1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 */
27
28#include <sys/types.h>
29#include <sys/param.h>
30#include <sys/time.h>
31#include <sys/sysmacros.h>
32#include <sys/vfs.h>
33#include <sys/vnode.h>
34#include <sys/file.h>
35#include <sys/kmem.h>
36#include <sys/uio.h>
37#include <sys/pathname.h>
38#include <sys/cmn_err.h>
39#include <sys/errno.h>
40#include <sys/stat.h>
41#include <sys/sunddi.h>
42#include <sys/random.h>
43#include <sys/policy.h>
44#include <sys/zfs_dir.h>
45#include <sys/zfs_acl.h>
46#include <sys/zfs_vnops.h>
47#include <sys/fs/zfs.h>
48#include <sys/zap.h>
49#include <sys/dmu.h>
50#include <sys/atomic.h>
51#include <sys/zfs_ctldir.h>
52#include <sys/zfs_fuid.h>
53#include <sys/sa.h>
54#include <sys/zfs_sa.h>
55#include <sys/dmu_objset.h>
56#include <sys/dsl_dir.h>
57
58/*
59 * zfs_match_find() is used by zfs_dirent_lock() to perform zap lookups
60 * of names after deciding which is the appropriate lookup interface.
61 */
62static int
63zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, const char *name,
64    matchtype_t mt, boolean_t update, int *deflags, pathname_t *rpnp,
65    uint64_t *zoid)
66{
67	boolean_t conflict = B_FALSE;
68	int error;
69
70	if (zfsvfs->z_norm) {
71		size_t bufsz = 0;
72		char *buf = NULL;
73
74		if (rpnp) {
75			buf = rpnp->pn_buf;
76			bufsz = rpnp->pn_bufsize;
77		}
78
79		/*
80		 * In the non-mixed case we only expect there would ever
81		 * be one match, but we need to use the normalizing lookup.
82		 */
83		error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
84		    zoid, mt, buf, bufsz, &conflict);
85	} else {
86		error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
87	}
88
89	/*
90	 * Allow multiple entries provided the first entry is
91	 * the object id.  Non-zpl consumers may safely make
92	 * use of the additional space.
93	 *
94	 * XXX: This should be a feature flag for compatibility
95	 */
96	if (error == EOVERFLOW)
97		error = 0;
98
99	if (zfsvfs->z_norm && !error && deflags)
100		*deflags = conflict ? ED_CASE_CONFLICT : 0;
101
102	*zoid = ZFS_DIRENT_OBJ(*zoid);
103
104	return (error);
105}
106
107/*
108 * Lock a directory entry.  A dirlock on <dzp, name> protects that name
109 * in dzp's directory zap object.  As long as you hold a dirlock, you can
110 * assume two things: (1) dzp cannot be reaped, and (2) no other thread
111 * can change the zap entry for (i.e. link or unlink) this name.
112 *
113 * Input arguments:
114 *	dzp	- znode for directory
115 *	name	- name of entry to lock
116 *	flag	- ZNEW: if the entry already exists, fail with EEXIST.
117 *		  ZEXISTS: if the entry does not exist, fail with ENOENT.
118 *		  ZSHARED: allow concurrent access with other ZSHARED callers.
119 *		  ZXATTR: we want dzp's xattr directory
120 *		  ZCILOOK: On a mixed sensitivity file system,
121 *			   this lookup should be case-insensitive.
122 *		  ZCIEXACT: On a purely case-insensitive file system,
123 *			    this lookup should be case-sensitive.
124 *		  ZRENAMING: we are locking for renaming, force narrow locks
125 *		  ZHAVELOCK: Don't grab the z_name_lock for this call. The
126 *			     current thread already holds it.
127 *
128 * Output arguments:
129 *	zpp	- pointer to the znode for the entry (NULL if there isn't one)
130 *	dlpp	- pointer to the dirlock for this entry (NULL on error)
131 *      direntflags - (case-insensitive lookup only)
132 *		flags if multiple case-sensitive matches exist in directory
133 *      realpnp     - (case-insensitive lookup only)
134 *		actual name matched within the directory
135 *
136 * Return value: 0 on success or errno on failure.
137 *
138 * NOTE: Always checks for, and rejects, '.' and '..'.
139 * NOTE: For case-insensitive file systems we take wide locks (see below),
140 *	 but return znode pointers to a single match.
141 */
142int
143zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name,
144    znode_t **zpp, int flag, int *direntflags, pathname_t *realpnp)
145{
146	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
147	zfs_dirlock_t	*dl;
148	boolean_t	update;
149	matchtype_t	mt = 0;
150	uint64_t	zoid;
151	int		error = 0;
152	int		cmpflags;
153
154	*zpp = NULL;
155	*dlpp = NULL;
156
157	/*
158	 * Verify that we are not trying to lock '.', '..', or '.zfs'
159	 */
160	if ((name[0] == '.' &&
161	    (name[1] == '\0' || (name[1] == '.' && name[2] == '\0'))) ||
162	    (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0))
163		return (SET_ERROR(EEXIST));
164
165	/*
166	 * Case sensitivity and normalization preferences are set when
167	 * the file system is created.  These are stored in the
168	 * zfsvfs->z_case and zfsvfs->z_norm fields.  These choices
169	 * affect what vnodes can be cached in the DNLC, how we
170	 * perform zap lookups, and the "width" of our dirlocks.
