);
3490			return (SET_ERROR(ENXIO));
3491		}
3492
3493		error = vdev_metaslab_init(vd, 0);
3494		if (error != 0) {
3495			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3496			    "[error=%d]", error);
3497			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3498			    VDEV_AUX_CORRUPT_DATA);
3499			return (error);
3500		}
3501
3502		uint64_t checkpoint_sm_obj;
3503		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3504		if (error == 0 && checkpoint_sm_obj != 0) {
3505			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3506			ASSERT(vd->vdev_asize != 0);
3507			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3508
3509			error = space_map_open(&vd->vdev_checkpoint_sm,
3510			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3511			    vd->vdev_ashift);
3512			if (error != 0) {
3513				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3514				    "failed for checkpoint spacemap (obj %llu) "
3515				    "[error=%d]",
3516				    (u_longlong_t)checkpoint_sm_obj, error);
3517				return (error);
3518			}
3519			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3520
3521			/*
3522			 * Since the checkpoint_sm contains free entries
3523			 * exclusively we can use space_map_allocated() to
3524			 * indicate the cumulative checkpointed space that
3525			 * has been freed.
3526			 */
3527			vd->vdev_stat.vs_checkpoint_space =
3528			    -space_map_allocated(vd->vdev_checkpoint_sm);
3529			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3530			    vd->vdev_stat.vs_checkpoint_space;
3531		} else if (error != 0) {
3532			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3533			    "checkpoint space map object from vdev ZAP "
3534			    "[error=%d]", error);
3535			return (error);
3536		}
3537	}
3538
3539	/*
3540	 * If this is a leaf vdev, load its DTL.
3541	 */
3542	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3543		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3544		    VDEV_AUX_CORRUPT_DATA);
3545		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3546		    "[error=%d]", error);
3547		return (error);
3548	}
3549
3550	uint64_t obsolete_sm_object;
3551	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3552	if (error == 0 && obsolete_sm_object != 0) {
3553		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3554		ASSERT(vd->vdev_asize != 0);
3555		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3556
3557		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3558		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3559			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3560			    VDEV_AUX_CORRUPT_DATA);
3561			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3562			    "obsolete spacemap (obj %llu) [error=%d]",
3563			    (u_longlong_t)obsolete_sm_object, error);
3564			return (error);
3565		}
3566	} else if (error != 0) {
3567		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3568		    "space map object from vdev ZAP [error=%d]", error);
3569		return (error);
3570	}
3571
3572	return (0);
3573}
3574
3575/*
3576 * The special vdev case is used for hot spares and l2cache devices.  Its
3577 * sole purpose it to set the vdev state for the associated vdev.  To do this,
3578 * we make sure that we can open the underlying device, then try to read the
3579 * label, and make sure that the label is sane and that it hasn't been
3580 * repurposed to another pool.
3581 */
3582int
3583vdev_validate_aux(vdev_t *vd)
3584{
3585	nvlist_t *label;
3586	uint64_t guid, version;
3587	uint64_t state;
3588
3589	if (!vdev_readable(vd))
3590		return (0);
3591
3592	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3593		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3594		    VDEV_AUX_CORRUPT_DATA);
3595		return (-1);
3596	}
3597
3598	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3599	    !SPA_VERSION_IS_SUPPORTED(version) ||
3600	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3601	    guid != vd->vdev_guid ||
3602	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3603		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3604		    VDEV_AUX_CORRUPT_DATA);
3605		nvlist_free(label);
3606		return (-1);
3607	}
3608
3609	/*
3610	 * We don't actually check the pool state here.  If it's in fact in
3611	 * use by another pool, we update this fact on the fly when requested.
3612	 */
3613	nvlist_free(label);
3614	return (0);
3615}
3616
3617static void
3618vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3619{
3620	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3621
3622	if (vd->vdev_top_zap == 0)
3623		return;
3624
3625	uint64_t object = 0;
3626	int err = zap_lookup(mos, vd->vdev_top_zap,
3627	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3628	if (err == ENOENT)
3629		return;
3630	VERIFY0(err);
3631
3632	VERIFY0(dmu_object_free(mos, object, tx));
3633	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3634	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3635}
3636
3637/*
3638 * Free the objects used to store this vdev's spacemaps, and the array
3639 * that points to them.
3640 */
3641void
3642vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3643{
3644	if (vd->vdev_ms_array == 0)
3645		return;
3646
3647	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3648	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3649	size_t array_bytes = array_count * sizeof (uint64_t);
3650	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3651	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3652	    array_bytes, smobj_array, 0));
3653
3654	for (uint64_t i = 0; i < array_count; i++) {
3655		uint64_t smobj = smobj_array[i];
3656		if (smobj == 0)
3657			continue;
3658
3659		space_map_free_obj(mos, smobj, tx);
3660	}
3661
3662	kmem_free(smobj_array, array_bytes);
3663	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3664	vdev_destroy_ms_flush_data(vd, tx);
3665	vd->vdev_ms_array = 0;
3666}
3667
3668static void
3669vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3670{
3671	spa_t *spa = vd->vdev_spa;
3672
3673	ASSERT(vd->vdev_islog);
3674	ASSERT(vd == vd->vdev_top);
3675	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3676
3677	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3678
3679	vdev_destroy_spacemaps(vd, tx);
3680	if (vd->vdev_top_zap != 0) {
3681		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3682		vd->vdev_top_zap = 0;
3683	}
3684
3685	dmu_tx_commit(tx);
3686}
3687
3688void
3689vdev_sync_done(vdev_t *vd, uint64_t txg)
3690{
3691	metaslab_t *msp;
3692	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3693
3694	ASSERT(vdev_is_concrete(vd));
3695
3696	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3697	    != NULL)
3698		metaslab_sync_done(msp, txg);
3699
3700	if (reassess) {
3701		metaslab_sync_reassess(vd->vdev_mg);
3702		if (vd->vdev_log_mg != NULL)
3703			metaslab_sync_reassess(vd->vdev_log_mg);
3704	}
3705}
3706
3707void
3708vdev_sync(vdev_t *vd, uint64_t txg)
3709{
3710	spa_t *spa = vd->vdev_spa;
3711	vdev_t *lvd;
3712	metaslab_t *msp;
3713
3714	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3715	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3716	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3717		ASSERT(vd->vdev_removing ||
3718		    vd->vdev_ops == &vdev_indirect_ops);
3719
3720		vdev_indirect_sync_obsolete(vd, tx);
3721
3722		/*
3723		 * If the vdev is indirect, it can't have dirty
3724		 * metaslabs or DTLs.
3725		 */
3726		if (vd->vdev_ops == &vdev_indirect_ops) {
3727			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3728			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3729			dmu_tx_commit(tx);
3730			return;
3731		}
3732	}
3733
3734	ASSERT(vdev_is_concrete(vd));
3735
3736	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3737	    !vd->vdev_removing) {
3738		ASSERT(vd == vd->vdev_top);
3739		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3740		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3741		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3742		ASSERT(vd->vdev_ms_array != 0);
3743		vdev_config_dirty(vd);
3744	}
3745
3746	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3747		metaslab_sync(msp, txg);
3748		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3749	}
3750
3751	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3752		vdev_dtl_sync(lvd, txg);
3753
3754	/*
3755	 * If this is an empty log device being removed, destroy the
3756	 * metadata associated with it.
