1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 */
25
26/* Portions Copyright 2007 Jeremy Teo */
27
28#ifdef _KERNEL
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/time.h>
32#include <sys/sysmacros.h>
33#include <sys/mntent.h>
34#include <sys/u8_textprep.h>
35#include <sys/dsl_dataset.h>
36#include <sys/vfs.h>
37#include <sys/vnode.h>
38#include <sys/file.h>
39#include <sys/kmem.h>
40#include <sys/errno.h>
41#include <sys/atomic.h>
42#include <sys/zfs_dir.h>
43#include <sys/zfs_acl.h>
44#include <sys/zfs_ioctl.h>
45#include <sys/zfs_rlock.h>
46#include <sys/zfs_fuid.h>
47#include <sys/zfs_vnops.h>
48#include <sys/zfs_ctldir.h>
49#include <sys/dnode.h>
50#include <sys/fs/zfs.h>
51#include <sys/zpl.h>
52#endif /* _KERNEL */
53
54#include <sys/dmu.h>
55#include <sys/dmu_objset.h>
56#include <sys/dmu_tx.h>
57#include <sys/zfs_refcount.h>
58#include <sys/stat.h>
59#include <sys/zap.h>
60#include <sys/zfs_znode.h>
61#include <sys/sa.h>
62#include <sys/zfs_sa.h>
63#include <sys/zfs_stat.h>
64
65#include "zfs_prop.h"
66#include "zfs_comutil.h"
67
68/*
69 * Functions needed for userland (ie: libzpool) are not put under
70 * #ifdef_KERNEL; the rest of the functions have dependencies
71 * (such as VFS logic) that will not compile easily in userland.
72 */
73#ifdef _KERNEL
74
75static kmem_cache_t *znode_cache = NULL;
76static kmem_cache_t *znode_hold_cache = NULL;
77unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
78
79/*
80 * This is used by the test suite so that it can delay znodes from being
81 * freed in order to inspect the unlinked set.
82 */
83int zfs_unlink_suspend_progress = 0;
84
85/*
86 * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
87 * z_rangelock. It will modify the offset and length of the lock to reflect
88 * znode-specific information, and convert RL_APPEND to RL_WRITER.  This is
89 * called with the rangelock_t's rl_lock held, which avoids races.
90 */
91static void
92zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
93{
94	znode_t *zp = arg;
95
96	/*
97	 * If in append mode, convert to writer and lock starting at the
98	 * current end of file.
99	 */
100	if (new->lr_type == RL_APPEND) {
101		new->lr_offset = zp->z_size;
102		new->lr_type = RL_WRITER;
103	}
104
105	/*
106	 * If we need to grow the block size then lock the whole file range.
107	 */
108	uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
109	if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
110	    zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
111		new->lr_offset = 0;
112		new->lr_length = UINT64_MAX;
113	}
114}
115
116/*ARGSUSED*/
117static int
118zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
119{
120	znode_t *zp = buf;
121
122	inode_init_once(ZTOI(zp));
123	list_link_init(&zp->z_link_node);
124
125	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
126	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
127	rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
128	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
129	rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
130
131	zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
132
133	zp->z_dirlocks = NULL;
134	zp->z_acl_cached = NULL;
135	zp->z_xattr_cached = NULL;
136	zp->z_xattr_parent = 0;
137	return (0);
138}
139
140/*ARGSUSED*/
141static void
142zfs_znode_cache_destructor(void *buf, void *arg)
143{
144	znode_t *zp = buf;
145
146	ASSERT(!list_link_active(&zp->z_link_node));
147	mutex_destroy(&zp->z_lock);
148	rw_destroy(&zp->z_parent_lock);
149	rw_destroy(&zp->z_name_lock);
150	mutex_destroy(&zp->z_acl_lock);
151	rw_destroy(&zp->z_xattr_lock);
152	zfs_rangelock_fini(&zp->z_rangelock);
153
154	ASSERT(zp->z_dirlocks == NULL);
155	ASSERT(zp->z_acl_cached == NULL);
156	ASSERT(zp->z_xattr_cached == NULL);
157}
158
159static int
160zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
161{
162	znode_hold_t *zh = buf;
163
164	mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
165	zfs_refcount_create(&zh->zh_refcount);
166	zh->zh_obj = ZFS_NO_OBJECT;
167
168	return (0);
169}
170
171static void
172zfs_znode_hold_cache_destructor(void *buf, void *arg)
173{
174	znode_hold_t *zh = buf;
175
176	mutex_destroy(&zh->zh_lock);
177	zfs_refcount_destroy(&zh->zh_refcount);
178}
179
180void
181zfs_znode_init(void)
182{
183	/*
184	 * Initialize zcache.  The KMC_SLAB hint is used in order that it be
185	 * backed by kmalloc() when on the Linux slab in order that any
186	 * wait_on_bit() operations on the related inode operate properly.
187	 */
188	ASSERT(znode_cache == NULL);
189	znode_cache = kmem_cache_create("zfs_znode_cache",
190	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
191	    zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_SLAB);
192
193	ASSERT(znode_hold_cache == NULL);
194	znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
195	    sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
196	    zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
197}
198
199void
200zfs_znode_fini(void)
201{
202	/*
203	 * Cleanup zcache
204	 */
205	if (znode_cache)
206		kmem_cache_destroy(znode_cache);
207	znode_cache = NULL;
208
209	if (znode_hold_cache)
210		kmem_cache_destroy(znode_hold_cache);
211	znode_hold_cache = NULL;
212}
213
214/*
215 * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
216 * serialize access to a znode and its SA buffer while the object is being
217 * created or destroyed.  This kind of locking would normally reside in the
218 * znode itself but in this case that's impossible because the znode and SA
219 * buffer may not yet exist.  Therefore the locking is handled externally
220 * with an array of mutexes and AVLs trees which contain per-object locks.
221 *
222 * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
223 * in to the correct AVL tree and finally the per-object lock is held.  In
224 * zfs_znode_hold_exit() the process is reversed.  The per-object lock is
225 * released, removed from the AVL tree and destroyed if there are no waiters.
226 *
227 * This scheme has two important properties:
228 *
229 * 1) No memory allocations are performed while holding one of the z_hold_locks.
230 *    This ensures evict(), which can be called from direct memory reclaim, will
231 *    never block waiting on a z_hold_locks which just happens to have hashed
232 *    to the same index.
233 *
234 * 2) All locks used to serialize access to an object are per-object and never
235 *    shared.  This minimizes lock contention without creating a large number
236 *    of dedicated locks.
237 *
238 * On the downside it does require znode_lock_t structures to be frequently
239 * allocated and freed.  However, because these are backed by a kmem cache
240 * and very short lived this cost is minimal.
