1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29 */
30
31#include <sys/dmu.h>
32#include <sys/dmu_objset.h>
33#include <sys/dmu_tx.h>
34#include <sys/dsl_dataset.h>
35#include <sys/dsl_dir.h>
36#include <sys/dsl_prop.h>
37#include <sys/dsl_synctask.h>
38#include <sys/dsl_deleg.h>
39#include <sys/dmu_impl.h>
40#include <sys/spa.h>
41#include <sys/spa_impl.h>
42#include <sys/metaslab.h>
43#include <sys/zap.h>
44#include <sys/zio.h>
45#include <sys/arc.h>
46#include <sys/sunddi.h>
47#include <sys/zfeature.h>
48#include <sys/policy.h>
49#include <sys/zfs_vfsops.h>
50#include <sys/zfs_znode.h>
51#include <sys/zvol.h>
52#include <sys/zthr.h>
53#include "zfs_namecheck.h"
54#include "zfs_prop.h"
55
56/*
57 * Filesystem and Snapshot Limits
58 * ------------------------------
59 *
60 * These limits are used to restrict the number of filesystems and/or snapshots
61 * that can be created at a given level in the tree or below. A typical
62 * use-case is with a delegated dataset where the administrator wants to ensure
63 * that a user within the zone is not creating too many additional filesystems
64 * or snapshots, even though they're not exceeding their space quota.
65 *
66 * The filesystem and snapshot counts are stored as extensible properties. This
67 * capability is controlled by a feature flag and must be enabled to be used.
68 * Once enabled, the feature is not active until the first limit is set. At
69 * that point, future operations to create/destroy filesystems or snapshots
70 * will validate and update the counts.
71 *
72 * Because the count properties will not exist before the feature is active,
73 * the counts are updated when a limit is first set on an uninitialized
74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
77 * snapshot count properties on a node indicate uninitialized counts on that
78 * node.) When first setting a limit on an uninitialized node, the code starts
79 * at the filesystem with the new limit and descends into all sub-filesystems
80 * to add the count properties.
81 *
82 * In practice this is lightweight since a limit is typically set when the
83 * filesystem is created and thus has no children. Once valid, changing the
84 * limit value won't require a re-traversal since the counts are already valid.
85 * When recursively fixing the counts, if a node with a limit is encountered
86 * during the descent, the counts are known to be valid and there is no need to
87 * descend into that filesystem's children. The counts on filesystems above the
88 * one with the new limit will still be uninitialized, unless a limit is
89 * eventually set on one of those filesystems. The counts are always recursively
90 * updated when a limit is set on a dataset, unless there is already a limit.
91 * When a new limit value is set on a filesystem with an existing limit, it is
92 * possible for the new limit to be less than the current count at that level
93 * since a user who can change the limit is also allowed to exceed the limit.
94 *
95 * Once the feature is active, then whenever a filesystem or snapshot is
96 * created, the code recurses up the tree, validating the new count against the
97 * limit at each initialized level. In practice, most levels will not have a
98 * limit set. If there is a limit at any initialized level up the tree, the
99 * check must pass or the creation will fail. Likewise, when a filesystem or
100 * snapshot is destroyed, the counts are recursively adjusted all the way up
101 * the initialized nodes in the tree. Renaming a filesystem into different point
102 * in the tree will first validate, then update the counts on each branch up to
103 * the common ancestor. A receive will also validate the counts and then update
104 * them.
105 *
106 * An exception to the above behavior is that the limit is not enforced if the
107 * user has permission to modify the limit. This is primarily so that
108 * recursive snapshots in the global zone always work. We want to prevent a
109 * denial-of-service in which a lower level delegated dataset could max out its
110 * limit and thus block recursive snapshots from being taken in the global zone.
111 * Because of this, it is possible for the snapshot count to be over the limit
112 * and snapshots taken in the global zone could cause a lower level dataset to
113 * hit or exceed its limit. The administrator taking the global zone recursive
114 * snapshot should be aware of this side-effect and behave accordingly.
115 * For consistency, the filesystem limit is also not enforced if the user can
116 * modify the limit.
117 *
118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
121 * dsl_dir_init_fs_ss_count().
122 */
123
124extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
125
126static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
127
128typedef struct ddulrt_arg {
129	dsl_dir_t	*ddulrta_dd;
130	uint64_t	ddlrta_txg;
131} ddulrt_arg_t;
132
133static void
134dsl_dir_evict_async(void *dbu)
135{
136	dsl_dir_t *dd = dbu;
137	int t;
138	dsl_pool_t *dp __maybe_unused = dd->dd_pool;
139
140	dd->dd_dbuf = NULL;
141
142	for (t = 0; t < TXG_SIZE; t++) {
143		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
144		ASSERT(dd->dd_tempreserved[t] == 0);
145		ASSERT(dd->dd_space_towrite[t] == 0);
146	}
147
148	if (dd->dd_parent)
149		dsl_dir_async_rele(dd->dd_parent, dd);
150
151	spa_async_close(dd->dd_pool->dp_spa, dd);
152
153	if (dsl_deadlist_is_open(&dd->dd_livelist))
154		dsl_dir_livelist_close(dd);
155
156	dsl_prop_fini(dd);
157	cv_destroy(&dd->dd_activity_cv);
158	mutex_destroy(&dd->dd_activity_lock);
159	mutex_destroy(&dd->dd_lock);
160	kmem_free(dd, sizeof (dsl_dir_t));
161}
162
163int
164dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
165    const char *tail, void *tag, dsl_dir_t **ddp)
166{
167	dmu_buf_t *dbuf;
168	dsl_dir_t *dd;
169	dmu_object_info_t doi;
170	int err;
171
172	ASSERT(dsl_pool_config_held(dp));
173
174	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
175	if (err != 0)
176		return (err);
177	dd = dmu_buf_get_user(dbuf);
178
179	dmu_object_info_from_db(dbuf, &doi);
180	ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
181	ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
182
183	if (dd == NULL) {
184		dsl_dir_t *winner;
185
186		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
187		dd->dd_object = ddobj;
188		dd->dd_dbuf = dbuf;
189		dd->dd_pool = dp;
190
191		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
192		mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
193		cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
194		dsl_prop_init(dd);
195
196		if (dsl_dir_is_zapified(dd)) {
197			err = zap_lookup(dp->dp_meta_objset,
198			    ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
199			    sizeof (uint64_t), 1, &dd->dd_crypto_obj);
200			if (err == 0) {
201				/* check for on-disk format errata */
202				if (dsl_dir_incompatible_encryption_version(
203				    dd)) {
204					dp->dp_spa->spa_errata =
205					    ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
206				}
207			} else if (err != ENOENT) {
208				goto errout;
209			}
210		}
211
212		dsl_dir_snap_cmtime_update(dd);
213
214		if (dsl_dir_phys(dd)->dd_parent_obj) {
215			err = dsl_dir_hold_obj(dp,
216			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
217			    &dd->dd_parent);
218			if (err != 0)
219				goto errout;
220			if (tail) {
221#ifdef ZFS_DEBUG
222				uint64_t foundobj;
223
224				err = zap_lookup(dp->dp_meta_objset,
225				    dsl_dir_phys(dd->dd_parent)->
226				    dd_child_dir_zapobj, tail,
227				    sizeof (foundobj), 1, &foundobj);
228				ASSERT(err || foundobj == ddobj);
229#endif
230				(void) strlcpy(dd->dd_myname, tail,
231				    sizeof (dd->dd_myname));
232			} else {
233				err = zap_value_search(dp->dp_meta_objset,
234				    dsl_dir_phys(dd->dd_parent)->
235				    dd_child_dir_zapobj,
236				    ddobj, 0, dd->dd_myname);
237			}
238			if (err != 0)
239				goto errout;
240		} else {
241			(void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
242			    sizeof (dd->dd_myname));
243		}
244
245		if (dsl_dir_is_clone(dd)) {
246			dmu_buf_t *origin_bonus;
247			dsl_dataset_phys_t *origin_phys;
248
249			/*
250			 * We can't open the origin dataset, because
251			 * that would require opening this dsl_dir.
252			 * Just look at its phys directly instead.
253			 */
254			err = dmu_bonus_hold(dp->dp_meta_objset,
255			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
256			    &origin_bonus);
257			if (err != 0)
258				goto errout;
259			origin_phys = origin_bonus->db_data;
260			dd->dd_origin_txg =
261			    origin_phys->ds_creation_txg;
262			dmu_buf_rele(origin_bonus, FTAG);
263			if (dsl_dir_is_zapified(dd)) {
264				uint64_t obj;
265				err = zap_lookup(dp->dp_meta_objset,
266				    dd->dd_object, DD_FIELD_LIVELIST,
267				    sizeof (uint64_t), 1, &obj);
268				if (err == 0)
269					dsl_dir_livelist_open(dd, obj);
270				else if (err != ENOENT)
271					goto errout;
272			}
273		}
274
275		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
276		    &dd->dd_dbuf);
277		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
278		if (winner != NULL) {
279			if (dd->dd_parent)
280				dsl_dir_rele(dd->dd_parent, dd);
281			if (dsl_deadlist_is_open(&dd->dd_livelist))
282				dsl_dir_livelist_close(dd);
283			dsl_prop_fini(dd);
284			cv_destroy(&dd->dd_activity_cv);
285			mutex_destroy(&dd->dd_activity_lock);
286			mutex_destroy(&dd->dd_lock);
287			kmem_free(dd, sizeof (dsl_dir_t));
288			dd = winner;
289		} else {
290			spa_open_ref(dp->dp_spa, dd);
291		}
292	}
293
294	/*
295	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
296	 * holds on the spa.  We need the open-to-close holds because
297	 * otherwise the spa_refcnt wouldn't change when we open a
298	 * dir which the spa also has open, so we could incorrectly
299	 * think it was OK to unload/export/destroy the pool.  We need
300	 * the instantiate-to-evict hold because the dsl_dir_t has a
301	 * pointer to the dd_pool, which has a pointer to the spa_t.