171	 *
172	 * A normal dirlock locks a single name.  Note that with
173	 * normalization a name can be composed multiple ways, but
174	 * when normalized, these names all compare equal.  A wide
175	 * dirlock locks multiple names.  We need these when the file
176	 * system is supporting mixed-mode access.  It is sometimes
177	 * necessary to lock all case permutations of file name at
178	 * once so that simultaneous case-insensitive/case-sensitive
179	 * behaves as rationally as possible.
180	 */
181
182	/*
183	 * When matching we may need to normalize & change case according to
184	 * FS settings.
185	 *
186	 * Note that a normalized match is necessary for a case insensitive
187	 * filesystem when the lookup request is not exact because normalization
188	 * can fold case independent of normalizing code point sequences.
189	 *
190	 * See the table above zfs_dropname().
191	 */
192	if (zfsvfs->z_norm != 0) {
193		mt = MT_NORMALIZE;
194
195		/*
196		 * Determine if the match needs to honor the case specified in
197		 * lookup, and if so keep track of that so that during
198		 * normalization we don't fold case.
199		 */
200		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE &&
201		    (flag & ZCIEXACT)) ||
202		    (zfsvfs->z_case == ZFS_CASE_MIXED && !(flag & ZCILOOK))) {
203			mt |= MT_MATCH_CASE;
204		}
205	}
206
207	/*
208	 * Only look in or update the DNLC if we are looking for the
209	 * name on a file system that does not require normalization
210	 * or case folding.  We can also look there if we happen to be
211	 * on a non-normalizing, mixed sensitivity file system IF we
212	 * are looking for the exact name.
213	 *
214	 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
215	 * case for performance improvement?
216	 */
217	update = !zfsvfs->z_norm ||
218	    (zfsvfs->z_case == ZFS_CASE_MIXED &&
219	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
220
221	/*
222	 * ZRENAMING indicates we are in a situation where we should
223	 * take narrow locks regardless of the file system's
224	 * preferences for normalizing and case folding.  This will
225	 * prevent us deadlocking trying to grab the same wide lock
226	 * twice if the two names happen to be case-insensitive
227	 * matches.
228	 */
229	if (flag & ZRENAMING)
230		cmpflags = 0;
231	else
232		cmpflags = zfsvfs->z_norm;
233
234	/*
235	 * Wait until there are no locks on this name.
236	 *
237	 * Don't grab the lock if it is already held. However, cannot
238	 * have both ZSHARED and ZHAVELOCK together.
239	 */
240	ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK));
241	if (!(flag & ZHAVELOCK))
242		rw_enter(&dzp->z_name_lock, RW_READER);
243
244	mutex_enter(&dzp->z_lock);
245	for (;;) {
246		if (dzp->z_unlinked && !(flag & ZXATTR)) {
247			mutex_exit(&dzp->z_lock);
248			if (!(flag & ZHAVELOCK))
249				rw_exit(&dzp->z_name_lock);
250			return (SET_ERROR(ENOENT));
251		}
252		for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
253			if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
254			    U8_UNICODE_LATEST, &error) == 0) || error != 0)
255				break;
256		}
257		if (error != 0) {
258			mutex_exit(&dzp->z_lock);
259			if (!(flag & ZHAVELOCK))
260				rw_exit(&dzp->z_name_lock);
261			return (SET_ERROR(ENOENT));
262		}
263		if (dl == NULL)	{
264			/*
265			 * Allocate a new dirlock and add it to the list.
266			 */
267			dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
268			cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
269			dl->dl_name = name;
270			dl->dl_sharecnt = 0;
271			dl->dl_namelock = 0;
272			dl->dl_namesize = 0;
273			dl->dl_dzp = dzp;
274			dl->dl_next = dzp->z_dirlocks;
275			dzp->z_dirlocks = dl;
276			break;
277		}
278		if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
279			break;
280		cv_wait(&dl->dl_cv, &dzp->z_lock);
281	}
282
283	/*
284	 * If the z_name_lock was NOT held for this dirlock record it.
285	 */
286	if (flag & ZHAVELOCK)
287		dl->dl_namelock = 1;
288
289	if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
290		/*
291		 * We're the second shared reference to dl.  Make a copy of
292		 * dl_name in case the first thread goes away before we do.
293		 * Note that we initialize the new name before storing its
294		 * pointer into dl_name, because the first thread may load
295		 * dl->dl_name at any time.  It'll either see the old value,
296		 * which belongs to it, or the new shared copy; either is OK.
297		 */
298		dl->dl_namesize = strlen(dl->dl_name) + 1;
299		name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
300		bcopy(dl->dl_name, name, dl->dl_namesize);
301		dl->dl_name = name;
302	}
303
304	mutex_exit(&dzp->z_lock);
305
306	/*
307	 * We have a dirlock on the name.  (Note that it is the dirlock,
308	 * not the dzp's z_lock, that protects the name in the zap object.)
