1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source.  A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 */
19
20#include <sys/zio_crypt.h>
21#include <sys/dmu.h>
22#include <sys/dmu_objset.h>
23#include <sys/dnode.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
26#include <sys/zil.h>
27#include <sys/sha2.h>
28#include <sys/hkdf.h>
29
30/*
31 * This file is responsible for handling all of the details of generating
32 * encryption parameters and performing encryption and authentication.
33 *
34 * BLOCK ENCRYPTION PARAMETERS:
35 * Encryption /Authentication Algorithm Suite (crypt):
36 * The encryption algorithm, mode, and key length we are going to use. We
37 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
38 * keys. All authentication is currently done with SHA512-HMAC.
39 *
40 * Plaintext:
41 * The unencrypted data that we want to encrypt.
42 *
43 * Initialization Vector (IV):
44 * An initialization vector for the encryption algorithms. This is used to
45 * "tweak" the encryption algorithms so that two blocks of the same data are
46 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
47 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
48 * never reused with the same encryption key. This value is stored unencrypted
49 * and must simply be provided to the decryption function. We use a 96 bit IV
50 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
51 * derive the IV randomly. The first 64 bits of the IV are stored in the second
52 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
53 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
54 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
55 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
56 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
57 * format supports at most 2^15 slots per L0 dnode block, because the maximum
58 * block size is 16MB (2^24). In either case, for level 0 blocks this number
59 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
60 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
61 * for the dnode code.
62 *
63 * Master key:
64 * This is the most important secret data of an encrypted dataset. It is used
65 * along with the salt to generate that actual encryption keys via HKDF. We
66 * do not use the master key to directly encrypt any data because there are
67 * theoretical limits on how much data can actually be safely encrypted with
68 * any encryption mode. The master key is stored encrypted on disk with the
69 * user's wrapping key. Its length is determined by the encryption algorithm.
70 * For details on how this is stored see the block comment in dsl_crypt.c
71 *
72 * Salt:
73 * Used as an input to the HKDF function, along with the master key. We use a
74 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
75 * can be used for encrypting many blocks, so we cache the current salt and the
76 * associated derived key in zio_crypt_t so we do not need to derive it again
77 * needlessly.
78 *
79 * Encryption Key:
80 * A secret binary key, generated from an HKDF function used to encrypt and
81 * decrypt data.
82 *
83 * Message Authentication Code (MAC)
84 * The MAC is an output of authenticated encryption modes such as AES-GCM and
85 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
86 * data on disk and return garbage to the application. Effectively, it is a
87 * checksum that can not be reproduced by an attacker. We store the MAC in the
88 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
89 * regular checksum of the ciphertext which can be used for scrubbing.
90 *
91 * OBJECT AUTHENTICATION:
92 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
93 * they contain some info that always needs to be readable. To prevent this
94 * data from being altered, we authenticate this data using SHA512-HMAC. This
95 * will produce a MAC (similar to the one produced via encryption) which can
96 * be used to verify the object was not modified. HMACs do not require key
97 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
98 * data.
99 *
100 * ZIL ENCRYPTION:
101 * ZIL blocks have their bp written to disk ahead of the associated data, so we
102 * cannot store the MAC there as we normally do. For these blocks the MAC is
103 * stored in the embedded checksum within the zil_chain_t header. The salt and
104 * IV are generated for the block on bp allocation instead of at encryption
105 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
106 * for claiming even though all of the sensitive user data still needs to be
107 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
108 * pieces of the block need to be encrypted. All data that is not encrypted is
109 * authenticated using the AAD mechanisms that the supported encryption modes
110 * provide for. In order to preserve the semantics of the ZIL for encrypted
111 * datasets, the ZIL is not protected at the objset level as described below.
112 *
113 * DNODE ENCRYPTION:
114 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
115 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
116 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
117 * which pieces of the block need to be encrypted. For more details about
118 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
119 *
120 * OBJECT SET AUTHENTICATION:
121 * Up to this point, everything we have encrypted and authenticated has been
122 * at level 0 (or -2 for the ZIL). If we did not do any further work the
123 * on-disk format would be susceptible to attacks that deleted or rearranged
124 * the order of level 0 blocks. Ideally, the cleanest solution would be to
125 * maintain a tree of authentication MACs going up the bp tree. However, this
126 * presents a problem for raw sends. Send files do not send information about
127 * indirect blocks so there would be no convenient way to transfer the MACs and
128 * they cannot be recalculated on the receive side without the master key which
129 * would defeat one of the purposes of raw sends in the first place. Instead,
130 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
131 * from the level below. We also include some portable fields from blk_prop such
132 * as the lsize and compression algorithm to prevent the data from being
133 * misinterpreted.
134 *
135 * At the objset level, we maintain 2 separate 256 bit MACs in the
136 * objset_phys_t. The first one is "portable" and is the logical root of the
137 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
138 * used as the root MAC for the user accounting objects, which are also not
139 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
140 * of the send file. The useraccounting code ensures that the useraccounting
141 * info is not present upon a receive, so the local MAC can simply be cleared
142 * out at that time. For more info about objset_phys_t authentication, see
143 * zio_crypt_do_objset_hmacs().
