1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 */
25
26/* Portions Copyright 2010 Robert Milkowski */
27
28#include <sys/types.h>
29#include <sys/param.h>
30#include <sys/sysmacros.h>
31#include <sys/kmem.h>
32#include <sys/pathname.h>
33#include <sys/vnode.h>
34#include <sys/vfs.h>
35#include <sys/mntent.h>
36#include <sys/cmn_err.h>
37#include <sys/zfs_znode.h>
38#include <sys/zfs_vnops.h>
39#include <sys/zfs_dir.h>
40#include <sys/zil.h>
41#include <sys/fs/zfs.h>
42#include <sys/dmu.h>
43#include <sys/dsl_prop.h>
44#include <sys/dsl_dataset.h>
45#include <sys/dsl_deleg.h>
46#include <sys/spa.h>
47#include <sys/zap.h>
48#include <sys/sa.h>
49#include <sys/sa_impl.h>
50#include <sys/policy.h>
51#include <sys/atomic.h>
52#include <sys/zfs_ioctl.h>
53#include <sys/zfs_ctldir.h>
54#include <sys/zfs_fuid.h>
55#include <sys/zfs_quota.h>
56#include <sys/sunddi.h>
57#include <sys/dmu_objset.h>
58#include <sys/dsl_dir.h>
59#include <sys/spa_boot.h>
60#include <sys/objlist.h>
61#include <sys/zpl.h>
62#include <linux/vfs_compat.h>
63#include "zfs_comutil.h"
64
65enum {
66	TOKEN_RO,
67	TOKEN_RW,
68	TOKEN_SETUID,
69	TOKEN_NOSETUID,
70	TOKEN_EXEC,
71	TOKEN_NOEXEC,
72	TOKEN_DEVICES,
73	TOKEN_NODEVICES,
74	TOKEN_DIRXATTR,
75	TOKEN_SAXATTR,
76	TOKEN_XATTR,
77	TOKEN_NOXATTR,
78	TOKEN_ATIME,
79	TOKEN_NOATIME,
80	TOKEN_RELATIME,
81	TOKEN_NORELATIME,
82	TOKEN_NBMAND,
83	TOKEN_NONBMAND,
84	TOKEN_MNTPOINT,
85	TOKEN_LAST,
86};
87
88static const match_table_t zpl_tokens = {
89	{ TOKEN_RO,		MNTOPT_RO },
90	{ TOKEN_RW,		MNTOPT_RW },
91	{ TOKEN_SETUID,		MNTOPT_SETUID },
92	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
93	{ TOKEN_EXEC,		MNTOPT_EXEC },
94	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
95	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
96	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
97	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
98	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
99	{ TOKEN_XATTR,		MNTOPT_XATTR },
100	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
101	{ TOKEN_ATIME,		MNTOPT_ATIME },
102	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
103	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
104	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
105	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
106	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
107	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
108	{ TOKEN_LAST,		NULL },
109};
110
111static void
112zfsvfs_vfs_free(vfs_t *vfsp)
113{
114	if (vfsp != NULL) {
115		if (vfsp->vfs_mntpoint != NULL)
116			kmem_strfree(vfsp->vfs_mntpoint);
117
118		kmem_free(vfsp, sizeof (vfs_t));
119	}
120}
121
122static int
123zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
124{
125	switch (token) {
126	case TOKEN_RO:
127		vfsp->vfs_readonly = B_TRUE;
128		vfsp->vfs_do_readonly = B_TRUE;
129		break;
130	case TOKEN_RW:
131		vfsp->vfs_readonly = B_FALSE;
132		vfsp->vfs_do_readonly = B_TRUE;
133		break;
134	case TOKEN_SETUID:
135		vfsp->vfs_setuid = B_TRUE;
136		vfsp->vfs_do_setuid = B_TRUE;
137		break;
138	case TOKEN_NOSETUID:
139		vfsp->vfs_setuid = B_FALSE;
140		vfsp->vfs_do_setuid = B_TRUE;
141		break;
142	case TOKEN_EXEC:
143		vfsp->vfs_exec = B_TRUE;
144		vfsp->vfs_do_exec = B_TRUE;
145		break;
146	case TOKEN_NOEXEC:
147		vfsp->vfs_exec = B_FALSE;
148		vfsp->vfs_do_exec = B_TRUE;
149		break;
150	case TOKEN_DEVICES:
151		vfsp->vfs_devices = B_TRUE;
152		vfsp->vfs_do_devices = B_TRUE;
153		break;
154	case TOKEN_NODEVICES:
155		vfsp->vfs_devices = B_FALSE;
156		vfsp->vfs_do_devices = B_TRUE;
157		break;
158	case TOKEN_DIRXATTR:
159		vfsp->vfs_xattr = ZFS_XATTR_DIR;
160		vfsp->vfs_do_xattr = B_TRUE;
161		break;
162	case TOKEN_SAXATTR:
163		vfsp->vfs_xattr = ZFS_XATTR_SA;
164		vfsp->vfs_do_xattr = B_TRUE;
165		break;
166	case TOKEN_XATTR:
167		vfsp->vfs_xattr = ZFS_XATTR_DIR;
168		vfsp->vfs_do_xattr = B_TRUE;
169		break;
170	case TOKEN_NOXATTR:
171		vfsp->vfs_xattr = ZFS_XATTR_OFF;
172		vfsp->vfs_do_xattr = B_TRUE;
173		break;
174	case TOKEN_ATIME:
175		vfsp->vfs_atime = B_TRUE;
176		vfsp->vfs_do_atime = B_TRUE;
177		break;
178	case TOKEN_NOATIME:
179		vfsp->vfs_atime = B_FALSE;
180		vfsp->vfs_do_atime = B_TRUE;
181		break;
182	case TOKEN_RELATIME:
183		vfsp->vfs_relatime = B_TRUE;
184		vfsp->vfs_do_relatime = B_TRUE;
185		break;
186	case TOKEN_NORELATIME:
187		vfsp->vfs_relatime = B_FALSE;
188		vfsp->vfs_do_relatime = B_TRUE;
189		break;
190	case TOKEN_NBMAND:
191		vfsp->vfs_nbmand = B_TRUE;
192		vfsp->vfs_do_nbmand = B_TRUE;
193		break;
194	case TOKEN_NONBMAND:
195		vfsp->vfs_nbmand = B_FALSE;
196		vfsp->vfs_do_nbmand = B_TRUE;
197		break;
198	case TOKEN_MNTPOINT:
199		vfsp->vfs_mntpoint = match_strdup(&args[0]);
200		if (vfsp->vfs_mntpoint == NULL)
201			return (SET_ERROR(ENOMEM));
202
203		break;
204	default:
205		break;
206	}
207
208	return (0);
209}
210
211/*
212 * Parse the raw mntopts and return a vfs_t describing the options.
213 */
214static int
215zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
216{
217	vfs_t *tmp_vfsp;
218	int error;
219
220	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
221
222	if (mntopts != NULL) {
223		substring_t args[MAX_OPT_ARGS];
224		char *tmp_mntopts, *p, *t;
225		int token;
226
227		tmp_mntopts = t = kmem_strdup(mntopts);
228		if (tmp_mntopts == NULL)
229			return (SET_ERROR(ENOMEM));
230
231		while ((p = strsep(&t, ",")) != NULL) {
232			if (!*p)
233				continue;
234
235			args[0].to = args[0].from = NULL;
236			token = match_token(p, zpl_tokens, args);
237			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
238			if (error) {
239				kmem_strfree(tmp_mntopts);
240				zfsvfs_vfs_free(tmp_vfsp);
241				return (error);
242			}
243		}
244
245		kmem_strfree(tmp_mntopts);
246	}
247
248	*vfsp = tmp_vfsp;
249
250	return (0);
251}
252
253boolean_t
254zfs_is_readonly(zfsvfs_t *zfsvfs)
255{
256	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
257}
258
259/*ARGSUSED*/
260int
261zfs_sync(struct super_block *sb, int wait, cred_t *cr)
262{
263	zfsvfs_t *zfsvfs = sb->s_fs_info;
264
265	/*
266	 * Semantically, the only requirement is that the sync be initiated.