241 */
242int
243zfs_znode_hold_compare(const void *a, const void *b)
244{
245	const znode_hold_t *zh_a = (const znode_hold_t *)a;
246	const znode_hold_t *zh_b = (const znode_hold_t *)b;
247
248	return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
249}
250
251static boolean_t __maybe_unused
252zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
253{
254	znode_hold_t *zh, search;
255	int i = ZFS_OBJ_HASH(zfsvfs, obj);
256	boolean_t held;
257
258	search.zh_obj = obj;
259
260	mutex_enter(&zfsvfs->z_hold_locks[i]);
261	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
262	held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
263	mutex_exit(&zfsvfs->z_hold_locks[i]);
264
265	return (held);
266}
267
268static znode_hold_t *
269zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
270{
271	znode_hold_t *zh, *zh_new, search;
272	int i = ZFS_OBJ_HASH(zfsvfs, obj);
273	boolean_t found = B_FALSE;
274
275	zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
276	zh_new->zh_obj = obj;
277	search.zh_obj = obj;
278
279	mutex_enter(&zfsvfs->z_hold_locks[i]);
280	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
281	if (likely(zh == NULL)) {
282		zh = zh_new;
283		avl_add(&zfsvfs->z_hold_trees[i], zh);
284	} else {
285		ASSERT3U(zh->zh_obj, ==, obj);
286		found = B_TRUE;
287	}
288	zfs_refcount_add(&zh->zh_refcount, NULL);
289	mutex_exit(&zfsvfs->z_hold_locks[i]);
290
291	if (found == B_TRUE)
292		kmem_cache_free(znode_hold_cache, zh_new);
293
294	ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
295	ASSERT3S(zfs_refcount_count(&zh->zh_refcount), >, 0);
296	mutex_enter(&zh->zh_lock);
297
298	return (zh);
299}
300
301static void
302zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
303{
304	int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
305	boolean_t remove = B_FALSE;
306
307	ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
308	ASSERT3S(zfs_refcount_count(&zh->zh_refcount), >, 0);
309	mutex_exit(&zh->zh_lock);
310
311	mutex_enter(&zfsvfs->z_hold_locks[i]);
312	if (zfs_refcount_remove(&zh->zh_refcount, NULL) == 0) {
313		avl_remove(&zfsvfs->z_hold_trees[i], zh);
314		remove = B_TRUE;
315	}
316	mutex_exit(&zfsvfs->z_hold_locks[i]);
317
318	if (remove == B_TRUE)
319		kmem_cache_free(znode_hold_cache, zh);
320}
321
322dev_t
323zfs_cmpldev(uint64_t dev)
324{
325	return (dev);
326}
327
328static void
329zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
330    dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
331{
332	ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
333
334	mutex_enter(&zp->z_lock);
335
336	ASSERT(zp->z_sa_hdl == NULL);
337	ASSERT(zp->z_acl_cached == NULL);
338	if (sa_hdl == NULL) {
339		VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
340		    SA_HDL_SHARED, &zp->z_sa_hdl));
341	} else {
342		zp->z_sa_hdl = sa_hdl;
343		sa_set_userp(sa_hdl, zp);
344	}
345
346	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
347
348	mutex_exit(&zp->z_lock);
349}
350
351void
352zfs_znode_dmu_fini(znode_t *zp)
353{
354	ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) || zp->z_unlinked ||
355	    RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
356
357	sa_handle_destroy(zp->z_sa_hdl);
358	zp->z_sa_hdl = NULL;
359}
360
361/*
362 * Called by new_inode() to allocate a new inode.
363 */
364int
365zfs_inode_alloc(struct super_block *sb, struct inode **ip)
366{
367	znode_t *zp;
368
369	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
370	*ip = ZTOI(zp);
371
372	return (0);
373}
374
375/*
376 * Called in multiple places when an inode should be destroyed.
377 */
378void
379zfs_inode_destroy(struct inode *ip)
380{
381	znode_t *zp = ITOZ(ip);
382	zfsvfs_t *zfsvfs = ZTOZSB(zp);
383
384	mutex_enter(&zfsvfs->z_znodes_lock);
385	if (list_link_active(&zp->z_link_node)) {
386		list_remove(&zfsvfs->z_all_znodes, zp);
387		zfsvfs->z_nr_znodes--;
388	}
389	mutex_exit(&zfsvfs->z_znodes_lock);
390
391	if (zp->z_acl_cached) {
392		zfs_acl_free(zp->z_acl_cached);
393		zp->z_acl_cached = NULL;
394	}
395
396	if (zp->z_xattr_cached) {
397		nvlist_free(zp->z_xattr_cached);
398		zp->z_xattr_cached = NULL;
399	}
400
401	kmem_cache_free(znode_cache, zp);
402}
403
404static void
405zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
406{
407	uint64_t rdev = 0;
408
409	switch (ip->i_mode & S_IFMT) {
410	case S_IFREG:
411		ip->i_op = &zpl_inode_operations;
412		ip->i_fop = &zpl_file_operations;
413		ip->i_mapping->a_ops = &zpl_address_space_operations;
414		break;
415
416	case S_IFDIR:
417		ip->i_op = &zpl_dir_inode_operations;
418		ip->i_fop = &zpl_dir_file_operations;
419		ITOZ(ip)->z_zn_prefetch = B_TRUE;
420		break;
421
422	case S_IFLNK:
423		ip->i_op = &zpl_symlink_inode_operations;
424		break;
425
426	/*
427	 * rdev is only stored in a SA only for device files.
428	 */
429	case S_IFCHR:
430	case S_IFBLK:
431		(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
432		    sizeof (rdev));
433		/*FALLTHROUGH*/
434	case S_IFIFO:
435	case S_IFSOCK:
436		init_special_inode(ip, ip->i_mode, rdev);
437		ip->i_op = &zpl_special_inode_operations;
438		break;
439
440	default:
441		zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
442		    (u_longlong_t)ip->i_ino, ip->i_mode);
443
444		/* Assume the inode is a file and attempt to continue */
445		ip->i_mode = S_IFREG | 0644;
446		ip->i_op = &zpl_inode_operations;
447		ip->i_fop = &zpl_file_operations;
448		ip->i_mapping->a_ops = &zpl_address_space_operations;
449		break;
450	}
451}
452
453static void
454zfs_set_inode_flags(znode_t *zp, struct inode *ip)
455{
456	/*
457	 * Linux and Solaris have different sets of file attributes, so we
458	 * restrict this conversion to the intersection of the two.
459	 */
460#ifdef HAVE_INODE_SET_FLAGS
461	unsigned int flags = 0;
462	if (zp->z_pflags & ZFS_IMMUTABLE)
463		flags |= S_IMMUTABLE;
464	if (zp->z_pflags & ZFS_APPENDONLY)
465		flags |= S_APPEND;
466
467	inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
468#else
469	if (zp->z_pflags & ZFS_IMMUTABLE)
470		ip->i_flags |= S_IMMUTABLE;
471	else
472		ip->i_flags &= ~S_IMMUTABLE;
473
474	if (zp->z_pflags & ZFS_APPENDONLY)
475		ip->i_flags |= S_APPEND;
476	else
477		ip->i_flags &= ~S_APPEND;
478#endif
479}
480
481/*
482 * Update the embedded inode given the znode.
483 */
484void
485zfs_znode_update_vfs(znode_t *zp)
486{
487	zfsvfs_t	*zfsvfs;
488	struct inode	*ip;
489	uint32_t	blksize;
490	u_longlong_t	i_blocks;
491
492	ASSERT(zp != NULL);
493	zfsvfs = ZTOZSB(zp);
494	ip = ZTOI(zp);
495
496	/* Skip .zfs control nodes which do not exist on disk. */
497	if (zfsctl_is_node(ip))
498		return;
499
500	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
501
502	spin_lock(&ip->i_lock);
503	ip->i_mode = zp->z_mode;
504	ip->i_blocks = i_blocks;
505	i_size_write(ip, zp->z_size);
506	spin_unlock(&ip->i_lock);
507}
508
509
510/*
511 * Construct a znode+inode and initialize.
512 *
513 * This does not do a call to dmu_set_user() that is
514 * up to the caller to do, in case you don't want to
515 * return the znode
516 */
517static znode_t *
518zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
519    dmu_object_type_t obj_type, sa_handle_t *hdl)
520{
521	znode_t	*zp;
522	struct inode *ip;
523	uint64_t mode;
524	uint64_t parent;
525	uint64_t tmp_gen;
526	uint64_t links;
527	uint64_t z_uid, z_gid;
528	uint64_t atime[2], mtime[2], ctime[2];
529	uint64_t projid = ZFS_DEFAULT_PROJID;
530	sa_bulk_attr_t bulk[11];
531	int count = 0;
532
533	ASSERT(zfsvfs != NULL);
534
535	ip = new_inode(zfsvfs->z_sb);
536	if (ip == NULL)
537		return (NULL);
538
539	zp = ITOZ(ip);
540	ASSERT(zp->z_dirlocks == NULL);
541	ASSERT3P(zp->z_acl_cached, ==, NULL);
542	ASSERT3P(zp->z_xattr_cached, ==, NULL);
543	zp->z_unlinked = B_FALSE;
544	zp->z_atime_dirty = B_FALSE;
545	zp->z_is_mapped = B_FALSE;
546	zp->z_is_ctldir = B_FALSE;
547	zp->z_is_stale = B_FALSE;
548	zp->z_suspended = B_FALSE;
549	zp->z_sa_hdl = NULL;
550	zp->z_mapcnt = 0;
551	zp->z_id = db->db_object;
552	zp->z_blksz = blksz;
553	zp->z_seq = 0x7A4653;
554	zp->z_sync_cnt = 0;
555
556	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
557
558	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
559	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
560	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
561	    &zp->z_size, 8);
562	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
563	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
564	    &zp->z_pflags, 8);
565	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
566	    &parent, 8);
567	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
568	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
569	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
570	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
571	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
572
573	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
574	    (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
575	    (zp->z_pflags & ZFS_PROJID) &&
576	    sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
577		if (hdl == NULL)
578			sa_handle_destroy(zp->z_sa_hdl);
579		zp->z_sa_hdl = NULL;
580		goto error;
581	}
582
583	zp->z_projid = projid;
584	zp->z_mode = ip->i_mode = mode;
585	ip->i_generation = (uint32_t)tmp_gen;
586	ip->i_blkbits = SPA_MINBLOCKSHIFT;
587	set_nlink(ip, (uint32_t)links);
588	zfs_uid_write(ip, z_uid);
589	zfs_gid_write(ip, z_gid);
590	zfs_set_inode_flags(zp, ip);
591
592	/* Cache the xattr parent id */
593	if (zp->z_pflags & ZFS_XATTR)
594		zp->z_xattr_parent = parent;
595
596	ZFS_TIME_DECODE(&ip->i_atime, atime);
597	ZFS_TIME_DECODE(&ip->i_mtime, mtime);
598	ZFS_TIME_DECODE(&ip->i_ctime, ctime);
599
600	ip->i_ino = zp->z_id;
601	zfs_znode_update_vfs(zp);
602	zfs_inode_set_ops(zfsvfs, ip);
603
604	/*
605	 * The only way insert_inode_locked() can fail is if the ip->i_ino
606	 * number is already hashed for this super block.  This can never
607	 * happen because the inode numbers map 1:1 with the object numbers.