302	 */
303	spa_open_ref(dp->dp_spa, tag);
304	ASSERT3P(dd->dd_pool, ==, dp);
305	ASSERT3U(dd->dd_object, ==, ddobj);
306	ASSERT3P(dd->dd_dbuf, ==, dbuf);
307	*ddp = dd;
308	return (0);
309
310errout:
311	if (dd->dd_parent)
312		dsl_dir_rele(dd->dd_parent, dd);
313	if (dsl_deadlist_is_open(&dd->dd_livelist))
314		dsl_dir_livelist_close(dd);
315	dsl_prop_fini(dd);
316	cv_destroy(&dd->dd_activity_cv);
317	mutex_destroy(&dd->dd_activity_lock);
318	mutex_destroy(&dd->dd_lock);
319	kmem_free(dd, sizeof (dsl_dir_t));
320	dmu_buf_rele(dbuf, tag);
321	return (err);
322}
323
324void
325dsl_dir_rele(dsl_dir_t *dd, void *tag)
326{
327	dprintf_dd(dd, "%s\n", "");
328	spa_close(dd->dd_pool->dp_spa, tag);
329	dmu_buf_rele(dd->dd_dbuf, tag);
330}
331
332/*
333 * Remove a reference to the given dsl dir that is being asynchronously
334 * released.  Async releases occur from a taskq performing eviction of
335 * dsl datasets and dirs.  This process is identical to a normal release
336 * with the exception of using the async API for releasing the reference on
337 * the spa.
338 */
339void
340dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
341{
342	dprintf_dd(dd, "%s\n", "");
343	spa_async_close(dd->dd_pool->dp_spa, tag);
344	dmu_buf_rele(dd->dd_dbuf, tag);
345}
346
347/* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
348void
349dsl_dir_name(dsl_dir_t *dd, char *buf)
350{
351	if (dd->dd_parent) {
352		dsl_dir_name(dd->dd_parent, buf);
353		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
354		    ZFS_MAX_DATASET_NAME_LEN);
355	} else {
356		buf[0] = '\0';
357	}
358	if (!MUTEX_HELD(&dd->dd_lock)) {
359		/*
360		 * recursive mutex so that we can use
361		 * dprintf_dd() with dd_lock held
362		 */
363		mutex_enter(&dd->dd_lock);
364		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
365		    <, ZFS_MAX_DATASET_NAME_LEN);
366		mutex_exit(&dd->dd_lock);
367	} else {
368		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
369		    <, ZFS_MAX_DATASET_NAME_LEN);
370	}
371}
372
373/* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
374int
375dsl_dir_namelen(dsl_dir_t *dd)
376{
377	int result = 0;
378
379	if (dd->dd_parent) {
380		/* parent's name + 1 for the "/" */
381		result = dsl_dir_namelen(dd->dd_parent) + 1;
382	}
383
384	if (!MUTEX_HELD(&dd->dd_lock)) {
385		/* see dsl_dir_name */
386		mutex_enter(&dd->dd_lock);
387		result += strlen(dd->dd_myname);
388		mutex_exit(&dd->dd_lock);
389	} else {
390		result += strlen(dd->dd_myname);
391	}
392
393	return (result);
394}
395
396static int
397getcomponent(const char *path, char *component, const char **nextp)
398{
399	char *p;
400
401	if ((path == NULL) || (path[0] == '\0'))
402		return (SET_ERROR(ENOENT));
403	/* This would be a good place to reserve some namespace... */
404	p = strpbrk(path, "/@");
405	if (p && (p[1] == '/' || p[1] == '@')) {
406		/* two separators in a row */
407		return (SET_ERROR(EINVAL));
408	}
409	if (p == NULL || p == path) {
410		/*
411		 * if the first thing is an @ or /, it had better be an
412		 * @ and it had better not have any more ats or slashes,
413		 * and it had better have something after the @.
414		 */
415		if (p != NULL &&
416		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
417			return (SET_ERROR(EINVAL));
418		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
419			return (SET_ERROR(ENAMETOOLONG));
420		(void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
421		p = NULL;
422	} else if (p[0] == '/') {
423		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
424			return (SET_ERROR(ENAMETOOLONG));
425		(void) strncpy(component, path, p - path);
426		component[p - path] = '\0';
427		p++;
428	} else if (p[0] == '@') {
429		/*
430		 * if the next separator is an @, there better not be
431		 * any more slashes.
432		 */
433		if (strchr(path, '/'))
434			return (SET_ERROR(EINVAL));
435		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
436			return (SET_ERROR(ENAMETOOLONG));
437		(void) strncpy(component, path, p - path);
438		component[p - path] = '\0';
439	} else {
440		panic("invalid p=%p", (void *)p);
441	}
442	*nextp = p;
443	return (0);
444}
445
446/*
447 * Return the dsl_dir_t, and possibly the last component which couldn't
448 * be found in *tail.  The name must be in the specified dsl_pool_t.  This
449 * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
450 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
451 * (*tail)[0] == '@' means that the last component is a snapshot.
452 */
453int
454dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
455    dsl_dir_t **ddp, const char **tailp)
456{
457	char *buf;
458	const char *spaname, *next, *nextnext = NULL;
459	int err;
460	dsl_dir_t *dd;
461	uint64_t ddobj;
462
463	buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
464	err = getcomponent(name, buf, &next);
465	if (err != 0)
466		goto error;
467
468	/* Make sure the name is in the specified pool. */
469	spaname = spa_name(dp->dp_spa);
470	if (strcmp(buf, spaname) != 0) {
471		err = SET_ERROR(EXDEV);
472		goto error;
473	}
474
475	ASSERT(dsl_pool_config_held(dp));
476
477	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
478	if (err != 0) {
479		goto error;
480	}
481
482	while (next != NULL) {
483		dsl_dir_t *child_dd;
484		err = getcomponent(next, buf, &nextnext);
485		if (err != 0)
486			break;
487		ASSERT(next[0] != '\0');
488		if (next[0] == '@')
489			break;
490		dprintf("looking up %s in obj%lld\n",
491		    buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
492
493		err = zap_lookup(dp->dp_meta_objset,
494		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
495		    buf, sizeof (ddobj), 1, &ddobj);
496		if (err != 0) {
497			if (err == ENOENT)
498				err = 0;
499			break;
500		}
501
502		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
503		if (err != 0)
504			break;
505		dsl_dir_rele(dd, tag);
506		dd = child_dd;
507		next = nextnext;
508	}
509
510	if (err != 0) {
511		dsl_dir_rele(dd, tag);
512		goto error;
513	}
514
515	/*
516	 * It's an error if there's more than one component left, or
517	 * tailp==NULL and there's any component left.
518	 */
519	if (next != NULL &&
520	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
521		/* bad path name */
522		dsl_dir_rele(dd, tag);
523		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
524		err = SET_ERROR(ENOENT);
525	}
526	if (tailp != NULL)
527		*tailp = next;
528	if (err == 0)
529		*ddp = dd;
530error:
531	kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
532	return (err);
533}
534
535/*
536 * If the counts are already initialized for this filesystem and its
537 * descendants then do nothing, otherwise initialize the counts.
538 *
539 * The counts on this filesystem, and those below, may be uninitialized due to
540 * either the use of a pre-existing pool which did not support the
541 * filesystem/snapshot limit feature, or one in which the feature had not yet
542 * been enabled.
543 *
544 * Recursively descend the filesystem tree and update the filesystem/snapshot
545 * counts on each filesystem below, then update the cumulative count on the
546 * current filesystem. If the filesystem already has a count set on it,
547 * then we know that its counts, and the counts on the filesystems below it,
548 * are already correct, so we don't have to update this filesystem.
549 */
550static void
551dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
552{
553	uint64_t my_fs_cnt = 0;
554	uint64_t my_ss_cnt = 0;
555	dsl_pool_t *dp = dd->dd_pool;
556	objset_t *os = dp->dp_meta_objset;
557	zap_cursor_t *zc;
558	zap_attribute_t *za;
559	dsl_dataset_t *ds;
560
561	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
562	ASSERT(dsl_pool_config_held(dp));
563	ASSERT(dmu_tx_is_syncing(tx));
564
565	dsl_dir_zapify(dd, tx);
566
567	/*
568	 * If the filesystem count has already been initialized then we
569	 * don't need to recurse down any further.