267	 * The DMU syncs out txgs frequently, so there's nothing to do.
268	 */
269	if (!wait)
270		return (0);
271
272	if (zfsvfs != NULL) {
273		/*
274		 * Sync a specific filesystem.
275		 */
276		dsl_pool_t *dp;
277
278		ZFS_ENTER(zfsvfs);
279		dp = dmu_objset_pool(zfsvfs->z_os);
280
281		/*
282		 * If the system is shutting down, then skip any
283		 * filesystems which may exist on a suspended pool.
284		 */
285		if (spa_suspended(dp->dp_spa)) {
286			ZFS_EXIT(zfsvfs);
287			return (0);
288		}
289
290		if (zfsvfs->z_log != NULL)
291			zil_commit(zfsvfs->z_log, 0);
292
293		ZFS_EXIT(zfsvfs);
294	} else {
295		/*
296		 * Sync all ZFS filesystems.  This is what happens when you
297		 * run sync(1).  Unlike other filesystems, ZFS honors the
298		 * request by waiting for all pools to commit all dirty data.
299		 */
300		spa_sync_allpools();
301	}
302
303	return (0);
304}
305
306static void
307atime_changed_cb(void *arg, uint64_t newval)
308{
309	zfsvfs_t *zfsvfs = arg;
310	struct super_block *sb = zfsvfs->z_sb;
311
312	if (sb == NULL)
313		return;
314	/*
315	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
316	 * determined by atime_needs_update(), atime_needs_update() needs to
317	 * return false if atime is turned off, and not unconditionally return
318	 * false if atime is turned on.
319	 */
320	if (newval)
321		sb->s_flags &= ~SB_NOATIME;
322	else
323		sb->s_flags |= SB_NOATIME;
324}
325
326static void
327relatime_changed_cb(void *arg, uint64_t newval)
328{
329	((zfsvfs_t *)arg)->z_relatime = newval;
330}
331
332static void
333xattr_changed_cb(void *arg, uint64_t newval)
334{
335	zfsvfs_t *zfsvfs = arg;
336
337	if (newval == ZFS_XATTR_OFF) {
338		zfsvfs->z_flags &= ~ZSB_XATTR;
339	} else {
340		zfsvfs->z_flags |= ZSB_XATTR;
341
342		if (newval == ZFS_XATTR_SA)
343			zfsvfs->z_xattr_sa = B_TRUE;
344		else
345			zfsvfs->z_xattr_sa = B_FALSE;
346	}
347}
348
349static void
350acltype_changed_cb(void *arg, uint64_t newval)
351{
352	zfsvfs_t *zfsvfs = arg;
353
354	switch (newval) {
355	case ZFS_ACLTYPE_NFSV4:
356	case ZFS_ACLTYPE_OFF:
357		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
358		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
359		break;
360	case ZFS_ACLTYPE_POSIX:
361#ifdef CONFIG_FS_POSIX_ACL
362		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
363		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
364#else
365		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
366		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
367#endif /* CONFIG_FS_POSIX_ACL */
368		break;
369	default:
370		break;
371	}
372}
373
374static void
375blksz_changed_cb(void *arg, uint64_t newval)
376{
377	zfsvfs_t *zfsvfs = arg;
378	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
379	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
380	ASSERT(ISP2(newval));
381
382	zfsvfs->z_max_blksz = newval;
383}
384
385static void
386readonly_changed_cb(void *arg, uint64_t newval)
387{
388	zfsvfs_t *zfsvfs = arg;
389	struct super_block *sb = zfsvfs->z_sb;
390
391	if (sb == NULL)
392		return;
393
394	if (newval)
395		sb->s_flags |= SB_RDONLY;
396	else
397		sb->s_flags &= ~SB_RDONLY;
398}
399
400static void
401devices_changed_cb(void *arg, uint64_t newval)
402{
403}
404
405static void
406setuid_changed_cb(void *arg, uint64_t newval)
407{
408}
409
410static void
411exec_changed_cb(void *arg, uint64_t newval)
412{
413}
414
415static void
416nbmand_changed_cb(void *arg, uint64_t newval)
417{
418	zfsvfs_t *zfsvfs = arg;
419	struct super_block *sb = zfsvfs->z_sb;
420
421	if (sb == NULL)
422		return;
423
424	if (newval == TRUE)
425		sb->s_flags |= SB_MANDLOCK;
426	else
427		sb->s_flags &= ~SB_MANDLOCK;
428}
429
430static void
431snapdir_changed_cb(void *arg, uint64_t newval)
432{
433	((zfsvfs_t *)arg)->z_show_ctldir = newval;
434}
435
436static void
437vscan_changed_cb(void *arg, uint64_t newval)
438{
439	((zfsvfs_t *)arg)->z_vscan = newval;
440}
441
442static void
443acl_mode_changed_cb(void *arg, uint64_t newval)
444{
445	zfsvfs_t *zfsvfs = arg;
446
447	zfsvfs->z_acl_mode = newval;
448}
449
450static void
451acl_inherit_changed_cb(void *arg, uint64_t newval)
452{
453	((zfsvfs_t *)arg)->z_acl_inherit = newval;
454}
455
456static int
457zfs_register_callbacks(vfs_t *vfsp)
458{
459	struct dsl_dataset *ds = NULL;
460	objset_t *os = NULL;
461	zfsvfs_t *zfsvfs = NULL;
462	int error = 0;
463
464	ASSERT(vfsp);
465	zfsvfs = vfsp->vfs_data;
466	ASSERT(zfsvfs);
467	os = zfsvfs->z_os;
468
469	/*
470	 * The act of registering our callbacks will destroy any mount
471	 * options we may have.  In order to enable temporary overrides
472	 * of mount options, we stash away the current values and
473	 * restore them after we register the callbacks.
474	 */
475	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
476		vfsp->vfs_do_readonly = B_TRUE;
477		vfsp->vfs_readonly = B_TRUE;
478	}
479
480	/*
481	 * Register property callbacks.
482	 *
483	 * It would probably be fine to just check for i/o error from
484	 * the first prop_register(), but I guess I like to go
485	 * overboard...
486	 */
487	ds = dmu_objset_ds(os);
488	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
489	error = dsl_prop_register(ds,
490	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
491	error = error ? error : dsl_prop_register(ds,
492	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
493	error = error ? error : dsl_prop_register(ds,
494	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
495	error = error ? error : dsl_prop_register(ds,
496	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
497	error = error ? error : dsl_prop_register(ds,
498	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
499	error = error ? error : dsl_prop_register(ds,
500	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
501	error = error ? error : dsl_prop_register(ds,
502	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
503	error = error ? error : dsl_prop_register(ds,
504	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
505	error = error ? error : dsl_prop_register(ds,
506	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
507	error = error ? error : dsl_prop_register(ds,
508	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
509	error = error ? error : dsl_prop_register(ds,
510	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
511	error = error ? error : dsl_prop_register(ds,
512	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
513	    zfsvfs);
514	error = error ? error : dsl_prop_register(ds,
515	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
518	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
519	if (error)
520		goto unregister;
521
522	/*
523	 * Invoke our callbacks to restore temporary mount options.
524	 */
525	if (vfsp->vfs_do_readonly)
526		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
527	if (vfsp->vfs_do_setuid)
528		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
529	if (vfsp->vfs_do_exec)
530		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
531	if (vfsp->vfs_do_devices)
532		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
533	if (vfsp->vfs_do_xattr)
534		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
535	if (vfsp->vfs_do_atime)
536		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
537	if (vfsp->vfs_do_relatime)
538		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
539	if (vfsp->vfs_do_nbmand)
540		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
541
542	return (0);
543
544unregister:
545	dsl_prop_unregister_all(ds, zfsvfs);
546	return (error);
547}
548
549/*
550 * Takes a dataset, a property, a value and that value's setpoint as
551 * found in the ZAP. Checks if the property has been changed in the vfs.
552 * If so, val and setpoint will be overwritten with updated content.
553 * Otherwise, they are left unchanged.