309	 * See if there's an object by this name; if so, put a hold on it.
310	 */
311	if (flag & ZXATTR) {
312		error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid,
313		    sizeof (zoid));
314		if (error == 0)
315			error = (zoid == 0 ? SET_ERROR(ENOENT) : 0);
316	} else {
317		error = zfs_match_find(zfsvfs, dzp, name, mt,
318		    update, direntflags, realpnp, &zoid);
319	}
320	if (error) {
321		if (error != ENOENT || (flag & ZEXISTS)) {
322			zfs_dirent_unlock(dl);
323			return (error);
324		}
325	} else {
326		if (flag & ZNEW) {
327			zfs_dirent_unlock(dl);
328			return (SET_ERROR(EEXIST));
329		}
330		error = zfs_zget(zfsvfs, zoid, zpp);
331		if (error) {
332			zfs_dirent_unlock(dl);
333			return (error);
334		}
335	}
336
337	*dlpp = dl;
338
339	return (0);
340}
341
342/*
343 * Unlock this directory entry and wake anyone who was waiting for it.
344 */
345void
346zfs_dirent_unlock(zfs_dirlock_t *dl)
347{
348	znode_t *dzp = dl->dl_dzp;
349	zfs_dirlock_t **prev_dl, *cur_dl;
350
351	mutex_enter(&dzp->z_lock);
352
353	if (!dl->dl_namelock)
354		rw_exit(&dzp->z_name_lock);
355
356	if (dl->dl_sharecnt > 1) {
357		dl->dl_sharecnt--;
358		mutex_exit(&dzp->z_lock);
359		return;
360	}
361	prev_dl = &dzp->z_dirlocks;
362	while ((cur_dl = *prev_dl) != dl)
363		prev_dl = &cur_dl->dl_next;
364	*prev_dl = dl->dl_next;
365	cv_broadcast(&dl->dl_cv);
366	mutex_exit(&dzp->z_lock);
367
368	if (dl->dl_namesize != 0)
369		kmem_free(dl->dl_name, dl->dl_namesize);
370	cv_destroy(&dl->dl_cv);
371	kmem_free(dl, sizeof (*dl));
372}
373
374/*
375 * Look up an entry in a directory.
376 *
377 * NOTE: '.' and '..' are handled as special cases because
378 *	no directory entries are actually stored for them.  If this is
379 *	the root of a filesystem, then '.zfs' is also treated as a
380 *	special pseudo-directory.
381 */
382int
383zfs_dirlook(znode_t *dzp, char *name, znode_t **zpp, int flags,
384    int *deflg, pathname_t *rpnp)
385{
386	zfs_dirlock_t *dl;
387	znode_t *zp;
388	struct inode *ip;
389	int error = 0;
390	uint64_t parent;
391
392	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
393		*zpp = dzp;
394		zhold(*zpp);
395	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
396		zfsvfs_t *zfsvfs = ZTOZSB(dzp);
397
398		/*
399		 * If we are a snapshot mounted under .zfs, return
400		 * the inode pointer for the snapshot directory.
401		 */
402		if ((error = sa_lookup(dzp->z_sa_hdl,
403		    SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
404			return (error);
405
406		if (parent == dzp->z_id && zfsvfs->z_parent != zfsvfs) {
407			error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
408			    "snapshot", &ip, 0, kcred, NULL, NULL);
409			*zpp = ITOZ(ip);
410			return (error);
411		}
412		rw_enter(&dzp->z_parent_lock, RW_READER);
413		error = zfs_zget(zfsvfs, parent, &zp);
414		if (error == 0)
415			*zpp = zp;
416		rw_exit(&dzp->z_parent_lock);
417	} else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
418		ip = zfsctl_root(dzp);
419		*zpp = ITOZ(ip);
420	} else {
421		int zf;
422
423		zf = ZEXISTS | ZSHARED;
424		if (flags & FIGNORECASE)
425			zf |= ZCILOOK;
426
427		error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
428		if (error == 0) {
429			*zpp = zp;
430			zfs_dirent_unlock(dl);
431			dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
432		}
433		rpnp = NULL;
434	}
435
436	if ((flags & FIGNORECASE) && rpnp && !error)
437		(void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
438
439	return (error);
440}
441
442/*
443 * unlinked Set (formerly known as the "delete queue") Error Handling
444 *
445 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
446 * don't specify the name of the entry that we will be manipulating.  We
447 * also fib and say that we won't be adding any new entries to the
448 * unlinked set, even though we might (this is to lower the minimum file
449 * size that can be deleted in a full filesystem).  So on the small
450 * chance that the nlink list is using a fat zap (ie. has more than
451 * 2000 entries), we *may* not pre-read a block that's needed.
452 * Therefore it is remotely possible for some of the assertions
453 * regarding the unlinked set below to fail due to i/o error.  On a
454 * nondebug system, this will result in the space being leaked.
