1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 */
32
33#include <sys/dmu.h>
34#include <sys/dmu_impl.h>
35#include <sys/dmu_tx.h>
36#include <sys/dbuf.h>
37#include <sys/dnode.h>
38#include <sys/zfs_context.h>
39#include <sys/dmu_objset.h>
40#include <sys/dmu_traverse.h>
41#include <sys/dsl_dataset.h>
42#include <sys/dsl_dir.h>
43#include <sys/dsl_pool.h>
44#include <sys/dsl_synctask.h>
45#include <sys/dsl_prop.h>
46#include <sys/dmu_zfetch.h>
47#include <sys/zfs_ioctl.h>
48#include <sys/zap.h>
49#include <sys/zio_checksum.h>
50#include <sys/zio_compress.h>
51#include <sys/sa.h>
52#include <sys/zfeature.h>
53#include <sys/abd.h>
54#include <sys/trace_zfs.h>
55#include <sys/zfs_racct.h>
56#include <sys/zfs_rlock.h>
57#ifdef _KERNEL
58#include <sys/vmsystm.h>
59#include <sys/zfs_znode.h>
60#endif
61
62/*
63 * Enable/disable nopwrite feature.
64 */
65int zfs_nopwrite_enabled = 1;
66
67/*
68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69 * one TXG. After this threshold is crossed, additional dirty blocks from frees
70 * will wait until the next TXG.
71 * A value of zero will disable this throttle.
72 */
73unsigned long zfs_per_txg_dirty_frees_percent = 5;
74
75/*
76 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
77 */
78int zfs_dmu_offset_next_sync = 0;
79
80/*
81 * Limit the amount we can prefetch with one call to this amount.  This
82 * helps to limit the amount of memory that can be used by prefetching.
83 * Larger objects should be prefetched a bit at a time.
84 */
85int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
86
87const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
88	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
89	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
90	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
91	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
92	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
93	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
94	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
95	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
96	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
97	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
98	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
99	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
100	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
101	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
102	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
103	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
104	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
105	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
106	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
107	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
108	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
109	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
110	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
111	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
112	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
113	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
114	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
115	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
116	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
117	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
118	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
119	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
120	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
121	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
122	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
123	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
124	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
125	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
126	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
127	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
128	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
129	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
130	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
131	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
132	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
133	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
134	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
135	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
136	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
137	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
138	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
139	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
140	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
141	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
142};
143
144const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
145	{	byteswap_uint8_array,	"uint8"		},
146	{	byteswap_uint16_array,	"uint16"	},
147	{	byteswap_uint32_array,	"uint32"	},
148	{	byteswap_uint64_array,	"uint64"	},
149	{	zap_byteswap,		"zap"		},
150	{	dnode_buf_byteswap,	"dnode"		},
151	{	dmu_objset_byteswap,	"objset"	},
152	{	zfs_znode_byteswap,	"znode"		},
153	{	zfs_oldacl_byteswap,	"oldacl"	},
154	{	zfs_acl_byteswap,	"acl"		}
155};
156
157static int
158dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
159    void *tag, dmu_buf_t **dbp)
160{
161	uint64_t blkid;
162	dmu_buf_impl_t *db;
163
164	rw_enter(&dn->dn_struct_rwlock, RW_READER);
165	blkid = dbuf_whichblock(dn, 0, offset);
166	db = dbuf_hold(dn, blkid, tag);
167	rw_exit(&dn->dn_struct_rwlock);
168
169	if (db == NULL) {
170		*dbp = NULL;
171		return (SET_ERROR(EIO));
172	}
173
174	*dbp = &db->db;
175	return (0);
176}
177int
178dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
179    void *tag, dmu_buf_t **dbp)
180{
181	dnode_t *dn;
182	uint64_t blkid;
183	dmu_buf_impl_t *db;
184	int err;
185
186	err = dnode_hold(os, object, FTAG, &dn);
187	if (err)
188		return (err);
189	rw_enter(&dn->dn_struct_rwlock, RW_READER);
190	blkid = dbuf_whichblock(dn, 0, offset);
191	db = dbuf_hold(dn, blkid, tag);
192	rw_exit(&dn->dn_struct_rwlock);
193	dnode_rele(dn, FTAG);
194
195	if (db == NULL) {
196		*dbp = NULL;
197		return (SET_ERROR(EIO));
198	}
199
200	*dbp = &db->db;
201	return (err);
202}
203
204int
205dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
206    void *tag, dmu_buf_t **dbp, int flags)
207{
208	int err;
209	int db_flags = DB_RF_CANFAIL;
210
211	if (flags & DMU_READ_NO_PREFETCH)
212		db_flags |= DB_RF_NOPREFETCH;
213	if (flags & DMU_READ_NO_DECRYPT)
214		db_flags |= DB_RF_NO_DECRYPT;
215
216	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
217	if (err == 0) {
218		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
219		err = dbuf_read(db, NULL, db_flags);
220		if (err != 0) {
221			dbuf_rele(db, tag);
222			*dbp = NULL;
223		}
224	}
225
226	return (err);
227}
228
229int
230dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
231    void *tag, dmu_buf_t **dbp, int flags)
232{
233	int err;
234	int db_flags = DB_RF_CANFAIL;
235
236	if (flags & DMU_READ_NO_PREFETCH)
237		db_flags |= DB_RF_NOPREFETCH;
238	if (flags & DMU_READ_NO_DECRYPT)
239		db_flags |= DB_RF_NO_DECRYPT;
240
241	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
242	if (err == 0) {
243		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
244		err = dbuf_read(db, NULL, db_flags);
245		if (err != 0) {
246			dbuf_rele(db, tag);
247			*dbp = NULL;
248		}
249	}
250
251	return (err);
252}
253
254int
255dmu_bonus_max(void)
256{
257	return (DN_OLD_MAX_BONUSLEN);
258}
259
260int
261dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
262{
263	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
264	dnode_t *dn;
265	int error;
266
267	DB_DNODE_ENTER(db);
268	dn = DB_DNODE(db);
269
270	if (dn->dn_bonus != db) {
271		error = SET_ERROR(EINVAL);
272	} else if (newsize < 0 || newsize > db_fake->db_size) {
273		error = SET_ERROR(EINVAL);
274	} else {
275		dnode_setbonuslen(dn, newsize, tx);
276		error = 0;
277	}
278
279	DB_DNODE_EXIT(db);
280	return (error);
281}
282
283int
284dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
285{
286	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
287	dnode_t *dn;
288	int error;
289
290	DB_DNODE_ENTER(db);
291	dn = DB_DNODE(db);
292
293	if (!DMU_OT_IS_VALID(type)) {
294		error = SET_ERROR(EINVAL);
295	} else if (dn->dn_bonus != db) {
296		error = SET_ERROR(EINVAL);
297	} else {
298		dnode_setbonus_type(dn, type, tx);
299		error = 0;
300	}
301
302	DB_DNODE_EXIT(db);
303	return (error);
304}
305
306dmu_object_type_t
307dmu_get_bonustype(dmu_buf_t *db_fake)
308{
309	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
310	dnode_t *dn;
311	dmu_object_type_t type;
312
313	DB_DNODE_ENTER(db);
314	dn = DB_DNODE(db);
315	type = dn->dn_bonustype;
316	DB_DNODE_EXIT(db);
317
318	return (type);
319}
320
321int
322dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
323{
324	dnode_t *dn;
325	int error;
326
327	error = dnode_hold(os, object, FTAG, &dn);
328	dbuf_rm_spill(dn, tx);
329	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
330	dnode_rm_spill(dn, tx);
331	rw_exit(&dn->dn_struct_rwlock);
332	dnode_rele(dn, FTAG);
333	return (error);
334}
335
336/*
337 * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
338 * has not yet been allocated a new bonus dbuf a will be allocated.
339 * Returns ENOENT, EIO, or 0.
340 */
341int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
342    uint32_t flags)
343{
344	dmu_buf_impl_t *db;
345	int error;
346	uint32_t db_flags = DB_RF_MUST_SUCCEED;
347
348	if (flags & DMU_READ_NO_PREFETCH)
349		db_flags |= DB_RF_NOPREFETCH;
350	if (flags & DMU_READ_NO_DECRYPT)
351		db_flags |= DB_RF_NO_DECRYPT;
352
353	rw_enter(&dn->dn_struct_rwlock, RW_READER);
354	if (dn->dn_bonus == NULL) {
355		rw_exit(&dn->dn_struct_rwlock);
356		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357		if (dn->dn_bonus == NULL)
358			dbuf_create_bonus(dn);
359	}
360	db = dn->dn_bonus;
361
362	/* as long as the bonus buf is held, the dnode will be held */
363	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
364		VERIFY(dnode_add_ref(dn, db));
365		atomic_inc_32(&dn->dn_dbufs_count);
366	}
367
368	/*
369	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371	 * a dnode hold for every dbuf.