554 */
555int
556zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
557    char *setpoint)
558{
559	int error;
560	zfsvfs_t *zfvp;
561	vfs_t *vfsp;
562	objset_t *os;
563	uint64_t tmp = *val;
564
565	error = dmu_objset_from_ds(ds, &os);
566	if (error != 0)
567		return (error);
568
569	if (dmu_objset_type(os) != DMU_OST_ZFS)
570		return (EINVAL);
571
572	mutex_enter(&os->os_user_ptr_lock);
573	zfvp = dmu_objset_get_user(os);
574	mutex_exit(&os->os_user_ptr_lock);
575	if (zfvp == NULL)
576		return (ESRCH);
577
578	vfsp = zfvp->z_vfs;
579
580	switch (zfs_prop) {
581	case ZFS_PROP_ATIME:
582		if (vfsp->vfs_do_atime)
583			tmp = vfsp->vfs_atime;
584		break;
585	case ZFS_PROP_RELATIME:
586		if (vfsp->vfs_do_relatime)
587			tmp = vfsp->vfs_relatime;
588		break;
589	case ZFS_PROP_DEVICES:
590		if (vfsp->vfs_do_devices)
591			tmp = vfsp->vfs_devices;
592		break;
593	case ZFS_PROP_EXEC:
594		if (vfsp->vfs_do_exec)
595			tmp = vfsp->vfs_exec;
596		break;
597	case ZFS_PROP_SETUID:
598		if (vfsp->vfs_do_setuid)
599			tmp = vfsp->vfs_setuid;
600		break;
601	case ZFS_PROP_READONLY:
602		if (vfsp->vfs_do_readonly)
603			tmp = vfsp->vfs_readonly;
604		break;
605	case ZFS_PROP_XATTR:
606		if (vfsp->vfs_do_xattr)
607			tmp = vfsp->vfs_xattr;
608		break;
609	case ZFS_PROP_NBMAND:
610		if (vfsp->vfs_do_nbmand)
611			tmp = vfsp->vfs_nbmand;
612		break;
613	default:
614		return (ENOENT);
615	}
616
617	if (tmp != *val) {
618		(void) strcpy(setpoint, "temporary");
619		*val = tmp;
620	}
621	return (0);
622}
623
624/*
625 * Associate this zfsvfs with the given objset, which must be owned.
626 * This will cache a bunch of on-disk state from the objset in the
627 * zfsvfs.
628 */
629static int
630zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
631{
632	int error;
633	uint64_t val;
634
635	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
636	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
637	zfsvfs->z_os = os;
638
639	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
640	if (error != 0)
641		return (error);
642	if (zfsvfs->z_version >
643	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
644		(void) printk("Can't mount a version %lld file system "
645		    "on a version %lld pool\n. Pool must be upgraded to mount "
646		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
647		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
648		return (SET_ERROR(ENOTSUP));
649	}
650	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
651	if (error != 0)
652		return (error);
653	zfsvfs->z_norm = (int)val;
654
655	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
656	if (error != 0)
657		return (error);
658	zfsvfs->z_utf8 = (val != 0);
659
660	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
661	if (error != 0)
662		return (error);
663	zfsvfs->z_case = (uint_t)val;
664
665	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
666		return (error);
667	zfsvfs->z_acl_type = (uint_t)val;
668
669	/*
670	 * Fold case on file systems that are always or sometimes case
671	 * insensitive.
672	 */
673	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
674	    zfsvfs->z_case == ZFS_CASE_MIXED)
675		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
676
677	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
678	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
679
680	uint64_t sa_obj = 0;
681	if (zfsvfs->z_use_sa) {
682		/* should either have both of these objects or none */
683		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
684		    &sa_obj);
685		if (error != 0)
686			return (error);
687
688		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
689		if ((error == 0) && (val == ZFS_XATTR_SA))
690			zfsvfs->z_xattr_sa = B_TRUE;
691	}
692
693	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
694	    &zfsvfs->z_root);
695	if (error != 0)
696		return (error);
697	ASSERT(zfsvfs->z_root != 0);
698
699	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
700	    &zfsvfs->z_unlinkedobj);
701	if (error != 0)
702		return (error);
703
704	error = zap_lookup(os, MASTER_NODE_OBJ,
705	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
706	    8, 1, &zfsvfs->z_userquota_obj);
707	if (error == ENOENT)
708		zfsvfs->z_userquota_obj = 0;
709	else if (error != 0)
710		return (error);
711
712	error = zap_lookup(os, MASTER_NODE_OBJ,
713	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
714	    8, 1, &zfsvfs->z_groupquota_obj);
715	if (error == ENOENT)
716		zfsvfs->z_groupquota_obj = 0;
717	else if (error != 0)
718		return (error);
719
720	error = zap_lookup(os, MASTER_NODE_OBJ,
721	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
722	    8, 1, &zfsvfs->z_projectquota_obj);
723	if (error == ENOENT)
724		zfsvfs->z_projectquota_obj = 0;
725	else if (error != 0)
726		return (error);
727
728	error = zap_lookup(os, MASTER_NODE_OBJ,
729	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
730	    8, 1, &zfsvfs->z_userobjquota_obj);
731	if (error == ENOENT)
732		zfsvfs->z_userobjquota_obj = 0;
733	else if (error != 0)
734		return (error);
735
736	error = zap_lookup(os, MASTER_NODE_OBJ,
737	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
738	    8, 1, &zfsvfs->z_groupobjquota_obj);
739	if (error == ENOENT)
740		zfsvfs->z_groupobjquota_obj = 0;
741	else if (error != 0)
742		return (error);
743
744	error = zap_lookup(os, MASTER_NODE_OBJ,
745	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
746	    8, 1, &zfsvfs->z_projectobjquota_obj);
747	if (error == ENOENT)
748		zfsvfs->z_projectobjquota_obj = 0;
749	else if (error != 0)
750		return (error);
751
752	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
753	    &zfsvfs->z_fuid_obj);
754	if (error == ENOENT)
755		zfsvfs->z_fuid_obj = 0;
756	else if (error != 0)
757		return (error);
758
759	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
760	    &zfsvfs->z_shares_dir);
761	if (error == ENOENT)
762		zfsvfs->z_shares_dir = 0;
763	else if (error != 0)
764		return (error);
765
766	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
767	    &zfsvfs->z_attr_table);
768	if (error != 0)
769		return (error);
770
771	if (zfsvfs->z_version >= ZPL_VERSION_SA)
772		sa_register_update_callback(os, zfs_sa_upgrade);
773
774	return (0);
775}
776
777int
778zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
779{
780	objset_t *os;
781	zfsvfs_t *zfsvfs;
782	int error;
783	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
784
785	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
786
787	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
788	if (error != 0) {
789		kmem_free(zfsvfs, sizeof (zfsvfs_t));
790		return (error);
791	}
792
793	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
794	if (error != 0) {
795		dmu_objset_disown(os, B_TRUE, zfsvfs);
796	}
797	return (error);
798}
799
800
801/*
802 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
803 * on a failure.  Do not pass in a statically allocated zfsvfs.
804 */
805int
806zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
807{
808	int error;
809
810	zfsvfs->z_vfs = NULL;
811	zfsvfs->z_sb = NULL;
812	zfsvfs->z_parent = zfsvfs;
813
814	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
815	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
816	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
817	    offsetof(znode_t, z_link_node));
818	ZFS_TEARDOWN_INIT(zfsvfs);
819	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
820	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
821
822	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
823	    ZFS_OBJ_MTX_MAX);
824	zfsvfs->z_hold_size = size;
825	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
826	    KM_SLEEP);
827	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
828	for (int i = 0; i != size; i++) {
829		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
830		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
831		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
832	}
833
834	error = zfsvfs_init(zfsvfs, os);
835	if (error != 0) {
836		*zfvp = NULL;
837		zfsvfs_free(zfsvfs);
838		return (error);
839	}
840
841	zfsvfs->z_drain_task = TASKQID_INVALID;
842	zfsvfs->z_draining = B_FALSE;
843	zfsvfs->z_drain_cancel = B_TRUE;
844
845	*zfvp = zfsvfs;
846	return (0);
847}
848
849static int
850zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
851{
852	int error;
853	boolean_t readonly = zfs_is_readonly(zfsvfs);
854
855	error = zfs_register_callbacks(zfsvfs->z_vfs);
856	if (error)
857		return (error);
858
859	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
860
861	/*
862	 * If we are not mounting (ie: online recv), then we don't
863	 * have to worry about replaying the log as we blocked all
864	 * operations out since we closed the ZIL.