455 */
456void
457zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
458{
459	zfsvfs_t *zfsvfs = ZTOZSB(zp);
460
461	ASSERT(zp->z_unlinked);
462	ASSERT(ZTOI(zp)->i_nlink == 0);
463
464	VERIFY3U(0, ==,
465	    zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
466
467	dataset_kstats_update_nunlinks_kstat(&zfsvfs->z_kstat, 1);
468}
469
470/*
471 * Clean up any znodes that had no links when we either crashed or
472 * (force) umounted the file system.
473 */
474static void
475zfs_unlinked_drain_task(void *arg)
476{
477	zfsvfs_t *zfsvfs = arg;
478	zap_cursor_t	zc;
479	zap_attribute_t zap;
480	dmu_object_info_t doi;
481	znode_t		*zp;
482	int		error;
483
484	ASSERT3B(zfsvfs->z_draining, ==, B_TRUE);
485
486	/*
487	 * Iterate over the contents of the unlinked set.
488	 */
489	for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
490	    zap_cursor_retrieve(&zc, &zap) == 0 && !zfsvfs->z_drain_cancel;
491	    zap_cursor_advance(&zc)) {
492
493		/*
494		 * See what kind of object we have in list
495		 */
496
497		error = dmu_object_info(zfsvfs->z_os,
498		    zap.za_first_integer, &doi);
499		if (error != 0)
500			continue;
501
502		ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
503		    (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
504		/*
505		 * We need to re-mark these list entries for deletion,
506		 * so we pull them back into core and set zp->z_unlinked.
507		 */
508		error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
509
510		/*
511		 * We may pick up znodes that are already marked for deletion.
512		 * This could happen during the purge of an extended attribute
513		 * directory.  All we need to do is skip over them, since they
514		 * are already in the system marked z_unlinked.
515		 */
516		if (error != 0)
517			continue;
518
519		zp->z_unlinked = B_TRUE;
520
521		/*
522		 * zrele() decrements the znode's ref count and may cause
523		 * it to be synchronously freed. We interrupt freeing
524		 * of this znode by checking the return value of
525		 * dmu_objset_zfs_unmounting() in dmu_free_long_range()
526		 * when an unmount is requested.
527		 */
528		zrele(zp);
529		ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
530	}
531	zap_cursor_fini(&zc);
532
533	zfsvfs->z_draining = B_FALSE;
534	zfsvfs->z_drain_task = TASKQID_INVALID;
535}
536
537/*
538 * Sets z_draining then tries to dispatch async unlinked drain.
539 * If that fails executes synchronous unlinked drain.
540 */
541void
542zfs_unlinked_drain(zfsvfs_t *zfsvfs)
543{
544	ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
545	ASSERT3B(zfsvfs->z_draining, ==, B_FALSE);
546
547	zfsvfs->z_draining = B_TRUE;
548	zfsvfs->z_drain_cancel = B_FALSE;
549
550	zfsvfs->z_drain_task = taskq_dispatch(
551	    dsl_pool_unlinked_drain_taskq(dmu_objset_pool(zfsvfs->z_os)),
552	    zfs_unlinked_drain_task, zfsvfs, TQ_SLEEP);
553	if (zfsvfs->z_drain_task == TASKQID_INVALID) {
554		zfs_dbgmsg("async zfs_unlinked_drain dispatch failed");
555		zfs_unlinked_drain_task(zfsvfs);
556	}
557}
558
559/*
560 * Wait for the unlinked drain taskq task to stop. This will interrupt the
561 * unlinked set processing if it is in progress.
562 */
563void
564zfs_unlinked_drain_stop_wait(zfsvfs_t *zfsvfs)
565{
566	ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
567
568	if (zfsvfs->z_draining) {
569		zfsvfs->z_drain_cancel = B_TRUE;
570		taskq_cancel_id(dsl_pool_unlinked_drain_taskq(
571		    dmu_objset_pool(zfsvfs->z_os)), zfsvfs->z_drain_task);
572		zfsvfs->z_drain_task = TASKQID_INVALID;
573		zfsvfs->z_draining = B_FALSE;
574	}
575}
576
577/*
578 * Delete the entire contents of a directory.  Return a count
579 * of the number of entries that could not be deleted. If we encounter
580 * an error, return a count of at least one so that the directory stays
581 * in the unlinked set.
582 *
583 * NOTE: this function assumes that the directory is inactive,
584 *	so there is no need to lock its entries before deletion.
585 *	Also, it assumes the directory contents is *only* regular
586 *	files.