3757	 */
3758	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3759		vdev_remove_empty_log(vd, txg);
3760
3761	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3762	dmu_tx_commit(tx);
3763}
3764
3765uint64_t
3766vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3767{
3768	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3769}
3770
3771/*
3772 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3773 * not be opened, and no I/O is attempted.
3774 */
3775int
3776vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3777{
3778	vdev_t *vd, *tvd;
3779
3780	spa_vdev_state_enter(spa, SCL_NONE);
3781
3782	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3783		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3784
3785	if (!vd->vdev_ops->vdev_op_leaf)
3786		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3787
3788	tvd = vd->vdev_top;
3789
3790	/*
3791	 * If user did a 'zpool offline -f' then make the fault persist across
3792	 * reboots.
3793	 */
3794	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3795		/*
3796		 * There are two kinds of forced faults: temporary and
3797		 * persistent.  Temporary faults go away at pool import, while
3798		 * persistent faults stay set.  Both types of faults can be
3799		 * cleared with a zpool clear.
3800		 *
3801		 * We tell if a vdev is persistently faulted by looking at the
3802		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3803		 * import then it's a persistent fault.  Otherwise, it's
3804		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3805		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3806		 * tells vdev_config_generate() (which gets run later) to set
3807		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3808		 */
3809		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3810		vd->vdev_tmpoffline = B_FALSE;
3811		aux = VDEV_AUX_EXTERNAL;
3812	} else {
3813		vd->vdev_tmpoffline = B_TRUE;
3814	}
3815
3816	/*
3817	 * We don't directly use the aux state here, but if we do a
3818	 * vdev_reopen(), we need this value to be present to remember why we
3819	 * were faulted.
3820	 */
3821	vd->vdev_label_aux = aux;
3822
3823	/*
3824	 * Faulted state takes precedence over degraded.
3825	 */
3826	vd->vdev_delayed_close = B_FALSE;
3827	vd->vdev_faulted = 1ULL;
3828	vd->vdev_degraded = 0ULL;
3829	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3830
3831	/*
3832	 * If this device has the only valid copy of the data, then
3833	 * back off and simply mark the vdev as degraded instead.
3834	 */
3835	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3836		vd->vdev_degraded = 1ULL;
3837		vd->vdev_faulted = 0ULL;
3838
3839		/*
3840		 * If we reopen the device and it's not dead, only then do we
3841		 * mark it degraded.
3842		 */
3843		vdev_reopen(tvd);
3844
3845		if (vdev_readable(vd))
3846			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3847	}
3848
3849	return (spa_vdev_state_exit(spa, vd, 0));
3850}
3851
3852/*
3853 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3854 * user that something is wrong.  The vdev continues to operate as normal as far
3855 * as I/O is concerned.
3856 */
3857int
3858vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3859{
3860	vdev_t *vd;
3861
3862	spa_vdev_state_enter(spa, SCL_NONE);
3863
3864	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3865		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3866
3867	if (!vd->vdev_ops->vdev_op_leaf)
3868		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3869
3870	/*
3871	 * If the vdev is already faulted, then don't do anything.
3872	 */
3873	if (vd->vdev_faulted || vd->vdev_degraded)
3874		return (spa_vdev_state_exit(spa, NULL, 0));
3875
3876	vd->vdev_degraded = 1ULL;
3877	if (!vdev_is_dead(vd))
3878		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3879		    aux);
3880
3881	return (spa_vdev_state_exit(spa, vd, 0));
3882}
3883
3884/*
3885 * Online the given vdev.
3886 *
3887 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3888 * spare device should be detached when the device finishes resilvering.
3889 * Second, the online should be treated like a 'test' online case, so no FMA
3890 * events are generated if the device fails to open.
3891 */
3892int
3893vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3894{
3895	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3896	boolean_t wasoffline;
3897	vdev_state_t oldstate;
3898
3899	spa_vdev_state_enter(spa, SCL_NONE);
3900
3901	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3902		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3903
3904	if (!vd->vdev_ops->vdev_op_leaf)
3905		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3906
3907	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3908	oldstate = vd->vdev_state;
3909
3910	tvd = vd->vdev_top;
3911	vd->vdev_offline = B_FALSE;
3912	vd->vdev_tmpoffline = B_FALSE;
3913	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3914	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3915
3916	/* XXX - L2ARC 1.0 does not support expansion */
3917	if (!vd->vdev_aux) {
3918		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3919			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3920			    spa->spa_autoexpand);
3921		vd->vdev_expansion_time = gethrestime_sec();
3922	}
3923
3924	vdev_reopen(tvd);
3925	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3926
3927	if (!vd->vdev_aux) {
3928		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3929			pvd->vdev_expanding = B_FALSE;
3930	}
3931
3932	if (newstate)
3933		*newstate = vd->vdev_state;
3934	if ((flags & ZFS_ONLINE_UNSPARE) &&
3935	    !vdev_is_dead(vd) && vd->vdev_parent &&
3936	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3937	    vd->vdev_parent->vdev_child[0] == vd)
3938		vd->vdev_unspare = B_TRUE;
3939
3940	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3941
3942		/* XXX - L2ARC 1.0 does not support expansion */
3943		if (vd->vdev_aux)
3944			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3945		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3946	}
3947
3948	/* Restart initializing if necessary */
3949	mutex_enter(&vd->vdev_initialize_lock);
3950	if (vdev_writeable(vd) &&
3951	    vd->vdev_initialize_thread == NULL &&
3952	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3953		(void) vdev_initialize(vd);
3954	}
3955	mutex_exit(&vd->vdev_initialize_lock);
3956
3957	/*
3958	 * Restart trimming if necessary. We do not restart trimming for cache
3959	 * devices here. This is triggered by l2arc_rebuild_vdev()
3960	 * asynchronously for the whole device or in l2arc_evict() as it evicts
3961	 * space for upcoming writes.
3962	 */
3963	mutex_enter(&vd->vdev_trim_lock);
3964	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3965	    vd->vdev_trim_thread == NULL &&
3966	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3967		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3968		    vd->vdev_trim_secure);
3969	}
3970	mutex_exit(&vd->vdev_trim_lock);
3971
3972	if (wasoffline ||
3973	    (oldstate < VDEV_STATE_DEGRADED &&
3974	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3975		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3976
3977	return (spa_vdev_state_exit(spa, vd, 0));
3978}
3979
3980static int
3981vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3982{
3983	vdev_t *vd, *tvd;
3984	int error = 0;
3985	uint64_t generation;
3986	metaslab_group_t *mg;
3987
3988top:
3989	spa_vdev_state_enter(spa, SCL_ALLOC);
3990
3991	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3992		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3993
3994	if (!vd->vdev_ops->vdev_op_leaf)
3995		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3996
3997	if (vd->vdev_ops == &vdev_draid_spare_ops)
3998		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3999
4000	tvd = vd->vdev_top;
4001	mg = tvd->vdev_mg;
4002	generation = spa->spa_config_generation + 1;
4003
4004	/*
4005	 * If the device isn't already offline, try to offline it.
4006	 */
4007	if (!vd->vdev_offline) {
4008		/*
4009		 * If this device has the only valid copy of some data,
4010		 * don't allow it to be offlined. Log devices are always
4011		 * expendable.
4012		 */
4013		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4014		    vdev_dtl_required(vd))
4015			return (spa_vdev_state_exit(spa, NULL,
4016			    SET_ERROR(EBUSY)));
4017
4018		/*
4019		 * If the top-level is a slog and it has had allocations
4020		 * then proceed.  We check that the vdev's metaslab group
4021		 * is not NULL since it's possible that we may have just
4022		 * added this vdev but not yet initialized its metaslabs.