372	 */
373	rw_exit(&dn->dn_struct_rwlock);
374
375	error = dbuf_read(db, NULL, db_flags);
376	if (error) {
377		dnode_evict_bonus(dn);
378		dbuf_rele(db, tag);
379		*dbp = NULL;
380		return (error);
381	}
382
383	*dbp = &db->db;
384	return (0);
385}
386
387int
388dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
389{
390	dnode_t *dn;
391	int error;
392
393	error = dnode_hold(os, object, FTAG, &dn);
394	if (error)
395		return (error);
396
397	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
398	dnode_rele(dn, FTAG);
399
400	return (error);
401}
402
403/*
404 * returns ENOENT, EIO, or 0.
405 *
406 * This interface will allocate a blank spill dbuf when a spill blk
407 * doesn't already exist on the dnode.
408 *
409 * if you only want to find an already existing spill db, then
410 * dmu_spill_hold_existing() should be used.
411 */
412int
413dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
414{
415	dmu_buf_impl_t *db = NULL;
416	int err;
417
418	if ((flags & DB_RF_HAVESTRUCT) == 0)
419		rw_enter(&dn->dn_struct_rwlock, RW_READER);
420
421	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
422
423	if ((flags & DB_RF_HAVESTRUCT) == 0)
424		rw_exit(&dn->dn_struct_rwlock);
425
426	if (db == NULL) {
427		*dbp = NULL;
428		return (SET_ERROR(EIO));
429	}
430	err = dbuf_read(db, NULL, flags);
431	if (err == 0)
432		*dbp = &db->db;
433	else {
434		dbuf_rele(db, tag);
435		*dbp = NULL;
436	}
437	return (err);
438}
439
440int
441dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
442{
443	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
444	dnode_t *dn;
445	int err;
446
447	DB_DNODE_ENTER(db);
448	dn = DB_DNODE(db);
449
450	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
451		err = SET_ERROR(EINVAL);
452	} else {
453		rw_enter(&dn->dn_struct_rwlock, RW_READER);
454
455		if (!dn->dn_have_spill) {
456			err = SET_ERROR(ENOENT);
457		} else {
458			err = dmu_spill_hold_by_dnode(dn,
459			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
460		}
461
462		rw_exit(&dn->dn_struct_rwlock);
463	}
464
465	DB_DNODE_EXIT(db);
466	return (err);
467}
468
469int
470dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
471    dmu_buf_t **dbp)
472{
473	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
474	dnode_t *dn;
475	int err;
476	uint32_t db_flags = DB_RF_CANFAIL;
477
478	if (flags & DMU_READ_NO_DECRYPT)
479		db_flags |= DB_RF_NO_DECRYPT;
480
481	DB_DNODE_ENTER(db);
482	dn = DB_DNODE(db);
483	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
484	DB_DNODE_EXIT(db);
485
486	return (err);
487}
488
489/*
490 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
491 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
492 * and can induce severe lock contention when writing to several files
493 * whose dnodes are in the same block.
494 */
495int
496dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
497    boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
498{
499	dmu_buf_t **dbp;
500	zstream_t *zs = NULL;
501	uint64_t blkid, nblks, i;
502	uint32_t dbuf_flags;
503	int err;
504	zio_t *zio = NULL;
505	boolean_t missed = B_FALSE;
506
507	ASSERT(length <= DMU_MAX_ACCESS);
508
509	/*
510	 * Note: We directly notify the prefetch code of this read, so that
511	 * we can tell it about the multi-block read.  dbuf_read() only knows
512	 * about the one block it is accessing.
513	 */
514	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
515	    DB_RF_NOPREFETCH;
516
517	rw_enter(&dn->dn_struct_rwlock, RW_READER);
518	if (dn->dn_datablkshift) {
519		int blkshift = dn->dn_datablkshift;
520		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
521		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
522	} else {
523		if (offset + length > dn->dn_datablksz) {
524			zfs_panic_recover("zfs: accessing past end of object "
525			    "%llx/%llx (size=%u access=%llu+%llu)",
526			    (longlong_t)dn->dn_objset->
527			    os_dsl_dataset->ds_object,
528			    (longlong_t)dn->dn_object, dn->dn_datablksz,
529			    (longlong_t)offset, (longlong_t)length);
530			rw_exit(&dn->dn_struct_rwlock);
531			return (SET_ERROR(EIO));
532		}
533		nblks = 1;
534	}
535	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
536
537	if (read)
538		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
539		    ZIO_FLAG_CANFAIL);
540	blkid = dbuf_whichblock(dn, 0, offset);
541	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
542	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
543		/*
544		 * Prepare the zfetch before initiating the demand reads, so
545		 * that if multiple threads block on same indirect block, we
546		 * base predictions on the original less racy request order.
547		 */
548		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
549		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
550	}
551	for (i = 0; i < nblks; i++) {
552		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
553		if (db == NULL) {
554			if (zs)
555				dmu_zfetch_run(zs, missed, B_TRUE);
556			rw_exit(&dn->dn_struct_rwlock);
557			dmu_buf_rele_array(dbp, nblks, tag);
558			if (read)
559				zio_nowait(zio);
560			return (SET_ERROR(EIO));
561		}
562
563		/*
564		 * Initiate async demand data read.
565		 * We check the db_state after calling dbuf_read() because
566		 * (1) dbuf_read() may change the state to CACHED due to a
567		 * hit in the ARC, and (2) on a cache miss, a child will
568		 * have been added to "zio" but not yet completed, so the
569		 * state will not yet be CACHED.
570		 */
571		if (read) {
572			(void) dbuf_read(db, zio, dbuf_flags);
573			if (db->db_state != DB_CACHED)
574				missed = B_TRUE;
575		}
576		dbp[i] = &db->db;
577	}
578
579	if (!read)
580		zfs_racct_write(length, nblks);
581
582	if (zs)
583		dmu_zfetch_run(zs, missed, B_TRUE);
584	rw_exit(&dn->dn_struct_rwlock);
585
586	if (read) {
587		/* wait for async read i/o */
588		err = zio_wait(zio);
589		if (err) {
590			dmu_buf_rele_array(dbp, nblks, tag);
591			return (err);
592		}
593
594		/* wait for other io to complete */
595		for (i = 0; i < nblks; i++) {
596			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
597			mutex_enter(&db->db_mtx);
598			while (db->db_state == DB_READ ||
599			    db->db_state == DB_FILL)
600				cv_wait(&db->db_changed, &db->db_mtx);
601			if (db->db_state == DB_UNCACHED)
602				err = SET_ERROR(EIO);
603			mutex_exit(&db->db_mtx);
604			if (err) {
605				dmu_buf_rele_array(dbp, nblks, tag);
606				return (err);
607			}
608		}
609	}
610
611	*numbufsp = nblks;
612	*dbpp = dbp;
613	return (0);
614}
615
616static int
617dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
618    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
619{
620	dnode_t *dn;
621	int err;
622
623	err = dnode_hold(os, object, FTAG, &dn);
624	if (err)
625		return (err);
626
627	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
628	    numbufsp, dbpp, DMU_READ_PREFETCH);
629
630	dnode_rele(dn, FTAG);
631
632	return (err);
633}
634
635int
636dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
637    uint64_t length, boolean_t read, void *tag, int *numbufsp,
638    dmu_buf_t ***dbpp)
639{
640	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
641	dnode_t *dn;
642	int err;
643
644	DB_DNODE_ENTER(db);
645	dn = DB_DNODE(db);
646	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
647	    numbufsp, dbpp, DMU_READ_PREFETCH);
648	DB_DNODE_EXIT(db);
649
650	return (err);
651}
652
653void
654dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
655{
656	int i;
657	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
658
659	if (numbufs == 0)
660		return;
661
662	for (i = 0; i < numbufs; i++) {
663		if (dbp[i])
664			dbuf_rele(dbp[i], tag);
665	}
666
667	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
668}
669
670/*
671 * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
672 * indirect blocks prefetched will be those that point to the blocks containing
673 * the data starting at offset, and continuing to offset + len.