587 */
588static int
589zfs_purgedir(znode_t *dzp)
590{
591	zap_cursor_t	zc;
592	zap_attribute_t	zap;
593	znode_t		*xzp;
594	dmu_tx_t	*tx;
595	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
596	zfs_dirlock_t	dl;
597	int skipped = 0;
598	int error;
599
600	for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
601	    (error = zap_cursor_retrieve(&zc, &zap)) == 0;
602	    zap_cursor_advance(&zc)) {
603		error = zfs_zget(zfsvfs,
604		    ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
605		if (error) {
606			skipped += 1;
607			continue;
608		}
609
610		ASSERT(S_ISREG(ZTOI(xzp)->i_mode) ||
611		    S_ISLNK(ZTOI(xzp)->i_mode));
612
613		tx = dmu_tx_create(zfsvfs->z_os);
614		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
615		dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
616		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
617		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
618		/* Is this really needed ? */
619		zfs_sa_upgrade_txholds(tx, xzp);
620		dmu_tx_mark_netfree(tx);
621		error = dmu_tx_assign(tx, TXG_WAIT);
622		if (error) {
623			dmu_tx_abort(tx);
624			zfs_zrele_async(xzp);
625			skipped += 1;
626			continue;
627		}
628		bzero(&dl, sizeof (dl));
629		dl.dl_dzp = dzp;
630		dl.dl_name = zap.za_name;
631
632		error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
633		if (error)
634			skipped += 1;
635		dmu_tx_commit(tx);
636
637		zfs_zrele_async(xzp);
638	}
639	zap_cursor_fini(&zc);
640	if (error != ENOENT)
641		skipped += 1;
642	return (skipped);
643}
644
645void
646zfs_rmnode(znode_t *zp)
647{
648	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
649	objset_t	*os = zfsvfs->z_os;
650	znode_t		*xzp = NULL;
651	dmu_tx_t	*tx;
652	uint64_t	acl_obj;
653	uint64_t	xattr_obj;
654	uint64_t	links;
655	int		error;
656
657	ASSERT(ZTOI(zp)->i_nlink == 0);
658	ASSERT(atomic_read(&ZTOI(zp)->i_count) == 0);
659
660	/*
661	 * If this is an attribute directory, purge its contents.
662	 */
663	if (S_ISDIR(ZTOI(zp)->i_mode) && (zp->z_pflags & ZFS_XATTR)) {
664		if (zfs_purgedir(zp) != 0) {
665			/*
666			 * Not enough space to delete some xattrs.
667			 * Leave it in the unlinked set.
668			 */
669			zfs_znode_dmu_fini(zp);
670
671			return;
672		}
673	}
674
675	/*
676	 * Free up all the data in the file.  We don't do this for directories
677	 * because we need truncate and remove to be in the same tx, like in
678	 * zfs_znode_delete(). Otherwise, if we crash here we'll end up with
679	 * an inconsistent truncated zap object in the delete queue.  Note a
680	 * truncated file is harmless since it only contains user data.
681	 */
682	if (S_ISREG(ZTOI(zp)->i_mode)) {
683		error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
684		if (error) {
685			/*
686			 * Not enough space or we were interrupted by unmount.
687			 * Leave the file in the unlinked set.
688			 */
689			zfs_znode_dmu_fini(zp);
690			return;
691		}
692	}
693
694	/*
695	 * If the file has extended attributes, we're going to unlink
696	 * the xattr dir.
697	 */
698	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
699	    &xattr_obj, sizeof (xattr_obj));
700	if (error == 0 && xattr_obj) {
701		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
702		ASSERT(error == 0);
703	}
704
705	acl_obj = zfs_external_acl(zp);
706
707	/*
708	 * Set up the final transaction.
709	 */
710	tx = dmu_tx_create(os);
711	dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
712	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
713	if (xzp) {
714		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
715		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
716	}
717	if (acl_obj)
718		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
719
720	zfs_sa_upgrade_txholds(tx, zp);
721	error = dmu_tx_assign(tx, TXG_WAIT);
722	if (error) {
723		/*
724		 * Not enough space to delete the file.  Leave it in the
725		 * unlinked set, leaking it until the fs is remounted (at
726		 * which point we'll call zfs_unlinked_drain() to process it).
727		 */
728		dmu_tx_abort(tx);
729		zfs_znode_dmu_fini(zp);
730		goto out;
731	}
732
733	if (xzp) {
734		ASSERT(error == 0);
735		mutex_enter(&xzp->z_lock);
736		xzp->z_unlinked = B_TRUE;	/* mark xzp for deletion */
737		clear_nlink(ZTOI(xzp));		/* no more links to it */
738		links = 0;
739		VERIFY(0 == sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
740		    &links, sizeof (links), tx));
741		mutex_exit(&xzp->z_lock);
742		zfs_unlinked_add(xzp, tx);
743	}
744
745	mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
746
747	/*
748	 * Remove this znode from the unlinked set.  If a has rollback has
749	 * occurred while a file is open and unlinked.  Then when the file
750	 * is closed post rollback it will not exist in the rolled back
751	 * version of the unlinked object.
752	 */
753	error = zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
754	    zp->z_id, tx);
755	VERIFY(error == 0 || error == ENOENT);
756
757	uint64_t count;
758	if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) {
759		cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv);
760	}
761
762	mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
763
764	dataset_kstats_update_nunlinked_kstat(&zfsvfs->z_kstat, 1);
765
766	zfs_znode_delete(zp, tx);
767
768	dmu_tx_commit(tx);
769out:
770	if (xzp)
771		zfs_zrele_async(xzp);
772}
773
774static uint64_t
775zfs_dirent(znode_t *zp, uint64_t mode)
776{
777	uint64_t de = zp->z_id;
778
779	if (ZTOZSB(zp)->z_version >= ZPL_VERSION_DIRENT_TYPE)
780		de |= IFTODT(mode) << 60;
781	return (de);
782}
783
784/*
785 * Link zp into dl.  Can fail in the following cases :
786 * - if zp has been unlinked.