608	 *
609	 * Exceptions include rolling back a mounted file system, either
610	 * from the zfs rollback or zfs recv command.
611	 *
612	 * Active inodes are unhashed during the rollback, but since zrele
613	 * can happen asynchronously, we can't guarantee they've been
614	 * unhashed.  This can cause hash collisions in unlinked drain
615	 * processing so do not hash unlinked znodes.
616	 */
617	if (links > 0)
618		VERIFY3S(insert_inode_locked(ip), ==, 0);
619
620	mutex_enter(&zfsvfs->z_znodes_lock);
621	list_insert_tail(&zfsvfs->z_all_znodes, zp);
622	zfsvfs->z_nr_znodes++;
623	mutex_exit(&zfsvfs->z_znodes_lock);
624
625	if (links > 0)
626		unlock_new_inode(ip);
627	return (zp);
628
629error:
630	iput(ip);
631	return (NULL);
632}
633
634/*
635 * Safely mark an inode dirty.  Inodes which are part of a read-only
636 * file system or snapshot may not be dirtied.
637 */
638void
639zfs_mark_inode_dirty(struct inode *ip)
640{
641	zfsvfs_t *zfsvfs = ITOZSB(ip);
642
643	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
644		return;
645
646	mark_inode_dirty(ip);
647}
648
649static uint64_t empty_xattr;
650static uint64_t pad[4];
651static zfs_acl_phys_t acl_phys;
652/*
653 * Create a new DMU object to hold a zfs znode.
654 *
655 *	IN:	dzp	- parent directory for new znode
656 *		vap	- file attributes for new znode
657 *		tx	- dmu transaction id for zap operations
658 *		cr	- credentials of caller
659 *		flag	- flags:
660 *			  IS_ROOT_NODE	- new object will be root
661 *			  IS_TMPFILE	- new object is of O_TMPFILE
662 *			  IS_XATTR	- new object is an attribute
663 *		acl_ids	- ACL related attributes
664 *
665 *	OUT:	zpp	- allocated znode (set to dzp if IS_ROOT_NODE)
666 *
667 */
668void
669zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
670    uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
671{
672	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
673	uint64_t	mode, size, links, parent, pflags;
674	uint64_t	projid = ZFS_DEFAULT_PROJID;
675	uint64_t	rdev = 0;
676	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
677	dmu_buf_t	*db;
678	inode_timespec_t now;
679	uint64_t	gen, obj;
680	int		bonuslen;
681	int		dnodesize;
682	sa_handle_t	*sa_hdl;
683	dmu_object_type_t obj_type;
684	sa_bulk_attr_t	*sa_attrs;
685	int		cnt = 0;
686	zfs_acl_locator_cb_t locate = { 0 };
687	znode_hold_t	*zh;
688
689	if (zfsvfs->z_replay) {
690		obj = vap->va_nodeid;
691		now = vap->va_ctime;		/* see zfs_replay_create() */
692		gen = vap->va_nblocks;		/* ditto */
693		dnodesize = vap->va_fsid;	/* ditto */
694	} else {
695		obj = 0;
696		gethrestime(&now);
697		gen = dmu_tx_get_txg(tx);
698		dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
699	}
700
701	if (dnodesize == 0)
702		dnodesize = DNODE_MIN_SIZE;
703
704	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
705
706	bonuslen = (obj_type == DMU_OT_SA) ?
707	    DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
708
709	/*
710	 * Create a new DMU object.
711	 */
712	/*
713	 * There's currently no mechanism for pre-reading the blocks that will
714	 * be needed to allocate a new object, so we accept the small chance
715	 * that there will be an i/o error and we will fail one of the
716	 * assertions below.
717	 */
718	if (S_ISDIR(vap->va_mode)) {
719		if (zfsvfs->z_replay) {
720			VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
721			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
722			    obj_type, bonuslen, dnodesize, tx));
723		} else {
724			obj = zap_create_norm_dnsize(zfsvfs->z_os,
725			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
726			    obj_type, bonuslen, dnodesize, tx);
727		}
728	} else {
729		if (zfsvfs->z_replay) {
730			VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
731			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
732			    obj_type, bonuslen, dnodesize, tx));
733		} else {
734			obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
735			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
736			    obj_type, bonuslen, dnodesize, tx);
737		}
738	}
739
740	zh = zfs_znode_hold_enter(zfsvfs, obj);
741	VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
742
743	/*
744	 * If this is the root, fix up the half-initialized parent pointer
745	 * to reference the just-allocated physical data area.
746	 */
747	if (flag & IS_ROOT_NODE) {
748		dzp->z_id = obj;
749	}
750
751	/*
752	 * If parent is an xattr, so am I.
753	 */
754	if (dzp->z_pflags & ZFS_XATTR) {
755		flag |= IS_XATTR;
756	}
757
758	if (zfsvfs->z_use_fuids)
759		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
760	else
761		pflags = 0;
762
763	if (S_ISDIR(vap->va_mode)) {
764		size = 2;		/* contents ("." and "..") */
765		links = 2;
766	} else {
767		size = 0;
768		links = (flag & IS_TMPFILE) ? 0 : 1;
769	}
770
771	if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
772		rdev = vap->va_rdev;
773
774	parent = dzp->z_id;
775	mode = acl_ids->z_mode;
776	if (flag & IS_XATTR)
777		pflags |= ZFS_XATTR;
778
779	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
780		/*
781		 * With ZFS_PROJID flag, we can easily know whether there is
782		 * project ID stored on disk or not. See zfs_space_delta_cb().
783		 */
784		if (obj_type != DMU_OT_ZNODE &&
785		    dmu_objset_projectquota_enabled(zfsvfs->z_os))
786			pflags |= ZFS_PROJID;
787
788		/*
789		 * Inherit project ID from parent if required.
790		 */
791		projid = zfs_inherit_projid(dzp);
792		if (dzp->z_pflags & ZFS_PROJINHERIT)
793			pflags |= ZFS_PROJINHERIT;
794	}
795
796	/*
797	 * No execs denied will be determined when zfs_mode_compute() is called.