674 *
675 * Note that if the indirect blocks above the blocks being prefetched are not
676 * in cache, they will be asynchronously read in.
677 */
678void
679dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
680    uint64_t len, zio_priority_t pri)
681{
682	dnode_t *dn;
683	uint64_t blkid;
684	int nblks, err;
685
686	if (len == 0) {  /* they're interested in the bonus buffer */
687		dn = DMU_META_DNODE(os);
688
689		if (object == 0 || object >= DN_MAX_OBJECT)
690			return;
691
692		rw_enter(&dn->dn_struct_rwlock, RW_READER);
693		blkid = dbuf_whichblock(dn, level,
694		    object * sizeof (dnode_phys_t));
695		dbuf_prefetch(dn, level, blkid, pri, 0);
696		rw_exit(&dn->dn_struct_rwlock);
697		return;
698	}
699
700	/*
701	 * See comment before the definition of dmu_prefetch_max.
702	 */
703	len = MIN(len, dmu_prefetch_max);
704
705	/*
706	 * XXX - Note, if the dnode for the requested object is not
707	 * already cached, we will do a *synchronous* read in the
708	 * dnode_hold() call.  The same is true for any indirects.
709	 */
710	err = dnode_hold(os, object, FTAG, &dn);
711	if (err != 0)
712		return;
713
714	/*
715	 * offset + len - 1 is the last byte we want to prefetch for, and offset
716	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
717	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
718	 * offset)  is the first.  Then the number we need to prefetch is the
719	 * last - first + 1.
720	 */
721	rw_enter(&dn->dn_struct_rwlock, RW_READER);
722	if (level > 0 || dn->dn_datablkshift != 0) {
723		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
724		    dbuf_whichblock(dn, level, offset) + 1;
725	} else {
726		nblks = (offset < dn->dn_datablksz);
727	}
728
729	if (nblks != 0) {
730		blkid = dbuf_whichblock(dn, level, offset);
731		for (int i = 0; i < nblks; i++)
732			dbuf_prefetch(dn, level, blkid + i, pri, 0);
733	}
734	rw_exit(&dn->dn_struct_rwlock);
735
736	dnode_rele(dn, FTAG);
737}
738
739/*
740 * Get the next "chunk" of file data to free.  We traverse the file from
741 * the end so that the file gets shorter over time (if we crashes in the
742 * middle, this will leave us in a better state).  We find allocated file
743 * data by simply searching the allocated level 1 indirects.
744 *
745 * On input, *start should be the first offset that does not need to be
746 * freed (e.g. "offset + length").  On return, *start will be the first
747 * offset that should be freed and l1blks is set to the number of level 1
748 * indirect blocks found within the chunk.
749 */
750static int
751get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
752{
753	uint64_t blks;
754	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
755	/* bytes of data covered by a level-1 indirect block */
756	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
757	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
758
759	ASSERT3U(minimum, <=, *start);
760
761	/*
762	 * Check if we can free the entire range assuming that all of the
763	 * L1 blocks in this range have data. If we can, we use this
764	 * worst case value as an estimate so we can avoid having to look
765	 * at the object's actual data.
766	 */
767	uint64_t total_l1blks =
768	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
769	    iblkrange;
770	if (total_l1blks <= maxblks) {
771		*l1blks = total_l1blks;
772		*start = minimum;
773		return (0);
774	}
775	ASSERT(ISP2(iblkrange));
776
777	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
778		int err;
779
780		/*
781		 * dnode_next_offset(BACKWARDS) will find an allocated L1
782		 * indirect block at or before the input offset.  We must
783		 * decrement *start so that it is at the end of the region
784		 * to search.
785		 */
786		(*start)--;
787
788		err = dnode_next_offset(dn,
789		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
790
791		/* if there are no indirect blocks before start, we are done */
792		if (err == ESRCH) {
793			*start = minimum;
794			break;
795		} else if (err != 0) {
796			*l1blks = blks;
797			return (err);
798		}
799
800		/* set start to the beginning of this L1 indirect */
801		*start = P2ALIGN(*start, iblkrange);
802	}
803	if (*start < minimum)
804		*start = minimum;
805	*l1blks = blks;
806
807	return (0);
808}
809
810/*
811 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
812 * otherwise return false.
813 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
814 */
815/*ARGSUSED*/
816static boolean_t
817dmu_objset_zfs_unmounting(objset_t *os)
818{
819#ifdef _KERNEL
820	if (dmu_objset_type(os) == DMU_OST_ZFS)
821		return (zfs_get_vfs_flag_unmounted(os));
822#endif
823	return (B_FALSE);
824}
825
826static int
827dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
828    uint64_t length)
829{
830	uint64_t object_size;
831	int err;
832	uint64_t dirty_frees_threshold;
833	dsl_pool_t *dp = dmu_objset_pool(os);
834
835	if (dn == NULL)
836		return (SET_ERROR(EINVAL));
837
838	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
839	if (offset >= object_size)
840		return (0);
841
842	if (zfs_per_txg_dirty_frees_percent <= 100)
843		dirty_frees_threshold =
844		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
845	else
846		dirty_frees_threshold = zfs_dirty_data_max / 20;
847
848	if (length == DMU_OBJECT_END || offset + length > object_size)
849		length = object_size - offset;
850
851	while (length != 0) {
852		uint64_t chunk_end, chunk_begin, chunk_len;
853		uint64_t l1blks;
854		dmu_tx_t *tx;
855
856		if (dmu_objset_zfs_unmounting(dn->dn_objset))
857			return (SET_ERROR(EINTR));
858
859		chunk_end = chunk_begin = offset + length;
860
861		/* move chunk_begin backwards to the beginning of this chunk */
862		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
863		if (err)
864			return (err);
865		ASSERT3U(chunk_begin, >=, offset);
866		ASSERT3U(chunk_begin, <=, chunk_end);
867
868		chunk_len = chunk_end - chunk_begin;
869
870		tx = dmu_tx_create(os);
871		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
872
873		/*
874		 * Mark this transaction as typically resulting in a net
875		 * reduction in space used.
876		 */
877		dmu_tx_mark_netfree(tx);
878		err = dmu_tx_assign(tx, TXG_WAIT);
879		if (err) {
880			dmu_tx_abort(tx);
881			return (err);
882		}
883
884		uint64_t txg = dmu_tx_get_txg(tx);
885
886		mutex_enter(&dp->dp_lock);
887		uint64_t long_free_dirty =
888		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
889		mutex_exit(&dp->dp_lock);
890
891		/*
892		 * To avoid filling up a TXG with just frees, wait for
893		 * the next TXG to open before freeing more chunks if
894		 * we have reached the threshold of frees.
895		 */
896		if (dirty_frees_threshold != 0 &&
897		    long_free_dirty >= dirty_frees_threshold) {
898			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
899			dmu_tx_commit(tx);
900			txg_wait_open(dp, 0, B_TRUE);
901			continue;
902		}
903
904		/*
905		 * In order to prevent unnecessary write throttling, for each
906		 * TXG, we track the cumulative size of L1 blocks being dirtied
907		 * in dnode_free_range() below. We compare this number to a
908		 * tunable threshold, past which we prevent new L1 dirty freeing
909		 * blocks from being added into the open TXG. See
910		 * dmu_free_long_range_impl() for details. The threshold
911		 * prevents write throttle activation due to dirty freeing L1
912		 * blocks taking up a large percentage of zfs_dirty_data_max.
913		 */
914		mutex_enter(&dp->dp_lock);
915		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
916		    l1blks << dn->dn_indblkshift;
917		mutex_exit(&dp->dp_lock);
918		DTRACE_PROBE3(free__long__range,
919		    uint64_t, long_free_dirty, uint64_t, chunk_len,
920		    uint64_t, txg);
921		dnode_free_range(dn, chunk_begin, chunk_len, tx);
922
923		dmu_tx_commit(tx);
924
925		length -= chunk_len;
926	}
927	return (0);
928}
929
930int
931dmu_free_long_range(objset_t *os, uint64_t object,
932    uint64_t offset, uint64_t length)
933{
934	dnode_t *dn;
935	int err;
936
937	err = dnode_hold(os, object, FTAG, &dn);
938	if (err != 0)
939		return (err);
940	err = dmu_free_long_range_impl(os, dn, offset, length);
941
942	/*
943	 * It is important to zero out the maxblkid when freeing the entire
944	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
945	 * will take the fast path, and (b) dnode_reallocate() can verify
946	 * that the entire file has been freed.