4023		 */
4024		if (tvd->vdev_islog && mg != NULL) {
4025			/*
4026			 * Prevent any future allocations.
4027			 */
4028			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4029			metaslab_group_passivate(mg);
4030			(void) spa_vdev_state_exit(spa, vd, 0);
4031
4032			error = spa_reset_logs(spa);
4033
4034			/*
4035			 * If the log device was successfully reset but has
4036			 * checkpointed data, do not offline it.
4037			 */
4038			if (error == 0 &&
4039			    tvd->vdev_checkpoint_sm != NULL) {
4040				ASSERT3U(space_map_allocated(
4041				    tvd->vdev_checkpoint_sm), !=, 0);
4042				error = ZFS_ERR_CHECKPOINT_EXISTS;
4043			}
4044
4045			spa_vdev_state_enter(spa, SCL_ALLOC);
4046
4047			/*
4048			 * Check to see if the config has changed.
4049			 */
4050			if (error || generation != spa->spa_config_generation) {
4051				metaslab_group_activate(mg);
4052				if (error)
4053					return (spa_vdev_state_exit(spa,
4054					    vd, error));
4055				(void) spa_vdev_state_exit(spa, vd, 0);
4056				goto top;
4057			}
4058			ASSERT0(tvd->vdev_stat.vs_alloc);
4059		}
4060
4061		/*
4062		 * Offline this device and reopen its top-level vdev.
4063		 * If the top-level vdev is a log device then just offline
4064		 * it. Otherwise, if this action results in the top-level
4065		 * vdev becoming unusable, undo it and fail the request.
4066		 */
4067		vd->vdev_offline = B_TRUE;
4068		vdev_reopen(tvd);
4069
4070		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4071		    vdev_is_dead(tvd)) {
4072			vd->vdev_offline = B_FALSE;
4073			vdev_reopen(tvd);
4074			return (spa_vdev_state_exit(spa, NULL,
4075			    SET_ERROR(EBUSY)));
4076		}
4077
4078		/*
4079		 * Add the device back into the metaslab rotor so that
4080		 * once we online the device it's open for business.
4081		 */
4082		if (tvd->vdev_islog && mg != NULL)
4083			metaslab_group_activate(mg);
4084	}
4085
4086	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4087
4088	return (spa_vdev_state_exit(spa, vd, 0));
4089}
4090
4091int
4092vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4093{
4094	int error;
4095
4096	mutex_enter(&spa->spa_vdev_top_lock);
4097	error = vdev_offline_locked(spa, guid, flags);
4098	mutex_exit(&spa->spa_vdev_top_lock);
4099
4100	return (error);
4101}
4102
4103/*
4104 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4105 * vdev_offline(), we assume the spa config is locked.  We also clear all
4106 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4107 */
4108void
4109vdev_clear(spa_t *spa, vdev_t *vd)
4110{
4111	vdev_t *rvd = spa->spa_root_vdev;
4112
4113	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4114
4115	if (vd == NULL)
4116		vd = rvd;
4117
4118	vd->vdev_stat.vs_read_errors = 0;
4119	vd->vdev_stat.vs_write_errors = 0;
4120	vd->vdev_stat.vs_checksum_errors = 0;
4121	vd->vdev_stat.vs_slow_ios = 0;
4122
4123	for (int c = 0; c < vd->vdev_children; c++)
4124		vdev_clear(spa, vd->vdev_child[c]);
4125
4126	/*
4127	 * It makes no sense to "clear" an indirect vdev.
4128	 */
4129	if (!vdev_is_concrete(vd))
4130		return;
4131
4132	/*
4133	 * If we're in the FAULTED state or have experienced failed I/O, then
4134	 * clear the persistent state and attempt to reopen the device.  We
4135	 * also mark the vdev config dirty, so that the new faulted state is
4136	 * written out to disk.
4137	 */
4138	if (vd->vdev_faulted || vd->vdev_degraded ||
4139	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4140		/*
4141		 * When reopening in response to a clear event, it may be due to
4142		 * a fmadm repair request.  In this case, if the device is
4143		 * still broken, we want to still post the ereport again.
4144		 */
4145		vd->vdev_forcefault = B_TRUE;
4146
4147		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4148		vd->vdev_cant_read = B_FALSE;
4149		vd->vdev_cant_write = B_FALSE;
4150		vd->vdev_stat.vs_aux = 0;
4151
4152		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4153
4154		vd->vdev_forcefault = B_FALSE;
4155
4156		if (vd != rvd && vdev_writeable(vd->vdev_top))
4157			vdev_state_dirty(vd->vdev_top);
4158
4159		/* If a resilver isn't required, check if vdevs can be culled */
4160		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4161		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4162		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4163			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4164
4165		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4166	}
4167
4168	/*
4169	 * When clearing a FMA-diagnosed fault, we always want to
4170	 * unspare the device, as we assume that the original spare was
4171	 * done in response to the FMA fault.
4172	 */
4173	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4174	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4175	    vd->vdev_parent->vdev_child[0] == vd)
4176		vd->vdev_unspare = B_TRUE;
4177
4178	/* Clear recent error events cache (i.e. duplicate events tracking) */
4179	zfs_ereport_clear(spa, vd);
4180}
4181
4182boolean_t
4183vdev_is_dead(vdev_t *vd)
4184{
4185	/*
4186	 * Holes and missing devices are always considered "dead".
4187	 * This simplifies the code since we don't have to check for
4188	 * these types of devices in the various code paths.
4189	 * Instead we rely on the fact that we skip over dead devices
4190	 * before issuing I/O to them.
4191	 */
4192	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4193	    vd->vdev_ops == &vdev_hole_ops ||
4194	    vd->vdev_ops == &vdev_missing_ops);
4195}
4196
4197boolean_t
4198vdev_readable(vdev_t *vd)
4199{
4200	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4201}
4202
4203boolean_t
4204vdev_writeable(vdev_t *vd)
4205{
4206	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4207	    vdev_is_concrete(vd));
4208}
4209
4210boolean_t
4211vdev_allocatable(vdev_t *vd)
4212{
4213	uint64_t state = vd->vdev_state;
4214
4215	/*
4216	 * We currently allow allocations from vdevs which may be in the
4217	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4218	 * fails to reopen then we'll catch it later when we're holding
4219	 * the proper locks.  Note that we have to get the vdev state
4220	 * in a local variable because although it changes atomically,
4221	 * we're asking two separate questions about it.
4222	 */
4223	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4224	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4225	    vd->vdev_mg->mg_initialized);
4226}
4227
4228boolean_t
4229vdev_accessible(vdev_t *vd, zio_t *zio)
4230{
4231	ASSERT(zio->io_vd == vd);
4232
4233	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4234		return (B_FALSE);
4235
4236	if (zio->io_type == ZIO_TYPE_READ)
4237		return (!vd->vdev_cant_read);
4238
4239	if (zio->io_type == ZIO_TYPE_WRITE)
4240		return (!vd->vdev_cant_write);
4241
4242	return (B_TRUE);
4243}
4244
4245static void
4246vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4247{
4248	/*
4249	 * Exclude the dRAID spare when aggregating to avoid double counting
4250	 * the ops and bytes.  These IOs are counted by the physical leaves.