144 *
145 * CONSIDERATIONS FOR DEDUP:
146 * In order for dedup to work, blocks that we want to dedup with one another
147 * need to use the same IV and encryption key, so that they will have the same
148 * ciphertext. Normally, one should never reuse an IV with the same encryption
149 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
150 * blocks. In this case, however, since we are using the same plaintext as
151 * well all that we end up with is a duplicate of the original ciphertext we
152 * already had. As a result, an attacker with read access to the raw disk will
153 * be able to tell which blocks are the same but this information is given away
154 * by dedup anyway. In order to get the same IVs and encryption keys for
155 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
156 * here so that a reproducible checksum of the plaintext is never available to
157 * the attacker. The HMAC key is kept alongside the master key, encrypted on
158 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
159 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
160 * will only work within a clone family since encrypted dedup requires use of
161 * the same master and HMAC keys.
162 */
163
164/*
165 * After encrypting many blocks with the same key we may start to run up
166 * against the theoretical limits of how much data can securely be encrypted
167 * with a single key using the supported encryption modes. The most obvious
168 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
169 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
170 * This risk actually grows surprisingly quickly over time according to the
171 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
172 * generated n IVs with a cryptographically secure RNG, the approximate
173 * probability p(n) of a collision is given as:
174 *
175 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
176 *
177 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
178 *
179 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
180 * we must not write more than 398,065,730 blocks with the same encryption key.
181 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
182 * generating a new random 64 bit salt for our HKDF encryption key generation
183 * function.
184 */
185#define	ZFS_KEY_MAX_SALT_USES_DEFAULT	400000000
186#define	ZFS_CURRENT_MAX_SALT_USES	\
187	(MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
188unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
189
190/*
191 * Set to a nonzero value to cause zio_do_crypt_uio() to fail 1/this many
192 * calls, to test decryption error handling code paths.
193 */
194uint64_t zio_decrypt_fail_fraction = 0;
195
196typedef struct blkptr_auth_buf {
197	uint64_t bab_prop;			/* blk_prop - portable mask */
198	uint8_t bab_mac[ZIO_DATA_MAC_LEN];	/* MAC from blk_cksum */
199	uint64_t bab_pad;			/* reserved for future use */
200} blkptr_auth_buf_t;
201
202zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
203	{"",			ZC_TYPE_NONE,	0,	"inherit"},
204	{"",			ZC_TYPE_NONE,	0,	"on"},
205	{"",			ZC_TYPE_NONE,	0,	"off"},
206	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	16,	"aes-128-ccm"},
207	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	24,	"aes-192-ccm"},
208	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	32,	"aes-256-ccm"},
209	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	16,	"aes-128-gcm"},
210	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	24,	"aes-192-gcm"},
211	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	32,	"aes-256-gcm"}
212};
213
214static void
215zio_crypt_key_destroy_early(zio_crypt_key_t *key)
216{
217	rw_destroy(&key->zk_salt_lock);
218
219	/* free crypto templates */
220	bzero(&key->zk_session, sizeof (key->zk_session));
221
222	/* zero out sensitive data */
223	bzero(key, sizeof (zio_crypt_key_t));
224}
225
226void
227zio_crypt_key_destroy(zio_crypt_key_t *key)
228{
229
230	freebsd_crypt_freesession(&key->zk_session);
231	zio_crypt_key_destroy_early(key);
232}
233
234int
235zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
236{
237	int ret;
238	crypto_mechanism_t mech __unused;
239	uint_t keydata_len;
240	zio_crypt_info_t *ci = NULL;
241
242	ASSERT(key != NULL);
243	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
244
245	ci = &zio_crypt_table[crypt];
246	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
247	    ci->ci_crypt_type != ZC_TYPE_CCM)
248		return (ENOTSUP);
249
250	keydata_len = zio_crypt_table[crypt].ci_keylen;
251	bzero(key, sizeof (zio_crypt_key_t));
252	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
253
254	/* fill keydata buffers and salt with random data */
255	ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
256	if (ret != 0)
257		goto error;
258
259	ret = random_get_bytes(key->zk_master_keydata, keydata_len);
260	if (ret != 0)
261		goto error;
262
263	ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
264	if (ret != 0)
265		goto error;
266
267	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
268	if (ret != 0)
269		goto error;
270
271	/* derive the current key from the master key */
272	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
273	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
274	    keydata_len);
275	if (ret != 0)
276		goto error;
277
278	/* initialize keys for the ICP */
279	key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
280	key->zk_current_key.ck_data = key->zk_current_keydata;
281	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
282
283	key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
284	key->zk_hmac_key.ck_data = &key->zk_hmac_key;
285	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
286
287	ci = &zio_crypt_table[crypt];
288	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
289	    ci->ci_crypt_type != ZC_TYPE_CCM)
290		return (ENOTSUP);
291
292	ret = freebsd_crypt_newsession(&key->zk_session, ci,
293	    &key->zk_current_key);
294	if (ret)
295		goto error;
296
297	key->zk_crypt = crypt;
298	key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
299	key->zk_salt_count = 0;
300
301	return (0);
302
303error:
304	zio_crypt_key_destroy_early(key);
305	return (ret);
306}
307
308static int
309zio_crypt_key_change_salt(zio_crypt_key_t *key)
310{
311	int ret = 0;
312	uint8_t salt[ZIO_DATA_SALT_LEN];
313	crypto_mechanism_t mech __unused;
314
315	uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
316
317	/* generate a new salt */
318	ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
319	if (ret != 0)
320		goto error;
321
322	rw_enter(&key->zk_salt_lock, RW_WRITER);
323
324	/* someone beat us to the salt rotation, just unlock and return */
325	if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
326		goto out_unlock;
327
328	/* derive the current key from the master key and the new salt */
329	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
330	    salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
331	if (ret != 0)
332		goto out_unlock;
333
334	/* assign the salt and reset the usage count */
335	bcopy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
336	key->zk_salt_count = 0;
337
338	freebsd_crypt_freesession(&key->zk_session);
339	ret = freebsd_crypt_newsession(&key->zk_session,
340	    &zio_crypt_table[key->zk_crypt], &key->zk_current_key);
341	if (ret != 0)
342		goto out_unlock;
343
344	rw_exit(&key->zk_salt_lock);
345
346	return (0);
347
348out_unlock:
349	rw_exit(&key->zk_salt_lock);
350error:
351	return (ret);
352}
353
354/* See comment above zfs_key_max_salt_uses definition for details */
355int
356zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
357{
358	int ret;
359	boolean_t salt_change;
360
361	rw_enter(&key->zk_salt_lock, RW_READER);
362
363	bcopy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
364	salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
365	    ZFS_CURRENT_MAX_SALT_USES);
366
367	rw_exit(&key->zk_salt_lock);
368
369	if (salt_change) {
370		ret = zio_crypt_key_change_salt(key);
371		if (ret != 0)
372			goto error;
373	}
374
375	return (0);
376
377error:
378	return (ret);
379}
380
381void *failed_decrypt_buf;
382int failed_decrypt_size;
383
384/*
385 * This function handles all encryption and decryption in zfs. When
386 * encrypting it expects puio to reference the plaintext and cuio to
387 * reference the ciphertext. cuio must have enough space for the
388 * ciphertext + room for a MAC. datalen should be the length of the
389 * plaintext / ciphertext alone.