947	 */
948	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
949		dn->dn_maxblkid = 0;
950
951	dnode_rele(dn, FTAG);
952	return (err);
953}
954
955int
956dmu_free_long_object(objset_t *os, uint64_t object)
957{
958	dmu_tx_t *tx;
959	int err;
960
961	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
962	if (err != 0)
963		return (err);
964
965	tx = dmu_tx_create(os);
966	dmu_tx_hold_bonus(tx, object);
967	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
968	dmu_tx_mark_netfree(tx);
969	err = dmu_tx_assign(tx, TXG_WAIT);
970	if (err == 0) {
971		if (err == 0)
972			err = dmu_object_free(os, object, tx);
973
974		dmu_tx_commit(tx);
975	} else {
976		dmu_tx_abort(tx);
977	}
978
979	return (err);
980}
981
982int
983dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
984    uint64_t size, dmu_tx_t *tx)
985{
986	dnode_t *dn;
987	int err = dnode_hold(os, object, FTAG, &dn);
988	if (err)
989		return (err);
990	ASSERT(offset < UINT64_MAX);
991	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
992	dnode_free_range(dn, offset, size, tx);
993	dnode_rele(dn, FTAG);
994	return (0);
995}
996
997static int
998dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
999    void *buf, uint32_t flags)
1000{
1001	dmu_buf_t **dbp;
1002	int numbufs, err = 0;
1003
1004	/*
1005	 * Deal with odd block sizes, where there can't be data past the first
1006	 * block.  If we ever do the tail block optimization, we will need to
1007	 * handle that here as well.
1008	 */
1009	if (dn->dn_maxblkid == 0) {
1010		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1011		    MIN(size, dn->dn_datablksz - offset);
1012		bzero((char *)buf + newsz, size - newsz);
1013		size = newsz;
1014	}
1015
1016	while (size > 0) {
1017		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1018		int i;
1019
1020		/*
1021		 * NB: we could do this block-at-a-time, but it's nice
1022		 * to be reading in parallel.
1023		 */
1024		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1025		    TRUE, FTAG, &numbufs, &dbp, flags);
1026		if (err)
1027			break;
1028
1029		for (i = 0; i < numbufs; i++) {
1030			uint64_t tocpy;
1031			int64_t bufoff;
1032			dmu_buf_t *db = dbp[i];
1033
1034			ASSERT(size > 0);
1035
1036			bufoff = offset - db->db_offset;
1037			tocpy = MIN(db->db_size - bufoff, size);
1038
1039			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1040
1041			offset += tocpy;
1042			size -= tocpy;
1043			buf = (char *)buf + tocpy;
1044		}
1045		dmu_buf_rele_array(dbp, numbufs, FTAG);
1046	}
1047	return (err);
1048}
1049
1050int
1051dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1052    void *buf, uint32_t flags)
1053{
1054	dnode_t *dn;
1055	int err;
1056
1057	err = dnode_hold(os, object, FTAG, &dn);
1058	if (err != 0)
1059		return (err);
1060
1061	err = dmu_read_impl(dn, offset, size, buf, flags);
1062	dnode_rele(dn, FTAG);
1063	return (err);
1064}
1065
1066int
1067dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1068    uint32_t flags)
1069{
1070	return (dmu_read_impl(dn, offset, size, buf, flags));
1071}
1072
1073static void
1074dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1075    const void *buf, dmu_tx_t *tx)
1076{
1077	int i;
1078
1079	for (i = 0; i < numbufs; i++) {
1080		uint64_t tocpy;
1081		int64_t bufoff;
1082		dmu_buf_t *db = dbp[i];
1083
1084		ASSERT(size > 0);
1085
1086		bufoff = offset - db->db_offset;
1087		tocpy = MIN(db->db_size - bufoff, size);
1088
1089		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1090
1091		if (tocpy == db->db_size)
1092			dmu_buf_will_fill(db, tx);
1093		else
1094			dmu_buf_will_dirty(db, tx);
1095
1096		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1097
1098		if (tocpy == db->db_size)
1099			dmu_buf_fill_done(db, tx);
1100
1101		offset += tocpy;
1102		size -= tocpy;
1103		buf = (char *)buf + tocpy;
1104	}
1105}
1106
1107void
1108dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1109    const void *buf, dmu_tx_t *tx)
1110{
1111	dmu_buf_t **dbp;
1112	int numbufs;
1113
1114	if (size == 0)
1115		return;
1116
1117	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1118	    FALSE, FTAG, &numbufs, &dbp));
1119	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1120	dmu_buf_rele_array(dbp, numbufs, FTAG);
1121}
1122
1123/*
1124 * Note: Lustre is an external consumer of this interface.
1125 */
1126void
1127dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1128    const void *buf, dmu_tx_t *tx)
1129{
1130	dmu_buf_t **dbp;
1131	int numbufs;
1132
1133	if (size == 0)
1134		return;
1135
1136	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1137	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1138	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1139	dmu_buf_rele_array(dbp, numbufs, FTAG);
1140}
1141
1142void
1143dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1144    dmu_tx_t *tx)
1145{
1146	dmu_buf_t **dbp;
1147	int numbufs, i;
1148
1149	if (size == 0)
1150		return;
1151
1152	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1153	    FALSE, FTAG, &numbufs, &dbp));
1154
1155	for (i = 0; i < numbufs; i++) {
1156		dmu_buf_t *db = dbp[i];
1157
1158		dmu_buf_will_not_fill(db, tx);
1159	}
1160	dmu_buf_rele_array(dbp, numbufs, FTAG);
1161}
1162
1163void
1164dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1165    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1166    int compressed_size, int byteorder, dmu_tx_t *tx)
1167{
1168	dmu_buf_t *db;
1169
1170	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1171	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1172	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1173	    FTAG, &db));
1174
1175	dmu_buf_write_embedded(db,
1176	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1177	    uncompressed_size, compressed_size, byteorder, tx);
1178
1179	dmu_buf_rele(db, FTAG);
1180}
1181
1182void
1183dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1184    dmu_tx_t *tx)
1185{
1186	int numbufs, i;
1187	dmu_buf_t **dbp;
1188
1189	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1190	    &numbufs, &dbp));
1191	for (i = 0; i < numbufs; i++)
1192		dmu_buf_redact(dbp[i], tx);
1193	dmu_buf_rele_array(dbp, numbufs, FTAG);
1194}
1195
1196#ifdef _KERNEL
1197int
1198dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1199{
1200	dmu_buf_t **dbp;
1201	int numbufs, i, err;
1202
1203	/*
1204	 * NB: we could do this block-at-a-time, but it's nice
1205	 * to be reading in parallel.
1206	 */
1207	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1208	    TRUE, FTAG, &numbufs, &dbp, 0);
1209	if (err)
1210		return (err);
1211
1212	for (i = 0; i < numbufs; i++) {
1213		uint64_t tocpy;
1214		int64_t bufoff;
1215		dmu_buf_t *db = dbp[i];
1216
1217		ASSERT(size > 0);
1218
1219		bufoff = zfs_uio_offset(uio) - db->db_offset;
1220		tocpy = MIN(db->db_size - bufoff, size);
1221
1222		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1223		    UIO_READ, uio);
1224
1225		if (err)
1226			break;
1227
1228		size -= tocpy;
1229	}
1230	dmu_buf_rele_array(dbp, numbufs, FTAG);
1231
1232	return (err);
1233}
1234
1235/*
1236 * Read 'size' bytes into the uio buffer.
1237 * From object zdb->db_object.
1238 * Starting at zfs_uio_offset(uio).
1239 *
1240 * If the caller already has a dbuf in the target object
1241 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1242 * because we don't have to find the dnode_t for the object.
1243 */
1244int
1245dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1246{
1247	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1248	dnode_t *dn;
1249	int err;
1250
1251	if (size == 0)
1252		return (0);
1253
1254	DB_DNODE_ENTER(db);
1255	dn = DB_DNODE(db);
1256	err = dmu_read_uio_dnode(dn, uio, size);
1257	DB_DNODE_EXIT(db);
1258
1259	return (err);
1260}
1261
1262/*
1263 * Read 'size' bytes into the uio buffer.