798	 */
799	pflags |= acl_ids->z_aclp->z_hints &
800	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
801	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
802
803	ZFS_TIME_ENCODE(&now, crtime);
804	ZFS_TIME_ENCODE(&now, ctime);
805
806	if (vap->va_mask & ATTR_ATIME) {
807		ZFS_TIME_ENCODE(&vap->va_atime, atime);
808	} else {
809		ZFS_TIME_ENCODE(&now, atime);
810	}
811
812	if (vap->va_mask & ATTR_MTIME) {
813		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
814	} else {
815		ZFS_TIME_ENCODE(&now, mtime);
816	}
817
818	/* Now add in all of the "SA" attributes */
819	VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
820	    &sa_hdl));
821
822	/*
823	 * Setup the array of attributes to be replaced/set on the new file
824	 *
825	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
826	 * in the old znode_phys_t format.  Don't change this ordering
827	 */
828	sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
829
830	if (obj_type == DMU_OT_ZNODE) {
831		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
832		    NULL, &atime, 16);
833		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
834		    NULL, &mtime, 16);
835		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
836		    NULL, &ctime, 16);
837		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
838		    NULL, &crtime, 16);
839		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
840		    NULL, &gen, 8);
841		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
842		    NULL, &mode, 8);
843		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
844		    NULL, &size, 8);
845		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
846		    NULL, &parent, 8);
847	} else {
848		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
849		    NULL, &mode, 8);
850		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
851		    NULL, &size, 8);
852		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
853		    NULL, &gen, 8);
854		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
855		    NULL, &acl_ids->z_fuid, 8);
856		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
857		    NULL, &acl_ids->z_fgid, 8);
858		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
859		    NULL, &parent, 8);
860		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
861		    NULL, &pflags, 8);
862		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
863		    NULL, &atime, 16);
864		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
865		    NULL, &mtime, 16);
866		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
867		    NULL, &ctime, 16);
868		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
869		    NULL, &crtime, 16);
870	}
871
872	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
873
874	if (obj_type == DMU_OT_ZNODE) {
875		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
876		    &empty_xattr, 8);
877	} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
878	    pflags & ZFS_PROJID) {
879		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
880		    NULL, &projid, 8);
881	}
882	if (obj_type == DMU_OT_ZNODE ||
883	    (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
884		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
885		    NULL, &rdev, 8);
886	}
887	if (obj_type == DMU_OT_ZNODE) {
888		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
889		    NULL, &pflags, 8);
890		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
891		    &acl_ids->z_fuid, 8);
892		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
893		    &acl_ids->z_fgid, 8);
894		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
895		    sizeof (uint64_t) * 4);
896		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
897		    &acl_phys, sizeof (zfs_acl_phys_t));
898	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
899		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
900		    &acl_ids->z_aclp->z_acl_count, 8);
901		locate.cb_aclp = acl_ids->z_aclp;
902		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
903		    zfs_acl_data_locator, &locate,
904		    acl_ids->z_aclp->z_acl_bytes);
905		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
906		    acl_ids->z_fuid, acl_ids->z_fgid);
907	}
908
909	VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
910
911	if (!(flag & IS_ROOT_NODE)) {
912		/*
913		 * The call to zfs_znode_alloc() may fail if memory is low
914		 * via the call path: alloc_inode() -> inode_init_always() ->
915		 * security_inode_alloc() -> inode_alloc_security().  Since
916		 * the existing code is written such that zfs_mknode() can
917		 * not fail retry until sufficient memory has been reclaimed.
918		 */
919		do {
920			*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
921		} while (*zpp == NULL);
922
923		VERIFY(*zpp != NULL);
924		VERIFY(dzp != NULL);
925	} else {
926		/*
927		 * If we are creating the root node, the "parent" we
928		 * passed in is the znode for the root.
929		 */
930		*zpp = dzp;
931
932		(*zpp)->z_sa_hdl = sa_hdl;
933	}
934
935	(*zpp)->z_pflags = pflags;
936	(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
937	(*zpp)->z_dnodesize = dnodesize;
938	(*zpp)->z_projid = projid;
939
940	if (obj_type == DMU_OT_ZNODE ||
941	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
942		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
943	}
944	kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
945	zfs_znode_hold_exit(zfsvfs, zh);
946}
947
948/*
949 * Update in-core attributes.  It is assumed the caller will be doing an
950 * sa_bulk_update to push the changes out.
951 */
952void
953zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
954{
955	xoptattr_t *xoap;
956	boolean_t update_inode = B_FALSE;
957
958	xoap = xva_getxoptattr(xvap);
959	ASSERT(xoap);
960
961	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
962		uint64_t times[2];
963		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
964		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
965		    &times, sizeof (times), tx);
966		XVA_SET_RTN(xvap, XAT_CREATETIME);
967	}
968	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
969		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
970		    zp->z_pflags, tx);
971		XVA_SET_RTN(xvap, XAT_READONLY);
972	}
973	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
974		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
975		    zp->z_pflags, tx);
976		XVA_SET_RTN(xvap, XAT_HIDDEN);
977	}
978	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
979		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
980		    zp->z_pflags, tx);
981		XVA_SET_RTN(xvap, XAT_SYSTEM);
982	}
983	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
984		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
985		    zp->z_pflags, tx);
986		XVA_SET_RTN(xvap, XAT_ARCHIVE);
987	}
988	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
989		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
990		    zp->z_pflags, tx);
991		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
992
993		update_inode = B_TRUE;
994	}
995	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
996		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
997		    zp->z_pflags, tx);
998		XVA_SET_RTN(xvap, XAT_NOUNLINK);
999	}
1000	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1001		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1002		    zp->z_pflags, tx);
1003		XVA_SET_RTN(xvap, XAT_APPENDONLY);
1004
1005		update_inode = B_TRUE;
1006	}
1007	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1008		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1009		    zp->z_pflags, tx);
1010		XVA_SET_RTN(xvap, XAT_NODUMP);
1011	}
1012	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1013		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1014		    zp->z_pflags, tx);
1015		XVA_SET_RTN(xvap, XAT_OPAQUE);
1016	}
1017	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1018		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1019		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
1020		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1021	}
1022	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1023		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1024		    zp->z_pflags, tx);
1025		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1026	}
1027	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1028		zfs_sa_set_scanstamp(zp, xvap, tx);
1029		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1030	}
1031	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1032		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1033		    zp->z_pflags, tx);
1034		XVA_SET_RTN(xvap, XAT_REPARSE);
1035	}
1036	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1037		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1038		    zp->z_pflags, tx);
1039		XVA_SET_RTN(xvap, XAT_OFFLINE);
1040	}
1041	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1042		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1043		    zp->z_pflags, tx);
1044		XVA_SET_RTN(xvap, XAT_SPARSE);
1045	}
1046	if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
1047		ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
1048		    zp->z_pflags, tx);
1049		XVA_SET_RTN(xvap, XAT_PROJINHERIT);
1050	}
1051
1052	if (update_inode)
1053		zfs_set_inode_flags(zp, ZTOI(zp));
1054}
1055
1056int
1057zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1058{
1059	dmu_object_info_t doi;
1060	dmu_buf_t	*db;
1061	znode_t		*zp;
1062	znode_hold_t	*zh;
1063	int err;
1064	sa_handle_t	*hdl;
1065
1066	*zpp = NULL;
1067
1068again:
1069	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1070
1071	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1072	if (err) {
1073		zfs_znode_hold_exit(zfsvfs, zh);
1074		return (err);
1075	}
1076
1077	dmu_object_info_from_db(db, &doi);
1078	if (doi.doi_bonus_type != DMU_OT_SA &&
1079	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1080	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1081	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1082		sa_buf_rele(db, NULL);
1083		zfs_znode_hold_exit(zfsvfs, zh);
1084		return (SET_ERROR(EINVAL));
1085	}
1086
1087	hdl = dmu_buf_get_user(db);
1088	if (hdl != NULL) {
1089		zp = sa_get_userdata(hdl);
1090
1091
1092		/*
1093		 * Since "SA" does immediate eviction we
1094		 * should never find a sa handle that doesn't
1095		 * know about the znode.
1096		 */
1097
1098		ASSERT3P(zp, !=, NULL);
1099
1100		mutex_enter(&zp->z_lock);
1101		ASSERT3U(zp->z_id, ==, obj_num);
1102		/*
1103		 * If zp->z_unlinked is set, the znode is already marked
1104		 * for deletion and should not be discovered. Check this
1105		 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1106		 *
1107		 * If igrab() returns NULL the VFS has independently
1108		 * determined the inode should be evicted and has
1109		 * called iput_final() to start the eviction process.
1110		 * The SA handle is still valid but because the VFS
1111		 * requires that the eviction succeed we must drop
1112		 * our locks and references to allow the eviction to
1113		 * complete.  The zfs_zget() may then be retried.
1114		 *
1115		 * This unlikely case could be optimized by registering
1116		 * a sops->drop_inode() callback.  The callback would
1117		 * need to detect the active SA hold thereby informing
1118		 * the VFS that this inode should not be evicted.