4251	 */
4252	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4253		return;
4254
4255	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4256		vs->vs_ops[t] += cvs->vs_ops[t];
4257		vs->vs_bytes[t] += cvs->vs_bytes[t];
4258	}
4259
4260	cvs->vs_scan_removing = cvd->vdev_removing;
4261}
4262
4263/*
4264 * Get extended stats
4265 */
4266static void
4267vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4268{
4269	int t, b;
4270	for (t = 0; t < ZIO_TYPES; t++) {
4271		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4272			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4273
4274		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4275			vsx->vsx_total_histo[t][b] +=
4276			    cvsx->vsx_total_histo[t][b];
4277		}
4278	}
4279
4280	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4281		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4282			vsx->vsx_queue_histo[t][b] +=
4283			    cvsx->vsx_queue_histo[t][b];
4284		}
4285		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4286		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4287
4288		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4289			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4290
4291		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4292			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4293	}
4294
4295}
4296
4297boolean_t
4298vdev_is_spacemap_addressable(vdev_t *vd)
4299{
4300	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4301		return (B_TRUE);
4302
4303	/*
4304	 * If double-word space map entries are not enabled we assume
4305	 * 47 bits of the space map entry are dedicated to the entry's
4306	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4307	 * to calculate the maximum address that can be described by a
4308	 * space map entry for the given device.
4309	 */
4310	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4311
4312	if (shift >= 63) /* detect potential overflow */
4313		return (B_TRUE);
4314
4315	return (vd->vdev_asize < (1ULL << shift));
4316}
4317
4318/*
4319 * Get statistics for the given vdev.
4320 */
4321static void
4322vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4323{
4324	int t;
4325	/*
4326	 * If we're getting stats on the root vdev, aggregate the I/O counts
4327	 * over all top-level vdevs (i.e. the direct children of the root).
4328	 */
4329	if (!vd->vdev_ops->vdev_op_leaf) {
4330		if (vs) {
4331			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4332			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4333		}
4334		if (vsx)
4335			memset(vsx, 0, sizeof (*vsx));
4336
4337		for (int c = 0; c < vd->vdev_children; c++) {
4338			vdev_t *cvd = vd->vdev_child[c];
4339			vdev_stat_t *cvs = &cvd->vdev_stat;
4340			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4341
4342			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4343			if (vs)
4344				vdev_get_child_stat(cvd, vs, cvs);
4345			if (vsx)
4346				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4347		}
4348	} else {
4349		/*
4350		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4351		 * other leaf stats are updated in vdev_stat_update().
4352		 */
4353		if (!vsx)
4354			return;
4355
4356		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4357
4358		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4359			vsx->vsx_active_queue[t] =
4360			    vd->vdev_queue.vq_class[t].vqc_active;
4361			vsx->vsx_pend_queue[t] = avl_numnodes(
4362			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4363		}
4364	}
4365}
4366
4367void
4368vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4369{
4370	vdev_t *tvd = vd->vdev_top;
4371	mutex_enter(&vd->vdev_stat_lock);
4372	if (vs) {
4373		bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4374		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4375		vs->vs_state = vd->vdev_state;
4376		vs->vs_rsize = vdev_get_min_asize(vd);
4377
4378		if (vd->vdev_ops->vdev_op_leaf) {
4379			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4380			    VDEV_LABEL_END_SIZE;
4381			/*
4382			 * Report initializing progress. Since we don't
4383			 * have the initializing locks held, this is only
4384			 * an estimate (although a fairly accurate one).
4385			 */
4386			vs->vs_initialize_bytes_done =
4387			    vd->vdev_initialize_bytes_done;
4388			vs->vs_initialize_bytes_est =
4389			    vd->vdev_initialize_bytes_est;
4390			vs->vs_initialize_state = vd->vdev_initialize_state;
4391			vs->vs_initialize_action_time =
4392			    vd->vdev_initialize_action_time;
4393
4394			/*
4395			 * Report manual TRIM progress. Since we don't have
4396			 * the manual TRIM locks held, this is only an
4397			 * estimate (although fairly accurate one).
4398			 */
4399			vs->vs_trim_notsup = !vd->vdev_has_trim;
4400			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4401			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4402			vs->vs_trim_state = vd->vdev_trim_state;
4403			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4404
4405			/* Set when there is a deferred resilver. */
4406			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4407		}
4408
4409		/*
4410		 * Report expandable space on top-level, non-auxiliary devices
4411		 * only. The expandable space is reported in terms of metaslab
4412		 * sized units since that determines how much space the pool
4413		 * can expand.
4414		 */
4415		if (vd->vdev_aux == NULL && tvd != NULL) {
4416			vs->vs_esize = P2ALIGN(
4417			    vd->vdev_max_asize - vd->vdev_asize,
4418			    1ULL << tvd->vdev_ms_shift);
4419		}
4420
4421		vs->vs_configured_ashift = vd->vdev_top != NULL
4422		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4423		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4424		vs->vs_physical_ashift = vd->vdev_physical_ashift;
4425
4426		/*
4427		 * Report fragmentation and rebuild progress for top-level,
4428		 * non-auxiliary, concrete devices.
4429		 */
4430		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4431		    vdev_is_concrete(vd)) {
4432			/*
4433			 * The vdev fragmentation rating doesn't take into
4434			 * account the embedded slog metaslab (vdev_log_mg).
4435			 * Since it's only one metaslab, it would have a tiny
4436			 * impact on the overall fragmentation.
4437			 */
4438			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4439			    vd->vdev_mg->mg_fragmentation : 0;
4440		}
4441	}
4442
4443	vdev_get_stats_ex_impl(vd, vs, vsx);
4444	mutex_exit(&vd->vdev_stat_lock);
4445}
4446
4447void
4448vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4449{
4450	return (vdev_get_stats_ex(vd, vs, NULL));
4451}
4452
4453void
4454vdev_clear_stats(vdev_t *vd)
4455{
4456	mutex_enter(&vd->vdev_stat_lock);
4457	vd->vdev_stat.vs_space = 0;
4458	vd->vdev_stat.vs_dspace = 0;
4459	vd->vdev_stat.vs_alloc = 0;
4460	mutex_exit(&vd->vdev_stat_lock);
4461}
4462
4463void
4464vdev_scan_stat_init(vdev_t *vd)
4465{
4466	vdev_stat_t *vs = &vd->vdev_stat;
4467
4468	for (int c = 0; c < vd->vdev_children; c++)
4469		vdev_scan_stat_init(vd->vdev_child[c]);
4470
4471	mutex_enter(&vd->vdev_stat_lock);
4472	vs->vs_scan_processed = 0;
4473	mutex_exit(&vd->vdev_stat_lock);
4474}
4475
4476void
4477vdev_stat_update(zio_t *zio, uint64_t psize)
4478{
4479	spa_t *spa = zio->io_spa;
4480	vdev_t *rvd = spa->spa_root_vdev;
4481	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4482	vdev_t *pvd;
4483	uint64_t txg = zio->io_txg;
4484	vdev_stat_t *vs = &vd->vdev_stat;
4485	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4486	zio_type_t type = zio->io_type;
4487	int flags = zio->io_flags;
4488
4489	/*
4490	 * If this i/o is a gang leader, it didn't do any actual work.