1264 * From the specified object
1265 * Starting at offset zfs_uio_offset(uio).
1266 */
1267int
1268dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1269{
1270	dnode_t *dn;
1271	int err;
1272
1273	if (size == 0)
1274		return (0);
1275
1276	err = dnode_hold(os, object, FTAG, &dn);
1277	if (err)
1278		return (err);
1279
1280	err = dmu_read_uio_dnode(dn, uio, size);
1281
1282	dnode_rele(dn, FTAG);
1283
1284	return (err);
1285}
1286
1287int
1288dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1289{
1290	dmu_buf_t **dbp;
1291	int numbufs;
1292	int err = 0;
1293	int i;
1294
1295	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1296	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1297	if (err)
1298		return (err);
1299
1300	for (i = 0; i < numbufs; i++) {
1301		uint64_t tocpy;
1302		int64_t bufoff;
1303		dmu_buf_t *db = dbp[i];
1304
1305		ASSERT(size > 0);
1306
1307		bufoff = zfs_uio_offset(uio) - db->db_offset;
1308		tocpy = MIN(db->db_size - bufoff, size);
1309
1310		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1311
1312		if (tocpy == db->db_size)
1313			dmu_buf_will_fill(db, tx);
1314		else
1315			dmu_buf_will_dirty(db, tx);
1316
1317		/*
1318		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1319		 * pages).  There needs to be a uiolockdown() function
1320		 * to lock the pages in memory, so that zfs_uiomove won't
1321		 * block.
1322		 */
1323		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1324		    tocpy, UIO_WRITE, uio);
1325
1326		if (tocpy == db->db_size)
1327			dmu_buf_fill_done(db, tx);
1328
1329		if (err)
1330			break;
1331
1332		size -= tocpy;
1333	}
1334
1335	dmu_buf_rele_array(dbp, numbufs, FTAG);
1336	return (err);
1337}
1338
1339/*
1340 * Write 'size' bytes from the uio buffer.
1341 * To object zdb->db_object.
1342 * Starting at offset zfs_uio_offset(uio).
1343 *
1344 * If the caller already has a dbuf in the target object
1345 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1346 * because we don't have to find the dnode_t for the object.
1347 */
1348int
1349dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1350    dmu_tx_t *tx)
1351{
1352	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1353	dnode_t *dn;
1354	int err;
1355
1356	if (size == 0)
1357		return (0);
1358
1359	DB_DNODE_ENTER(db);
1360	dn = DB_DNODE(db);
1361	err = dmu_write_uio_dnode(dn, uio, size, tx);
1362	DB_DNODE_EXIT(db);
1363
1364	return (err);
1365}
1366
1367/*
1368 * Write 'size' bytes from the uio buffer.
1369 * To the specified object.
1370 * Starting at offset zfs_uio_offset(uio).
1371 */
1372int
1373dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1374    dmu_tx_t *tx)
1375{
1376	dnode_t *dn;
1377	int err;
1378
1379	if (size == 0)
1380		return (0);
1381
1382	err = dnode_hold(os, object, FTAG, &dn);
1383	if (err)
1384		return (err);
1385
1386	err = dmu_write_uio_dnode(dn, uio, size, tx);
1387
1388	dnode_rele(dn, FTAG);
1389
1390	return (err);
1391}
1392#endif /* _KERNEL */
1393
1394/*
1395 * Allocate a loaned anonymous arc buffer.
1396 */
1397arc_buf_t *
1398dmu_request_arcbuf(dmu_buf_t *handle, int size)
1399{
1400	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1401
1402	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1403}
1404
1405/*
1406 * Free a loaned arc buffer.
1407 */
1408void
1409dmu_return_arcbuf(arc_buf_t *buf)
1410{
1411	arc_return_buf(buf, FTAG);
1412	arc_buf_destroy(buf, FTAG);
1413}
1414
1415/*
1416 * A "lightweight" write is faster than a regular write (e.g.
1417 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1418 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1419 * data can not be read or overwritten until the transaction's txg has been
1420 * synced.  This makes it appropriate for workloads that are known to be
1421 * (temporarily) write-only, like "zfs receive".
1422 *
1423 * A single block is written, starting at the specified offset in bytes.  If
1424 * the call is successful, it returns 0 and the provided abd has been
1425 * consumed (the caller should not free it).
1426 */
1427int
1428dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1429    const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1430{
1431	dbuf_dirty_record_t *dr =
1432	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1433	if (dr == NULL)
1434		return (SET_ERROR(EIO));
1435	dr->dt.dll.dr_abd = abd;
1436	dr->dt.dll.dr_props = *zp;
1437	dr->dt.dll.dr_flags = flags;
1438	return (0);
1439}
1440
1441/*
1442 * When possible directly assign passed loaned arc buffer to a dbuf.
1443 * If this is not possible copy the contents of passed arc buf via
1444 * dmu_write().
1445 */
1446int
1447dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1448    dmu_tx_t *tx)
1449{
1450	dmu_buf_impl_t *db;
1451	objset_t *os = dn->dn_objset;
1452	uint64_t object = dn->dn_object;
1453	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1454	uint64_t blkid;
1455
1456	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1457	blkid = dbuf_whichblock(dn, 0, offset);
1458	db = dbuf_hold(dn, blkid, FTAG);
1459	if (db == NULL)
1460		return (SET_ERROR(EIO));
1461	rw_exit(&dn->dn_struct_rwlock);
1462
1463	/*
1464	 * We can only assign if the offset is aligned and the arc buf is the
1465	 * same size as the dbuf.
1466	 */
1467	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1468		zfs_racct_write(blksz, 1);
1469		dbuf_assign_arcbuf(db, buf, tx);
1470		dbuf_rele(db, FTAG);
1471	} else {
1472		/* compressed bufs must always be assignable to their dbuf */
1473		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1474		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1475
1476		dbuf_rele(db, FTAG);
1477		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1478		dmu_return_arcbuf(buf);
1479	}
1480
1481	return (0);
1482}
1483
1484int
1485dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1486    dmu_tx_t *tx)
1487{
1488	int err;
1489	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1490
1491	DB_DNODE_ENTER(dbuf);
1492	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1493	DB_DNODE_EXIT(dbuf);
1494
1495	return (err);
1496}
1497
1498typedef struct {
1499	dbuf_dirty_record_t	*dsa_dr;
1500	dmu_sync_cb_t		*dsa_done;
1501	zgd_t			*dsa_zgd;
1502	dmu_tx_t		*dsa_tx;
1503} dmu_sync_arg_t;
1504
1505/* ARGSUSED */
1506static void
1507dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1508{
1509	dmu_sync_arg_t *dsa = varg;
1510	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1511	blkptr_t *bp = zio->io_bp;
1512
1513	if (zio->io_error == 0) {
1514		if (BP_IS_HOLE(bp)) {
1515			/*
1516			 * A block of zeros may compress to a hole, but the
1517			 * block size still needs to be known for replay.
1518			 */
1519			BP_SET_LSIZE(bp, db->db_size);
1520		} else if (!BP_IS_EMBEDDED(bp)) {
1521			ASSERT(BP_GET_LEVEL(bp) == 0);
1522			BP_SET_FILL(bp, 1);
1523		}
1524	}
1525}
1526
1527static void
1528dmu_sync_late_arrival_ready(zio_t *zio)
1529{
1530	dmu_sync_ready(zio, NULL, zio->io_private);
1531}
1532
1533/* ARGSUSED */
1534static void
1535dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1536{
1537	dmu_sync_arg_t *dsa = varg;
1538	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1539	dmu_buf_impl_t *db = dr->dr_dbuf;
1540	zgd_t *zgd = dsa->dsa_zgd;
1541
1542	/*
1543	 * Record the vdev(s) backing this blkptr so they can be flushed after
1544	 * the writes for the lwb have completed.