1119		 */
1120		if (igrab(ZTOI(zp)) == NULL) {
1121			if (zp->z_unlinked)
1122				err = SET_ERROR(ENOENT);
1123			else
1124				err = SET_ERROR(EAGAIN);
1125		} else {
1126			*zpp = zp;
1127			err = 0;
1128		}
1129
1130		mutex_exit(&zp->z_lock);
1131		sa_buf_rele(db, NULL);
1132		zfs_znode_hold_exit(zfsvfs, zh);
1133
1134		if (err == EAGAIN) {
1135			/* inode might need this to finish evict */
1136			cond_resched();
1137			goto again;
1138		}
1139		return (err);
1140	}
1141
1142	/*
1143	 * Not found create new znode/vnode but only if file exists.
1144	 *
1145	 * There is a small window where zfs_vget() could
1146	 * find this object while a file create is still in
1147	 * progress.  This is checked for in zfs_znode_alloc()
1148	 *
1149	 * if zfs_znode_alloc() fails it will drop the hold on the
1150	 * bonus buffer.
1151	 */
1152	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1153	    doi.doi_bonus_type, NULL);
1154	if (zp == NULL) {
1155		err = SET_ERROR(ENOENT);
1156	} else {
1157		*zpp = zp;
1158	}
1159	zfs_znode_hold_exit(zfsvfs, zh);
1160	return (err);
1161}
1162
1163int
1164zfs_rezget(znode_t *zp)
1165{
1166	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1167	dmu_object_info_t doi;
1168	dmu_buf_t *db;
1169	uint64_t obj_num = zp->z_id;
1170	uint64_t mode;
1171	uint64_t links;
1172	sa_bulk_attr_t bulk[10];
1173	int err;
1174	int count = 0;
1175	uint64_t gen;
1176	uint64_t z_uid, z_gid;
1177	uint64_t atime[2], mtime[2], ctime[2];
1178	uint64_t projid = ZFS_DEFAULT_PROJID;
1179	znode_hold_t *zh;
1180
1181	/*
1182	 * skip ctldir, otherwise they will always get invalidated. This will
1183	 * cause funny behaviour for the mounted snapdirs. Especially for
1184	 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1185	 * anyone automount it again as long as someone is still using the
1186	 * detached mount.
1187	 */
1188	if (zp->z_is_ctldir)
1189		return (0);
1190
1191	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
1192
1193	mutex_enter(&zp->z_acl_lock);
1194	if (zp->z_acl_cached) {
1195		zfs_acl_free(zp->z_acl_cached);
1196		zp->z_acl_cached = NULL;
1197	}
1198	mutex_exit(&zp->z_acl_lock);
1199
1200	rw_enter(&zp->z_xattr_lock, RW_WRITER);
1201	if (zp->z_xattr_cached) {
1202		nvlist_free(zp->z_xattr_cached);
1203		zp->z_xattr_cached = NULL;
1204	}
1205	rw_exit(&zp->z_xattr_lock);
1206
1207	ASSERT(zp->z_sa_hdl == NULL);
1208	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1209	if (err) {
1210		zfs_znode_hold_exit(zfsvfs, zh);
1211		return (err);
1212	}
1213
1214	dmu_object_info_from_db(db, &doi);
1215	if (doi.doi_bonus_type != DMU_OT_SA &&
1216	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1217	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1218	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1219		sa_buf_rele(db, NULL);
1220		zfs_znode_hold_exit(zfsvfs, zh);
1221		return (SET_ERROR(EINVAL));
1222	}
1223
1224	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1225
1226	/* reload cached values */
1227	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1228	    &gen, sizeof (gen));
1229	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1230	    &zp->z_size, sizeof (zp->z_size));
1231	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1232	    &links, sizeof (links));
1233	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1234	    &zp->z_pflags, sizeof (zp->z_pflags));
1235	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1236	    &z_uid, sizeof (z_uid));
1237	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1238	    &z_gid, sizeof (z_gid));
1239	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1240	    &mode, sizeof (mode));
1241	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1242	    &atime, 16);
1243	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
1244	    &mtime, 16);
1245	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1246	    &ctime, 16);
1247
1248	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1249		zfs_znode_dmu_fini(zp);
1250		zfs_znode_hold_exit(zfsvfs, zh);
1251		return (SET_ERROR(EIO));
1252	}
1253
1254	if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
1255		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
1256		    &projid, 8);
1257		if (err != 0 && err != ENOENT) {
1258			zfs_znode_dmu_fini(zp);
1259			zfs_znode_hold_exit(zfsvfs, zh);
1260			return (SET_ERROR(err));
1261		}
1262	}
1263
1264	zp->z_projid = projid;
1265	zp->z_mode = ZTOI(zp)->i_mode = mode;
1266	zfs_uid_write(ZTOI(zp), z_uid);
1267	zfs_gid_write(ZTOI(zp), z_gid);
1268
1269	ZFS_TIME_DECODE(&ZTOI(zp)->i_atime, atime);
1270	ZFS_TIME_DECODE(&ZTOI(zp)->i_mtime, mtime);
1271	ZFS_TIME_DECODE(&ZTOI(zp)->i_ctime, ctime);
1272
1273	if ((uint32_t)gen != ZTOI(zp)->i_generation) {
1274		zfs_znode_dmu_fini(zp);
1275		zfs_znode_hold_exit(zfsvfs, zh);
1276		return (SET_ERROR(EIO));
1277	}
1278
1279	set_nlink(ZTOI(zp), (uint32_t)links);
1280	zfs_set_inode_flags(zp, ZTOI(zp));
1281
1282	zp->z_blksz = doi.doi_data_block_size;
1283	zp->z_atime_dirty = B_FALSE;
1284	zfs_znode_update_vfs(zp);
1285
1286	/*
1287	 * If the file has zero links, then it has been unlinked on the send
1288	 * side and it must be in the received unlinked set.
1289	 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1290	 * stale data and to prevent automatic removal of the file in
1291	 * zfs_zinactive().  The file will be removed either when it is removed
1292	 * on the send side and the next incremental stream is received or
1293	 * when the unlinked set gets processed.
1294	 */
1295	zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
1296	if (zp->z_unlinked)
1297		zfs_znode_dmu_fini(zp);
1298
1299	zfs_znode_hold_exit(zfsvfs, zh);
1300
1301	return (0);
1302}
1303
1304void
1305zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1306{
1307	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1308	objset_t *os = zfsvfs->z_os;
1309	uint64_t obj = zp->z_id;
1310	uint64_t acl_obj = zfs_external_acl(zp);
1311	znode_hold_t *zh;
1312
1313	zh = zfs_znode_hold_enter(zfsvfs, obj);
1314	if (acl_obj) {
1315		VERIFY(!zp->z_is_sa);
1316		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1317	}
1318	VERIFY(0 == dmu_object_free(os, obj, tx));
1319	zfs_znode_dmu_fini(zp);
1320	zfs_znode_hold_exit(zfsvfs, zh);
1321}
1322
1323void
1324zfs_zinactive(znode_t *zp)
1325{
1326	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1327	uint64_t z_id = zp->z_id;
1328	znode_hold_t *zh;
1329
1330	ASSERT(zp->z_sa_hdl);
1331
1332	/*
1333	 * Don't allow a zfs_zget() while were trying to release this znode.
1334	 */
1335	zh = zfs_znode_hold_enter(zfsvfs, z_id);
1336
1337	mutex_enter(&zp->z_lock);
1338
1339	/*
1340	 * If this was the last reference to a file with no links, remove
1341	 * the file from the file system unless the file system is mounted
1342	 * read-only.  That can happen, for example, if the file system was
1343	 * originally read-write, the file was opened, then unlinked and
1344	 * the file system was made read-only before the file was finally
1345	 * closed.  The file will remain in the unlinked set.
1346	 */
1347	if (zp->z_unlinked) {
1348		ASSERT(!zfsvfs->z_issnap);
1349		if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
1350			mutex_exit(&zp->z_lock);
1351			zfs_znode_hold_exit(zfsvfs, zh);
1352			zfs_rmnode(zp);
1353			return;
1354		}
1355	}
1356
1357	mutex_exit(&zp->z_lock);
1358	zfs_znode_dmu_fini(zp);
1359
1360	zfs_znode_hold_exit(zfsvfs, zh);
1361}
1362
1363#if defined(HAVE_INODE_TIMESPEC64_TIMES)
1364#define	zfs_compare_timespec timespec64_compare
1365#else
1366#define	zfs_compare_timespec timespec_compare
1367#endif
1368
1369/*
1370 * Determine whether the znode's atime must be updated.  The logic mostly
1371 * duplicates the Linux kernel's relatime_need_update() functionality.