4491	 */
4492	if (zio->io_gang_tree)
4493		return;
4494
4495	if (zio->io_error == 0) {
4496		/*
4497		 * If this is a root i/o, don't count it -- we've already
4498		 * counted the top-level vdevs, and vdev_get_stats() will
4499		 * aggregate them when asked.  This reduces contention on
4500		 * the root vdev_stat_lock and implicitly handles blocks
4501		 * that compress away to holes, for which there is no i/o.
4502		 * (Holes never create vdev children, so all the counters
4503		 * remain zero, which is what we want.)
4504		 *
4505		 * Note: this only applies to successful i/o (io_error == 0)
4506		 * because unlike i/o counts, errors are not additive.
4507		 * When reading a ditto block, for example, failure of
4508		 * one top-level vdev does not imply a root-level error.
4509		 */
4510		if (vd == rvd)
4511			return;
4512
4513		ASSERT(vd == zio->io_vd);
4514
4515		if (flags & ZIO_FLAG_IO_BYPASS)
4516			return;
4517
4518		mutex_enter(&vd->vdev_stat_lock);
4519
4520		if (flags & ZIO_FLAG_IO_REPAIR) {
4521			/*
4522			 * Repair is the result of a resilver issued by the
4523			 * scan thread (spa_sync).
4524			 */
4525			if (flags & ZIO_FLAG_SCAN_THREAD) {
4526				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4527				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4528				uint64_t *processed = &scn_phys->scn_processed;
4529
4530				if (vd->vdev_ops->vdev_op_leaf)
4531					atomic_add_64(processed, psize);
4532				vs->vs_scan_processed += psize;
4533			}
4534
4535			/*
4536			 * Repair is the result of a rebuild issued by the
4537			 * rebuild thread (vdev_rebuild_thread).  To avoid
4538			 * double counting repaired bytes the virtual dRAID
4539			 * spare vdev is excluded from the processed bytes.
4540			 */
4541			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4542				vdev_t *tvd = vd->vdev_top;
4543				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4544				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4545				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4546
4547				if (vd->vdev_ops->vdev_op_leaf &&
4548				    vd->vdev_ops != &vdev_draid_spare_ops) {
4549					atomic_add_64(rebuilt, psize);
4550				}
4551				vs->vs_rebuild_processed += psize;
4552			}
4553
4554			if (flags & ZIO_FLAG_SELF_HEAL)
4555				vs->vs_self_healed += psize;
4556		}
4557
4558		/*
4559		 * The bytes/ops/histograms are recorded at the leaf level and
4560		 * aggregated into the higher level vdevs in vdev_get_stats().
4561		 */
4562		if (vd->vdev_ops->vdev_op_leaf &&
4563		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4564			zio_type_t vs_type = type;
4565			zio_priority_t priority = zio->io_priority;
4566
4567			/*
4568			 * TRIM ops and bytes are reported to user space as
4569			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4570			 * vdev_stat_t structure layout for user space.
4571			 */
4572			if (type == ZIO_TYPE_TRIM)
4573				vs_type = ZIO_TYPE_IOCTL;
4574
4575			/*
4576			 * Solely for the purposes of 'zpool iostat -lqrw'
4577			 * reporting use the priority to categorize the IO.
4578			 * Only the following are reported to user space:
4579			 *
4580			 *   ZIO_PRIORITY_SYNC_READ,
4581			 *   ZIO_PRIORITY_SYNC_WRITE,
4582			 *   ZIO_PRIORITY_ASYNC_READ,
4583			 *   ZIO_PRIORITY_ASYNC_WRITE,
4584			 *   ZIO_PRIORITY_SCRUB,
4585			 *   ZIO_PRIORITY_TRIM.
4586			 */
4587			if (priority == ZIO_PRIORITY_REBUILD) {
4588				priority = ((type == ZIO_TYPE_WRITE) ?
4589				    ZIO_PRIORITY_ASYNC_WRITE :
4590				    ZIO_PRIORITY_SCRUB);
4591			} else if (priority == ZIO_PRIORITY_INITIALIZING) {
4592				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4593				priority = ZIO_PRIORITY_ASYNC_WRITE;
4594			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4595				priority = ((type == ZIO_TYPE_WRITE) ?
4596				    ZIO_PRIORITY_ASYNC_WRITE :
4597				    ZIO_PRIORITY_ASYNC_READ);
4598			}
4599
4600			vs->vs_ops[vs_type]++;
4601			vs->vs_bytes[vs_type] += psize;
4602
4603			if (flags & ZIO_FLAG_DELEGATED) {
4604				vsx->vsx_agg_histo[priority]
4605				    [RQ_HISTO(zio->io_size)]++;
4606			} else {
4607				vsx->vsx_ind_histo[priority]
4608				    [RQ_HISTO(zio->io_size)]++;
4609			}
4610
4611			if (zio->io_delta && zio->io_delay) {
4612				vsx->vsx_queue_histo[priority]
4613				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4614				vsx->vsx_disk_histo[type]
4615				    [L_HISTO(zio->io_delay)]++;
4616				vsx->vsx_total_histo[type]
4617				    [L_HISTO(zio->io_delta)]++;
4618			}
4619		}
4620
4621		mutex_exit(&vd->vdev_stat_lock);
4622		return;
4623	}
4624
4625	if (flags & ZIO_FLAG_SPECULATIVE)
4626		return;
4627
4628	/*
4629	 * If this is an I/O error that is going to be retried, then ignore the
4630	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4631	 * hard errors, when in reality they can happen for any number of
4632	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4633	 */
4634	if (zio->io_error == EIO &&
4635	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4636		return;
4637
4638	/*
4639	 * Intent logs writes won't propagate their error to the root
4640	 * I/O so don't mark these types of failures as pool-level
4641	 * errors.
4642	 */
4643	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4644		return;
4645
4646	if (type == ZIO_TYPE_WRITE && txg != 0 &&
4647	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4648	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4649	    spa->spa_claiming)) {
4650		/*
4651		 * This is either a normal write (not a repair), or it's
4652		 * a repair induced by the scrub thread, or it's a repair
4653		 * made by zil_claim() during spa_load() in the first txg.
4654		 * In the normal case, we commit the DTL change in the same
4655		 * txg as the block was born.  In the scrub-induced repair
4656		 * case, we know that scrubs run in first-pass syncing context,
4657		 * so we commit the DTL change in spa_syncing_txg(spa).
4658		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4659		 *
4660		 * We currently do not make DTL entries for failed spontaneous
4661		 * self-healing writes triggered by normal (non-scrubbing)
4662		 * reads, because we have no transactional context in which to
4663		 * do so -- and it's not clear that it'd be desirable anyway.
4664		 */
4665		if (vd->vdev_ops->vdev_op_leaf) {
4666			uint64_t commit_txg = txg;
4667			if (flags & ZIO_FLAG_SCAN_THREAD) {
4668				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4669				ASSERT(spa_sync_pass(spa) == 1);
4670				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4671				commit_txg = spa_syncing_txg(spa);
4672			} else if (spa->spa_claiming) {
4673				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4674				commit_txg = spa_first_txg(spa);
4675			}
4676			ASSERT(commit_txg >= spa_syncing_txg(spa));
4677			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4678				return;
4679			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4680				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4681			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4682		}
4683		if (vd != rvd)
4684			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4685	}
4686}
4687
4688int64_t
4689vdev_deflated_space(vdev_t *vd, int64_t space)
4690{
4691	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4692	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4693
4694	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4695}
4696
4697/*
4698 * Update the in-core space usage stats for this vdev, its metaslab class,
4699 * and the root vdev.