570	 */
571	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
572		return;
573
574	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
575	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
576
577	/* Iterate my child dirs */
578	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
579	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
580		dsl_dir_t *chld_dd;
581		uint64_t count;
582
583		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
584		    &chld_dd));
585
586		/*
587		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
588		 */
589		if (chld_dd->dd_myname[0] == '$') {
590			dsl_dir_rele(chld_dd, FTAG);
591			continue;
592		}
593
594		my_fs_cnt++;	/* count this child */
595
596		dsl_dir_init_fs_ss_count(chld_dd, tx);
597
598		VERIFY0(zap_lookup(os, chld_dd->dd_object,
599		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
600		my_fs_cnt += count;
601		VERIFY0(zap_lookup(os, chld_dd->dd_object,
602		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
603		my_ss_cnt += count;
604
605		dsl_dir_rele(chld_dd, FTAG);
606	}
607	zap_cursor_fini(zc);
608	/* Count my snapshots (we counted children's snapshots above) */
609	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
610	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
611
612	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
613	    zap_cursor_retrieve(zc, za) == 0;
614	    zap_cursor_advance(zc)) {
615		/* Don't count temporary snapshots */
616		if (za->za_name[0] != '%')
617			my_ss_cnt++;
618	}
619	zap_cursor_fini(zc);
620
621	dsl_dataset_rele(ds, FTAG);
622
623	kmem_free(zc, sizeof (zap_cursor_t));
624	kmem_free(za, sizeof (zap_attribute_t));
625
626	/* we're in a sync task, update counts */
627	dmu_buf_will_dirty(dd->dd_dbuf, tx);
628	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
629	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
630	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
631	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
632}
633
634static int
635dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
636{
637	char *ddname = (char *)arg;
638	dsl_pool_t *dp = dmu_tx_pool(tx);
639	dsl_dataset_t *ds;
640	dsl_dir_t *dd;
641	int error;
642
643	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
644	if (error != 0)
645		return (error);
646
647	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
648		dsl_dataset_rele(ds, FTAG);
649		return (SET_ERROR(ENOTSUP));
650	}
651
652	dd = ds->ds_dir;
653	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
654	    dsl_dir_is_zapified(dd) &&
655	    zap_contains(dp->dp_meta_objset, dd->dd_object,
656	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
657		dsl_dataset_rele(ds, FTAG);
658		return (SET_ERROR(EALREADY));
659	}
660
661	dsl_dataset_rele(ds, FTAG);
662	return (0);
663}
664
665static void
666dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
667{
668	char *ddname = (char *)arg;
669	dsl_pool_t *dp = dmu_tx_pool(tx);
670	dsl_dataset_t *ds;
671	spa_t *spa;
672
673	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
674
675	spa = dsl_dataset_get_spa(ds);
676
677	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
678		/*
679		 * Since the feature was not active and we're now setting a
680		 * limit, increment the feature-active counter so that the
681		 * feature becomes active for the first time.
682		 *
683		 * We are already in a sync task so we can update the MOS.
684		 */
685		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
686	}
687
688	/*
689	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
690	 * we need to ensure the counts are correct. Descend down the tree from
691	 * this point and update all of the counts to be accurate.
692	 */
693	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
694
695	dsl_dataset_rele(ds, FTAG);
696}
697
698/*
699 * Make sure the feature is enabled and activate it if necessary.
700 * Since we're setting a limit, ensure the on-disk counts are valid.
701 * This is only called by the ioctl path when setting a limit value.
702 *
703 * We do not need to validate the new limit, since users who can change the
704 * limit are also allowed to exceed the limit.
705 */
706int
707dsl_dir_activate_fs_ss_limit(const char *ddname)
708{
709	int error;
710
711	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
712	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
713	    ZFS_SPACE_CHECK_RESERVED);
714
715	if (error == EALREADY)
716		error = 0;
717
718	return (error);
719}
720
721/*
722 * Used to determine if the filesystem_limit or snapshot_limit should be
723 * enforced. We allow the limit to be exceeded if the user has permission to
724 * write the property value. We pass in the creds that we got in the open
725 * context since we will always be the GZ root in syncing context. We also have
726 * to handle the case where we are allowed to change the limit on the current
727 * dataset, but there may be another limit in the tree above.
728 *
729 * We can never modify these two properties within a non-global zone. In
730 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
731 * can't use that function since we are already holding the dp_config_rwlock.
732 * In addition, we already have the dd and dealing with snapshots is simplified
733 * in this code.
734 */
735
736typedef enum {
737	ENFORCE_ALWAYS,
738	ENFORCE_NEVER,
739	ENFORCE_ABOVE
740} enforce_res_t;
741
742static enforce_res_t
743dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
744    cred_t *cr, proc_t *proc)
745{
746	enforce_res_t enforce = ENFORCE_ALWAYS;
747	uint64_t obj;
748	dsl_dataset_t *ds;
749	uint64_t zoned;
750	const char *zonedstr;
751
752	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
753	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
754
755#ifdef _KERNEL
756	if (crgetzoneid(cr) != GLOBAL_ZONEID)
757		return (ENFORCE_ALWAYS);
758
759	/*
760	 * We are checking the saved credentials of the user process, which is
761	 * not the current process.  Note that we can't use secpolicy_zfs(),
762	 * because it only works if the cred is that of the current process (on
763	 * Linux).
764	 */
765	if (secpolicy_zfs_proc(cr, proc) == 0)
766		return (ENFORCE_NEVER);
767#endif
768
769	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
770		return (ENFORCE_ALWAYS);
771
772	ASSERT(dsl_pool_config_held(dd->dd_pool));
773
774	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
775		return (ENFORCE_ALWAYS);
776
777	zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
778	if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
779		/* Only root can access zoned fs's from the GZ */
780		enforce = ENFORCE_ALWAYS;
781	} else {
782		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
783			enforce = ENFORCE_ABOVE;
784	}
785
786	dsl_dataset_rele(ds, FTAG);
787	return (enforce);
788}
789
790/*
791 * Check if adding additional child filesystem(s) would exceed any filesystem
792 * limits or adding additional snapshot(s) would exceed any snapshot limits.
793 * The prop argument indicates which limit to check.
794 *
795 * Note that all filesystem limits up to the root (or the highest
796 * initialized) filesystem or the given ancestor must be satisfied.
797 */
798int
799dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
800    dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
801{
802	objset_t *os = dd->dd_pool->dp_meta_objset;
803	uint64_t limit, count;
804	char *count_prop;
805	enforce_res_t enforce;
806	int err = 0;
807
808	ASSERT(dsl_pool_config_held(dd->dd_pool));
809	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
810	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
811
812	/*
813	 * If we're allowed to change the limit, don't enforce the limit
814	 * e.g. this can happen if a snapshot is taken by an administrative
815	 * user in the global zone (i.e. a recursive snapshot by root).
816	 * However, we must handle the case of delegated permissions where we
817	 * are allowed to change the limit on the current dataset, but there
818	 * is another limit in the tree above.
819	 */
820	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
821	if (enforce == ENFORCE_NEVER)
822		return (0);
823
824	/*
825	 * e.g. if renaming a dataset with no snapshots, count adjustment
826	 * is 0.
827	 */
828	if (delta == 0)
829		return (0);
830
831	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
832		/*
833		 * We don't enforce the limit for temporary snapshots. This is
834		 * indicated by a NULL cred_t argument.
835		 */
836		if (cr == NULL)
837			return (0);
838
839		count_prop = DD_FIELD_SNAPSHOT_COUNT;
840	} else {
841		count_prop = DD_FIELD_FILESYSTEM_COUNT;
842	}
843
844	/*
845	 * If an ancestor has been provided, stop checking the limit once we
846	 * hit that dir. We need this during rename so that we don't overcount
847	 * the check once we recurse up to the common ancestor.
848	 */
849	if (ancestor == dd)
850		return (0);
851
852	/*
853	 * If we hit an uninitialized node while recursing up the tree, we can
854	 * stop since we know there is no limit here (or above). The counts are
855	 * not valid on this node and we know we won't touch this node's counts.
856	 */
857	if (!dsl_dir_is_zapified(dd))
858		return (0);
859	err = zap_lookup(os, dd->dd_object,
860	    count_prop, sizeof (count), 1, &count);
861	if (err == ENOENT)
862		return (0);
863	if (err != 0)
864		return (err);
865
866	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
867	    B_FALSE);
868	if (err != 0)
869		return (err);
870
871	/* Is there a limit which we've hit? */
872	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
873		return (SET_ERROR(EDQUOT));
874
875	if (dd->dd_parent != NULL)
876		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
877		    ancestor, cr, proc);
878
879	return (err);
880}
881
882/*
883 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
884 * parents. When a new filesystem/snapshot is created, increment the count on
885 * all parents, and when a filesystem/snapshot is destroyed, decrement the
886 * count.