865	 */
866	if (mounting) {
867		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
868		dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
869
870		/*
871		 * During replay we remove the read only flag to
872		 * allow replays to succeed.
873		 */
874		if (readonly != 0) {
875			readonly_changed_cb(zfsvfs, B_FALSE);
876		} else {
877			zap_stats_t zs;
878			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
879			    &zs) == 0) {
880				dataset_kstats_update_nunlinks_kstat(
881				    &zfsvfs->z_kstat, zs.zs_num_entries);
882				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
883				    "num_entries in unlinked set: %llu",
884				    zs.zs_num_entries);
885			}
886			zfs_unlinked_drain(zfsvfs);
887			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
888			dd->dd_activity_cancelled = B_FALSE;
889		}
890
891		/*
892		 * Parse and replay the intent log.
893		 *
894		 * Because of ziltest, this must be done after
895		 * zfs_unlinked_drain().  (Further note: ziltest
896		 * doesn't use readonly mounts, where
897		 * zfs_unlinked_drain() isn't called.)  This is because
898		 * ziltest causes spa_sync() to think it's committed,
899		 * but actually it is not, so the intent log contains
900		 * many txg's worth of changes.
901		 *
902		 * In particular, if object N is in the unlinked set in
903		 * the last txg to actually sync, then it could be
904		 * actually freed in a later txg and then reallocated
905		 * in a yet later txg.  This would write a "create
906		 * object N" record to the intent log.  Normally, this
907		 * would be fine because the spa_sync() would have
908		 * written out the fact that object N is free, before
909		 * we could write the "create object N" intent log
910		 * record.
911		 *
912		 * But when we are in ziltest mode, we advance the "open
913		 * txg" without actually spa_sync()-ing the changes to
914		 * disk.  So we would see that object N is still
915		 * allocated and in the unlinked set, and there is an
916		 * intent log record saying to allocate it.
917		 */
918		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
919			if (zil_replay_disable) {
920				zil_destroy(zfsvfs->z_log, B_FALSE);
921			} else {
922				zfsvfs->z_replay = B_TRUE;
923				zil_replay(zfsvfs->z_os, zfsvfs,
924				    zfs_replay_vector);
925				zfsvfs->z_replay = B_FALSE;
926			}
927		}
928
929		/* restore readonly bit */
930		if (readonly != 0)
931			readonly_changed_cb(zfsvfs, B_TRUE);
932	}
933
934	/*
935	 * Set the objset user_ptr to track its zfsvfs.
936	 */
937	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
938	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
939	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
940
941	return (0);
942}
943
944void
945zfsvfs_free(zfsvfs_t *zfsvfs)
946{
947	int i, size = zfsvfs->z_hold_size;
948
949	zfs_fuid_destroy(zfsvfs);
950
951	mutex_destroy(&zfsvfs->z_znodes_lock);
952	mutex_destroy(&zfsvfs->z_lock);
953	list_destroy(&zfsvfs->z_all_znodes);
954	ZFS_TEARDOWN_DESTROY(zfsvfs);
955	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
956	rw_destroy(&zfsvfs->z_fuid_lock);
957	for (i = 0; i != size; i++) {
958		avl_destroy(&zfsvfs->z_hold_trees[i]);
959		mutex_destroy(&zfsvfs->z_hold_locks[i]);
960	}
961	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
962	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
963	zfsvfs_vfs_free(zfsvfs->z_vfs);
964	dataset_kstats_destroy(&zfsvfs->z_kstat);
965	kmem_free(zfsvfs, sizeof (zfsvfs_t));
966}
967
968static void
969zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
970{
971	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
972	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
973}
974
975static void
976zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
977{
978	objset_t *os = zfsvfs->z_os;
979
980	if (!dmu_objset_is_snapshot(os))
981		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
982}
983
984#ifdef HAVE_MLSLABEL
985/*
986 * Check that the hex label string is appropriate for the dataset being
987 * mounted into the global_zone proper.
988 *
989 * Return an error if the hex label string is not default or
990 * admin_low/admin_high.  For admin_low labels, the corresponding
991 * dataset must be readonly.
992 */
993int
994zfs_check_global_label(const char *dsname, const char *hexsl)
995{
996	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
997		return (0);
998	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
999		return (0);
1000	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1001		/* must be readonly */
1002		uint64_t rdonly;
1003
1004		if (dsl_prop_get_integer(dsname,
1005		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1006			return (SET_ERROR(EACCES));
1007		return (rdonly ? 0 : SET_ERROR(EACCES));
1008	}
1009	return (SET_ERROR(EACCES));
1010}
1011#endif /* HAVE_MLSLABEL */
1012
1013static int
1014zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1015    uint32_t bshift)
1016{
1017	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1018	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1019	uint64_t quota;
1020	uint64_t used;
1021	int err;
1022
1023	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1024	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1025	    sizeof (buf) - offset, B_FALSE);
1026	if (err)
1027		return (err);
1028
1029	if (zfsvfs->z_projectquota_obj == 0)
1030		goto objs;
1031
1032	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1033	    buf + offset, 8, 1, &quota);
1034	if (err == ENOENT)
1035		goto objs;
1036	else if (err)
1037		return (err);
1038
1039	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1040	    buf + offset, 8, 1, &used);
1041	if (unlikely(err == ENOENT)) {
1042		uint32_t blksize;
1043		u_longlong_t nblocks;
1044
1045		/*
1046		 * Quota accounting is async, so it is possible race case.
1047		 * There is at least one object with the given project ID.
1048		 */
1049		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1050		if (unlikely(zp->z_blksz == 0))
1051			blksize = zfsvfs->z_max_blksz;
1052
1053		used = blksize * nblocks;
1054	} else if (err) {
1055		return (err);
1056	}
1057
1058	statp->f_blocks = quota >> bshift;
1059	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1060	statp->f_bavail = statp->f_bfree;
1061
1062objs:
1063	if (zfsvfs->z_projectobjquota_obj == 0)
1064		return (0);
1065
1066	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1067	    buf + offset, 8, 1, &quota);
1068	if (err == ENOENT)
1069		return (0);
1070	else if (err)
1071		return (err);
1072
1073	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1074	    buf, 8, 1, &used);
1075	if (unlikely(err == ENOENT)) {
1076		/*
1077		 * Quota accounting is async, so it is possible race case.
1078		 * There is at least one object with the given project ID.
1079		 */
1080		used = 1;
1081	} else if (err) {
1082		return (err);
1083	}
1084
1085	statp->f_files = quota;
1086	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1087
1088	return (0);
1089}
1090
1091int
1092zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1093{
1094	zfsvfs_t *zfsvfs = ITOZSB(ip);
1095	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1096	int err = 0;
1097
1098	ZFS_ENTER(zfsvfs);
1099
1100	dmu_objset_space(zfsvfs->z_os,
1101	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1102
1103	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1104	/*
1105	 * The underlying storage pool actually uses multiple block
1106	 * size.  Under Solaris frsize (fragment size) is reported as
1107	 * the smallest block size we support, and bsize (block size)
1108	 * as the filesystem's maximum block size.  Unfortunately,
1109	 * under Linux the fragment size and block size are often used
1110	 * interchangeably.  Thus we are forced to report both of them
1111	 * as the filesystem's maximum block size.
1112	 */
1113	statp->f_frsize = zfsvfs->z_max_blksz;
1114	statp->f_bsize = zfsvfs->z_max_blksz;
1115	uint32_t bshift = fls(statp->f_bsize) - 1;
1116
1117	/*
1118	 * The following report "total" blocks of various kinds in
1119	 * the file system, but reported in terms of f_bsize - the
1120	 * "preferred" size.