390 */
391/*
392 * The implementation for FreeBSD's OpenCrypto.
393 *
394 * The big difference between ICP and FOC is that FOC uses a single
395 * buffer for input and output.  This means that (for AES-GCM, the
396 * only one supported right now) the source must be copied into the
397 * destination, and the destination must have the AAD, and the tag/MAC,
398 * already associated with it.  (Both implementations can use a uio.)
399 *
400 * Since the auth data is part of the iovec array, all we need to know
401 * is the length:  0 means there's no AAD.
402 *
403 */
404static int
405zio_do_crypt_uio_opencrypto(boolean_t encrypt, freebsd_crypt_session_t *sess,
406    uint64_t crypt, crypto_key_t *key, uint8_t *ivbuf, uint_t datalen,
407    zfs_uio_t *uio, uint_t auth_len)
408{
409	zio_crypt_info_t *ci;
410	int ret;
411
412	ci = &zio_crypt_table[crypt];
413	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
414	    ci->ci_crypt_type != ZC_TYPE_CCM)
415		return (ENOTSUP);
416
417
418	ret = freebsd_crypt_uio(encrypt, sess, ci, uio, key, ivbuf,
419	    datalen, auth_len);
420	if (ret != 0) {
421#ifdef FCRYPTO_DEBUG
422		printf("%s(%d):  Returning error %s\n",
423		    __FUNCTION__, __LINE__, encrypt ? "EIO" : "ECKSUM");
424#endif
425		ret = SET_ERROR(encrypt ? EIO : ECKSUM);
426	}
427
428	return (ret);
429}
430
431int
432zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
433    uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
434{
435	int ret;
436	uint64_t aad[3];
437	/*
438	 * With OpenCrypto in FreeBSD, the same buffer is used for
439	 * input and output.  Also, the AAD (for AES-GMC at least)
440	 * needs to logically go in front.
441	 */
442	zfs_uio_t cuio;
443	struct uio cuio_s;
444	iovec_t iovecs[4];
445	uint64_t crypt = key->zk_crypt;
446	uint_t enc_len, keydata_len, aad_len;
447
448	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
449	ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
450
451	zfs_uio_init(&cuio, &cuio_s);
452
453	keydata_len = zio_crypt_table[crypt].ci_keylen;
454
455	/* generate iv for wrapping the master and hmac key */
456	ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
457	if (ret != 0)
458		goto error;
459
460	/*
461	 * Since we only support one buffer, we need to copy
462	 * the plain text (source) to the cipher buffer (dest).
463	 * We set iovecs[0] -- the authentication data -- below.
464	 */
465	bcopy((void*)key->zk_master_keydata, keydata_out, keydata_len);
466	bcopy((void*)key->zk_hmac_keydata, hmac_keydata_out,
467	    SHA512_HMAC_KEYLEN);
468	iovecs[1].iov_base = keydata_out;
469	iovecs[1].iov_len = keydata_len;
470	iovecs[2].iov_base = hmac_keydata_out;
471	iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
472	iovecs[3].iov_base = mac;
473	iovecs[3].iov_len = WRAPPING_MAC_LEN;
474
475	/*
476	 * Although we don't support writing to the old format, we do
477	 * support rewrapping the key so that the user can move and
478	 * quarantine datasets on the old format.
479	 */
480	if (key->zk_version == 0) {
481		aad_len = sizeof (uint64_t);
482		aad[0] = LE_64(key->zk_guid);
483	} else {
484		ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
485		aad_len = sizeof (uint64_t) * 3;
486		aad[0] = LE_64(key->zk_guid);
487		aad[1] = LE_64(crypt);
488		aad[2] = LE_64(key->zk_version);
489	}
490
491	iovecs[0].iov_base = aad;
492	iovecs[0].iov_len = aad_len;
493	enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
494
495	GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
496	zfs_uio_iovcnt(&cuio) = 4;
497	zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
498
499	/* encrypt the keys and store the resulting ciphertext and mac */
500	ret = zio_do_crypt_uio_opencrypto(B_TRUE, NULL, crypt, cwkey,
501	    iv, enc_len, &cuio, aad_len);
502	if (ret != 0)
503		goto error;
504
505	return (0);
506
507error:
508	return (ret);
509}
510
511int
512zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
513    uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
514    uint8_t *mac, zio_crypt_key_t *key)
515{
516	int ret;
517	uint64_t aad[3];
518	/*
519	 * With OpenCrypto in FreeBSD, the same buffer is used for
520	 * input and output.  Also, the AAD (for AES-GMC at least)
521	 * needs to logically go in front.