1545	 */
1546	if (zio->io_error == 0) {
1547		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1548	}
1549
1550	mutex_enter(&db->db_mtx);
1551	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1552	if (zio->io_error == 0) {
1553		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1554		if (dr->dt.dl.dr_nopwrite) {
1555			blkptr_t *bp = zio->io_bp;
1556			blkptr_t *bp_orig = &zio->io_bp_orig;
1557			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1558
1559			ASSERT(BP_EQUAL(bp, bp_orig));
1560			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1561			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1562			VERIFY(zio_checksum_table[chksum].ci_flags &
1563			    ZCHECKSUM_FLAG_NOPWRITE);
1564		}
1565		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1566		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1567		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1568
1569		/*
1570		 * Old style holes are filled with all zeros, whereas
1571		 * new-style holes maintain their lsize, type, level,
1572		 * and birth time (see zio_write_compress). While we
1573		 * need to reset the BP_SET_LSIZE() call that happened
1574		 * in dmu_sync_ready for old style holes, we do *not*
1575		 * want to wipe out the information contained in new
1576		 * style holes. Thus, only zero out the block pointer if
1577		 * it's an old style hole.
1578		 */
1579		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1580		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1581			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1582	} else {
1583		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1584	}
1585	cv_broadcast(&db->db_changed);
1586	mutex_exit(&db->db_mtx);
1587
1588	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1589
1590	kmem_free(dsa, sizeof (*dsa));
1591}
1592
1593static void
1594dmu_sync_late_arrival_done(zio_t *zio)
1595{
1596	blkptr_t *bp = zio->io_bp;
1597	dmu_sync_arg_t *dsa = zio->io_private;
1598	zgd_t *zgd = dsa->dsa_zgd;
1599
1600	if (zio->io_error == 0) {
1601		/*
1602		 * Record the vdev(s) backing this blkptr so they can be
1603		 * flushed after the writes for the lwb have completed.
1604		 */
1605		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1606
1607		if (!BP_IS_HOLE(bp)) {
1608			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1609			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1610			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1611			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1612			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1613			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1614		}
1615	}
1616
1617	dmu_tx_commit(dsa->dsa_tx);
1618
1619	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1620
1621	abd_free(zio->io_abd);
1622	kmem_free(dsa, sizeof (*dsa));
1623}
1624
1625static int
1626dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1627    zio_prop_t *zp, zbookmark_phys_t *zb)
1628{
1629	dmu_sync_arg_t *dsa;
1630	dmu_tx_t *tx;
1631
1632	tx = dmu_tx_create(os);
1633	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1634	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1635		dmu_tx_abort(tx);
1636		/* Make zl_get_data do txg_waited_synced() */
1637		return (SET_ERROR(EIO));
1638	}
1639
1640	/*
1641	 * In order to prevent the zgd's lwb from being free'd prior to
1642	 * dmu_sync_late_arrival_done() being called, we have to ensure
1643	 * the lwb's "max txg" takes this tx's txg into account.
1644	 */
1645	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1646
1647	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1648	dsa->dsa_dr = NULL;
1649	dsa->dsa_done = done;
1650	dsa->dsa_zgd = zgd;
1651	dsa->dsa_tx = tx;
1652
1653	/*
1654	 * Since we are currently syncing this txg, it's nontrivial to
1655	 * determine what BP to nopwrite against, so we disable nopwrite.
1656	 *
1657	 * When syncing, the db_blkptr is initially the BP of the previous
1658	 * txg.  We can not nopwrite against it because it will be changed
1659	 * (this is similar to the non-late-arrival case where the dbuf is
1660	 * dirty in a future txg).
1661	 *
1662	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1663	 * We can not nopwrite against it because although the BP will not
1664	 * (typically) be changed, the data has not yet been persisted to this
1665	 * location.
1666	 *
1667	 * Finally, when dbuf_write_done() is called, it is theoretically
1668	 * possible to always nopwrite, because the data that was written in
1669	 * this txg is the same data that we are trying to write.  However we
1670	 * would need to check that this dbuf is not dirty in any future
1671	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1672	 * don't nopwrite in this case.
1673	 */
1674	zp->zp_nopwrite = B_FALSE;
1675
1676	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1677	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1678	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1679	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1680	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1681
1682	return (0);
1683}
1684
1685/*
1686 * Intent log support: sync the block associated with db to disk.
1687 * N.B. and XXX: the caller is responsible for making sure that the
1688 * data isn't changing while dmu_sync() is writing it.
1689 *
1690 * Return values:
1691 *
1692 *	EEXIST: this txg has already been synced, so there's nothing to do.
1693 *		The caller should not log the write.
1694 *
1695 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1696 *		The caller should not log the write.
1697 *
1698 *	EALREADY: this block is already in the process of being synced.
1699 *		The caller should track its progress (somehow).
1700 *
1701 *	EIO: could not do the I/O.
1702 *		The caller should do a txg_wait_synced().
1703 *
1704 *	0: the I/O has been initiated.
1705 *		The caller should log this blkptr in the done callback.
1706 *		It is possible that the I/O will fail, in which case
1707 *		the error will be reported to the done callback and
1708 *		propagated to pio from zio_done().
1709 */
1710int
1711dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1712{
1713	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1714	objset_t *os = db->db_objset;
1715	dsl_dataset_t *ds = os->os_dsl_dataset;
1716	dbuf_dirty_record_t *dr, *dr_next;
1717	dmu_sync_arg_t *dsa;
1718	zbookmark_phys_t zb;
1719	zio_prop_t zp;
1720	dnode_t *dn;
1721
1722	ASSERT(pio != NULL);
1723	ASSERT(txg != 0);
1724
1725	SET_BOOKMARK(&zb, ds->ds_object,
1726	    db->db.db_object, db->db_level, db->db_blkid);
1727
1728	DB_DNODE_ENTER(db);
1729	dn = DB_DNODE(db);
1730	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1731	DB_DNODE_EXIT(db);
1732
1733	/*
1734	 * If we're frozen (running ziltest), we always need to generate a bp.
1735	 */
1736	if (txg > spa_freeze_txg(os->os_spa))
1737		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1738
1739	/*
1740	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1741	 * and us.  If we determine that this txg is not yet syncing,
1742	 * but it begins to sync a moment later, that's OK because the
1743	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1744	 */
1745	mutex_enter(&db->db_mtx);
1746
1747	if (txg <= spa_last_synced_txg(os->os_spa)) {
1748		/*
1749		 * This txg has already synced.  There's nothing to do.
1750		 */
1751		mutex_exit(&db->db_mtx);
1752		return (SET_ERROR(EEXIST));
1753	}
1754
1755	if (txg <= spa_syncing_txg(os->os_spa)) {
1756		/*
1757		 * This txg is currently syncing, so we can't mess with
1758		 * the dirty record anymore; just write a new log block.
1759		 */
1760		mutex_exit(&db->db_mtx);
1761		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1762	}
1763
1764	dr = dbuf_find_dirty_eq(db, txg);
1765
1766	if (dr == NULL) {
1767		/*
1768		 * There's no dr for this dbuf, so it must have been freed.
1769		 * There's no need to log writes to freed blocks, so we're done.
1770		 */
1771		mutex_exit(&db->db_mtx);
1772		return (SET_ERROR(ENOENT));
1773	}
1774
1775	dr_next = list_next(&db->db_dirty_records, dr);
1776	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1777
1778	if (db->db_blkptr != NULL) {
1779		/*
1780		 * We need to fill in zgd_bp with the current blkptr so that
1781		 * the nopwrite code can check if we're writing the same
1782		 * data that's already on disk.  We can only nopwrite if we
1783		 * are sure that after making the copy, db_blkptr will not
1784		 * change until our i/o completes.  We ensure this by
1785		 * holding the db_mtx, and only allowing nopwrite if the
1786		 * block is not already dirty (see below).  This is verified
1787		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1788		 * not changed.
1789		 */
1790		*zgd->zgd_bp = *db->db_blkptr;
1791	}
1792
1793	/*
1794	 * Assume the on-disk data is X, the current syncing data (in
1795	 * txg - 1) is Y, and the current in-memory data is Z (currently
1796	 * in dmu_sync).
1797	 *
1798	 * We usually want to perform a nopwrite if X and Z are the
1799	 * same.  However, if Y is different (i.e. the BP is going to
1800	 * change before this write takes effect), then a nopwrite will
1801	 * be incorrect - we would override with X, which could have
1802	 * been freed when Y was written.
1803	 *
1804	 * (Note that this is not a concern when we are nop-writing from
1805	 * syncing context, because X and Y must be identical, because
1806	 * all previous txgs have been synced.)
1807	 *
1808	 * Therefore, we disable nopwrite if the current BP could change
1809	 * before this TXG.  There are two ways it could change: by
1810	 * being dirty (dr_next is non-NULL), or by being freed
1811	 * (dnode_block_freed()).  This behavior is verified by
1812	 * zio_done(), which VERIFYs that the override BP is identical
1813	 * to the on-disk BP.