1121	 */
1122
1123	/* Round up so we never have a filesystem using 0 blocks. */
1124	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1125	statp->f_blocks = (refdbytes + availbytes) >> bshift;
1126	statp->f_bfree = availbytes >> bshift;
1127	statp->f_bavail = statp->f_bfree; /* no root reservation */
1128
1129	/*
1130	 * statvfs() should really be called statufs(), because it assumes
1131	 * static metadata.  ZFS doesn't preallocate files, so the best
1132	 * we can do is report the max that could possibly fit in f_files,
1133	 * and that minus the number actually used in f_ffree.
1134	 * For f_ffree, report the smaller of the number of objects available
1135	 * and the number of blocks (each object will take at least a block).
1136	 */
1137	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1138	statp->f_files = statp->f_ffree + usedobjs;
1139	statp->f_fsid.val[0] = (uint32_t)fsid;
1140	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1141	statp->f_type = ZFS_SUPER_MAGIC;
1142	statp->f_namelen = MAXNAMELEN - 1;
1143
1144	/*
1145	 * We have all of 40 characters to stuff a string here.
1146	 * Is there anything useful we could/should provide?
1147	 */
1148	bzero(statp->f_spare, sizeof (statp->f_spare));
1149
1150	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1151	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
1152		znode_t *zp = ITOZ(ip);
1153
1154		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1155		    zpl_is_valid_projid(zp->z_projid))
1156			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1157	}
1158
1159	ZFS_EXIT(zfsvfs);
1160	return (err);
1161}
1162
1163static int
1164zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1165{
1166	znode_t *rootzp;
1167	int error;
1168
1169	ZFS_ENTER(zfsvfs);
1170
1171	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1172	if (error == 0)
1173		*ipp = ZTOI(rootzp);
1174
1175	ZFS_EXIT(zfsvfs);
1176	return (error);
1177}
1178
1179/*
1180 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1181 * To accommodate this we must improvise and manually walk the list of znodes
1182 * attempting to prune dentries in order to be able to drop the inodes.
1183 *
1184 * To avoid scanning the same znodes multiple times they are always rotated
1185 * to the end of the z_all_znodes list.  New znodes are inserted at the
1186 * end of the list so we're always scanning the oldest znodes first.
1187 */
1188static int
1189zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1190{
1191	znode_t **zp_array, *zp;
1192	int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1193	int objects = 0;
1194	int i = 0, j = 0;
1195
1196	zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1197
1198	mutex_enter(&zfsvfs->z_znodes_lock);
1199	while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1200
1201		if ((i++ > nr_to_scan) || (j >= max_array))
1202			break;
1203
1204		ASSERT(list_link_active(&zp->z_link_node));
1205		list_remove(&zfsvfs->z_all_znodes, zp);
1206		list_insert_tail(&zfsvfs->z_all_znodes, zp);
1207
1208		/* Skip active znodes and .zfs entries */
1209		if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1210			continue;
1211
1212		if (igrab(ZTOI(zp)) == NULL)
1213			continue;
1214
1215		zp_array[j] = zp;
1216		j++;
1217	}
1218	mutex_exit(&zfsvfs->z_znodes_lock);
1219
1220	for (i = 0; i < j; i++) {
1221		zp = zp_array[i];
1222
1223		ASSERT3P(zp, !=, NULL);
1224		d_prune_aliases(ZTOI(zp));
1225
1226		if (atomic_read(&ZTOI(zp)->i_count) == 1)
1227			objects++;
1228
1229		zrele(zp);
1230	}
1231
1232	kmem_free(zp_array, max_array * sizeof (znode_t *));
1233
1234	return (objects);
1235}
1236
1237/*
1238 * The ARC has requested that the filesystem drop entries from the dentry
1239 * and inode caches.  This can occur when the ARC needs to free meta data
1240 * blocks but can't because they are all pinned by entries in these caches.
1241 */
1242int
1243zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1244{
1245	zfsvfs_t *zfsvfs = sb->s_fs_info;
1246	int error = 0;
1247	struct shrinker *shrinker = &sb->s_shrink;
1248	struct shrink_control sc = {
1249		.nr_to_scan = nr_to_scan,
1250		.gfp_mask = GFP_KERNEL,
1251	};
1252
1253	ZFS_ENTER(zfsvfs);
1254
1255#if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1256	defined(SHRINK_CONTROL_HAS_NID) && \
1257	defined(SHRINKER_NUMA_AWARE)
1258	if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1259		*objects = 0;
1260		for_each_online_node(sc.nid) {
1261			*objects += (*shrinker->scan_objects)(shrinker, &sc);
1262		}
1263	} else {
1264			*objects = (*shrinker->scan_objects)(shrinker, &sc);
1265	}
1266
1267#elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1268	*objects = (*shrinker->scan_objects)(shrinker, &sc);
1269#elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1270	*objects = (*shrinker->shrink)(shrinker, &sc);
1271#elif defined(HAVE_D_PRUNE_ALIASES)
1272#define	D_PRUNE_ALIASES_IS_DEFAULT
1273	*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1274#else
1275#error "No available dentry and inode cache pruning mechanism."
1276#endif
1277
1278#if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1279#undef	D_PRUNE_ALIASES_IS_DEFAULT
1280	/*
1281	 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1282	 * shrinker couldn't free anything, possibly due to the inodes being
1283	 * allocated in a different memcg.
1284	 */
1285	if (*objects == 0)
1286		*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1287#endif
1288
1289	ZFS_EXIT(zfsvfs);
1290
1291	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1292	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1293	    nr_to_scan, *objects, error);
1294
1295	return (error);
1296}
1297
1298/*
1299 * Teardown the zfsvfs_t.
1300 *
1301 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1302 * and 'z_teardown_inactive_lock' held.
1303 */
1304static int
1305zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1306{
1307	znode_t	*zp;
1308
1309	zfs_unlinked_drain_stop_wait(zfsvfs);
1310
1311	/*
1312	 * If someone has not already unmounted this file system,
1313	 * drain the zrele_taskq to ensure all active references to the
1314	 * zfsvfs_t have been handled only then can it be safely destroyed.
1315	 */
1316	if (zfsvfs->z_os) {
1317		/*
1318		 * If we're unmounting we have to wait for the list to
1319		 * drain completely.
1320		 *
1321		 * If we're not unmounting there's no guarantee the list
1322		 * will drain completely, but iputs run from the taskq
1323		 * may add the parents of dir-based xattrs to the taskq
1324		 * so we want to wait for these.
1325		 *
1326		 * We can safely read z_nr_znodes without locking because the
1327		 * VFS has already blocked operations which add to the
1328		 * z_all_znodes list and thus increment z_nr_znodes.
1329		 */
1330		int round = 0;
1331		while (zfsvfs->z_nr_znodes > 0) {
1332			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1333			    dmu_objset_pool(zfsvfs->z_os)), 0);
1334			if (++round > 1 && !unmounting)
1335				break;
1336		}
1337	}
1338
1339	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1340
1341	if (!unmounting) {
1342		/*
1343		 * We purge the parent filesystem's super block as the
1344		 * parent filesystem and all of its snapshots have their
1345		 * inode's super block set to the parent's filesystem's
1346		 * super block.  Note,  'z_parent' is self referential
1347		 * for non-snapshots.
1348		 */
1349		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1350	}
1351
1352	/*
1353	 * Close the zil. NB: Can't close the zil while zfs_inactive
1354	 * threads are blocked as zil_close can call zfs_inactive.
1355	 */
1356	if (zfsvfs->z_log) {
1357		zil_close(zfsvfs->z_log);
1358		zfsvfs->z_log = NULL;
1359	}
1360
1361	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1362
1363	/*
1364	 * If we are not unmounting (ie: online recv) and someone already
1365	 * unmounted this file system while we were doing the switcheroo,
1366	 * or a reopen of z_os failed then just bail out now.
1367	 */
1368	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1369		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1370		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1371		return (SET_ERROR(EIO));
1372	}
1373
1374	/*
1375	 * At this point there are no VFS ops active, and any new VFS ops
1376	 * will fail with EIO since we have z_teardown_lock for writer (only
1377	 * relevant for forced unmount).
1378	 *
1379	 * Release all holds on dbufs. We also grab an extra reference to all
1380	 * the remaining inodes so that the kernel does not attempt to free
1381	 * any inodes of a suspended fs. This can cause deadlocks since the
1382	 * zfs_resume_fs() process may involve starting threads, which might
1383	 * attempt to free unreferenced inodes to free up memory for the new
1384	 * thread.