1372 * This function is only called if the underlying filesystem actually has
1373 * atime updates enabled.
1374 */
1375boolean_t
1376zfs_relatime_need_update(const struct inode *ip)
1377{
1378	inode_timespec_t now;
1379
1380	gethrestime(&now);
1381	/*
1382	 * In relatime mode, only update the atime if the previous atime
1383	 * is earlier than either the ctime or mtime or if at least a day
1384	 * has passed since the last update of atime.
1385	 */
1386	if (zfs_compare_timespec(&ip->i_mtime, &ip->i_atime) >= 0)
1387		return (B_TRUE);
1388
1389	if (zfs_compare_timespec(&ip->i_ctime, &ip->i_atime) >= 0)
1390		return (B_TRUE);
1391
1392	if ((hrtime_t)now.tv_sec - (hrtime_t)ip->i_atime.tv_sec >= 24*60*60)
1393		return (B_TRUE);
1394
1395	return (B_FALSE);
1396}
1397
1398/*
1399 * Prepare to update znode time stamps.
1400 *
1401 *	IN:	zp	- znode requiring timestamp update
1402 *		flag	- ATTR_MTIME, ATTR_CTIME flags
1403 *
1404 *	OUT:	zp	- z_seq
1405 *		mtime	- new mtime
1406 *		ctime	- new ctime
1407 *
1408 *	Note: We don't update atime here, because we rely on Linux VFS to do
1409 *	atime updating.
1410 */
1411void
1412zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1413    uint64_t ctime[2])
1414{
1415	inode_timespec_t now;
1416
1417	gethrestime(&now);
1418
1419	zp->z_seq++;
1420
1421	if (flag & ATTR_MTIME) {
1422		ZFS_TIME_ENCODE(&now, mtime);
1423		ZFS_TIME_DECODE(&(ZTOI(zp)->i_mtime), mtime);
1424		if (ZTOZSB(zp)->z_use_fuids) {
1425			zp->z_pflags |= (ZFS_ARCHIVE |
1426			    ZFS_AV_MODIFIED);
1427		}
1428	}
1429
1430	if (flag & ATTR_CTIME) {
1431		ZFS_TIME_ENCODE(&now, ctime);
1432		ZFS_TIME_DECODE(&(ZTOI(zp)->i_ctime), ctime);
1433		if (ZTOZSB(zp)->z_use_fuids)
1434			zp->z_pflags |= ZFS_ARCHIVE;
1435	}
1436}
1437
1438/*
1439 * Grow the block size for a file.
1440 *
1441 *	IN:	zp	- znode of file to free data in.
1442 *		size	- requested block size
1443 *		tx	- open transaction.
1444 *
1445 * NOTE: this function assumes that the znode is write locked.
1446 */
1447void
1448zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1449{
1450	int		error;
1451	u_longlong_t	dummy;
1452
1453	if (size <= zp->z_blksz)
1454		return;
1455	/*
1456	 * If the file size is already greater than the current blocksize,
1457	 * we will not grow.  If there is more than one block in a file,
1458	 * the blocksize cannot change.
1459	 */
1460	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1461		return;
1462
1463	error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1464	    size, 0, tx);
1465
1466	if (error == ENOTSUP)
1467		return;
1468	ASSERT0(error);
1469
1470	/* What blocksize did we actually get? */
1471	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1472}
1473
1474/*
1475 * Increase the file length
1476 *
1477 *	IN:	zp	- znode of file to free data in.
1478 *		end	- new end-of-file
1479 *
1480 *	RETURN:	0 on success, error code on failure
1481 */
1482static int
1483zfs_extend(znode_t *zp, uint64_t end)
1484{
1485	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1486	dmu_tx_t *tx;
1487	zfs_locked_range_t *lr;
1488	uint64_t newblksz;
1489	int error;
1490
1491	/*
1492	 * We will change zp_size, lock the whole file.
1493	 */
1494	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1495
1496	/*
1497	 * Nothing to do if file already at desired length.
1498	 */
1499	if (end <= zp->z_size) {
1500		zfs_rangelock_exit(lr);
1501		return (0);
1502	}
1503	tx = dmu_tx_create(zfsvfs->z_os);
1504	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1505	zfs_sa_upgrade_txholds(tx, zp);
1506	if (end > zp->z_blksz &&
1507	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1508		/*
1509		 * We are growing the file past the current block size.
1510		 */
1511		if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1512			/*
1513			 * File's blocksize is already larger than the
1514			 * "recordsize" property.  Only let it grow to
1515			 * the next power of 2.
1516			 */
1517			ASSERT(!ISP2(zp->z_blksz));
1518			newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
1519		} else {
1520			newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1521		}
1522		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1523	} else {
1524		newblksz = 0;
1525	}
1526
1527	error = dmu_tx_assign(tx, TXG_WAIT);
1528	if (error) {
1529		dmu_tx_abort(tx);
1530		zfs_rangelock_exit(lr);
1531		return (error);
1532	}
1533
1534	if (newblksz)
1535		zfs_grow_blocksize(zp, newblksz, tx);
1536
1537	zp->z_size = end;
1538
1539	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1540	    &zp->z_size, sizeof (zp->z_size), tx));
1541
1542	zfs_rangelock_exit(lr);
1543
1544	dmu_tx_commit(tx);
1545
1546	return (0);
1547}
1548
1549/*
1550 * zfs_zero_partial_page - Modeled after update_pages() but
1551 * with different arguments and semantics for use by zfs_freesp().
1552 *
1553 * Zeroes a piece of a single page cache entry for zp at offset
1554 * start and length len.
1555 *
1556 * Caller must acquire a range lock on the file for the region
1557 * being zeroed in order that the ARC and page cache stay in sync.
1558 */
1559static void
1560zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
1561{
1562	struct address_space *mp = ZTOI(zp)->i_mapping;
1563	struct page *pp;
1564	int64_t	off;
1565	void *pb;
1566
1567	ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
1568
1569	off = start & (PAGE_SIZE - 1);
1570	start &= PAGE_MASK;
1571
1572	pp = find_lock_page(mp, start >> PAGE_SHIFT);
1573	if (pp) {
1574		if (mapping_writably_mapped(mp))
1575			flush_dcache_page(pp);
1576
1577		pb = kmap(pp);
1578		bzero(pb + off, len);
1579		kunmap(pp);
1580
1581		if (mapping_writably_mapped(mp))
1582			flush_dcache_page(pp);
1583
1584		mark_page_accessed(pp);
1585		SetPageUptodate(pp);
1586		ClearPageError(pp);
1587		unlock_page(pp);
1588		put_page(pp);
1589	}
1590}
1591
1592/*
1593 * Free space in a file.
1594 *
1595 *	IN:	zp	- znode of file to free data in.
1596 *		off	- start of section to free.
1597 *		len	- length of section to free.
1598 *
1599 *	RETURN:	0 on success, error code on failure
1600 */
1601static int
1602zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1603{
1604	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1605	zfs_locked_range_t *lr;
1606	int error;
1607
1608	/*
1609	 * Lock the range being freed.
1610	 */
1611	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
1612
1613	/*
1614	 * Nothing to do if file already at desired length.
1615	 */
1616	if (off >= zp->z_size) {
1617		zfs_rangelock_exit(lr);
1618		return (0);
1619	}
1620
1621	if (off + len > zp->z_size)
1622		len = zp->z_size - off;
1623
1624	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1625
1626	/*
1627	 * Zero partial page cache entries.  This must be done under a
1628	 * range lock in order to keep the ARC and page cache in sync.