4700 */
4701void
4702vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4703    int64_t space_delta)
4704{
4705	int64_t dspace_delta;
4706	spa_t *spa = vd->vdev_spa;
4707	vdev_t *rvd = spa->spa_root_vdev;
4708
4709	ASSERT(vd == vd->vdev_top);
4710
4711	/*
4712	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4713	 * factor.  We must calculate this here and not at the root vdev
4714	 * because the root vdev's psize-to-asize is simply the max of its
4715	 * children's, thus not accurate enough for us.
4716	 */
4717	dspace_delta = vdev_deflated_space(vd, space_delta);
4718
4719	mutex_enter(&vd->vdev_stat_lock);
4720	/* ensure we won't underflow */
4721	if (alloc_delta < 0) {
4722		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4723	}
4724
4725	vd->vdev_stat.vs_alloc += alloc_delta;
4726	vd->vdev_stat.vs_space += space_delta;
4727	vd->vdev_stat.vs_dspace += dspace_delta;
4728	mutex_exit(&vd->vdev_stat_lock);
4729
4730	/* every class but log contributes to root space stats */
4731	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4732		ASSERT(!vd->vdev_isl2cache);
4733		mutex_enter(&rvd->vdev_stat_lock);
4734		rvd->vdev_stat.vs_alloc += alloc_delta;
4735		rvd->vdev_stat.vs_space += space_delta;
4736		rvd->vdev_stat.vs_dspace += dspace_delta;
4737		mutex_exit(&rvd->vdev_stat_lock);
4738	}
4739	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4740}
4741
4742/*
4743 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4744 * so that it will be written out next time the vdev configuration is synced.
4745 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4746 */
4747void
4748vdev_config_dirty(vdev_t *vd)
4749{
4750	spa_t *spa = vd->vdev_spa;
4751	vdev_t *rvd = spa->spa_root_vdev;
4752	int c;
4753
4754	ASSERT(spa_writeable(spa));
4755
4756	/*
4757	 * If this is an aux vdev (as with l2cache and spare devices), then we
4758	 * update the vdev config manually and set the sync flag.
4759	 */
4760	if (vd->vdev_aux != NULL) {
4761		spa_aux_vdev_t *sav = vd->vdev_aux;
4762		nvlist_t **aux;
4763		uint_t naux;
4764
4765		for (c = 0; c < sav->sav_count; c++) {
4766			if (sav->sav_vdevs[c] == vd)
4767				break;
4768		}
4769
4770		if (c == sav->sav_count) {
4771			/*
4772			 * We're being removed.  There's nothing more to do.
4773			 */
4774			ASSERT(sav->sav_sync == B_TRUE);
4775			return;
4776		}
4777
4778		sav->sav_sync = B_TRUE;
4779
4780		if (nvlist_lookup_nvlist_array(sav->sav_config,
4781		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4782			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4783			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4784		}
4785
4786		ASSERT(c < naux);
4787
4788		/*
4789		 * Setting the nvlist in the middle if the array is a little
4790		 * sketchy, but it will work.
4791		 */
4792		nvlist_free(aux[c]);
4793		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4794
4795		return;
4796	}
4797
4798	/*
4799	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4800	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4801	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4802	 * so this is sufficient to ensure mutual exclusion.
4803	 */
4804	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4805	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4806	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4807
4808	if (vd == rvd) {
4809		for (c = 0; c < rvd->vdev_children; c++)
4810			vdev_config_dirty(rvd->vdev_child[c]);
4811	} else {
4812		ASSERT(vd == vd->vdev_top);
4813
4814		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4815		    vdev_is_concrete(vd)) {
4816			list_insert_head(&spa->spa_config_dirty_list, vd);
4817		}
4818	}
4819}
4820
4821void
4822vdev_config_clean(vdev_t *vd)
4823{
4824	spa_t *spa = vd->vdev_spa;
4825
4826	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4827	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4828	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4829
4830	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4831	list_remove(&spa->spa_config_dirty_list, vd);
4832}
4833
4834/*
4835 * Mark a top-level vdev's state as dirty, so that the next pass of
4836 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4837 * the state changes from larger config changes because they require
4838 * much less locking, and are often needed for administrative actions.
4839 */
4840void
4841vdev_state_dirty(vdev_t *vd)
4842{
4843	spa_t *spa = vd->vdev_spa;
4844
4845	ASSERT(spa_writeable(spa));
4846	ASSERT(vd == vd->vdev_top);
4847
4848	/*
4849	 * The state list is protected by the SCL_STATE lock.  The caller
4850	 * must either hold SCL_STATE as writer, or must be the sync thread
4851	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4852	 * so this is sufficient to ensure mutual exclusion.
4853	 */
4854	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4855	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4856	    spa_config_held(spa, SCL_STATE, RW_READER)));
4857
4858	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4859	    vdev_is_concrete(vd))
4860		list_insert_head(&spa->spa_state_dirty_list, vd);
4861}
4862
4863void
4864vdev_state_clean(vdev_t *vd)
4865{
4866	spa_t *spa = vd->vdev_spa;
4867
4868	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4869	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4870	    spa_config_held(spa, SCL_STATE, RW_READER)));
4871
4872	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4873	list_remove(&spa->spa_state_dirty_list, vd);
4874}
4875
4876/*
4877 * Propagate vdev state up from children to parent.
4878 */
4879void
4880vdev_propagate_state(vdev_t *vd)
4881{
4882	spa_t *spa = vd->vdev_spa;
4883	vdev_t *rvd = spa->spa_root_vdev;
4884	int degraded = 0, faulted = 0;
4885	int corrupted = 0;
4886	vdev_t *child;
4887
4888	if (vd->vdev_children > 0) {
4889		for (int c = 0; c < vd->vdev_children; c++) {
4890			child = vd->vdev_child[c];
4891
4892			/*
4893			 * Don't factor holes or indirect vdevs into the
4894			 * decision.
4895			 */
4896			if (!vdev_is_concrete(child))
4897				continue;
4898
4899			if (!vdev_readable(child) ||
4900			    (!vdev_writeable(child) && spa_writeable(spa))) {
4901				/*
4902				 * Root special: if there is a top-level log
4903				 * device, treat the root vdev as if it were
4904				 * degraded.
4905				 */
4906				if (child->vdev_islog && vd == rvd)
4907					degraded++;
4908				else
4909					faulted++;
4910			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4911				degraded++;
4912			}
4913
4914			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4915				corrupted++;
4916		}
4917
4918		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4919
4920		/*
4921		 * Root special: if there is a top-level vdev that cannot be
4922		 * opened due to corrupted metadata, then propagate the root
4923		 * vdev's aux state as 'corrupt' rather than 'insufficient
4924		 * replicas'.
4925		 */
4926		if (corrupted && vd == rvd &&
4927		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4928			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4929			    VDEV_AUX_CORRUPT_DATA);
4930	}
4931
4932	if (vd->vdev_parent)
4933		vdev_propagate_state(vd->vdev_parent);
4934}
4935
4936/*
4937 * Set a vdev's state.  If this is during an open, we don't update the parent
4938 * state, because we're in the process of opening children depth-first.
4939 * Otherwise, we propagate the change to the parent.
4940 *
4941 * If this routine places a device in a faulted state, an appropriate ereport is
4942 * generated.