887 */
888void
889dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
890    dmu_tx_t *tx)
891{
892	int err;
893	objset_t *os = dd->dd_pool->dp_meta_objset;
894	uint64_t count;
895
896	ASSERT(dsl_pool_config_held(dd->dd_pool));
897	ASSERT(dmu_tx_is_syncing(tx));
898	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
899	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
900
901	/*
902	 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
903	 */
904	if (dd->dd_myname[0] == '$' && strcmp(prop,
905	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
906		return;
907	}
908
909	/*
910	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
911	 */
912	if (delta == 0)
913		return;
914
915	/*
916	 * If we hit an uninitialized node while recursing up the tree, we can
917	 * stop since we know the counts are not valid on this node and we
918	 * know we shouldn't touch this node's counts. An uninitialized count
919	 * on the node indicates that either the feature has not yet been
920	 * activated or there are no limits on this part of the tree.
921	 */
922	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
923	    prop, sizeof (count), 1, &count)) == ENOENT)
924		return;
925	VERIFY0(err);
926
927	count += delta;
928	/* Use a signed verify to make sure we're not neg. */
929	VERIFY3S(count, >=, 0);
930
931	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
932	    tx));
933
934	/* Roll up this additional count into our ancestors */
935	if (dd->dd_parent != NULL)
936		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
937}
938
939uint64_t
940dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
941    dmu_tx_t *tx)
942{
943	objset_t *mos = dp->dp_meta_objset;
944	uint64_t ddobj;
945	dsl_dir_phys_t *ddphys;
946	dmu_buf_t *dbuf;
947
948	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
949	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
950	if (pds) {
951		VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
952		    name, sizeof (uint64_t), 1, &ddobj, tx));
953	} else {
954		/* it's the root dir */
955		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
956		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
957	}
958	VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
959	dmu_buf_will_dirty(dbuf, tx);
960	ddphys = dbuf->db_data;
961
962	ddphys->dd_creation_time = gethrestime_sec();
963	if (pds) {
964		ddphys->dd_parent_obj = pds->dd_object;
965
966		/* update the filesystem counts */
967		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
968	}
969	ddphys->dd_props_zapobj = zap_create(mos,
970	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
971	ddphys->dd_child_dir_zapobj = zap_create(mos,
972	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
973	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
974		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
975
976	dmu_buf_rele(dbuf, FTAG);
977
978	return (ddobj);
979}
980
981boolean_t
982dsl_dir_is_clone(dsl_dir_t *dd)
983{
984	return (dsl_dir_phys(dd)->dd_origin_obj &&
985	    (dd->dd_pool->dp_origin_snap == NULL ||
986	    dsl_dir_phys(dd)->dd_origin_obj !=
987	    dd->dd_pool->dp_origin_snap->ds_object));
988}
989
990uint64_t
991dsl_dir_get_used(dsl_dir_t *dd)
992{
993	return (dsl_dir_phys(dd)->dd_used_bytes);
994}
995
996uint64_t
997dsl_dir_get_compressed(dsl_dir_t *dd)
998{
999	return (dsl_dir_phys(dd)->dd_compressed_bytes);
1000}
1001
1002uint64_t
1003dsl_dir_get_quota(dsl_dir_t *dd)
1004{
1005	return (dsl_dir_phys(dd)->dd_quota);
1006}
1007
1008uint64_t
1009dsl_dir_get_reservation(dsl_dir_t *dd)
1010{
1011	return (dsl_dir_phys(dd)->dd_reserved);
1012}
1013
1014uint64_t
1015dsl_dir_get_compressratio(dsl_dir_t *dd)
1016{
1017	/* a fixed point number, 100x the ratio */
1018	return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1019	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1020	    dsl_dir_phys(dd)->dd_compressed_bytes));
1021}
1022
1023uint64_t
1024dsl_dir_get_logicalused(dsl_dir_t *dd)
1025{
1026	return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1027}
1028
1029uint64_t
1030dsl_dir_get_usedsnap(dsl_dir_t *dd)
1031{
1032	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1033}
1034
1035uint64_t
1036dsl_dir_get_usedds(dsl_dir_t *dd)
1037{
1038	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1039}
1040
1041uint64_t
1042dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1043{
1044	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1045}
1046
1047uint64_t
1048dsl_dir_get_usedchild(dsl_dir_t *dd)
1049{
1050	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1051	    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1052}
1053
1054void
1055dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1056{
1057	dsl_dataset_t *ds;
1058	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1059	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1060
1061	dsl_dataset_name(ds, buf);
1062
1063	dsl_dataset_rele(ds, FTAG);
1064}
1065
1066int
1067dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1068{
1069	if (dsl_dir_is_zapified(dd)) {
1070		objset_t *os = dd->dd_pool->dp_meta_objset;
1071		return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1072		    sizeof (*count), 1, count));
1073	} else {
1074		return (SET_ERROR(ENOENT));
1075	}
1076}
1077
1078int
1079dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1080{
1081	if (dsl_dir_is_zapified(dd)) {
1082		objset_t *os = dd->dd_pool->dp_meta_objset;
1083		return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1084		    sizeof (*count), 1, count));
1085	} else {
1086		return (SET_ERROR(ENOENT));
1087	}
1088}
1089
1090void
1091dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1092{
1093	mutex_enter(&dd->dd_lock);
1094	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1095	    dsl_dir_get_quota(dd));
1096	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1097	    dsl_dir_get_reservation(dd));
1098	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1099	    dsl_dir_get_logicalused(dd));
1100	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1101		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1102		    dsl_dir_get_usedsnap(dd));
1103		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1104		    dsl_dir_get_usedds(dd));
1105		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1106		    dsl_dir_get_usedrefreserv(dd));
1107		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1108		    dsl_dir_get_usedchild(dd));
1109	}
1110	mutex_exit(&dd->dd_lock);
1111
1112	uint64_t count;
1113	if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1114		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1115		    count);
1116	}
1117	if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1118		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1119		    count);
1120	}
1121
1122	if (dsl_dir_is_clone(dd)) {
1123		char buf[ZFS_MAX_DATASET_NAME_LEN];
1124		dsl_dir_get_origin(dd, buf);
1125		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1126	}
1127
1128}
1129
1130void
1131dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1132{
1133	dsl_pool_t *dp = dd->dd_pool;
1134
1135	ASSERT(dsl_dir_phys(dd));
1136
1137	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1138		/* up the hold count until we can be written out */
1139		dmu_buf_add_ref(dd->dd_dbuf, dd);
1140	}
1141}
1142
1143static int64_t
1144parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1145{
1146	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1147	uint64_t new_accounted =
1148	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1149	return (new_accounted - old_accounted);
1150}
1151
1152void
1153dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1154{
1155	ASSERT(dmu_tx_is_syncing(tx));
1156
1157	mutex_enter(&dd->dd_lock);
1158	ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1159	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1160	    dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1161	dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1162	mutex_exit(&dd->dd_lock);
1163
1164	/* release the hold from dsl_dir_dirty */
1165	dmu_buf_rele(dd->dd_dbuf, dd);
1166}
1167
1168static uint64_t
1169dsl_dir_space_towrite(dsl_dir_t *dd)
1170{
1171	uint64_t space = 0;
1172
1173	ASSERT(MUTEX_HELD(&dd->dd_lock));
1174
1175	for (int i = 0; i < TXG_SIZE; i++) {
1176		space += dd->dd_space_towrite[i & TXG_MASK];
1177		ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1178	}
1179	return (space);
1180}
1181
1182/*
1183 * How much space would dd have available if ancestor had delta applied
1184 * to it?  If ondiskonly is set, we're only interested in what's
1185 * on-disk, not estimated pending changes.
1186 */
1187uint64_t
1188dsl_dir_space_available(dsl_dir_t *dd,
1189    dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1190{
1191	uint64_t parentspace, myspace, quota, used;
1192
1193	/*
1194	 * If there are no restrictions otherwise, assume we have
1195	 * unlimited space available.
1196	 */
1197	quota = UINT64_MAX;
1198	parentspace = UINT64_MAX;
1199
1200	if (dd->dd_parent != NULL) {
1201		parentspace = dsl_dir_space_available(dd->dd_parent,
1202		    ancestor, delta, ondiskonly);
1203	}
1204
1205	mutex_enter(&dd->dd_lock);
1206	if (dsl_dir_phys(dd)->dd_quota != 0)
1207		quota = dsl_dir_phys(dd)->dd_quota;
1208	used = dsl_dir_phys(dd)->dd_used_bytes;
1209	if (!ondiskonly)
1210		used += dsl_dir_space_towrite(dd);
1211
1212	if (dd->dd_parent == NULL) {
1213		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1214		    ZFS_SPACE_CHECK_NORMAL);
1215		quota = MIN(quota, poolsize);
1216	}
1217
1218	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1219		/*
1220		 * We have some space reserved, in addition to what our
1221		 * parent gave us.