787 * - if the number of entries with the same hash (aka. colliding entries)
788 *    exceed the capacity of a leaf-block of fatzap and splitting of the
789 *    leaf-block does not help.
790 */
791int
792zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
793{
794	znode_t *dzp = dl->dl_dzp;
795	zfsvfs_t *zfsvfs = ZTOZSB(zp);
796	uint64_t value;
797	int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
798	sa_bulk_attr_t bulk[5];
799	uint64_t mtime[2], ctime[2];
800	uint64_t links;
801	int count = 0;
802	int error;
803
804	mutex_enter(&zp->z_lock);
805
806	if (!(flag & ZRENAMING)) {
807		if (zp->z_unlinked) {	/* no new links to unlinked zp */
808			ASSERT(!(flag & (ZNEW | ZEXISTS)));
809			mutex_exit(&zp->z_lock);
810			return (SET_ERROR(ENOENT));
811		}
812		if (!(flag & ZNEW)) {
813			/*
814			 * ZNEW nodes come from zfs_mknode() where the link
815			 * count has already been initialised
816			 */
817			inc_nlink(ZTOI(zp));
818			links = ZTOI(zp)->i_nlink;
819			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
820			    NULL, &links, sizeof (links));
821		}
822	}
823
824	value = zfs_dirent(zp, zp->z_mode);
825	error = zap_add(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name, 8, 1,
826	    &value, tx);
827
828	/*
829	 * zap_add could fail to add the entry if it exceeds the capacity of the
830	 * leaf-block and zap_leaf_split() failed to help.
831	 * The caller of this routine is responsible for failing the transaction
832	 * which will rollback the SA updates done above.
833	 */
834	if (error != 0) {
835		if (!(flag & ZRENAMING) && !(flag & ZNEW))
836			drop_nlink(ZTOI(zp));
837		mutex_exit(&zp->z_lock);
838		return (error);
839	}
840
841	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
842	    &dzp->z_id, sizeof (dzp->z_id));
843	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
844	    &zp->z_pflags, sizeof (zp->z_pflags));
845
846	if (!(flag & ZNEW)) {
847		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
848		    ctime, sizeof (ctime));
849		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
850		    ctime);
851	}
852	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
853	ASSERT(error == 0);
854
855	mutex_exit(&zp->z_lock);
856
857	mutex_enter(&dzp->z_lock);
858	dzp->z_size++;
859	if (zp_is_dir)
860		inc_nlink(ZTOI(dzp));
861	links = ZTOI(dzp)->i_nlink;
862	count = 0;
863	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
864	    &dzp->z_size, sizeof (dzp->z_size));
865	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
866	    &links, sizeof (links));
867	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
868	    mtime, sizeof (mtime));
869	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
870	    ctime, sizeof (ctime));
871	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
872	    &dzp->z_pflags, sizeof (dzp->z_pflags));
873	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
874	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
875	ASSERT(error == 0);
876	mutex_exit(&dzp->z_lock);
877
878	return (0);
879}
880
881/*
882 * The match type in the code for this function should conform to:
883 *
884 * ------------------------------------------------------------------------
885 * fs type  | z_norm      | lookup type | match type
886 * ---------|-------------|-------------|----------------------------------
887 * CS !norm | 0           |           0 | 0 (exact)
888 * CS  norm | formX       |           0 | MT_NORMALIZE
889 * CI !norm | upper       |   !ZCIEXACT | MT_NORMALIZE
890 * CI !norm | upper       |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
891 * CI  norm | upper|formX |   !ZCIEXACT | MT_NORMALIZE
892 * CI  norm | upper|formX |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
893 * CM !norm | upper       |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
894 * CM !norm | upper       |     ZCILOOK | MT_NORMALIZE
895 * CM  norm | upper|formX |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
896 * CM  norm | upper|formX |     ZCILOOK | MT_NORMALIZE
897 *
898 * Abbreviations:
899 *    CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed
900 *    upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER)
901 *    formX = unicode normalization form set on fs creation
902 */
903static int
904zfs_dropname(zfs_dirlock_t *dl, znode_t *zp, znode_t *dzp, dmu_tx_t *tx,
905    int flag)
906{
907	int error;
908
909	if (ZTOZSB(zp)->z_norm) {
910		matchtype_t mt = MT_NORMALIZE;
911
912		if ((ZTOZSB(zp)->z_case == ZFS_CASE_INSENSITIVE &&
913		    (flag & ZCIEXACT)) ||
914		    (ZTOZSB(zp)->z_case == ZFS_CASE_MIXED &&
915		    !(flag & ZCILOOK))) {
916			mt |= MT_MATCH_CASE;
917		}
918
919		error = zap_remove_norm(ZTOZSB(zp)->z_os, dzp->z_id,
920		    dl->dl_name, mt, tx);
921	} else {
922		error = zap_remove(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name,
923		    tx);
924	}
925
926	return (error);
927}
928
929/*
930 * Unlink zp from dl, and mark zp for deletion if this was the last link. Can
931 * fail if zp is a mount point (EBUSY) or a non-empty directory (ENOTEMPTY).