1814	 */
1815	DB_DNODE_ENTER(db);
1816	dn = DB_DNODE(db);
1817	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1818		zp.zp_nopwrite = B_FALSE;
1819	DB_DNODE_EXIT(db);
1820
1821	ASSERT(dr->dr_txg == txg);
1822	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1823	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1824		/*
1825		 * We have already issued a sync write for this buffer,
1826		 * or this buffer has already been synced.  It could not
1827		 * have been dirtied since, or we would have cleared the state.
1828		 */
1829		mutex_exit(&db->db_mtx);
1830		return (SET_ERROR(EALREADY));
1831	}
1832
1833	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1834	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1835	mutex_exit(&db->db_mtx);
1836
1837	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1838	dsa->dsa_dr = dr;
1839	dsa->dsa_done = done;
1840	dsa->dsa_zgd = zgd;
1841	dsa->dsa_tx = NULL;
1842
1843	zio_nowait(arc_write(pio, os->os_spa, txg,
1844	    zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1845	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1846	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1847
1848	return (0);
1849}
1850
1851int
1852dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1853{
1854	dnode_t *dn;
1855	int err;
1856
1857	err = dnode_hold(os, object, FTAG, &dn);
1858	if (err)
1859		return (err);
1860	err = dnode_set_nlevels(dn, nlevels, tx);
1861	dnode_rele(dn, FTAG);
1862	return (err);
1863}
1864
1865int
1866dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1867    dmu_tx_t *tx)
1868{
1869	dnode_t *dn;
1870	int err;
1871
1872	err = dnode_hold(os, object, FTAG, &dn);
1873	if (err)
1874		return (err);
1875	err = dnode_set_blksz(dn, size, ibs, tx);
1876	dnode_rele(dn, FTAG);
1877	return (err);
1878}
1879
1880int
1881dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1882    dmu_tx_t *tx)
1883{
1884	dnode_t *dn;
1885	int err;
1886
1887	err = dnode_hold(os, object, FTAG, &dn);
1888	if (err)
1889		return (err);
1890	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1891	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1892	rw_exit(&dn->dn_struct_rwlock);
1893	dnode_rele(dn, FTAG);
1894	return (0);
1895}
1896
1897void
1898dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1899    dmu_tx_t *tx)
1900{
1901	dnode_t *dn;
1902
1903	/*
1904	 * Send streams include each object's checksum function.  This
1905	 * check ensures that the receiving system can understand the
1906	 * checksum function transmitted.
1907	 */
1908	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1909
1910	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1911	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1912	dn->dn_checksum = checksum;
1913	dnode_setdirty(dn, tx);
1914	dnode_rele(dn, FTAG);
1915}
1916
1917void
1918dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1919    dmu_tx_t *tx)
1920{
1921	dnode_t *dn;
1922
1923	/*
1924	 * Send streams include each object's compression function.  This
1925	 * check ensures that the receiving system can understand the
1926	 * compression function transmitted.
1927	 */
1928	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1929
1930	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1931	dn->dn_compress = compress;
1932	dnode_setdirty(dn, tx);
1933	dnode_rele(dn, FTAG);
1934}
1935
1936/*
1937 * When the "redundant_metadata" property is set to "most", only indirect
1938 * blocks of this level and higher will have an additional ditto block.
1939 */
1940int zfs_redundant_metadata_most_ditto_level = 2;
1941
1942void
1943dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1944{
1945	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1946	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1947	    (wp & WP_SPILL));
1948	enum zio_checksum checksum = os->os_checksum;
1949	enum zio_compress compress = os->os_compress;
1950	uint8_t complevel = os->os_complevel;
1951	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1952	boolean_t dedup = B_FALSE;
1953	boolean_t nopwrite = B_FALSE;
1954	boolean_t dedup_verify = os->os_dedup_verify;
1955	boolean_t encrypt = B_FALSE;
1956	int copies = os->os_copies;
1957
1958	/*
1959	 * We maintain different write policies for each of the following
1960	 * types of data:
1961	 *	 1. metadata
1962	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1963	 *	 3. all other level 0 blocks
1964	 */
1965	if (ismd) {
1966		/*
1967		 * XXX -- we should design a compression algorithm
1968		 * that specializes in arrays of bps.
1969		 */
1970		compress = zio_compress_select(os->os_spa,
1971		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1972
1973		/*
1974		 * Metadata always gets checksummed.  If the data
1975		 * checksum is multi-bit correctable, and it's not a
1976		 * ZBT-style checksum, then it's suitable for metadata
1977		 * as well.  Otherwise, the metadata checksum defaults
1978		 * to fletcher4.
1979		 */
1980		if (!(zio_checksum_table[checksum].ci_flags &
1981		    ZCHECKSUM_FLAG_METADATA) ||
1982		    (zio_checksum_table[checksum].ci_flags &
1983		    ZCHECKSUM_FLAG_EMBEDDED))
1984			checksum = ZIO_CHECKSUM_FLETCHER_4;
1985
1986		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1987		    (os->os_redundant_metadata ==
1988		    ZFS_REDUNDANT_METADATA_MOST &&
1989		    (level >= zfs_redundant_metadata_most_ditto_level ||
1990		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1991			copies++;
1992	} else if (wp & WP_NOFILL) {
1993		ASSERT(level == 0);
1994
1995		/*
1996		 * If we're writing preallocated blocks, we aren't actually
1997		 * writing them so don't set any policy properties.  These
1998		 * blocks are currently only used by an external subsystem
1999		 * outside of zfs (i.e. dump) and not written by the zio
2000		 * pipeline.
2001		 */
2002		compress = ZIO_COMPRESS_OFF;
2003		checksum = ZIO_CHECKSUM_OFF;
2004	} else {
2005		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2006		    compress);
2007		complevel = zio_complevel_select(os->os_spa, compress,
2008		    complevel, complevel);
2009
2010		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2011		    zio_checksum_select(dn->dn_checksum, checksum) :
2012		    dedup_checksum;
2013
2014		/*
2015		 * Determine dedup setting.  If we are in dmu_sync(),
2016		 * we won't actually dedup now because that's all
2017		 * done in syncing context; but we do want to use the
2018		 * dedup checksum.  If the checksum is not strong
2019		 * enough to ensure unique signatures, force
2020		 * dedup_verify.
2021		 */
2022		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2023			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2024			if (!(zio_checksum_table[checksum].ci_flags &
2025			    ZCHECKSUM_FLAG_DEDUP))
2026				dedup_verify = B_TRUE;
2027		}
2028
2029		/*
2030		 * Enable nopwrite if we have secure enough checksum
2031		 * algorithm (see comment in zio_nop_write) and
2032		 * compression is enabled.  We don't enable nopwrite if
2033		 * dedup is enabled as the two features are mutually
2034		 * exclusive.
2035		 */
2036		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2037		    ZCHECKSUM_FLAG_NOPWRITE) &&
2038		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2039	}
2040
2041	/*
2042	 * All objects in an encrypted objset are protected from modification
2043	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2044	 * in the bp, so we cannot use all copies. Encrypted objects are also
2045	 * not subject to nopwrite since writing the same data will still
2046	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2047	 * to avoid ambiguity in the dedup code since the DDT does not store
2048	 * object types.
2049	 */
2050	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2051		encrypt = B_TRUE;
2052
2053		if (DMU_OT_IS_ENCRYPTED(type)) {
2054			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2055			nopwrite = B_FALSE;
2056		} else {
2057			dedup = B_FALSE;
2058		}
2059
2060		if (level <= 0 &&
2061		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2062			compress = ZIO_COMPRESS_EMPTY;
2063		}
2064	}
2065
2066	zp->zp_compress = compress;
2067	zp->zp_complevel = complevel;
2068	zp->zp_checksum = checksum;
2069	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2070	zp->zp_level = level;
2071	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2072	zp->zp_dedup = dedup;
2073	zp->zp_dedup_verify = dedup && dedup_verify;
2074	zp->zp_nopwrite = nopwrite;
2075	zp->zp_encrypt = encrypt;
2076	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2077	bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2078	bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2079	bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2080	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2081	    os->os_zpl_special_smallblock : 0;
2082
2083	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2084}
2085
2086/*
2087 * This function is only called from zfs_holey_common() for zpl_llseek()
2088 * in order to determine the location of holes.  In order to accurately
2089 * report holes all dirty data must be synced to disk.  This causes extremely
2090 * poor performance when seeking for holes in a dirty file.  As a compromise,
2091 * only provide hole data when the dnode is clean.  When a dnode is dirty
2092 * report the dnode as having no holes which is always a safe thing to do.