522	 */
523	zfs_uio_t cuio;
524	struct uio cuio_s;
525	iovec_t iovecs[4];
526	void *src, *dst;
527	uint_t enc_len, keydata_len, aad_len;
528
529	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
530	ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
531
532	keydata_len = zio_crypt_table[crypt].ci_keylen;
533	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
534
535	zfs_uio_init(&cuio, &cuio_s);
536
537	/*
538	 * Since we only support one buffer, we need to copy
539	 * the encrypted buffer (source) to the plain buffer
540	 * (dest).  We set iovecs[0] -- the authentication data --
541	 * below.
542	 */
543	dst = key->zk_master_keydata;
544	src = keydata;
545
546	bcopy(src, dst, keydata_len);
547
548	dst = key->zk_hmac_keydata;
549	src = hmac_keydata;
550	bcopy(src, dst, SHA512_HMAC_KEYLEN);
551
552	iovecs[1].iov_base = key->zk_master_keydata;
553	iovecs[1].iov_len = keydata_len;
554	iovecs[2].iov_base = key->zk_hmac_keydata;
555	iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
556	iovecs[3].iov_base = mac;
557	iovecs[3].iov_len = WRAPPING_MAC_LEN;
558
559	if (version == 0) {
560		aad_len = sizeof (uint64_t);
561		aad[0] = LE_64(guid);
562	} else {
563		ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
564		aad_len = sizeof (uint64_t) * 3;
565		aad[0] = LE_64(guid);
566		aad[1] = LE_64(crypt);
567		aad[2] = LE_64(version);
568	}
569
570	enc_len = keydata_len + SHA512_HMAC_KEYLEN;
571	iovecs[0].iov_base = aad;
572	iovecs[0].iov_len = aad_len;
573
574	GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
575	zfs_uio_iovcnt(&cuio) = 4;
576	zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
577
578	/* decrypt the keys and store the result in the output buffers */
579	ret = zio_do_crypt_uio_opencrypto(B_FALSE, NULL, crypt, cwkey,
580	    iv, enc_len, &cuio, aad_len);
581
582	if (ret != 0)
583		goto error;
584
585	/* generate a fresh salt */
586	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
587	if (ret != 0)
588		goto error;
589
590	/* derive the current key from the master key */
591	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
592	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
593	    keydata_len);
594	if (ret != 0)
595		goto error;
596
597	/* initialize keys for ICP */
598	key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
599	key->zk_current_key.ck_data = key->zk_current_keydata;
600	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
601
602	key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
603	key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
604	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
605
606	ret = freebsd_crypt_newsession(&key->zk_session,
607	    &zio_crypt_table[crypt], &key->zk_current_key);
608	if (ret != 0)
609		goto error;
610
611	key->zk_crypt = crypt;
612	key->zk_version = version;
613	key->zk_guid = guid;
614	key->zk_salt_count = 0;
615
616	return (0);
617
618error:
619	zio_crypt_key_destroy_early(key);
620	return (ret);
621}
622
623int
624zio_crypt_generate_iv(uint8_t *ivbuf)
625{
626	int ret;
627
628	/* randomly generate the IV */
629	ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
630	if (ret != 0)
631		goto error;
632
633	return (0);
634
635error:
636	bzero(ivbuf, ZIO_DATA_IV_LEN);
637	return (ret);
638}
639
640int
641zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
642    uint8_t *digestbuf, uint_t digestlen)
643{
644	uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
645
646	ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
647
648	crypto_mac(&key->zk_hmac_key, data, datalen,
649	    raw_digestbuf, SHA512_DIGEST_LENGTH);
650
651	bcopy(raw_digestbuf, digestbuf, digestlen);
652
653	return (0);
654}
655
656int
657zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
658    uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
659{
660	int ret;
661	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
662
663	ret = zio_crypt_do_hmac(key, data, datalen,
664	    digestbuf, SHA512_DIGEST_LENGTH);
665	if (ret != 0)
666		return (ret);
667
668	bcopy(digestbuf, salt, ZIO_DATA_SALT_LEN);
669	bcopy(digestbuf + ZIO_DATA_SALT_LEN, ivbuf, ZIO_DATA_IV_LEN);
670
671	return (0);
672}
673
674/*
675 * The following functions are used to encode and decode encryption parameters
676 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
677 * byte strings, which normally means that these strings would not need to deal
678 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
679 * byteswapped by lower layers and so we must "undo" that byteswap here upon
680 * decoding and encoding in a non-native byteorder. These functions require
681 * that the byteorder bit is correct before being called.