932 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
933 * If it's non-NULL, we use it to indicate whether the znode needs deletion,
934 * and it's the caller's job to do it.
935 */
936int
937zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
938    boolean_t *unlinkedp)
939{
940	znode_t *dzp = dl->dl_dzp;
941	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
942	int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
943	boolean_t unlinked = B_FALSE;
944	sa_bulk_attr_t bulk[5];
945	uint64_t mtime[2], ctime[2];
946	uint64_t links;
947	int count = 0;
948	int error;
949
950	if (!(flag & ZRENAMING)) {
951		mutex_enter(&zp->z_lock);
952
953		if (zp_is_dir && !zfs_dirempty(zp)) {
954			mutex_exit(&zp->z_lock);
955			return (SET_ERROR(ENOTEMPTY));
956		}
957
958		/*
959		 * If we get here, we are going to try to remove the object.
960		 * First try removing the name from the directory; if that
961		 * fails, return the error.
962		 */
963		error = zfs_dropname(dl, zp, dzp, tx, flag);
964		if (error != 0) {
965			mutex_exit(&zp->z_lock);
966			return (error);
967		}
968
969		if (ZTOI(zp)->i_nlink <= zp_is_dir) {
970			zfs_panic_recover("zfs: link count on %lu is %u, "
971			    "should be at least %u", zp->z_id,
972			    (int)ZTOI(zp)->i_nlink, zp_is_dir + 1);
973			set_nlink(ZTOI(zp), zp_is_dir + 1);
974		}
975		drop_nlink(ZTOI(zp));
976		if (ZTOI(zp)->i_nlink == zp_is_dir) {
977			zp->z_unlinked = B_TRUE;
978			clear_nlink(ZTOI(zp));
979			unlinked = B_TRUE;
980		} else {
981			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
982			    NULL, &ctime, sizeof (ctime));
983			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
984			    NULL, &zp->z_pflags, sizeof (zp->z_pflags));
985			zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
986			    ctime);
987		}
988		links = ZTOI(zp)->i_nlink;
989		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
990		    NULL, &links, sizeof (links));
991		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
992		count = 0;
993		ASSERT(error == 0);
994		mutex_exit(&zp->z_lock);
995	} else {
996		error = zfs_dropname(dl, zp, dzp, tx, flag);
997		if (error != 0)
998			return (error);
999	}
1000
1001	mutex_enter(&dzp->z_lock);
1002	dzp->z_size--;		/* one dirent removed */
1003	if (zp_is_dir)
1004		drop_nlink(ZTOI(dzp));	/* ".." link from zp */
1005	links = ZTOI(dzp)->i_nlink;
1006	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
1007	    NULL, &links, sizeof (links));
1008	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1009	    NULL, &dzp->z_size, sizeof (dzp->z_size));
1010	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
1011	    NULL, ctime, sizeof (ctime));
1012	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
1013	    NULL, mtime, sizeof (mtime));
1014	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1015	    NULL, &dzp->z_pflags, sizeof (dzp->z_pflags));
1016	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
1017	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
1018	ASSERT(error == 0);
1019	mutex_exit(&dzp->z_lock);
1020
1021	if (unlinkedp != NULL)
1022		*unlinkedp = unlinked;
1023	else if (unlinked)
1024		zfs_unlinked_add(zp, tx);
1025
1026	return (0);
1027}
1028
1029/*
1030 * Indicate whether the directory is empty.  Works with or without z_lock
1031 * held, but can only be consider a hint in the latter case.  Returns true
1032 * if only "." and ".." remain and there's no work in progress.
1033 *
1034 * The internal ZAP size, rather than zp->z_size, needs to be checked since
1035 * some consumers (Lustre) do not strictly maintain an accurate SA_ZPL_SIZE.