1385	 */
1386	if (!unmounting) {
1387		mutex_enter(&zfsvfs->z_znodes_lock);
1388		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1389		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1390			if (zp->z_sa_hdl)
1391				zfs_znode_dmu_fini(zp);
1392			if (igrab(ZTOI(zp)) != NULL)
1393				zp->z_suspended = B_TRUE;
1394
1395		}
1396		mutex_exit(&zfsvfs->z_znodes_lock);
1397	}
1398
1399	/*
1400	 * If we are unmounting, set the unmounted flag and let new VFS ops
1401	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1402	 * other VFS ops will fail with EIO.
1403	 */
1404	if (unmounting) {
1405		zfsvfs->z_unmounted = B_TRUE;
1406		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1407		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1408	}
1409
1410	/*
1411	 * z_os will be NULL if there was an error in attempting to reopen
1412	 * zfsvfs, so just return as the properties had already been
1413	 *
1414	 * unregistered and cached data had been evicted before.
1415	 */
1416	if (zfsvfs->z_os == NULL)
1417		return (0);
1418
1419	/*
1420	 * Unregister properties.
1421	 */
1422	zfs_unregister_callbacks(zfsvfs);
1423
1424	/*
1425	 * Evict cached data. We must write out any dirty data before
1426	 * disowning the dataset.
1427	 */
1428	objset_t *os = zfsvfs->z_os;
1429	boolean_t os_dirty = B_FALSE;
1430	for (int t = 0; t < TXG_SIZE; t++) {
1431		if (dmu_objset_is_dirty(os, t)) {
1432			os_dirty = B_TRUE;
1433			break;
1434		}
1435	}
1436	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1437		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1438	}
1439	dmu_objset_evict_dbufs(zfsvfs->z_os);
1440	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1441	dsl_dir_cancel_waiters(dd);
1442
1443	return (0);
1444}
1445
1446#if defined(HAVE_SUPER_SETUP_BDI_NAME)
1447atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1448#endif
1449
1450int
1451zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1452{
1453	const char *osname = zm->mnt_osname;
1454	struct inode *root_inode = NULL;
1455	uint64_t recordsize;
1456	int error = 0;
1457	zfsvfs_t *zfsvfs = NULL;
1458	vfs_t *vfs = NULL;
1459
1460	ASSERT(zm);
1461	ASSERT(osname);
1462
1463	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1464	if (error)
1465		return (error);
1466
1467	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1468	if (error) {
1469		zfsvfs_vfs_free(vfs);
1470		goto out;
1471	}
1472
1473	if ((error = dsl_prop_get_integer(osname, "recordsize",
1474	    &recordsize, NULL))) {
1475		zfsvfs_vfs_free(vfs);
1476		goto out;
1477	}
1478
1479	vfs->vfs_data = zfsvfs;
1480	zfsvfs->z_vfs = vfs;
1481	zfsvfs->z_sb = sb;
1482	sb->s_fs_info = zfsvfs;
1483	sb->s_magic = ZFS_SUPER_MAGIC;
1484	sb->s_maxbytes = MAX_LFS_FILESIZE;
1485	sb->s_time_gran = 1;
1486	sb->s_blocksize = recordsize;
1487	sb->s_blocksize_bits = ilog2(recordsize);
1488
1489	error = -zpl_bdi_setup(sb, "zfs");
1490	if (error)
1491		goto out;
1492
1493	sb->s_bdi->ra_pages = 0;
1494
1495	/* Set callback operations for the file system. */
1496	sb->s_op = &zpl_super_operations;
1497	sb->s_xattr = zpl_xattr_handlers;
1498	sb->s_export_op = &zpl_export_operations;
1499	sb->s_d_op = &zpl_dentry_operations;
1500
1501	/* Set features for file system. */
1502	zfs_set_fuid_feature(zfsvfs);
1503
1504	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1505		uint64_t pval;
1506
1507		atime_changed_cb(zfsvfs, B_FALSE);
1508		readonly_changed_cb(zfsvfs, B_TRUE);
1509		if ((error = dsl_prop_get_integer(osname,
1510		    "xattr", &pval, NULL)))
1511			goto out;
1512		xattr_changed_cb(zfsvfs, pval);
1513		if ((error = dsl_prop_get_integer(osname,
1514		    "acltype", &pval, NULL)))
1515			goto out;
1516		acltype_changed_cb(zfsvfs, pval);
1517		zfsvfs->z_issnap = B_TRUE;
1518		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1519		zfsvfs->z_snap_defer_time = jiffies;
1520
1521		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1522		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1523		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1524	} else {
1525		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1526			goto out;
1527	}
1528
1529	/* Allocate a root inode for the filesystem. */
1530	error = zfs_root(zfsvfs, &root_inode);
1531	if (error) {
1532		(void) zfs_umount(sb);
1533		goto out;
1534	}
1535
1536	/* Allocate a root dentry for the filesystem */
1537	sb->s_root = d_make_root(root_inode);
1538	if (sb->s_root == NULL) {
1539		(void) zfs_umount(sb);
1540		error = SET_ERROR(ENOMEM);
1541		goto out;
1542	}
1543
1544	if (!zfsvfs->z_issnap)
1545		zfsctl_create(zfsvfs);
1546
1547	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1548out:
1549	if (error) {
1550		if (zfsvfs != NULL) {
1551			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1552			zfsvfs_free(zfsvfs);
1553		}
1554		/*
1555		 * make sure we don't have dangling sb->s_fs_info which
1556		 * zfs_preumount will use.
1557		 */
1558		sb->s_fs_info = NULL;
1559	}
1560
1561	return (error);
1562}
1563
1564/*
1565 * Called when an unmount is requested and certain sanity checks have
1566 * already passed.  At this point no dentries or inodes have been reclaimed
1567 * from their respective caches.  We drop the extra reference on the .zfs
1568 * control directory to allow everything to be reclaimed.  All snapshots
1569 * must already have been unmounted to reach this point.
1570 */
1571void
1572zfs_preumount(struct super_block *sb)
1573{
1574	zfsvfs_t *zfsvfs = sb->s_fs_info;
1575
1576	/* zfsvfs is NULL when zfs_domount fails during mount */
1577	if (zfsvfs) {
1578		zfs_unlinked_drain_stop_wait(zfsvfs);
1579		zfsctl_destroy(sb->s_fs_info);
1580		/*
1581		 * Wait for zrele_async before entering evict_inodes in
1582		 * generic_shutdown_super. The reason we must finish before
1583		 * evict_inodes is when lazytime is on, or when zfs_purgedir
1584		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1585		 * would race with the i_count check in evict_inodes. This means
1586		 * it could destroy the inode while we are still using it.
1587		 *
1588		 * We wait for two passes. xattr directories in the first pass
1589		 * may add xattr entries in zfs_purgedir, so in the second pass
1590		 * we wait for them. We don't use taskq_wait here because it is
1591		 * a pool wide taskq. Other mounted filesystems can constantly
1592		 * do zrele_async and there's no guarantee when taskq will be
1593		 * empty.
1594		 */
1595		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1596		    dmu_objset_pool(zfsvfs->z_os)), 0);
1597		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1598		    dmu_objset_pool(zfsvfs->z_os)), 0);
1599	}
1600}
1601
1602/*
1603 * Called once all other unmount released tear down has occurred.
1604 * It is our responsibility to release any remaining infrastructure.
1605 */
1606/*ARGSUSED*/
1607int
1608zfs_umount(struct super_block *sb)
1609{
1610	zfsvfs_t *zfsvfs = sb->s_fs_info;
1611	objset_t *os;
1612
1613	if (zfsvfs->z_arc_prune != NULL)
1614		arc_remove_prune_callback(zfsvfs->z_arc_prune);
1615	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1616	os = zfsvfs->z_os;
1617	zpl_bdi_destroy(sb);
1618
1619	/*
1620	 * z_os will be NULL if there was an error in
1621	 * attempting to reopen zfsvfs.
1622	 */
1623	if (os != NULL) {
1624		/*
1625		 * Unset the objset user_ptr.