682 */
683void
684zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
685{
686	uint64_t val64;
687	uint32_t val32;
688
689	ASSERT(BP_IS_ENCRYPTED(bp));
690
691	if (!BP_SHOULD_BYTESWAP(bp)) {
692		bcopy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
693		bcopy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
694		bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
695		BP_SET_IV2(bp, val32);
696	} else {
697		bcopy(salt, &val64, sizeof (uint64_t));
698		bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
699
700		bcopy(iv, &val64, sizeof (uint64_t));
701		bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
702
703		bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
704		BP_SET_IV2(bp, BSWAP_32(val32));
705	}
706}
707
708void
709zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
710{
711	uint64_t val64;
712	uint32_t val32;
713
714	ASSERT(BP_IS_PROTECTED(bp));
715
716	/* for convenience, so callers don't need to check */
717	if (BP_IS_AUTHENTICATED(bp)) {
718		bzero(salt, ZIO_DATA_SALT_LEN);
719		bzero(iv, ZIO_DATA_IV_LEN);
720		return;
721	}
722
723	if (!BP_SHOULD_BYTESWAP(bp)) {
724		bcopy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
725		bcopy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
726
727		val32 = (uint32_t)BP_GET_IV2(bp);
728		bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
729	} else {
730		val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
731		bcopy(&val64, salt, sizeof (uint64_t));
732
733		val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
734		bcopy(&val64, iv, sizeof (uint64_t));
735
736		val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
737		bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
738	}
739}
740
741void
742zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
743{
744	uint64_t val64;
745
746	ASSERT(BP_USES_CRYPT(bp));
747	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
748
749	if (!BP_SHOULD_BYTESWAP(bp)) {
750		bcopy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
751		bcopy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
752		    sizeof (uint64_t));
753	} else {
754		bcopy(mac, &val64, sizeof (uint64_t));
755		bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
756
757		bcopy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
758		bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
759	}
760}
761
762void
763zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
764{
765	uint64_t val64;
766
767	ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
768
769	/* for convenience, so callers don't need to check */
770	if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
771		bzero(mac, ZIO_DATA_MAC_LEN);
772		return;
773	}
774
775	if (!BP_SHOULD_BYTESWAP(bp)) {
776		bcopy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
777		bcopy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
778		    sizeof (uint64_t));
779	} else {
780		val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
781		bcopy(&val64, mac, sizeof (uint64_t));
782
783		val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
784		bcopy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
785	}
786}
787
788void
789zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
790{
791	zil_chain_t *zilc = data;
792
793	bcopy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
794	bcopy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
795	    sizeof (uint64_t));
796}
797
798void
799zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
800{
801	/*
802	 * The ZIL MAC is embedded in the block it protects, which will
803	 * not have been byteswapped by the time this function has been called.
804	 * As a result, we don't need to worry about byteswapping the MAC.
805	 */
806	const zil_chain_t *zilc = data;
807
808	bcopy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
809	bcopy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
810	    sizeof (uint64_t));
811}
812
813/*
814 * This routine takes a block of dnodes (src_abd) and copies only the bonus
815 * buffers to the same offsets in the dst buffer. datalen should be the size
816 * of both the src_abd and the dst buffer (not just the length of the bonus
817 * buffers).
818 */
819void
820zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
821{
822	uint_t i, max_dnp = datalen >> DNODE_SHIFT;
823	uint8_t *src;
824	dnode_phys_t *dnp, *sdnp, *ddnp;
825
826	src = abd_borrow_buf_copy(src_abd, datalen);
827
828	sdnp = (dnode_phys_t *)src;
829	ddnp = (dnode_phys_t *)dst;
830
831	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
832		dnp = &sdnp[i];
833		if (dnp->dn_type != DMU_OT_NONE &&
834		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
835		    dnp->dn_bonuslen != 0) {
836			bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]),
837			    DN_MAX_BONUS_LEN(dnp));
838		}
839	}
840
841	abd_return_buf(src_abd, src, datalen);
842}
843
844/*
845 * This function decides what fields from blk_prop are included in
846 * the on-disk various MAC algorithms.
847 */
848static void
849zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
850{
851	int avoidlint = SPA_MINBLOCKSIZE;
852	/*
853	 * Version 0 did not properly zero out all non-portable fields
854	 * as it should have done. We maintain this code so that we can
855	 * do read-only imports of pools on this version.
856	 */
857	if (version == 0) {
858		BP_SET_DEDUP(bp, 0);
859		BP_SET_CHECKSUM(bp, 0);
860		BP_SET_PSIZE(bp, avoidlint);
861		return;
862	}
863
864	ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
865
866	/*
867	 * The hole_birth feature might set these fields even if this bp
868	 * is a hole. We zero them out here to guarantee that raw sends
869	 * will function with or without the feature.
870	 */
871	if (BP_IS_HOLE(bp)) {
872		bp->blk_prop = 0ULL;
873		return;
874	}
875
876	/*
877	 * At L0 we want to verify these fields to ensure that data blocks
878	 * can not be reinterpreted. For instance, we do not want an attacker
879	 * to trick us into returning raw lz4 compressed data to the user
880	 * by modifying the compression bits. At higher levels, we cannot
881	 * enforce this policy since raw sends do not convey any information
882	 * about indirect blocks, so these values might be different on the
883	 * receive side. Fortunately, this does not open any new attack
884	 * vectors, since any alterations that can be made to a higher level
885	 * bp must still verify the correct order of the layer below it.
886	 */
887	if (BP_GET_LEVEL(bp) != 0) {
888		BP_SET_BYTEORDER(bp, 0);
889		BP_SET_COMPRESS(bp, 0);
890
891		/*
892		 * psize cannot be set to zero or it will trigger
893		 * asserts, but the value doesn't really matter as
894		 * long as it is constant.
895		 */
896		BP_SET_PSIZE(bp, avoidlint);
897	}
898
899	BP_SET_DEDUP(bp, 0);
900	BP_SET_CHECKSUM(bp, 0);
901}
902
903static void
904zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
905    blkptr_auth_buf_t *bab, uint_t *bab_len)
906{
907	blkptr_t tmpbp = *bp;
908
909	if (should_bswap)
910		byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
911
912	ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
913	ASSERT0(BP_IS_EMBEDDED(&tmpbp));
914
915	zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
916
917	/*
918	 * We always MAC blk_prop in LE to ensure portability. This
919	 * must be done after decoding the mac, since the endianness
920	 * will get zero'd out here.