1036 */
1037boolean_t
1038zfs_dirempty(znode_t *dzp)
1039{
1040	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1041	uint64_t count;
1042	int error;
1043
1044	if (dzp->z_dirlocks != NULL)
1045		return (B_FALSE);
1046
1047	error = zap_count(zfsvfs->z_os, dzp->z_id, &count);
1048	if (error != 0 || count != 0)
1049		return (B_FALSE);
1050
1051	return (B_TRUE);
1052}
1053
1054int
1055zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xzpp, cred_t *cr)
1056{
1057	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1058	znode_t *xzp;
1059	dmu_tx_t *tx;
1060	int error;
1061	zfs_acl_ids_t acl_ids;
1062	boolean_t fuid_dirtied;
1063#ifdef ZFS_DEBUG
1064	uint64_t parent;
1065#endif
1066
1067	*xzpp = NULL;
1068
1069	if ((error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr)))
1070		return (error);
1071
1072	if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL,
1073	    &acl_ids)) != 0)
1074		return (error);
1075	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zp->z_projid)) {
1076		zfs_acl_ids_free(&acl_ids);
1077		return (SET_ERROR(EDQUOT));
1078	}
1079
1080	tx = dmu_tx_create(zfsvfs->z_os);
1081	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1082	    ZFS_SA_BASE_ATTR_SIZE);
1083	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1084	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1085	fuid_dirtied = zfsvfs->z_fuid_dirty;
1086	if (fuid_dirtied)
1087		zfs_fuid_txhold(zfsvfs, tx);
1088	error = dmu_tx_assign(tx, TXG_WAIT);
1089	if (error) {
1090		zfs_acl_ids_free(&acl_ids);
1091		dmu_tx_abort(tx);
1092		return (error);
1093	}
1094	zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids);
1095
1096	if (fuid_dirtied)
1097		zfs_fuid_sync(zfsvfs, tx);
1098
1099#ifdef ZFS_DEBUG
1100	error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1101	    &parent, sizeof (parent));
1102	ASSERT(error == 0 && parent == zp->z_id);
1103#endif
1104
1105	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id,
1106	    sizeof (xzp->z_id), tx));
1107
1108	if (!zp->z_unlinked)
1109		zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, "", NULL,
1110		    acl_ids.z_fuidp, vap);
1111
1112	zfs_acl_ids_free(&acl_ids);
1113	dmu_tx_commit(tx);
1114
1115	*xzpp = xzp;
1116
1117	return (0);
1118}
1119
1120/*
1121 * Return a znode for the extended attribute directory for zp.
1122 * ** If the directory does not already exist, it is created **
1123 *
1124 *	IN:	zp	- znode to obtain attribute directory from
1125 *		cr	- credentials of caller
1126 *		flags	- flags from the VOP_LOOKUP call
1127 *
1128 *	OUT:	xipp	- pointer to extended attribute znode
1129 *
1130 *	RETURN:	0 on success
1131 *		error number on failure
1132 */
1133int
1134zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags)
1135{
1136	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1137	znode_t		*xzp;
1138	zfs_dirlock_t	*dl;
1139	vattr_t		va;
1140	int		error;
1141top:
1142	error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
1143	if (error)
1144		return (error);
1145
1146	if (xzp != NULL) {
1147		*xzpp = xzp;
1148		zfs_dirent_unlock(dl);
1149		return (0);
1150	}
1151
1152	if (!(flags & CREATE_XATTR_DIR)) {
1153		zfs_dirent_unlock(dl);
1154		return (SET_ERROR(ENOENT));
1155	}
1156
1157	if (zfs_is_readonly(zfsvfs)) {
1158		zfs_dirent_unlock(dl);
1159		return (SET_ERROR(EROFS));
1160	}
1161
1162	/*
1163	 * The ability to 'create' files in an attribute
1164	 * directory comes from the write_xattr permission on the base file.
1165	 *
1166	 * The ability to 'search' an attribute directory requires
1167	 * read_xattr permission on the base file.
1168	 *
1169	 * Once in a directory the ability to read/write attributes
1170	 * is controlled by the permissions on the attribute file.
1171	 */
1172	va.va_mask = ATTR_MODE | ATTR_UID | ATTR_GID;
1173	va.va_mode = S_IFDIR | S_ISVTX | 0777;
1174	zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
1175
1176	va.va_dentry = NULL;
1177	error = zfs_make_xattrdir(zp, &va, xzpp, cr);
1178	zfs_dirent_unlock(dl);
1179
1180	if (error == ERESTART) {
1181		/* NB: we already did dmu_tx_wait() if necessary */
1182		goto top;
1183	}
1184
1185	return (error);
1186}
1187
1188/*
1189 * Decide whether it is okay to remove within a sticky directory.
1190 *
1191 * In sticky directories, write access is not sufficient;
1192 * you can remove entries from a directory only if:
1193 *
1194 *	you own the directory,
1195 *	you own the entry,
1196 *	you have write access to the entry,
1197 *	or you are privileged (checked in secpolicy...).
1198 *
1199 * The function returns 0 if remove access is granted.
1200 */
1201int
1202zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
1203{
1204	uid_t		uid;
1205	uid_t		downer;
1206	uid_t		fowner;
1207	zfsvfs_t	*zfsvfs = ZTOZSB(zdp);
1208
1209	if (zfsvfs->z_replay)
1210		return (0);
1211
1212	if ((zdp->z_mode & S_ISVTX) == 0)
1213		return (0);
1214
1215	downer = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zdp)->i_uid),
1216	    cr, ZFS_OWNER);
1217	fowner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zp)->i_uid),
1218	    cr, ZFS_OWNER);
1219
1220	if ((uid = crgetuid(cr)) == downer || uid == fowner ||
1221	    zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0)
1222		return (0);
1223	else
1224		return (secpolicy_vnode_remove(cr));
1225}
1226