1629	 */
1630	if (zp->z_is_mapped) {
1631		loff_t first_page, last_page, page_len;
1632		loff_t first_page_offset, last_page_offset;
1633
1634		/* first possible full page in hole */
1635		first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
1636		/* last page of hole */
1637		last_page = (off + len) >> PAGE_SHIFT;
1638
1639		/* offset of first_page */
1640		first_page_offset = first_page << PAGE_SHIFT;
1641		/* offset of last_page */
1642		last_page_offset = last_page << PAGE_SHIFT;
1643
1644		/* truncate whole pages */
1645		if (last_page_offset > first_page_offset) {
1646			truncate_inode_pages_range(ZTOI(zp)->i_mapping,
1647			    first_page_offset, last_page_offset - 1);
1648		}
1649
1650		/* truncate sub-page ranges */
1651		if (first_page > last_page) {
1652			/* entire punched area within a single page */
1653			zfs_zero_partial_page(zp, off, len);
1654		} else {
1655			/* beginning of punched area at the end of a page */
1656			page_len  = first_page_offset - off;
1657			if (page_len > 0)
1658				zfs_zero_partial_page(zp, off, page_len);
1659
1660			/* end of punched area at the beginning of a page */
1661			page_len = off + len - last_page_offset;
1662			if (page_len > 0)
1663				zfs_zero_partial_page(zp, last_page_offset,
1664				    page_len);
1665		}
1666	}
1667	zfs_rangelock_exit(lr);
1668
1669	return (error);
1670}
1671
1672/*
1673 * Truncate a file
1674 *
1675 *	IN:	zp	- znode of file to free data in.
1676 *		end	- new end-of-file.
1677 *
1678 *	RETURN:	0 on success, error code on failure
1679 */
1680static int
1681zfs_trunc(znode_t *zp, uint64_t end)
1682{
1683	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1684	dmu_tx_t *tx;
1685	zfs_locked_range_t *lr;
1686	int error;
1687	sa_bulk_attr_t bulk[2];
1688	int count = 0;
1689
1690	/*
1691	 * We will change zp_size, lock the whole file.
1692	 */
1693	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
1694
1695	/*
1696	 * Nothing to do if file already at desired length.
1697	 */
1698	if (end >= zp->z_size) {
1699		zfs_rangelock_exit(lr);
1700		return (0);
1701	}
1702
1703	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
1704	    DMU_OBJECT_END);
1705	if (error) {
1706		zfs_rangelock_exit(lr);
1707		return (error);
1708	}
1709	tx = dmu_tx_create(zfsvfs->z_os);
1710	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1711	zfs_sa_upgrade_txholds(tx, zp);
1712	dmu_tx_mark_netfree(tx);
1713	error = dmu_tx_assign(tx, TXG_WAIT);
1714	if (error) {
1715		dmu_tx_abort(tx);
1716		zfs_rangelock_exit(lr);
1717		return (error);
1718	}
1719
1720	zp->z_size = end;
1721	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1722	    NULL, &zp->z_size, sizeof (zp->z_size));
1723
1724	if (end == 0) {
1725		zp->z_pflags &= ~ZFS_SPARSE;
1726		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1727		    NULL, &zp->z_pflags, 8);
1728	}
1729	VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1730
1731	dmu_tx_commit(tx);
1732	zfs_rangelock_exit(lr);
1733
1734	return (0);
1735}
1736
1737/*
1738 * Free space in a file
1739 *
1740 *	IN:	zp	- znode of file to free data in.
1741 *		off	- start of range
1742 *		len	- end of range (0 => EOF)
1743 *		flag	- current file open mode flags.
1744 *		log	- TRUE if this action should be logged
1745 *
1746 *	RETURN:	0 on success, error code on failure
1747 */
1748int
1749zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1750{
1751	dmu_tx_t *tx;
1752	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1753	zilog_t *zilog = zfsvfs->z_log;
1754	uint64_t mode;
1755	uint64_t mtime[2], ctime[2];
1756	sa_bulk_attr_t bulk[3];
1757	int count = 0;
1758	int error;
1759
1760	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1761	    sizeof (mode))) != 0)
1762		return (error);
1763
1764	if (off > zp->z_size) {
1765		error =  zfs_extend(zp, off+len);
1766		if (error == 0 && log)
1767			goto log;
1768		goto out;
1769	}
1770
1771	if (len == 0) {
1772		error = zfs_trunc(zp, off);
1773	} else {
1774		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1775		    off + len > zp->z_size)
1776			error = zfs_extend(zp, off+len);
1777	}
1778	if (error || !log)
1779		goto out;
1780log:
1781	tx = dmu_tx_create(zfsvfs->z_os);
1782	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1783	zfs_sa_upgrade_txholds(tx, zp);
1784	error = dmu_tx_assign(tx, TXG_WAIT);
1785	if (error) {
1786		dmu_tx_abort(tx);
1787		goto out;
1788	}
1789
1790	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1791	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1792	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1793	    NULL, &zp->z_pflags, 8);
1794	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1795	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1796	ASSERT(error == 0);
1797
1798	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1799
1800	dmu_tx_commit(tx);
1801
1802	zfs_znode_update_vfs(zp);
1803	error = 0;
1804
1805out:
1806	/*
1807	 * Truncate the page cache - for file truncate operations, use
1808	 * the purpose-built API for truncations.  For punching operations,
1809	 * the truncation is handled under a range lock in zfs_free_range.
1810	 */
1811	if (len == 0)
1812		truncate_setsize(ZTOI(zp), off);
1813	return (error);
1814}
1815
1816void
1817zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1818{
1819	struct super_block *sb;
1820	zfsvfs_t	*zfsvfs;
1821	uint64_t	moid, obj, sa_obj, version;
1822	uint64_t	sense = ZFS_CASE_SENSITIVE;
1823	uint64_t	norm = 0;
1824	nvpair_t	*elem;
1825	int		size;
1826	int		error;
1827	int		i;
1828	znode_t		*rootzp = NULL;
1829	vattr_t		vattr;
1830	znode_t		*zp;
1831	zfs_acl_ids_t	acl_ids;
1832
1833	/*
1834	 * First attempt to create master node.
1835	 */
1836	/*
1837	 * In an empty objset, there are no blocks to read and thus
1838	 * there can be no i/o errors (which we assert below).
1839	 */
1840	moid = MASTER_NODE_OBJ;
1841	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1842	    DMU_OT_NONE, 0, tx);
1843	ASSERT(error == 0);
1844
1845	/*
1846	 * Set starting attributes.
1847	 */
1848	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1849	elem = NULL;
1850	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1851		/* For the moment we expect all zpl props to be uint64_ts */
1852		uint64_t val;
1853		char *name;
1854
1855		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1856		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1857		name = nvpair_name(elem);
1858		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1859			if (val < version)
1860				version = val;
1861		} else {
1862			error = zap_update(os, moid, name, 8, 1, &val, tx);
1863		}
1864		ASSERT(error == 0);
1865		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1866			norm = val;
1867		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1868			sense = val;
1869	}
1870	ASSERT(version != 0);
1871	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1872
1873	/*
1874	 * Create zap object used for SA attribute registration
1875	 */
1876
1877	if (version >= ZPL_VERSION_SA) {
1878		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1879		    DMU_OT_NONE, 0, tx);
1880		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1881		ASSERT(error == 0);
1882	} else {
1883		sa_obj = 0;
1884	}
1885	/*
1886	 * Create a delete queue.
1887	 */
1888	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1889
1890	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1891	ASSERT(error == 0);
1892
1893	/*
1894	 * Create root znode.  Create minimal znode/inode/zfsvfs/sb
1895	 * to allow zfs_mknode to work.
1896	 */
1897	vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1898	vattr.va_mode = S_IFDIR|0755;
1899	vattr.va_uid = crgetuid(cr);
1900	vattr.va_gid = crgetgid(cr);
1901
1902	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1903	rootzp->z_unlinked = B_FALSE;
1904	rootzp->z_atime_dirty = B_FALSE;
1905	rootzp->z_is_sa = USE_SA(version, os);
1906	rootzp->z_pflags = 0;
1907
1908	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1909	zfsvfs->z_os = os;
1910	zfsvfs->z_parent = zfsvfs;
1911	zfsvfs->z_version = version;
1912	zfsvfs->z_use_fuids = USE_FUIDS(version, os);
1913	zfsvfs->z_use_sa = USE_SA(version, os);
1914	zfsvfs->z_norm = norm;
1915
1916	sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
1917	sb->s_fs_info = zfsvfs;
1918
1919	ZTOI(rootzp)->i_sb = sb;
1920
1921	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1922	    &zfsvfs->z_attr_table);
1923
1924	ASSERT(error == 0);
1925
1926	/*
1927	 * Fold case on file systems that are always or sometimes case
1928	 * insensitive.