2093 */
2094int
2095dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2096{
2097	dnode_t *dn;
2098	int i, err;
2099	boolean_t clean = B_TRUE;
2100
2101	err = dnode_hold(os, object, FTAG, &dn);
2102	if (err)
2103		return (err);
2104
2105	/*
2106	 * Check if dnode is dirty
2107	 */
2108	for (i = 0; i < TXG_SIZE; i++) {
2109		if (multilist_link_active(&dn->dn_dirty_link[i])) {
2110			clean = B_FALSE;
2111			break;
2112		}
2113	}
2114
2115	/*
2116	 * If compatibility option is on, sync any current changes before
2117	 * we go trundling through the block pointers.
2118	 */
2119	if (!clean && zfs_dmu_offset_next_sync) {
2120		clean = B_TRUE;
2121		dnode_rele(dn, FTAG);
2122		txg_wait_synced(dmu_objset_pool(os), 0);
2123		err = dnode_hold(os, object, FTAG, &dn);
2124		if (err)
2125			return (err);
2126	}
2127
2128	if (clean)
2129		err = dnode_next_offset(dn,
2130		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2131	else
2132		err = SET_ERROR(EBUSY);
2133
2134	dnode_rele(dn, FTAG);
2135
2136	return (err);
2137}
2138
2139void
2140__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2141{
2142	dnode_phys_t *dnp = dn->dn_phys;
2143
2144	doi->doi_data_block_size = dn->dn_datablksz;
2145	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2146	    1ULL << dn->dn_indblkshift : 0;
2147	doi->doi_type = dn->dn_type;
2148	doi->doi_bonus_type = dn->dn_bonustype;
2149	doi->doi_bonus_size = dn->dn_bonuslen;
2150	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2151	doi->doi_indirection = dn->dn_nlevels;
2152	doi->doi_checksum = dn->dn_checksum;
2153	doi->doi_compress = dn->dn_compress;
2154	doi->doi_nblkptr = dn->dn_nblkptr;
2155	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2156	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2157	doi->doi_fill_count = 0;
2158	for (int i = 0; i < dnp->dn_nblkptr; i++)
2159		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2160}
2161
2162void
2163dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2164{
2165	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2166	mutex_enter(&dn->dn_mtx);
2167
2168	__dmu_object_info_from_dnode(dn, doi);
2169
2170	mutex_exit(&dn->dn_mtx);
2171	rw_exit(&dn->dn_struct_rwlock);
2172}
2173
2174/*
2175 * Get information on a DMU object.
2176 * If doi is NULL, just indicates whether the object exists.
2177 */
2178int
2179dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2180{
2181	dnode_t *dn;
2182	int err = dnode_hold(os, object, FTAG, &dn);
2183
2184	if (err)
2185		return (err);
2186
2187	if (doi != NULL)
2188		dmu_object_info_from_dnode(dn, doi);
2189
2190	dnode_rele(dn, FTAG);
2191	return (0);
2192}
2193
2194/*
2195 * As above, but faster; can be used when you have a held dbuf in hand.
2196 */
2197void
2198dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2199{
2200	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2201
2202	DB_DNODE_ENTER(db);
2203	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2204	DB_DNODE_EXIT(db);
2205}
2206
2207/*
2208 * Faster still when you only care about the size.
2209 */
2210void
2211dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2212    u_longlong_t *nblk512)
2213{
2214	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2215	dnode_t *dn;
2216
2217	DB_DNODE_ENTER(db);
2218	dn = DB_DNODE(db);
2219
2220	*blksize = dn->dn_datablksz;
2221	/* add in number of slots used for the dnode itself */
2222	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2223	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2224	DB_DNODE_EXIT(db);
2225}
2226
2227void
2228dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2229{
2230	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2231	dnode_t *dn;
2232
2233	DB_DNODE_ENTER(db);
2234	dn = DB_DNODE(db);
2235	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2236	DB_DNODE_EXIT(db);
2237}
2238
2239void
2240byteswap_uint64_array(void *vbuf, size_t size)
2241{
2242	uint64_t *buf = vbuf;
2243	size_t count = size >> 3;
2244	int i;
2245
2246	ASSERT((size & 7) == 0);
2247
2248	for (i = 0; i < count; i++)
2249		buf[i] = BSWAP_64(buf[i]);
2250}
2251
2252void
2253byteswap_uint32_array(void *vbuf, size_t size)
2254{
2255	uint32_t *buf = vbuf;
2256	size_t count = size >> 2;
2257	int i;
2258
2259	ASSERT((size & 3) == 0);
2260
2261	for (i = 0; i < count; i++)
2262		buf[i] = BSWAP_32(buf[i]);
2263}
2264
2265void
2266byteswap_uint16_array(void *vbuf, size_t size)
2267{
2268	uint16_t *buf = vbuf;
2269	size_t count = size >> 1;
2270	int i;
2271
2272	ASSERT((size & 1) == 0);
2273
2274	for (i = 0; i < count; i++)
2275		buf[i] = BSWAP_16(buf[i]);
2276}
2277
2278/* ARGSUSED */
2279void
2280byteswap_uint8_array(void *vbuf, size_t size)
2281{
2282}
2283
2284void
2285dmu_init(void)
2286{
2287	abd_init();
2288	zfs_dbgmsg_init();
2289	sa_cache_init();
2290	dmu_objset_init();
2291	dnode_init();
2292	zfetch_init();
2293	dmu_tx_init();
2294	l2arc_init();
2295	arc_init();
2296	dbuf_init();
2297}
2298
2299void
2300dmu_fini(void)
2301{
2302	arc_fini(); /* arc depends on l2arc, so arc must go first */
2303	l2arc_fini();
2304	dmu_tx_fini();
2305	zfetch_fini();
2306	dbuf_fini();
2307	dnode_fini();
2308	dmu_objset_fini();
2309	sa_cache_fini();
2310	zfs_dbgmsg_fini();
2311	abd_fini();
2312}
2313
2314EXPORT_SYMBOL(dmu_bonus_hold);
2315EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2316EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2317EXPORT_SYMBOL(dmu_buf_rele_array);
2318EXPORT_SYMBOL(dmu_prefetch);
2319EXPORT_SYMBOL(dmu_free_range);
2320EXPORT_SYMBOL(dmu_free_long_range);
2321EXPORT_SYMBOL(dmu_free_long_object);
2322EXPORT_SYMBOL(dmu_read);
2323EXPORT_SYMBOL(dmu_read_by_dnode);
2324EXPORT_SYMBOL(dmu_write);
2325EXPORT_SYMBOL(dmu_write_by_dnode);
2326EXPORT_SYMBOL(dmu_prealloc);
2327EXPORT_SYMBOL(dmu_object_info);
2328EXPORT_SYMBOL(dmu_object_info_from_dnode);
2329EXPORT_SYMBOL(dmu_object_info_from_db);
2330EXPORT_SYMBOL(dmu_object_size_from_db);
2331EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2332EXPORT_SYMBOL(dmu_object_set_nlevels);
2333EXPORT_SYMBOL(dmu_object_set_blocksize);
2334EXPORT_SYMBOL(dmu_object_set_maxblkid);
2335EXPORT_SYMBOL(dmu_object_set_checksum);
2336EXPORT_SYMBOL(dmu_object_set_compress);
2337EXPORT_SYMBOL(dmu_offset_next);
2338EXPORT_SYMBOL(dmu_write_policy);
2339EXPORT_SYMBOL(dmu_sync);
2340EXPORT_SYMBOL(dmu_request_arcbuf);
2341EXPORT_SYMBOL(dmu_return_arcbuf);
2342EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2343EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2344EXPORT_SYMBOL(dmu_buf_hold);
2345EXPORT_SYMBOL(dmu_ot);
2346
2347/* BEGIN CSTYLED */
2348ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2349	"Enable NOP writes");
2350
2351ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2352	"Percentage of dirtied blocks from frees in one TXG");
2353
2354ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2355	"Enable forcing txg sync to find holes");
2356
2357ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2358	"Limit one prefetch call to this size");
2359/* END CSTYLED */
2360