921	 */
922	zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
923	bab->bab_prop = LE_64(tmpbp.blk_prop);
924	bab->bab_pad = 0ULL;
925
926	/* version 0 did not include the padding */
927	*bab_len = sizeof (blkptr_auth_buf_t);
928	if (version == 0)
929		*bab_len -= sizeof (uint64_t);
930}
931
932static int
933zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
934    boolean_t should_bswap, blkptr_t *bp)
935{
936	uint_t bab_len;
937	blkptr_auth_buf_t bab;
938
939	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
940	crypto_mac_update(ctx, &bab, bab_len);
941
942	return (0);
943}
944
945static void
946zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
947    boolean_t should_bswap, blkptr_t *bp)
948{
949	uint_t bab_len;
950	blkptr_auth_buf_t bab;
951
952	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
953	SHA2Update(ctx, &bab, bab_len);
954}
955
956static void
957zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
958    boolean_t should_bswap, blkptr_t *bp)
959{
960	uint_t bab_len;
961	blkptr_auth_buf_t bab;
962
963	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
964	bcopy(&bab, *aadp, bab_len);
965	*aadp += bab_len;
966	*aad_len += bab_len;
967}
968
969static int
970zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
971    boolean_t should_bswap, dnode_phys_t *dnp)
972{
973	int ret, i;
974	dnode_phys_t *adnp;
975	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
976	uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)];
977
978	/* authenticate the core dnode (masking out non-portable bits) */
979	bcopy(dnp, tmp_dncore, sizeof (tmp_dncore));
980	adnp = (dnode_phys_t *)tmp_dncore;
981	if (le_bswap) {
982		adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
983		adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
984		adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
985		adnp->dn_used = BSWAP_64(adnp->dn_used);
986	}
987	adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
988	adnp->dn_used = 0;
989
990	crypto_mac_update(ctx, adnp, sizeof (tmp_dncore));
991
992	for (i = 0; i < dnp->dn_nblkptr; i++) {
993		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
994		    should_bswap, &dnp->dn_blkptr[i]);
995		if (ret != 0)
996			goto error;
997	}
998
999	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1000		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1001		    should_bswap, DN_SPILL_BLKPTR(dnp));
1002		if (ret != 0)
1003			goto error;
1004	}
1005
1006	return (0);
1007
1008error:
1009	return (ret);
1010}
1011
1012/*
1013 * objset_phys_t blocks introduce a number of exceptions to the normal
1014 * authentication process. objset_phys_t's contain 2 separate HMACS for
1015 * protecting the integrity of their data. The portable_mac protects the
1016 * metadnode. This MAC can be sent with a raw send and protects against
1017 * reordering of data within the metadnode. The local_mac protects the user
1018 * accounting objects which are not sent from one system to another.
1019 *
1020 * In addition, objset blocks are the only blocks that can be modified and
1021 * written to disk without the key loaded under certain circumstances. During
1022 * zil_claim() we need to be able to update the zil_header_t to complete
1023 * claiming log blocks and during raw receives we need to write out the
1024 * portable_mac from the send file. Both of these actions are possible
1025 * because these fields are not protected by either MAC so neither one will
1026 * need to modify the MACs without the key. However, when the modified blocks
1027 * are written out they will be byteswapped into the host machine's native
1028 * endianness which will modify fields protected by the MAC. As a result, MAC
1029 * calculation for objset blocks works slightly differently from other block
1030 * types. Where other block types MAC the data in whatever endianness is
1031 * written to disk, objset blocks always MAC little endian version of their
1032 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1033 * and le_bswap indicates whether a byteswap is needed to get this block
1034 * into little endian format.
1035 */
1036/* ARGSUSED */
1037int
1038zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1039    boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1040{
1041	int ret;
1042	struct hmac_ctx hash_ctx;
1043	struct hmac_ctx *ctx = &hash_ctx;
1044	objset_phys_t *osp = data;
1045	uint64_t intval;
1046	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1047	uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1048	uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1049
1050
1051	/* calculate the portable MAC from the portable fields and metadnode */
1052	crypto_mac_init(ctx, &key->zk_hmac_key);
1053
1054	/* add in the os_type */
1055	intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1056	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1057
1058	/* add in the portable os_flags */
1059	intval = osp->os_flags;
1060	if (should_bswap)
1061		intval = BSWAP_64(intval);
1062	intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1063	/* CONSTCOND */
1064	if (!ZFS_HOST_BYTEORDER)
1065		intval = BSWAP_64(intval);
1066
1067	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1068
1069	/* add in fields from the metadnode */
1070	ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1071	    should_bswap, &osp->os_meta_dnode);
1072	if (ret)
1073		goto error;
1074
1075	crypto_mac_final(ctx, raw_portable_mac, SHA512_DIGEST_LENGTH);
1076
1077	bcopy(raw_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
1078
1079	/*
1080	 * The local MAC protects the user, group and project accounting.
1081	 * If these objects are not present, the local MAC is zeroed out.