1222		 */
1223		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1224	}
1225
1226	if (dd == ancestor) {
1227		ASSERT(delta <= 0);
1228		ASSERT(used >= -delta);
1229		used += delta;
1230		if (parentspace != UINT64_MAX)
1231			parentspace -= delta;
1232	}
1233
1234	if (used > quota) {
1235		/* over quota */
1236		myspace = 0;
1237	} else {
1238		/*
1239		 * the lesser of the space provided by our parent and
1240		 * the space left in our quota
1241		 */
1242		myspace = MIN(parentspace, quota - used);
1243	}
1244
1245	mutex_exit(&dd->dd_lock);
1246
1247	return (myspace);
1248}
1249
1250struct tempreserve {
1251	list_node_t tr_node;
1252	dsl_dir_t *tr_ds;
1253	uint64_t tr_size;
1254};
1255
1256static int
1257dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1258    boolean_t ignorequota, list_t *tr_list,
1259    dmu_tx_t *tx, boolean_t first)
1260{
1261	uint64_t txg;
1262	uint64_t quota;
1263	struct tempreserve *tr;
1264	int retval;
1265	uint64_t ref_rsrv;
1266
1267top_of_function:
1268	txg = tx->tx_txg;
1269	retval = EDQUOT;
1270	ref_rsrv = 0;
1271
1272	ASSERT3U(txg, !=, 0);
1273	ASSERT3S(asize, >, 0);
1274
1275	mutex_enter(&dd->dd_lock);
1276
1277	/*
1278	 * Check against the dsl_dir's quota.  We don't add in the delta
1279	 * when checking for over-quota because they get one free hit.
1280	 */
1281	uint64_t est_inflight = dsl_dir_space_towrite(dd);
1282	for (int i = 0; i < TXG_SIZE; i++)
1283		est_inflight += dd->dd_tempreserved[i];
1284	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1285
1286	/*
1287	 * On the first iteration, fetch the dataset's used-on-disk and
1288	 * refreservation values. Also, if checkrefquota is set, test if
1289	 * allocating this space would exceed the dataset's refquota.
1290	 */
1291	if (first && tx->tx_objset) {
1292		int error;
1293		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1294
1295		error = dsl_dataset_check_quota(ds, !netfree,
1296		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1297		if (error != 0) {
1298			mutex_exit(&dd->dd_lock);
1299			DMU_TX_STAT_BUMP(dmu_tx_quota);
1300			return (error);
1301		}
1302	}
1303
1304	/*
1305	 * If this transaction will result in a net free of space,
1306	 * we want to let it through.
1307	 */
1308	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1309		quota = UINT64_MAX;
1310	else
1311		quota = dsl_dir_phys(dd)->dd_quota;
1312
1313	/*
1314	 * Adjust the quota against the actual pool size at the root
1315	 * minus any outstanding deferred frees.
1316	 * To ensure that it's possible to remove files from a full
1317	 * pool without inducing transient overcommits, we throttle
1318	 * netfree transactions against a quota that is slightly larger,
1319	 * but still within the pool's allocation slop.  In cases where
1320	 * we're very close to full, this will allow a steady trickle of
1321	 * removes to get through.
1322	 */
1323	uint64_t deferred = 0;
1324	if (dd->dd_parent == NULL) {
1325		uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1326		    (netfree) ?
1327		    ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1328
1329		if (avail < quota) {
1330			quota = avail;
1331			retval = SET_ERROR(ENOSPC);
1332		}
1333	}
1334
1335	/*
1336	 * If they are requesting more space, and our current estimate
1337	 * is over quota, they get to try again unless the actual
1338	 * on-disk is over quota and there are no pending changes (which
1339	 * may free up space for us).
1340	 */
1341	if (used_on_disk + est_inflight >= quota) {
1342		if (est_inflight > 0 || used_on_disk < quota ||
1343		    (retval == ENOSPC && used_on_disk < quota + deferred))
1344			retval = ERESTART;
1345		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1346		    "quota=%lluK tr=%lluK err=%d\n",
1347		    used_on_disk>>10, est_inflight>>10,
1348		    quota>>10, asize>>10, retval);
1349		mutex_exit(&dd->dd_lock);
1350		DMU_TX_STAT_BUMP(dmu_tx_quota);
1351		return (SET_ERROR(retval));
1352	}
1353
1354	/* We need to up our estimated delta before dropping dd_lock */
1355	dd->dd_tempreserved[txg & TXG_MASK] += asize;
1356
1357	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1358	    asize - ref_rsrv);
1359	mutex_exit(&dd->dd_lock);
1360
1361	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1362	tr->tr_ds = dd;
1363	tr->tr_size = asize;
1364	list_insert_tail(tr_list, tr);
1365
1366	/* see if it's OK with our parent */
1367	if (dd->dd_parent != NULL && parent_rsrv != 0) {
1368		/*
1369		 * Recurse on our parent without recursion. This has been
1370		 * observed to be potentially large stack usage even within
1371		 * the test suite. Largest seen stack was 7632 bytes on linux.
1372		 */
1373
1374		dd = dd->dd_parent;
1375		asize = parent_rsrv;
1376		ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1377		first = B_FALSE;
1378		goto top_of_function;
1379
1380	} else {
1381		return (0);
1382	}
1383}
1384
1385/*
1386 * Reserve space in this dsl_dir, to be used in this tx's txg.
1387 * After the space has been dirtied (and dsl_dir_willuse_space()
1388 * has been called), the reservation should be canceled, using
1389 * dsl_dir_tempreserve_clear().
1390 */
1391int
1392dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1393    boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1394{
1395	int err;
1396	list_t *tr_list;
1397
1398	if (asize == 0) {
1399		*tr_cookiep = NULL;
1400		return (0);
1401	}
1402
1403	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1404	list_create(tr_list, sizeof (struct tempreserve),
1405	    offsetof(struct tempreserve, tr_node));
1406	ASSERT3S(asize, >, 0);
1407
1408	err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1409	if (err == 0) {
1410		struct tempreserve *tr;
1411
1412		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1413		tr->tr_size = lsize;
1414		list_insert_tail(tr_list, tr);
1415	} else {
1416		if (err == EAGAIN) {
1417			/*
1418			 * If arc_memory_throttle() detected that pageout
1419			 * is running and we are low on memory, we delay new
1420			 * non-pageout transactions to give pageout an
1421			 * advantage.
1422			 *
1423			 * It is unfortunate to be delaying while the caller's
1424			 * locks are held.
1425			 */
1426			txg_delay(dd->dd_pool, tx->tx_txg,
1427			    MSEC2NSEC(10), MSEC2NSEC(10));
1428			err = SET_ERROR(ERESTART);
1429		}
1430	}
1431
1432	if (err == 0) {
1433		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1434		    B_FALSE, tr_list, tx, B_TRUE);
1435	}
1436
1437	if (err != 0)
1438		dsl_dir_tempreserve_clear(tr_list, tx);
1439	else
1440		*tr_cookiep = tr_list;
1441
1442	return (err);
1443}
1444
1445/*
1446 * Clear a temporary reservation that we previously made with
1447 * dsl_dir_tempreserve_space().
1448 */
1449void
1450dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1451{
1452	int txgidx = tx->tx_txg & TXG_MASK;
1453	list_t *tr_list = tr_cookie;
1454	struct tempreserve *tr;
1455
1456	ASSERT3U(tx->tx_txg, !=, 0);
1457
1458	if (tr_cookie == NULL)
1459		return;
1460
1461	while ((tr = list_head(tr_list)) != NULL) {
1462		if (tr->tr_ds) {
1463			mutex_enter(&tr->tr_ds->dd_lock);
1464			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1465			    tr->tr_size);
1466			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1467			mutex_exit(&tr->tr_ds->dd_lock);
1468		} else {
1469			arc_tempreserve_clear(tr->tr_size);
1470		}
1471		list_remove(tr_list, tr);
1472		kmem_free(tr, sizeof (struct tempreserve));
1473	}
1474
1475	kmem_free(tr_list, sizeof (list_t));
1476}
1477
1478/*
1479 * This should be called from open context when we think we're going to write
1480 * or free space, for example when dirtying data. Be conservative; it's okay
1481 * to write less space or free more, but we don't want to write more or free
1482 * less than the amount specified.
1483 *
1484 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1485 * version however it has been adjusted to use an iterative rather than
1486 * recursive algorithm to minimize stack usage.
1487 */
1488void
1489dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1490{
1491	int64_t parent_space;
1492	uint64_t est_used;
1493
1494	do {
1495		mutex_enter(&dd->dd_lock);
1496		if (space > 0)
1497			dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1498
1499		est_used = dsl_dir_space_towrite(dd) +
1500		    dsl_dir_phys(dd)->dd_used_bytes;
1501		parent_space = parent_delta(dd, est_used, space);
1502		mutex_exit(&dd->dd_lock);
1503
1504		/* Make sure that we clean up dd_space_to* */
1505		dsl_dir_dirty(dd, tx);
1506
1507		dd = dd->dd_parent;
1508		space = parent_space;
1509	} while (space && dd);
1510}
1511
1512/* call from syncing context when we actually write/free space for this dd */
1513void
1514dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1515    int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1516{
1517	int64_t accounted_delta;
1518
1519	/*
1520	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1521	 * dd_lock held, so that it can atomically update
1522	 * ds->ds_reserved and the dsl_dir accounting, so that
1523	 * dsl_dataset_check_quota() can see dataset and dir accounting
1524	 * consistently.