4943 */
4944void
4945vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4946{
4947	uint64_t save_state;
4948	spa_t *spa = vd->vdev_spa;
4949
4950	if (state == vd->vdev_state) {
4951		/*
4952		 * Since vdev_offline() code path is already in an offline
4953		 * state we can miss a statechange event to OFFLINE. Check
4954		 * the previous state to catch this condition.
4955		 */
4956		if (vd->vdev_ops->vdev_op_leaf &&
4957		    (state == VDEV_STATE_OFFLINE) &&
4958		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4959			/* post an offline state change */
4960			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4961		}
4962		vd->vdev_stat.vs_aux = aux;
4963		return;
4964	}
4965
4966	save_state = vd->vdev_state;
4967
4968	vd->vdev_state = state;
4969	vd->vdev_stat.vs_aux = aux;
4970
4971	/*
4972	 * If we are setting the vdev state to anything but an open state, then
4973	 * always close the underlying device unless the device has requested
4974	 * a delayed close (i.e. we're about to remove or fault the device).
4975	 * Otherwise, we keep accessible but invalid devices open forever.
4976	 * We don't call vdev_close() itself, because that implies some extra
4977	 * checks (offline, etc) that we don't want here.  This is limited to
4978	 * leaf devices, because otherwise closing the device will affect other
4979	 * children.
4980	 */
4981	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4982	    vd->vdev_ops->vdev_op_leaf)
4983		vd->vdev_ops->vdev_op_close(vd);
4984
4985	if (vd->vdev_removed &&
4986	    state == VDEV_STATE_CANT_OPEN &&
4987	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4988		/*
4989		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4990		 * device was previously marked removed and someone attempted to
4991		 * reopen it.  If this failed due to a nonexistent device, then
4992		 * keep the device in the REMOVED state.  We also let this be if
4993		 * it is one of our special test online cases, which is only
4994		 * attempting to online the device and shouldn't generate an FMA
4995		 * fault.
4996		 */
4997		vd->vdev_state = VDEV_STATE_REMOVED;
4998		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4999	} else if (state == VDEV_STATE_REMOVED) {
5000		vd->vdev_removed = B_TRUE;
5001	} else if (state == VDEV_STATE_CANT_OPEN) {
5002		/*
5003		 * If we fail to open a vdev during an import or recovery, we
5004		 * mark it as "not available", which signifies that it was
5005		 * never there to begin with.  Failure to open such a device
5006		 * is not considered an error.
5007		 */
5008		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5009		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5010		    vd->vdev_ops->vdev_op_leaf)
5011			vd->vdev_not_present = 1;
5012
5013		/*
5014		 * Post the appropriate ereport.  If the 'prevstate' field is
5015		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5016		 * that this is part of a vdev_reopen().  In this case, we don't
5017		 * want to post the ereport if the device was already in the
5018		 * CANT_OPEN state beforehand.
5019		 *
5020		 * If the 'checkremove' flag is set, then this is an attempt to
5021		 * online the device in response to an insertion event.  If we
5022		 * hit this case, then we have detected an insertion event for a
5023		 * faulted or offline device that wasn't in the removed state.
5024		 * In this scenario, we don't post an ereport because we are
5025		 * about to replace the device, or attempt an online with
5026		 * vdev_forcefault, which will generate the fault for us.
5027		 */
5028		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5029		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5030		    vd != spa->spa_root_vdev) {
5031			const char *class;
5032
5033			switch (aux) {
5034			case VDEV_AUX_OPEN_FAILED:
5035				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5036				break;
5037			case VDEV_AUX_CORRUPT_DATA:
5038				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5039				break;
5040			case VDEV_AUX_NO_REPLICAS:
5041				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5042				break;
5043			case VDEV_AUX_BAD_GUID_SUM:
5044				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5045				break;
5046			case VDEV_AUX_TOO_SMALL:
5047				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5048				break;
5049			case VDEV_AUX_BAD_LABEL:
5050				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5051				break;
5052			case VDEV_AUX_BAD_ASHIFT:
5053				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5054				break;
5055			default:
5056				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5057			}
5058
5059			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5060			    save_state);
5061		}
5062
5063		/* Erase any notion of persistent removed state */
5064		vd->vdev_removed = B_FALSE;
5065	} else {
5066		vd->vdev_removed = B_FALSE;
5067	}
5068
5069	/*
5070	 * Notify ZED of any significant state-change on a leaf vdev.
5071	 *
5072	 */
5073	if (vd->vdev_ops->vdev_op_leaf) {
5074		/* preserve original state from a vdev_reopen() */
5075		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5076		    (vd->vdev_prevstate != vd->vdev_state) &&
5077		    (save_state <= VDEV_STATE_CLOSED))
5078			save_state = vd->vdev_prevstate;
5079
5080		/* filter out state change due to initial vdev_open */
5081		if (save_state > VDEV_STATE_CLOSED)
5082			zfs_post_state_change(spa, vd, save_state);
5083	}
5084
5085	if (!isopen && vd->vdev_parent)
5086		vdev_propagate_state(vd->vdev_parent);
5087}
5088
5089boolean_t
5090vdev_children_are_offline(vdev_t *vd)
5091{
5092	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5093
5094	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5095		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5096			return (B_FALSE);
5097	}
5098
5099	return (B_TRUE);
5100}
5101
5102/*
5103 * Check the vdev configuration to ensure that it's capable of supporting
5104 * a root pool. We do not support partial configuration.
5105 */
5106boolean_t
5107vdev_is_bootable(vdev_t *vd)
5108{
5109	if (!vd->vdev_ops->vdev_op_leaf) {
5110		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5111
5112		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5113			return (B_FALSE);
5114	}
5115
5116	for (int c = 0; c < vd->vdev_children; c++) {
5117		if (!vdev_is_bootable(vd->vdev_child[c]))
5118			return (B_FALSE);
5119	}
5120	return (B_TRUE);
5121}
5122
5123boolean_t
5124vdev_is_concrete(vdev_t *vd)
5125{
5126	vdev_ops_t *ops = vd->vdev_ops;
5127	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5128	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5129		return (B_FALSE);
5130	} else {
5131		return (B_TRUE);
5132	}
5133}
5134
5135/*
5136 * Determine if a log device has valid content.  If the vdev was
5137 * removed or faulted in the MOS config then we know that
5138 * the content on the log device has already been written to the pool.
5139 */
5140boolean_t
5141vdev_log_state_valid(vdev_t *vd)
5142{
5143	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5144	    !vd->vdev_removed)
5145		return (B_TRUE);
5146
5147	for (int c = 0; c < vd->vdev_children; c++)
5148		if (vdev_log_state_valid(vd->vdev_child[c]))
5149			return (B_TRUE);
5150
5151	return (B_FALSE);
5152}
5153
5154/*
5155 * Expand a vdev if possible.
5156 */
5157void
5158vdev_expand(vdev_t *vd, uint64_t txg)
5159{
5160	ASSERT(vd->vdev_top == vd);
5161	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5162	ASSERT(vdev_is_concrete(vd));
5163
5164	vdev_set_deflate_ratio(vd);
5165
5166	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5167	    vdev_is_concrete(vd)) {
5168		vdev_metaslab_group_create(vd);
5169		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5170		vdev_config_dirty(vd);
5171	}
5172}
5173
5174/*
5175 * Split a vdev.