1082	 */
1083	if ((datalen >= OBJSET_PHYS_SIZE_V3 &&
1084	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1085	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1086	    osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1087	    (datalen >= OBJSET_PHYS_SIZE_V2 &&
1088	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1089	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1090	    (datalen <= OBJSET_PHYS_SIZE_V1)) {
1091		bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1092		return (0);
1093	}
1094
1095	/* calculate the local MAC from the userused and groupused dnodes */
1096	crypto_mac_init(ctx, &key->zk_hmac_key);
1097
1098	/* add in the non-portable os_flags */
1099	intval = osp->os_flags;
1100	if (should_bswap)
1101		intval = BSWAP_64(intval);
1102	intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1103	/* CONSTCOND */
1104	if (!ZFS_HOST_BYTEORDER)
1105		intval = BSWAP_64(intval);
1106
1107	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1108
1109	/* XXX check dnode type ... */
1110	/* add in fields from the user accounting dnodes */
1111	if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1112		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1113		    should_bswap, &osp->os_userused_dnode);
1114		if (ret)
1115			goto error;
1116	}
1117
1118	if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1119		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1120		    should_bswap, &osp->os_groupused_dnode);
1121		if (ret)
1122			goto error;
1123	}
1124
1125	if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1126	    datalen >= OBJSET_PHYS_SIZE_V3) {
1127		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1128		    should_bswap, &osp->os_projectused_dnode);
1129		if (ret)
1130			goto error;
1131	}
1132
1133	crypto_mac_final(ctx, raw_local_mac, SHA512_DIGEST_LENGTH);
1134
1135	bcopy(raw_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
1136
1137	return (0);
1138
1139error:
1140	bzero(portable_mac, ZIO_OBJSET_MAC_LEN);
1141	bzero(local_mac, ZIO_OBJSET_MAC_LEN);
1142	return (ret);
1143}
1144
1145static void
1146zio_crypt_destroy_uio(zfs_uio_t *uio)
1147{
1148	if (GET_UIO_STRUCT(uio)->uio_iov)
1149		kmem_free(GET_UIO_STRUCT(uio)->uio_iov,
1150		    zfs_uio_iovcnt(uio) * sizeof (iovec_t));
1151}
1152
1153/*
1154 * This function parses an uncompressed indirect block and returns a checksum
1155 * of all the portable fields from all of the contained bps. The portable
1156 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1157 * checksum, and psize bits. For an explanation of the purpose of this, see
1158 * the comment block on object set authentication.
1159 */
1160static int
1161zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1162    uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1163{
1164	blkptr_t *bp;
1165	int i, epb = datalen >> SPA_BLKPTRSHIFT;
1166	SHA2_CTX ctx;
1167	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1168
1169	/* checksum all of the MACs from the layer below */
1170	SHA2Init(SHA512, &ctx);
1171	for (i = 0, bp = buf; i < epb; i++, bp++) {
1172		zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1173		    byteswap, bp);
1174	}
1175	SHA2Final(digestbuf, &ctx);
1176
1177	if (generate) {
1178		bcopy(digestbuf, cksum, ZIO_DATA_MAC_LEN);
1179		return (0);
1180	}
1181
1182	if (bcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) {
1183#ifdef FCRYPTO_DEBUG
1184		printf("%s(%d): Setting ECKSUM\n", __FUNCTION__, __LINE__);
1185#endif
1186		return (SET_ERROR(ECKSUM));
1187	}
1188	return (0);
1189}
1190
1191int
1192zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1193    uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1194{
1195	int ret;
1196
1197	/*
1198	 * Unfortunately, callers of this function will not always have
1199	 * easy access to the on-disk format version. This info is
1200	 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1201	 * is expected to be verifiable even when the key isn't loaded.
1202	 * Here, instead of doing a ZAP lookup for the version for each
1203	 * zio, we simply try both existing formats.
1204	 */
1205	ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1206	    datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1207	if (ret == ECKSUM) {
1208		ASSERT(!generate);
1209		ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1210		    buf, datalen, 0, byteswap, cksum);
1211	}
1212
1213	return (ret);
1214}
1215
1216int
1217zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1218    uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1219{
1220	int ret;
1221	void *buf;
1222
1223	buf = abd_borrow_buf_copy(abd, datalen);
1224	ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1225	    byteswap, cksum);
1226	abd_return_buf(abd, buf, datalen);
1227
1228	return (ret);
1229}
1230
1231/*
1232 * Special case handling routine for encrypting / decrypting ZIL blocks.
1233 * We do not check for the older ZIL chain because the encryption feature
1234 * was not available before the newer ZIL chain was introduced. The goal
1235 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1236 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1237 */
1238/*
1239 * The OpenCrypto used in FreeBSD does not use separate source and
1240 * destination buffers; instead, the same buffer is used.  Further, to
1241 * accommodate some of the drivers, the authbuf needs to be logically before
1242 * the data.  This means that we need to copy the source to the destination,
1243 * and set up an extra iovec_t at the beginning to handle the authbuf.
1244 * It also means we'll only return one zfs_uio_t.
1245 */
1246
1247/* ARGSUSED */
1248static int
1249zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1250    uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1251    zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1252    boolean_t *no_crypt)
1253{
1254	uint8_t *aadbuf = zio_buf_alloc(datalen);
1255	uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1256	iovec_t *dst_iovecs;
1257	zil_chain_t *zilc;
1258	lr_t *lr;
1259	uint64_t txtype, lr_len;
1260	uint_t crypt_len, nr_iovecs, vec;
1261	uint_t aad_len = 0, total_len = 0;
1262
1263	if (encrypt) {
1264		src = plainbuf;
1265		dst = cipherbuf;
1266	} else {
1267		src = cipherbuf;
1268		dst = plainbuf;
1269	}
1270	bcopy(src, dst, datalen);
1271
1272	/* Find the start and end record of the log block. */
1273	zilc = (zil_chain_t *)src;
1274	slrp = src + sizeof (zil_chain_t);
1275	aadp = aadbuf;
1276	blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1277
1278	/*
1279	 * Calculate the number of encrypted iovecs we will need.