1525	 */
1526	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1527
1528	ASSERT(dmu_tx_is_syncing(tx));
1529	ASSERT(type < DD_USED_NUM);
1530
1531	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1532
1533	if (needlock)
1534		mutex_enter(&dd->dd_lock);
1535	accounted_delta =
1536	    parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1537	ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1538	ASSERT(compressed >= 0 ||
1539	    dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1540	ASSERT(uncompressed >= 0 ||
1541	    dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1542	dsl_dir_phys(dd)->dd_used_bytes += used;
1543	dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1544	dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1545
1546	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1547		ASSERT(used > 0 ||
1548		    dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1549		dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1550#ifdef ZFS_DEBUG
1551		{
1552			dd_used_t t;
1553			uint64_t u = 0;
1554			for (t = 0; t < DD_USED_NUM; t++)
1555				u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1556			ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1557		}
1558#endif
1559	}
1560	if (needlock)
1561		mutex_exit(&dd->dd_lock);
1562
1563	if (dd->dd_parent != NULL) {
1564		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1565		    accounted_delta, compressed, uncompressed, tx);
1566		dsl_dir_transfer_space(dd->dd_parent,
1567		    used - accounted_delta,
1568		    DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1569	}
1570}
1571
1572void
1573dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1574    dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1575{
1576	ASSERT(dmu_tx_is_syncing(tx));
1577	ASSERT(oldtype < DD_USED_NUM);
1578	ASSERT(newtype < DD_USED_NUM);
1579
1580	if (delta == 0 ||
1581	    !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1582		return;
1583
1584	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1585	mutex_enter(&dd->dd_lock);
1586	ASSERT(delta > 0 ?
1587	    dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1588	    dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1589	ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1590	dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1591	dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1592	mutex_exit(&dd->dd_lock);
1593}
1594
1595typedef struct dsl_dir_set_qr_arg {
1596	const char *ddsqra_name;
1597	zprop_source_t ddsqra_source;
1598	uint64_t ddsqra_value;
1599} dsl_dir_set_qr_arg_t;
1600
1601static int
1602dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1603{
1604	dsl_dir_set_qr_arg_t *ddsqra = arg;
1605	dsl_pool_t *dp = dmu_tx_pool(tx);
1606	dsl_dataset_t *ds;
1607	int error;
1608	uint64_t towrite, newval;
1609
1610	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1611	if (error != 0)
1612		return (error);
1613
1614	error = dsl_prop_predict(ds->ds_dir, "quota",
1615	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1616	if (error != 0) {
1617		dsl_dataset_rele(ds, FTAG);
1618		return (error);
1619	}
1620
1621	if (newval == 0) {
1622		dsl_dataset_rele(ds, FTAG);
1623		return (0);
1624	}
1625
1626	mutex_enter(&ds->ds_dir->dd_lock);
1627	/*
1628	 * If we are doing the preliminary check in open context, and
1629	 * there are pending changes, then don't fail it, since the
1630	 * pending changes could under-estimate the amount of space to be
1631	 * freed up.
1632	 */
1633	towrite = dsl_dir_space_towrite(ds->ds_dir);
1634	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1635	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1636	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1637		error = SET_ERROR(ENOSPC);
1638	}
1639	mutex_exit(&ds->ds_dir->dd_lock);
1640	dsl_dataset_rele(ds, FTAG);
1641	return (error);
1642}
1643
1644static void
1645dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1646{
1647	dsl_dir_set_qr_arg_t *ddsqra = arg;
1648	dsl_pool_t *dp = dmu_tx_pool(tx);
1649	dsl_dataset_t *ds;
1650	uint64_t newval;
1651
1652	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1653
1654	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1655		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1656		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1657		    &ddsqra->ddsqra_value, tx);
1658
1659		VERIFY0(dsl_prop_get_int_ds(ds,
1660		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1661	} else {
1662		newval = ddsqra->ddsqra_value;
1663		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1664		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1665	}
1666
1667	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1668	mutex_enter(&ds->ds_dir->dd_lock);
1669	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1670	mutex_exit(&ds->ds_dir->dd_lock);
1671	dsl_dataset_rele(ds, FTAG);
1672}
1673
1674int
1675dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1676{
1677	dsl_dir_set_qr_arg_t ddsqra;
1678
1679	ddsqra.ddsqra_name = ddname;
1680	ddsqra.ddsqra_source = source;
1681	ddsqra.ddsqra_value = quota;
1682
1683	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1684	    dsl_dir_set_quota_sync, &ddsqra, 0,
1685	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1686}
1687
1688static int
1689dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1690{
1691	dsl_dir_set_qr_arg_t *ddsqra = arg;
1692	dsl_pool_t *dp = dmu_tx_pool(tx);
1693	dsl_dataset_t *ds;
1694	dsl_dir_t *dd;
1695	uint64_t newval, used, avail;
1696	int error;
1697
1698	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1699	if (error != 0)
1700		return (error);
1701	dd = ds->ds_dir;
1702
1703	/*
1704	 * If we are doing the preliminary check in open context, the
1705	 * space estimates may be inaccurate.
1706	 */
1707	if (!dmu_tx_is_syncing(tx)) {
1708		dsl_dataset_rele(ds, FTAG);
1709		return (0);
1710	}
1711
1712	error = dsl_prop_predict(ds->ds_dir,
1713	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1714	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1715	if (error != 0) {
1716		dsl_dataset_rele(ds, FTAG);
1717		return (error);
1718	}
1719
1720	mutex_enter(&dd->dd_lock);
1721	used = dsl_dir_phys(dd)->dd_used_bytes;
1722	mutex_exit(&dd->dd_lock);
1723
1724	if (dd->dd_parent) {
1725		avail = dsl_dir_space_available(dd->dd_parent,
1726		    NULL, 0, FALSE);
1727	} else {
1728		avail = dsl_pool_adjustedsize(dd->dd_pool,
1729		    ZFS_SPACE_CHECK_NORMAL) - used;
1730	}
1731
1732	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1733		uint64_t delta = MAX(used, newval) -
1734		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1735
1736		if (delta > avail ||
1737		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1738		    newval > dsl_dir_phys(dd)->dd_quota))
1739			error = SET_ERROR(ENOSPC);
1740	}
1741
1742	dsl_dataset_rele(ds, FTAG);
1743	return (error);
1744}
1745
1746void
1747dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1748{
1749	uint64_t used;
1750	int64_t delta;
1751
1752	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1753
1754	mutex_enter(&dd->dd_lock);
1755	used = dsl_dir_phys(dd)->dd_used_bytes;
1756	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1757	dsl_dir_phys(dd)->dd_reserved = value;
1758
1759	if (dd->dd_parent != NULL) {
1760		/* Roll up this additional usage into our ancestors */
1761		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1762		    delta, 0, 0, tx);
1763	}
1764	mutex_exit(&dd->dd_lock);
1765}
1766
1767static void
1768dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1769{
1770	dsl_dir_set_qr_arg_t *ddsqra = arg;
1771	dsl_pool_t *dp = dmu_tx_pool(tx);
1772	dsl_dataset_t *ds;
1773	uint64_t newval;
1774
1775	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1776
1777	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1778		dsl_prop_set_sync_impl(ds,
1779		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1780		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1781		    &ddsqra->ddsqra_value, tx);
1782
1783		VERIFY0(dsl_prop_get_int_ds(ds,
1784		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1785	} else {
1786		newval = ddsqra->ddsqra_value;
1787		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1788		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1789		    (longlong_t)newval);
1790	}
1791
1792	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1793	dsl_dataset_rele(ds, FTAG);
1794}
1795
1796int
1797dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1798    uint64_t reservation)
1799{
1800	dsl_dir_set_qr_arg_t ddsqra;
1801
1802	ddsqra.ddsqra_name = ddname;
1803	ddsqra.ddsqra_source = source;
1804	ddsqra.ddsqra_value = reservation;
1805
1806	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1807	    dsl_dir_set_reservation_sync, &ddsqra, 0,
1808	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1809}
1810
1811static dsl_dir_t *
1812closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1813{
1814	for (; ds1; ds1 = ds1->dd_parent) {
1815		dsl_dir_t *dd;
1816		for (dd = ds2; dd; dd = dd->dd_parent) {
1817			if (ds1 == dd)
1818				return (dd);
1819		}
1820	}
1821	return (NULL);
1822}
1823
1824/*
1825 * If delta is applied to dd, how much of that delta would be applied to
1826 * ancestor?  Syncing context only.