5176 */
5177void
5178vdev_split(vdev_t *vd)
5179{
5180	vdev_t *cvd, *pvd = vd->vdev_parent;
5181
5182	vdev_remove_child(pvd, vd);
5183	vdev_compact_children(pvd);
5184
5185	cvd = pvd->vdev_child[0];
5186	if (pvd->vdev_children == 1) {
5187		vdev_remove_parent(cvd);
5188		cvd->vdev_splitting = B_TRUE;
5189	}
5190	vdev_propagate_state(cvd);
5191}
5192
5193void
5194vdev_deadman(vdev_t *vd, char *tag)
5195{
5196	for (int c = 0; c < vd->vdev_children; c++) {
5197		vdev_t *cvd = vd->vdev_child[c];
5198
5199		vdev_deadman(cvd, tag);
5200	}
5201
5202	if (vd->vdev_ops->vdev_op_leaf) {
5203		vdev_queue_t *vq = &vd->vdev_queue;
5204
5205		mutex_enter(&vq->vq_lock);
5206		if (avl_numnodes(&vq->vq_active_tree) > 0) {
5207			spa_t *spa = vd->vdev_spa;
5208			zio_t *fio;
5209			uint64_t delta;
5210
5211			zfs_dbgmsg("slow vdev: %s has %d active IOs",
5212			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5213
5214			/*
5215			 * Look at the head of all the pending queues,
5216			 * if any I/O has been outstanding for longer than
5217			 * the spa_deadman_synctime invoke the deadman logic.
5218			 */
5219			fio = avl_first(&vq->vq_active_tree);
5220			delta = gethrtime() - fio->io_timestamp;
5221			if (delta > spa_deadman_synctime(spa))
5222				zio_deadman(fio, tag);
5223		}
5224		mutex_exit(&vq->vq_lock);
5225	}
5226}
5227
5228void
5229vdev_defer_resilver(vdev_t *vd)
5230{
5231	ASSERT(vd->vdev_ops->vdev_op_leaf);
5232
5233	vd->vdev_resilver_deferred = B_TRUE;
5234	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5235}
5236
5237/*
5238 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5239 * B_TRUE if we have devices that need to be resilvered and are available to
5240 * accept resilver I/Os.
5241 */
5242boolean_t
5243vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5244{
5245	boolean_t resilver_needed = B_FALSE;
5246	spa_t *spa = vd->vdev_spa;
5247
5248	for (int c = 0; c < vd->vdev_children; c++) {
5249		vdev_t *cvd = vd->vdev_child[c];
5250		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5251	}
5252
5253	if (vd == spa->spa_root_vdev &&
5254	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5255		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5256		vdev_config_dirty(vd);
5257		spa->spa_resilver_deferred = B_FALSE;
5258		return (resilver_needed);
5259	}
5260
5261	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5262	    !vd->vdev_ops->vdev_op_leaf)
5263		return (resilver_needed);
5264
5265	vd->vdev_resilver_deferred = B_FALSE;
5266
5267	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5268	    vdev_resilver_needed(vd, NULL, NULL));
5269}
5270
5271boolean_t
5272vdev_xlate_is_empty(range_seg64_t *rs)
5273{
5274	return (rs->rs_start == rs->rs_end);
5275}
5276
5277/*
5278 * Translate a logical range to the first contiguous physical range for the
5279 * specified vdev_t.  This function is initially called with a leaf vdev and
5280 * will walk each parent vdev until it reaches a top-level vdev. Once the
5281 * top-level is reached the physical range is initialized and the recursive
5282 * function begins to unwind. As it unwinds it calls the parent's vdev
5283 * specific translation function to do the real conversion.
5284 */
5285void
5286vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5287    range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5288{
5289	/*
5290	 * Walk up the vdev tree
5291	 */
5292	if (vd != vd->vdev_top) {
5293		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5294		    remain_rs);
5295	} else {
5296		/*
5297		 * We've reached the top-level vdev, initialize the physical
5298		 * range to the logical range and set an empty remaining
5299		 * range then start to unwind.
5300		 */
5301		physical_rs->rs_start = logical_rs->rs_start;
5302		physical_rs->rs_end = logical_rs->rs_end;
5303
5304		remain_rs->rs_start = logical_rs->rs_start;
5305		remain_rs->rs_end = logical_rs->rs_start;
5306
5307		return;
5308	}
5309
5310	vdev_t *pvd = vd->vdev_parent;
5311	ASSERT3P(pvd, !=, NULL);
5312	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5313
5314	/*
5315	 * As this recursive function unwinds, translate the logical
5316	 * range into its physical and any remaining components by calling
5317	 * the vdev specific translate function.
5318	 */
5319	range_seg64_t intermediate = { 0 };
5320	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5321
5322	physical_rs->rs_start = intermediate.rs_start;
5323	physical_rs->rs_end = intermediate.rs_end;
5324}
5325
5326void
5327vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5328    vdev_xlate_func_t *func, void *arg)
5329{
5330	range_seg64_t iter_rs = *logical_rs;
5331	range_seg64_t physical_rs;
5332	range_seg64_t remain_rs;
5333
5334	while (!vdev_xlate_is_empty(&iter_rs)) {
5335
5336		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5337
5338		/*
5339		 * With raidz and dRAID, it's possible that the logical range
5340		 * does not live on this leaf vdev. Only when there is a non-
5341		 * zero physical size call the provided function.
5342		 */
5343		if (!vdev_xlate_is_empty(&physical_rs))
5344			func(arg, &physical_rs);
5345
5346		iter_rs = remain_rs;
5347	}
5348}
5349
5350/*
5351 * Look at the vdev tree and determine whether any devices are currently being
5352 * replaced.
5353 */
5354boolean_t
5355vdev_replace_in_progress(vdev_t *vdev)
5356{
5357	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5358
5359	if (vdev->vdev_ops == &vdev_replacing_ops)
5360		return (B_TRUE);
5361
5362	/*
5363	 * A 'spare' vdev indicates that we have a replace in progress, unless
5364	 * it has exactly two children, and the second, the hot spare, has
5365	 * finished being resilvered.
5366	 */
5367	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5368	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5369		return (B_TRUE);
5370
5371	for (int i = 0; i < vdev->vdev_children; i++) {
5372		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5373			return (B_TRUE);
5374	}
5375
5376	return (B_FALSE);
5377}
5378
5379EXPORT_SYMBOL(vdev_fault);
5380EXPORT_SYMBOL(vdev_degrade);
5381EXPORT_SYMBOL(vdev_online);
5382EXPORT_SYMBOL(vdev_offline);
5383EXPORT_SYMBOL(vdev_clear);
5384
5385/* BEGIN CSTYLED */
5386ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5387	"Target number of metaslabs per top-level vdev");
5388
5389ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5390	"Default limit for metaslab size");
5391
5392ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5393	"Minimum number of metaslabs per top-level vdev");
5394
5395ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5396	"Practical upper limit of total metaslabs per top-level vdev");
5397
5398ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5399	"Rate limit slow IO (delay) events to this many per second");
5400
5401ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5402	"Rate limit checksum events to this many checksum errors per second "
5403	"(do not set below zed threshold).");
5404
5405ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5406	"Ignore errors during resilver/scrub");
5407
5408ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5409	"Bypass vdev_validate()");
5410
5411ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5412	"Disable cache flushes");
5413
5414ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW,
5415	"Minimum number of metaslabs required to dedicate one for log blocks");
5416
5417ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5418	param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5419	"Minimum ashift used when creating new top-level vdevs");
5420
5421ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5422	param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5423	"Maximum ashift used when optimizing for logical -> physical sector "
5424	"size on new top-level vdevs");
5425/* END CSTYLED */
5426