1929	 */
1930	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1931		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1932
1933	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1934	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1935	    offsetof(znode_t, z_link_node));
1936
1937	size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1938	zfsvfs->z_hold_size = size;
1939	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1940	    KM_SLEEP);
1941	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1942	for (i = 0; i != size; i++) {
1943		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1944		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1945		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1946	}
1947
1948	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1949	    cr, NULL, &acl_ids));
1950	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1951	ASSERT3P(zp, ==, rootzp);
1952	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1953	ASSERT(error == 0);
1954	zfs_acl_ids_free(&acl_ids);
1955
1956	atomic_set(&ZTOI(rootzp)->i_count, 0);
1957	sa_handle_destroy(rootzp->z_sa_hdl);
1958	kmem_cache_free(znode_cache, rootzp);
1959
1960	for (i = 0; i != size; i++) {
1961		avl_destroy(&zfsvfs->z_hold_trees[i]);
1962		mutex_destroy(&zfsvfs->z_hold_locks[i]);
1963	}
1964
1965	mutex_destroy(&zfsvfs->z_znodes_lock);
1966
1967	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1968	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1969	kmem_free(sb, sizeof (struct super_block));
1970	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1971}
1972#endif /* _KERNEL */
1973
1974static int
1975zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1976{
1977	uint64_t sa_obj = 0;
1978	int error;
1979
1980	error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1981	if (error != 0 && error != ENOENT)
1982		return (error);
1983
1984	error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1985	return (error);
1986}
1987
1988static int
1989zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1990    dmu_buf_t **db, void *tag)
1991{
1992	dmu_object_info_t doi;
1993	int error;
1994
1995	if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1996		return (error);
1997
1998	dmu_object_info_from_db(*db, &doi);
1999	if ((doi.doi_bonus_type != DMU_OT_SA &&
2000	    doi.doi_bonus_type != DMU_OT_ZNODE) ||
2001	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
2002	    doi.doi_bonus_size < sizeof (znode_phys_t))) {
2003		sa_buf_rele(*db, tag);
2004		return (SET_ERROR(ENOTSUP));
2005	}
2006
2007	error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
2008	if (error != 0) {
2009		sa_buf_rele(*db, tag);
2010		return (error);
2011	}
2012
2013	return (0);
2014}
2015
2016static void
2017zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
2018{
2019	sa_handle_destroy(hdl);
2020	sa_buf_rele(db, tag);
2021}
2022
2023/*
2024 * Given an object number, return its parent object number and whether
2025 * or not the object is an extended attribute directory.
2026 */
2027static int
2028zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
2029    uint64_t *pobjp, int *is_xattrdir)
2030{
2031	uint64_t parent;
2032	uint64_t pflags;
2033	uint64_t mode;
2034	uint64_t parent_mode;
2035	sa_bulk_attr_t bulk[3];
2036	sa_handle_t *sa_hdl;
2037	dmu_buf_t *sa_db;
2038	int count = 0;
2039	int error;
2040
2041	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
2042	    &parent, sizeof (parent));
2043	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
2044	    &pflags, sizeof (pflags));
2045	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2046	    &mode, sizeof (mode));
2047
2048	if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
2049		return (error);
2050
2051	/*
2052	 * When a link is removed its parent pointer is not changed and will
2053	 * be invalid.  There are two cases where a link is removed but the
2054	 * file stays around, when it goes to the delete queue and when there
2055	 * are additional links.
2056	 */
2057	error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
2058	if (error != 0)
2059		return (error);
2060
2061	error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
2062	zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2063	if (error != 0)
2064		return (error);
2065
2066	*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
2067
2068	/*
2069	 * Extended attributes can be applied to files, directories, etc.
2070	 * Otherwise the parent must be a directory.
2071	 */
2072	if (!*is_xattrdir && !S_ISDIR(parent_mode))
2073		return (SET_ERROR(EINVAL));
2074
2075	*pobjp = parent;
2076
2077	return (0);
2078}
2079
2080/*
2081 * Given an object number, return some zpl level statistics
2082 */
2083static int
2084zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
2085    zfs_stat_t *sb)
2086{
2087	sa_bulk_attr_t bulk[4];
2088	int count = 0;
2089
2090	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
2091	    &sb->zs_mode, sizeof (sb->zs_mode));
2092	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
2093	    &sb->zs_gen, sizeof (sb->zs_gen));
2094	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
2095	    &sb->zs_links, sizeof (sb->zs_links));
2096	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
2097	    &sb->zs_ctime, sizeof (sb->zs_ctime));
2098
2099	return (sa_bulk_lookup(hdl, bulk, count));
2100}
2101
2102static int
2103zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2104    sa_attr_type_t *sa_table, char *buf, int len)
2105{
2106	sa_handle_t *sa_hdl;
2107	sa_handle_t *prevhdl = NULL;
2108	dmu_buf_t *prevdb = NULL;
2109	dmu_buf_t *sa_db = NULL;
2110	char *path = buf + len - 1;
2111	int error;
2112
2113	*path = '\0';
2114	sa_hdl = hdl;
2115
2116	uint64_t deleteq_obj;
2117	VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ,
2118	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
2119	error = zap_lookup_int(osp, deleteq_obj, obj);
2120	if (error == 0) {
2121		return (ESTALE);
2122	} else if (error != ENOENT) {
2123		return (error);
2124	}
2125	error = 0;
2126
2127	for (;;) {
2128		uint64_t pobj = 0;
2129		char component[MAXNAMELEN + 2];
2130		size_t complen;
2131		int is_xattrdir = 0;
2132
2133		if (prevdb) {
2134			ASSERT(prevhdl != NULL);
2135			zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2136		}
2137
2138		if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2139		    &is_xattrdir)) != 0)
2140			break;
2141
2142		if (pobj == obj) {
2143			if (path[0] != '/')
2144				*--path = '/';
2145			break;
2146		}
2147
2148		component[0] = '/';
2149		if (is_xattrdir) {
2150			(void) sprintf(component + 1, "<xattrdir>");
2151		} else {
2152			error = zap_value_search(osp, pobj, obj,
2153			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
2154			if (error != 0)
2155				break;
2156		}
2157
2158		complen = strlen(component);
2159		path -= complen;
2160		ASSERT(path >= buf);
2161		bcopy(component, path, complen);
2162		obj = pobj;
2163
2164		if (sa_hdl != hdl) {
2165			prevhdl = sa_hdl;
2166			prevdb = sa_db;
2167		}
2168		error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2169		if (error != 0) {
2170			sa_hdl = prevhdl;
2171			sa_db = prevdb;
2172			break;
2173		}
2174	}
2175
2176	if (sa_hdl != NULL && sa_hdl != hdl) {
2177		ASSERT(sa_db != NULL);
2178		zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2179	}
2180
2181	if (error == 0)
2182		(void) memmove(buf, path, buf + len - path);
2183
2184	return (error);
2185}
2186
2187int
2188zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2189{
2190	sa_attr_type_t *sa_table;
2191	sa_handle_t *hdl;
2192	dmu_buf_t *db;
2193	int error;
2194
2195	error = zfs_sa_setup(osp, &sa_table);
2196	if (error != 0)
2197		return (error);
2198
2199	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2200	if (error != 0)
2201		return (error);
2202
2203	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2204
2205	zfs_release_sa_handle(hdl, db, FTAG);
2206	return (error);
2207}
2208
2209int
2210zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2211    char *buf, int len)
2212{
2213	char *path = buf + len - 1;
2214	sa_attr_type_t *sa_table;
2215	sa_handle_t *hdl;
2216	dmu_buf_t *db;
2217	int error;
2218
2219	*path = '\0';
2220
2221	error = zfs_sa_setup(osp, &sa_table);
2222	if (error != 0)
2223		return (error);
2224
2225	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2226	if (error != 0)
2227		return (error);
2228
2229	error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2230	if (error != 0) {
2231		zfs_release_sa_handle(hdl, db, FTAG);
2232		return (error);
2233	}
2234
2235	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2236
2237	zfs_release_sa_handle(hdl, db, FTAG);
2238	return (error);
2239}
2240
2241#if defined(_KERNEL)
2242EXPORT_SYMBOL(zfs_create_fs);
2243EXPORT_SYMBOL(zfs_obj_to_path);
2244
2245/* CSTYLED */
2246module_param(zfs_object_mutex_size, uint, 0644);
2247MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
2248module_param(zfs_unlink_suspend_progress, int, 0644);
2249MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
2250"(debug - leaks space into the unlinked set)");
2251#endif
2252