1827 */
1828static int64_t
1829would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1830{
1831	if (dd == ancestor)
1832		return (delta);
1833
1834	mutex_enter(&dd->dd_lock);
1835	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1836	mutex_exit(&dd->dd_lock);
1837	return (would_change(dd->dd_parent, delta, ancestor));
1838}
1839
1840typedef struct dsl_dir_rename_arg {
1841	const char *ddra_oldname;
1842	const char *ddra_newname;
1843	cred_t *ddra_cred;
1844	proc_t *ddra_proc;
1845} dsl_dir_rename_arg_t;
1846
1847typedef struct dsl_valid_rename_arg {
1848	int char_delta;
1849	int nest_delta;
1850} dsl_valid_rename_arg_t;
1851
1852/* ARGSUSED */
1853static int
1854dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1855{
1856	dsl_valid_rename_arg_t *dvra = arg;
1857	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1858
1859	dsl_dataset_name(ds, namebuf);
1860
1861	ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1862	    <, ZFS_MAX_DATASET_NAME_LEN);
1863	int namelen = strlen(namebuf) + dvra->char_delta;
1864	int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1865
1866	if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1867		return (SET_ERROR(ENAMETOOLONG));
1868	if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1869		return (SET_ERROR(ENAMETOOLONG));
1870	return (0);
1871}
1872
1873static int
1874dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1875{
1876	dsl_dir_rename_arg_t *ddra = arg;
1877	dsl_pool_t *dp = dmu_tx_pool(tx);
1878	dsl_dir_t *dd, *newparent;
1879	dsl_valid_rename_arg_t dvra;
1880	dsl_dataset_t *parentds;
1881	objset_t *parentos;
1882	const char *mynewname;
1883	int error;
1884
1885	/* target dir should exist */
1886	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1887	if (error != 0)
1888		return (error);
1889
1890	/* new parent should exist */
1891	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1892	    &newparent, &mynewname);
1893	if (error != 0) {
1894		dsl_dir_rele(dd, FTAG);
1895		return (error);
1896	}
1897
1898	/* can't rename to different pool */
1899	if (dd->dd_pool != newparent->dd_pool) {
1900		dsl_dir_rele(newparent, FTAG);
1901		dsl_dir_rele(dd, FTAG);
1902		return (SET_ERROR(EXDEV));
1903	}
1904
1905	/* new name should not already exist */
1906	if (mynewname == NULL) {
1907		dsl_dir_rele(newparent, FTAG);
1908		dsl_dir_rele(dd, FTAG);
1909		return (SET_ERROR(EEXIST));
1910	}
1911
1912	/* can't rename below anything but filesystems (eg. no ZVOLs) */
1913	error = dsl_dataset_hold_obj(newparent->dd_pool,
1914	    dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1915	if (error != 0) {
1916		dsl_dir_rele(newparent, FTAG);
1917		dsl_dir_rele(dd, FTAG);
1918		return (error);
1919	}
1920	error = dmu_objset_from_ds(parentds, &parentos);
1921	if (error != 0) {
1922		dsl_dataset_rele(parentds, FTAG);
1923		dsl_dir_rele(newparent, FTAG);
1924		dsl_dir_rele(dd, FTAG);
1925		return (error);
1926	}
1927	if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1928		dsl_dataset_rele(parentds, FTAG);
1929		dsl_dir_rele(newparent, FTAG);
1930		dsl_dir_rele(dd, FTAG);
1931		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
1932	}
1933	dsl_dataset_rele(parentds, FTAG);
1934
1935	ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
1936	    <, ZFS_MAX_DATASET_NAME_LEN);
1937	ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
1938	    <, ZFS_MAX_DATASET_NAME_LEN);
1939	dvra.char_delta = strlen(ddra->ddra_newname)
1940	    - strlen(ddra->ddra_oldname);
1941	dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
1942	    - get_dataset_depth(ddra->ddra_oldname);
1943
1944	/* if the name length is growing, validate child name lengths */
1945	if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
1946		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1947		    &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1948		if (error != 0) {
1949			dsl_dir_rele(newparent, FTAG);
1950			dsl_dir_rele(dd, FTAG);
1951			return (error);
1952		}
1953	}
1954
1955	if (dmu_tx_is_syncing(tx)) {
1956		if (spa_feature_is_active(dp->dp_spa,
1957		    SPA_FEATURE_FS_SS_LIMIT)) {
1958			/*
1959			 * Although this is the check function and we don't
1960			 * normally make on-disk changes in check functions,
1961			 * we need to do that here.
1962			 *
1963			 * Ensure this portion of the tree's counts have been
1964			 * initialized in case the new parent has limits set.
1965			 */
1966			dsl_dir_init_fs_ss_count(dd, tx);
1967		}
1968	}
1969
1970	if (newparent != dd->dd_parent) {
1971		/* is there enough space? */
1972		uint64_t myspace =
1973		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
1974		    dsl_dir_phys(dd)->dd_reserved);
1975		objset_t *os = dd->dd_pool->dp_meta_objset;
1976		uint64_t fs_cnt = 0;
1977		uint64_t ss_cnt = 0;
1978
1979		if (dsl_dir_is_zapified(dd)) {
1980			int err;
1981
1982			err = zap_lookup(os, dd->dd_object,
1983			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1984			    &fs_cnt);
1985			if (err != ENOENT && err != 0) {
1986				dsl_dir_rele(newparent, FTAG);
1987				dsl_dir_rele(dd, FTAG);
1988				return (err);
1989			}
1990
1991			/*
1992			 * have to add 1 for the filesystem itself that we're
1993			 * moving
1994			 */
1995			fs_cnt++;
1996
1997			err = zap_lookup(os, dd->dd_object,
1998			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1999			    &ss_cnt);
2000			if (err != ENOENT && err != 0) {
2001				dsl_dir_rele(newparent, FTAG);
2002				dsl_dir_rele(dd, FTAG);
2003				return (err);
2004			}
2005		}
2006
2007		/* check for encryption errors */
2008		error = dsl_dir_rename_crypt_check(dd, newparent);
2009		if (error != 0) {
2010			dsl_dir_rele(newparent, FTAG);
2011			dsl_dir_rele(dd, FTAG);
2012			return (SET_ERROR(EACCES));
2013		}
2014
2015		/* no rename into our descendant */
2016		if (closest_common_ancestor(dd, newparent) == dd) {
2017			dsl_dir_rele(newparent, FTAG);
2018			dsl_dir_rele(dd, FTAG);
2019			return (SET_ERROR(EINVAL));
2020		}
2021
2022		error = dsl_dir_transfer_possible(dd->dd_parent,
2023		    newparent, fs_cnt, ss_cnt, myspace,
2024		    ddra->ddra_cred, ddra->ddra_proc);
2025		if (error != 0) {
2026			dsl_dir_rele(newparent, FTAG);
2027			dsl_dir_rele(dd, FTAG);
2028			return (error);
2029		}
2030	}
2031
2032	dsl_dir_rele(newparent, FTAG);
2033	dsl_dir_rele(dd, FTAG);
2034	return (0);
2035}
2036
2037static void
2038dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2039{
2040	dsl_dir_rename_arg_t *ddra = arg;
2041	dsl_pool_t *dp = dmu_tx_pool(tx);
2042	dsl_dir_t *dd, *newparent;
2043	const char *mynewname;
2044	objset_t *mos = dp->dp_meta_objset;
2045
2046	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2047	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2048	    &mynewname));
2049
2050	/* Log this before we change the name. */
2051	spa_history_log_internal_dd(dd, "rename", tx,
2052	    "-> %s", ddra->ddra_newname);
2053
2054	if (newparent != dd->dd_parent) {
2055		objset_t *os = dd->dd_pool->dp_meta_objset;
2056		uint64_t fs_cnt = 0;
2057		uint64_t ss_cnt = 0;
2058
2059		/*
2060		 * We already made sure the dd counts were initialized in the
2061		 * check function.