1626		 */
1627		mutex_enter(&os->os_user_ptr_lock);
1628		dmu_objset_set_user(os, NULL);
1629		mutex_exit(&os->os_user_ptr_lock);
1630
1631		/*
1632		 * Finally release the objset
1633		 */
1634		dmu_objset_disown(os, B_TRUE, zfsvfs);
1635	}
1636
1637	zfsvfs_free(zfsvfs);
1638	return (0);
1639}
1640
1641int
1642zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1643{
1644	zfsvfs_t *zfsvfs = sb->s_fs_info;
1645	vfs_t *vfsp;
1646	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1647	int error;
1648
1649	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1650	    !(*flags & SB_RDONLY)) {
1651		*flags |= SB_RDONLY;
1652		return (EROFS);
1653	}
1654
1655	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1656	if (error)
1657		return (error);
1658
1659	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1660		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1661
1662	zfs_unregister_callbacks(zfsvfs);
1663	zfsvfs_vfs_free(zfsvfs->z_vfs);
1664
1665	vfsp->vfs_data = zfsvfs;
1666	zfsvfs->z_vfs = vfsp;
1667	if (!issnap)
1668		(void) zfs_register_callbacks(vfsp);
1669
1670	return (error);
1671}
1672
1673int
1674zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1675{
1676	zfsvfs_t	*zfsvfs = sb->s_fs_info;
1677	znode_t		*zp;
1678	uint64_t	object = 0;
1679	uint64_t	fid_gen = 0;
1680	uint64_t	gen_mask;
1681	uint64_t	zp_gen;
1682	int		i, err;
1683
1684	*ipp = NULL;
1685
1686	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1687		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1688
1689		for (i = 0; i < sizeof (zfid->zf_object); i++)
1690			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1691
1692		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1693			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1694	} else {
1695		return (SET_ERROR(EINVAL));
1696	}
1697
1698	/* LONG_FID_LEN means snapdirs */
1699	if (fidp->fid_len == LONG_FID_LEN) {
1700		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1701		uint64_t	objsetid = 0;
1702		uint64_t	setgen = 0;
1703
1704		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1705			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1706
1707		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1708			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1709
1710		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1711			dprintf("snapdir fid: objsetid (%llu) != "
1712			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1713			    objsetid, ZFSCTL_INO_SNAPDIRS, object);
1714
1715			return (SET_ERROR(EINVAL));
1716		}
1717
1718		if (fid_gen > 1 || setgen != 0) {
1719			dprintf("snapdir fid: fid_gen (%llu) and setgen "
1720			    "(%llu)\n", fid_gen, setgen);
1721			return (SET_ERROR(EINVAL));
1722		}
1723
1724		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1725	}
1726
1727	ZFS_ENTER(zfsvfs);
1728	/* A zero fid_gen means we are in the .zfs control directories */
1729	if (fid_gen == 0 &&
1730	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1731		*ipp = zfsvfs->z_ctldir;
1732		ASSERT(*ipp != NULL);
1733		if (object == ZFSCTL_INO_SNAPDIR) {
1734			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1735			    0, kcred, NULL, NULL) == 0);
1736		} else {
1737			/*
1738			 * Must have an existing ref, so igrab()
1739			 * cannot return NULL
1740			 */
1741			VERIFY3P(igrab(*ipp), !=, NULL);
1742		}
1743		ZFS_EXIT(zfsvfs);
1744		return (0);
1745	}
1746
1747	gen_mask = -1ULL >> (64 - 8 * i);
1748
1749	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1750	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1751		ZFS_EXIT(zfsvfs);
1752		return (err);
1753	}
1754
1755	/* Don't export xattr stuff */
1756	if (zp->z_pflags & ZFS_XATTR) {
1757		zrele(zp);
1758		ZFS_EXIT(zfsvfs);
1759		return (SET_ERROR(ENOENT));
1760	}
1761
1762	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1763	    sizeof (uint64_t));
1764	zp_gen = zp_gen & gen_mask;
1765	if (zp_gen == 0)
1766		zp_gen = 1;
1767	if ((fid_gen == 0) && (zfsvfs->z_root == object))
1768		fid_gen = zp_gen;
1769	if (zp->z_unlinked || zp_gen != fid_gen) {
1770		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1771		    fid_gen);
1772		zrele(zp);
1773		ZFS_EXIT(zfsvfs);
1774		return (SET_ERROR(ENOENT));
1775	}
1776
1777	*ipp = ZTOI(zp);
1778	if (*ipp)
1779		zfs_znode_update_vfs(ITOZ(*ipp));
1780
1781	ZFS_EXIT(zfsvfs);
1782	return (0);
1783}
1784
1785/*
1786 * Block out VFS ops and close zfsvfs_t
1787 *
1788 * Note, if successful, then we return with the 'z_teardown_lock' and
1789 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1790 * dataset and objset intact so that they can be atomically handed off during
1791 * a subsequent rollback or recv operation and the resume thereafter.
1792 */
1793int
1794zfs_suspend_fs(zfsvfs_t *zfsvfs)
1795{
1796	int error;
1797
1798	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1799		return (error);
1800
1801	return (0);
1802}
1803
1804/*
1805 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1806 * is an invariant across any of the operations that can be performed while the
1807 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1808 * are the same: the relevant objset and associated dataset are owned by
1809 * zfsvfs, held, and long held on entry.
1810 */
1811int
1812zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1813{
1814	int err, err2;
1815	znode_t *zp;
1816
1817	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1818	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1819
1820	/*
1821	 * We already own this, so just update the objset_t, as the one we
1822	 * had before may have been evicted.
1823	 */
1824	objset_t *os;
1825	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1826	VERIFY(dsl_dataset_long_held(ds));
1827	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1828	dsl_pool_config_enter(dp, FTAG);
1829	VERIFY0(dmu_objset_from_ds(ds, &os));
1830	dsl_pool_config_exit(dp, FTAG);
1831
1832	err = zfsvfs_init(zfsvfs, os);
1833	if (err != 0)
1834		goto bail;
1835
1836	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1837	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1838
1839	zfs_set_fuid_feature(zfsvfs);
1840	zfsvfs->z_rollback_time = jiffies;
1841
1842	/*
1843	 * Attempt to re-establish all the active inodes with their
1844	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
1845	 * and mark it stale.  This prevents a collision if a new
1846	 * inode/object is created which must use the same inode
1847	 * number.  The stale inode will be be released when the
1848	 * VFS prunes the dentry holding the remaining references
1849	 * on the stale inode.
1850	 */
1851	mutex_enter(&zfsvfs->z_znodes_lock);
1852	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1853	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1854		err2 = zfs_rezget(zp);
1855		if (err2) {
1856			remove_inode_hash(ZTOI(zp));
1857			zp->z_is_stale = B_TRUE;
1858		}
1859
1860		/* see comment in zfs_suspend_fs() */
1861		if (zp->z_suspended) {
1862			zfs_zrele_async(zp);
1863			zp->z_suspended = B_FALSE;
1864		}
1865	}
1866	mutex_exit(&zfsvfs->z_znodes_lock);
1867
1868	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1869		/*
1870		 * zfs_suspend_fs() could have interrupted freeing
1871		 * of dnodes. We need to restart this freeing so
1872		 * that we don't "leak" the space.
1873		 */
1874		zfs_unlinked_drain(zfsvfs);
1875	}
1876
1877	/*
1878	 * Most of the time zfs_suspend_fs is used for changing the contents
1879	 * of the underlying dataset. ZFS rollback and receive operations
1880	 * might create files for which negative dentries are present in
1881	 * the cache. Since walking the dcache would require a lot of GPL-only
1882	 * code duplication, it's much easier on these rather rare occasions
1883	 * just to flush the whole dcache for the given dataset/filesystem.
1884	 */
1885	shrink_dcache_sb(zfsvfs->z_sb);
1886
1887bail:
1888	if (err != 0)
1889		zfsvfs->z_unmounted = B_TRUE;
1890
1891	/* release the VFS ops */
1892	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1893	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1894
1895	if (err != 0) {
1896		/*
1897		 * Since we couldn't setup the sa framework, try to force
1898		 * unmount this file system.
1899		 */
1900		if (zfsvfs->z_os)
1901			(void) zfs_umount(zfsvfs->z_sb);
1902	}
1903	return (err);
1904}
1905
1906/*
1907 * Release VOPs and unmount a suspended filesystem.
1908 */
1909int
1910zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1911{
1912	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1913	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1914
1915	/*
1916	 * We already own this, so just hold and rele it to update the
1917	 * objset_t, as the one we had before may have been evicted.
1918	 */
1919	objset_t *os;
1920	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1921	VERIFY(dsl_dataset_long_held(ds));
1922	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1923	dsl_pool_config_enter(dp, FTAG);
1924	VERIFY0(dmu_objset_from_ds(ds, &os));
1925	dsl_pool_config_exit(dp, FTAG);
1926	zfsvfs->z_os = os;
1927
1928	/* release the VOPs */
1929	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1930	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1931
1932	/*
1933	 * Try to force unmount this file system.
1934	 */
1935	(void) zfs_umount(zfsvfs->z_sb);
1936	zfsvfs->z_unmounted = B_TRUE;
1937	return (0);
1938}
1939
1940/*
1941 * Automounted snapshots rely on periodic revalidation
1942 * to defer snapshots from being automatically unmounted.
1943 */
1944
1945inline void
1946zfs_exit_fs(zfsvfs_t *zfsvfs)
1947{
1948	if (!zfsvfs->z_issnap)
1949		return;
1950
1951	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1952	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1953		zfsvfs->z_snap_defer_time = jiffies;
1954		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1955		    dmu_objset_id(zfsvfs->z_os),
1956		    zfs_expire_snapshot);
1957	}
1958}
1959
1960int
1961zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1962{
1963	int error;
1964	objset_t *os = zfsvfs->z_os;
1965	dmu_tx_t *tx;
1966
1967	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1968		return (SET_ERROR(EINVAL));
1969
1970	if (newvers < zfsvfs->z_version)
1971		return (SET_ERROR(EINVAL));
1972
1973	if (zfs_spa_version_map(newvers) >
1974	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
1975		return (SET_ERROR(ENOTSUP));
1976
1977	tx = dmu_tx_create(os);
1978	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1979	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1980		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1981		    ZFS_SA_ATTRS);
1982		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1983	}
1984	error = dmu_tx_assign(tx, TXG_WAIT);
1985	if (error) {
1986		dmu_tx_abort(tx);
1987		return (error);
1988	}
1989
1990	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1991	    8, 1, &newvers, tx);
1992
1993	if (error) {
1994		dmu_tx_commit(tx);
1995		return (error);
1996	}
1997
1998	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1999		uint64_t sa_obj;
2000
2001		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2002		    SPA_VERSION_SA);
2003		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2004		    DMU_OT_NONE, 0, tx);
2005
2006		error = zap_add(os, MASTER_NODE_OBJ,
2007		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2008		ASSERT0(error);
2009
2010		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2011		sa_register_update_callback(os, zfs_sa_upgrade);
2012	}
2013
2014	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2015	    "from %llu to %llu", zfsvfs->z_version, newvers);
2016
2017	dmu_tx_commit(tx);
2018
2019	zfsvfs->z_version = newvers;
2020	os->os_version = newvers;
2021
2022	zfs_set_fuid_feature(zfsvfs);
2023
2024	return (0);
2025}
2026
2027/*
2028 * Read a property stored within the master node.
2029 */
2030int
2031zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2032{
2033	uint64_t *cached_copy = NULL;
2034
2035	/*
2036	 * Figure out where in the objset_t the cached copy would live, if it
2037	 * is available for the requested property.
2038	 */
2039	if (os != NULL) {
2040		switch (prop) {
2041		case ZFS_PROP_VERSION:
2042			cached_copy = &os->os_version;
2043			break;
2044		case ZFS_PROP_NORMALIZE:
2045			cached_copy = &os->os_normalization;
2046			break;
2047		case ZFS_PROP_UTF8ONLY:
2048			cached_copy = &os->os_utf8only;
2049			break;
2050		case ZFS_PROP_CASE:
2051			cached_copy = &os->os_casesensitivity;
2052			break;
2053		default:
2054			break;
2055		}
2056	}
2057	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2058		*value = *cached_copy;
2059		return (0);
2060	}
2061
2062	/*
2063	 * If the property wasn't cached, look up the file system's value for
2064	 * the property. For the version property, we look up a slightly
2065	 * different string.
2066	 */
2067	const char *pname;
2068	int error = ENOENT;
2069	if (prop == ZFS_PROP_VERSION)
2070		pname = ZPL_VERSION_STR;
2071	else
2072		pname = zfs_prop_to_name(prop);
2073
2074	if (os != NULL) {
2075		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2076		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2077	}
2078
2079	if (error == ENOENT) {
2080		/* No value set, use the default value */
2081		switch (prop) {
2082		case ZFS_PROP_VERSION:
2083			*value = ZPL_VERSION;
2084			break;
2085		case ZFS_PROP_NORMALIZE:
2086		case ZFS_PROP_UTF8ONLY:
2087			*value = 0;
2088			break;
2089		case ZFS_PROP_CASE:
2090			*value = ZFS_CASE_SENSITIVE;
2091			break;
2092		case ZFS_PROP_ACLTYPE:
2093			*value = ZFS_ACLTYPE_OFF;
2094			break;
2095		default:
2096			return (error);
2097		}
2098		error = 0;
2099	}
2100
2101	/*
2102	 * If one of the methods for getting the property value above worked,
2103	 * copy it into the objset_t's cache.
2104	 */
2105	if (error == 0 && cached_copy != NULL) {
2106		*cached_copy = *value;
2107	}
2108
2109	return (error);
2110}
2111
2112/*
2113 * Return true if the corresponding vfs's unmounted flag is set.
2114 * Otherwise return false.
2115 * If this function returns true we know VFS unmount has been initiated.
2116 */
2117boolean_t
2118zfs_get_vfs_flag_unmounted(objset_t *os)
2119{
2120	zfsvfs_t *zfvp;
2121	boolean_t unmounted = B_FALSE;
2122
2123	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2124
2125	mutex_enter(&os->os_user_ptr_lock);
2126	zfvp = dmu_objset_get_user(os);
2127	if (zfvp != NULL && zfvp->z_unmounted)
2128		unmounted = B_TRUE;
2129	mutex_exit(&os->os_user_ptr_lock);
2130
2131	return (unmounted);
2132}
2133
2134/*ARGSUSED*/
2135void
2136zfsvfs_update_fromname(const char *oldname, const char *newname)
2137{
2138	/*
2139	 * We don't need to do anything here, the devname is always current by
2140	 * virtue of zfsvfs->z_sb->s_op->show_devname.
2141	 */
2142}
2143
2144void
2145zfs_init(void)
2146{
2147	zfsctl_init();
2148	zfs_znode_init();
2149	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2150	register_filesystem(&zpl_fs_type);
2151}
2152
2153void
2154zfs_fini(void)
2155{
2156	/*
2157	 * we don't use outstanding because zpl_posix_acl_free might add more.
2158	 */
2159	taskq_wait(system_delay_taskq);
2160	taskq_wait(system_taskq);
2161	unregister_filesystem(&zpl_fs_type);
2162	zfs_znode_fini();
2163	zfsctl_fini();
2164}
2165
2166#if defined(_KERNEL)
2167EXPORT_SYMBOL(zfs_suspend_fs);
2168EXPORT_SYMBOL(zfs_resume_fs);
2169EXPORT_SYMBOL(zfs_set_version);
2170EXPORT_SYMBOL(zfsvfs_create);
2171EXPORT_SYMBOL(zfsvfs_free);
2172EXPORT_SYMBOL(zfs_is_readonly);
2173EXPORT_SYMBOL(zfs_domount);
2174EXPORT_SYMBOL(zfs_preumount);
2175EXPORT_SYMBOL(zfs_umount);
2176EXPORT_SYMBOL(zfs_remount);
2177EXPORT_SYMBOL(zfs_statvfs);
2178EXPORT_SYMBOL(zfs_vget);
2179EXPORT_SYMBOL(zfs_prune);
2180#endif
2181