2062		 */
2063		if (spa_feature_is_active(dp->dp_spa,
2064		    SPA_FEATURE_FS_SS_LIMIT)) {
2065			VERIFY0(zap_lookup(os, dd->dd_object,
2066			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2067			    &fs_cnt));
2068			/* add 1 for the filesystem itself that we're moving */
2069			fs_cnt++;
2070
2071			VERIFY0(zap_lookup(os, dd->dd_object,
2072			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2073			    &ss_cnt));
2074		}
2075
2076		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2077		    DD_FIELD_FILESYSTEM_COUNT, tx);
2078		dsl_fs_ss_count_adjust(newparent, fs_cnt,
2079		    DD_FIELD_FILESYSTEM_COUNT, tx);
2080
2081		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2082		    DD_FIELD_SNAPSHOT_COUNT, tx);
2083		dsl_fs_ss_count_adjust(newparent, ss_cnt,
2084		    DD_FIELD_SNAPSHOT_COUNT, tx);
2085
2086		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2087		    -dsl_dir_phys(dd)->dd_used_bytes,
2088		    -dsl_dir_phys(dd)->dd_compressed_bytes,
2089		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2090		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2091		    dsl_dir_phys(dd)->dd_used_bytes,
2092		    dsl_dir_phys(dd)->dd_compressed_bytes,
2093		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2094
2095		if (dsl_dir_phys(dd)->dd_reserved >
2096		    dsl_dir_phys(dd)->dd_used_bytes) {
2097			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2098			    dsl_dir_phys(dd)->dd_used_bytes;
2099
2100			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2101			    -unused_rsrv, 0, 0, tx);
2102			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2103			    unused_rsrv, 0, 0, tx);
2104		}
2105	}
2106
2107	dmu_buf_will_dirty(dd->dd_dbuf, tx);
2108
2109	/* remove from old parent zapobj */
2110	VERIFY0(zap_remove(mos,
2111	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2112	    dd->dd_myname, tx));
2113
2114	(void) strlcpy(dd->dd_myname, mynewname,
2115	    sizeof (dd->dd_myname));
2116	dsl_dir_rele(dd->dd_parent, dd);
2117	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2118	VERIFY0(dsl_dir_hold_obj(dp,
2119	    newparent->dd_object, NULL, dd, &dd->dd_parent));
2120
2121	/* add to new parent zapobj */
2122	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2123	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
2124
2125	/* TODO: A rename callback to avoid these layering violations. */
2126	zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2127	zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2128	    ddra->ddra_newname, B_TRUE);
2129
2130	dsl_prop_notify_all(dd);
2131
2132	dsl_dir_rele(newparent, FTAG);
2133	dsl_dir_rele(dd, FTAG);
2134}
2135
2136int
2137dsl_dir_rename(const char *oldname, const char *newname)
2138{
2139	dsl_dir_rename_arg_t ddra;
2140
2141	ddra.ddra_oldname = oldname;
2142	ddra.ddra_newname = newname;
2143	ddra.ddra_cred = CRED();
2144	ddra.ddra_proc = curproc;
2145
2146	return (dsl_sync_task(oldname,
2147	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2148	    3, ZFS_SPACE_CHECK_RESERVED));
2149}
2150
2151int
2152dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2153    uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2154    cred_t *cr, proc_t *proc)
2155{
2156	dsl_dir_t *ancestor;
2157	int64_t adelta;
2158	uint64_t avail;
2159	int err;
2160
2161	ancestor = closest_common_ancestor(sdd, tdd);
2162	adelta = would_change(sdd, -space, ancestor);
2163	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2164	if (avail < space)
2165		return (SET_ERROR(ENOSPC));
2166
2167	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2168	    ancestor, cr, proc);
2169	if (err != 0)
2170		return (err);
2171	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2172	    ancestor, cr, proc);
2173	if (err != 0)
2174		return (err);
2175
2176	return (0);
2177}
2178
2179inode_timespec_t
2180dsl_dir_snap_cmtime(dsl_dir_t *dd)
2181{
2182	inode_timespec_t t;
2183
2184	mutex_enter(&dd->dd_lock);
2185	t = dd->dd_snap_cmtime;
2186	mutex_exit(&dd->dd_lock);
2187
2188	return (t);
2189}
2190
2191void
2192dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
2193{
2194	inode_timespec_t t;
2195
2196	gethrestime(&t);
2197	mutex_enter(&dd->dd_lock);
2198	dd->dd_snap_cmtime = t;
2199	mutex_exit(&dd->dd_lock);
2200}
2201
2202void
2203dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2204{
2205	objset_t *mos = dd->dd_pool->dp_meta_objset;
2206	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2207}
2208
2209boolean_t
2210dsl_dir_is_zapified(dsl_dir_t *dd)
2211{
2212	dmu_object_info_t doi;
2213
2214	dmu_object_info_from_db(dd->dd_dbuf, &doi);
2215	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2216}
2217
2218void
2219dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2220{
2221	objset_t *mos = dd->dd_pool->dp_meta_objset;
2222	ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2223	    SPA_FEATURE_LIVELIST));
2224	dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2225	bplist_create(&dd->dd_pending_allocs);
2226	bplist_create(&dd->dd_pending_frees);
2227}
2228
2229void
2230dsl_dir_livelist_close(dsl_dir_t *dd)
2231{
2232	dsl_deadlist_close(&dd->dd_livelist);
2233	bplist_destroy(&dd->dd_pending_allocs);
2234	bplist_destroy(&dd->dd_pending_frees);
2235}
2236
2237void
2238dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2239{
2240	uint64_t obj;
2241	dsl_pool_t *dp = dmu_tx_pool(tx);
2242	spa_t *spa = dp->dp_spa;
2243	livelist_condense_entry_t to_condense = spa->spa_to_condense;
2244
2245	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2246		return;
2247
2248	/*
2249	 * If the livelist being removed is set to be condensed, stop the
2250	 * condense zthr and indicate the cancellation in the spa_to_condense
2251	 * struct in case the condense no-wait synctask has already started
2252	 */
2253	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2254	if (ll_condense_thread != NULL &&
2255	    (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2256		/*
2257		 * We use zthr_wait_cycle_done instead of zthr_cancel
2258		 * because we don't want to destroy the zthr, just have
2259		 * it skip its current task.
2260		 */
2261		spa->spa_to_condense.cancelled = B_TRUE;
2262		zthr_wait_cycle_done(ll_condense_thread);
2263		/*
2264		 * If we've returned from zthr_wait_cycle_done without
2265		 * clearing the to_condense data structure it's either
2266		 * because the no-wait synctask has started (which is
2267		 * indicated by 'syncing' field of to_condense) and we
2268		 * can expect it to clear to_condense on its own.
2269		 * Otherwise, we returned before the zthr ran. The
2270		 * checkfunc will now fail as cancelled == B_TRUE so we
2271		 * can safely NULL out ds, allowing a different dir's
2272		 * livelist to be condensed.
2273		 *
2274		 * We can be sure that the to_condense struct will not
2275		 * be repopulated at this stage because both this
2276		 * function and dsl_livelist_try_condense execute in
2277		 * syncing context.
2278		 */
2279		if ((spa->spa_to_condense.ds != NULL) &&
2280		    !spa->spa_to_condense.syncing) {
2281			dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2282			    spa);
2283			spa->spa_to_condense.ds = NULL;
2284		}
2285	}
2286
2287	dsl_dir_livelist_close(dd);
2288	VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2289	    DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2290	VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2291	    DD_FIELD_LIVELIST, tx));
2292	if (total) {
2293		dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2294		spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2295	}
2296}
2297
2298static int
2299dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2300    zfs_wait_activity_t activity, boolean_t *in_progress)
2301{
2302	int error = 0;
2303
2304	ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2305
2306	switch (activity) {
2307	case ZFS_WAIT_DELETEQ: {
2308#ifdef _KERNEL
2309		objset_t *os;
2310		error = dmu_objset_from_ds(ds, &os);
2311		if (error != 0)
2312			break;
2313
2314		mutex_enter(&os->os_user_ptr_lock);
2315		void *user = dmu_objset_get_user(os);
2316		mutex_exit(&os->os_user_ptr_lock);
2317		if (dmu_objset_type(os) != DMU_OST_ZFS ||
2318		    user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2319			*in_progress = B_FALSE;
2320			return (0);
2321		}
2322
2323		uint64_t readonly = B_FALSE;
2324		error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2325		    NULL);
2326
2327		if (error != 0)
2328			break;
2329
2330		if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2331			*in_progress = B_FALSE;
2332			return (0);
2333		}
2334
2335		uint64_t count, unlinked_obj;
2336		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2337		    &unlinked_obj);
2338		if (error != 0) {
2339			dsl_dataset_rele(ds, FTAG);
2340			break;
2341		}
2342		error = zap_count(os, unlinked_obj, &count);
2343
2344		if (error == 0)
2345			*in_progress = (count != 0);
2346		break;
2347#else
2348		/*
2349		 * The delete queue is ZPL specific, and libzpool doesn't have
2350		 * it. It doesn't make sense to wait for it.
2351		 */
2352		*in_progress = B_FALSE;
2353		break;
2354#endif
2355	}
2356	default:
2357		panic("unrecognized value for activity %d", activity);
2358	}
2359
2360	return (error);
2361}
2362
2363int
2364dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2365    boolean_t *waited)
2366{
2367	int error = 0;
2368	boolean_t in_progress;
2369	dsl_pool_t *dp = dd->dd_pool;
2370	for (;;) {
2371		dsl_pool_config_enter(dp, FTAG);
2372		error = dsl_dir_activity_in_progress(dd, ds, activity,
2373		    &in_progress);
2374		dsl_pool_config_exit(dp, FTAG);
2375		if (error != 0 || !in_progress)
2376			break;
2377
2378		*waited = B_TRUE;
2379
2380		if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2381		    0 || dd->dd_activity_cancelled) {
2382			error = SET_ERROR(EINTR);
2383			break;
2384		}
2385	}
2386	return (error);
2387}
2388
2389void
2390dsl_dir_cancel_waiters(dsl_dir_t *dd)
2391{
2392	mutex_enter(&dd->dd_activity_lock);
2393	dd->dd_activity_cancelled = B_TRUE;
2394	cv_broadcast(&dd->dd_activity_cv);
2395	while (dd->dd_activity_waiters > 0)
2396		cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2397	mutex_exit(&dd->dd_activity_lock);
2398}
2399
2400#if defined(_KERNEL)
2401EXPORT_SYMBOL(dsl_dir_set_quota);
2402EXPORT_SYMBOL(dsl_dir_set_reservation);
2403#endif
2404