1280	 */
1281
1282	/* We need at least two iovecs -- one for the AAD, one for the MAC. */
1283	nr_iovecs = 2;
1284
1285	for (; slrp < blkend; slrp += lr_len) {
1286		lr = (lr_t *)slrp;
1287
1288		if (byteswap) {
1289			txtype = BSWAP_64(lr->lrc_txtype);
1290			lr_len = BSWAP_64(lr->lrc_reclen);
1291		} else {
1292			txtype = lr->lrc_txtype;
1293			lr_len = lr->lrc_reclen;
1294		}
1295
1296		nr_iovecs++;
1297		if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1298			nr_iovecs++;
1299	}
1300
1301	dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
1302
1303	/*
1304	 * Copy the plain zil header over and authenticate everything except
1305	 * the checksum that will store our MAC. If we are writing the data
1306	 * the embedded checksum will not have been calculated yet, so we don't
1307	 * authenticate that.
1308	 */
1309	bcopy(src, aadp, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1310	aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1311	aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1312
1313	slrp = src + sizeof (zil_chain_t);
1314	dlrp = dst + sizeof (zil_chain_t);
1315
1316	/*
1317	 * Loop over records again, filling in iovecs.
1318	 */
1319
1320	/* The first iovec will contain the authbuf. */
1321	vec = 1;
1322
1323	for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1324		lr = (lr_t *)slrp;
1325
1326		if (!byteswap) {
1327			txtype = lr->lrc_txtype;
1328			lr_len = lr->lrc_reclen;
1329		} else {
1330			txtype = BSWAP_64(lr->lrc_txtype);
1331			lr_len = BSWAP_64(lr->lrc_reclen);
1332		}
1333
1334		/* copy the common lr_t */
1335		bcopy(slrp, dlrp, sizeof (lr_t));
1336		bcopy(slrp, aadp, sizeof (lr_t));
1337		aadp += sizeof (lr_t);
1338		aad_len += sizeof (lr_t);
1339
1340		/*
1341		 * If this is a TX_WRITE record we want to encrypt everything
1342		 * except the bp if exists. If the bp does exist we want to
1343		 * authenticate it.
1344		 */
1345		if (txtype == TX_WRITE) {
1346			crypt_len = sizeof (lr_write_t) -
1347			    sizeof (lr_t) - sizeof (blkptr_t);
1348			dst_iovecs[vec].iov_base = (char *)dlrp +
1349			    sizeof (lr_t);
1350			dst_iovecs[vec].iov_len = crypt_len;
1351
1352			/* copy the bp now since it will not be encrypted */
1353			bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1354			    dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1355			    sizeof (blkptr_t));
1356			bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1357			    aadp, sizeof (blkptr_t));
1358			aadp += sizeof (blkptr_t);
1359			aad_len += sizeof (blkptr_t);
1360			vec++;
1361			total_len += crypt_len;
1362
1363			if (lr_len != sizeof (lr_write_t)) {
1364				crypt_len = lr_len - sizeof (lr_write_t);
1365				dst_iovecs[vec].iov_base = (char *)
1366				    dlrp + sizeof (lr_write_t);
1367				dst_iovecs[vec].iov_len = crypt_len;
1368				vec++;
1369				total_len += crypt_len;
1370			}
1371		} else {
1372			crypt_len = lr_len - sizeof (lr_t);
1373			dst_iovecs[vec].iov_base = (char *)dlrp +
1374			    sizeof (lr_t);
1375			dst_iovecs[vec].iov_len = crypt_len;
1376			vec++;
1377			total_len += crypt_len;
1378		}
1379	}
1380
1381	/* The last iovec will contain the MAC. */
1382	ASSERT3U(vec, ==, nr_iovecs - 1);
1383
1384	/* AAD */
1385	dst_iovecs[0].iov_base = aadbuf;
1386	dst_iovecs[0].iov_len = aad_len;
1387	/* MAC */
1388	dst_iovecs[vec].iov_base = 0;
1389	dst_iovecs[vec].iov_len = 0;
1390
1391	*no_crypt = (vec == 1);
1392	*enc_len = total_len;
1393	*authbuf = aadbuf;
1394	*auth_len = aad_len;
1395	GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
1396	zfs_uio_iovcnt(out_uio) = nr_iovecs;
1397
1398	return (0);
1399}
1400
1401/*
1402 * Special case handling routine for encrypting / decrypting dnode blocks.
1403 */
1404static int
1405zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1406    uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1407    zfs_uio_t *puio, zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf,
1408    uint_t *auth_len, boolean_t *no_crypt)
1409{
1410	uint8_t *aadbuf = zio_buf_alloc(datalen);
1411	uint8_t *src, *dst, *aadp;
1412	dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1413	iovec_t *dst_iovecs;
1414	uint_t nr_iovecs, crypt_len, vec;
1415	uint_t aad_len = 0, total_len = 0;
1416	uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1417
1418	if (encrypt) {
1419		src = plainbuf;
1420		dst = cipherbuf;
1421	} else {
1422		src = cipherbuf;
1423		dst = plainbuf;
1424	}
1425	bcopy(src, dst, datalen);
1426
1427	sdnp = (dnode_phys_t *)src;
1428	ddnp = (dnode_phys_t *)dst;
1429	aadp = aadbuf;
1430
1431	/*
1432	 * Count the number of iovecs we will need to do the encryption by
1433	 * counting the number of bonus buffers that need to be encrypted.
1434	 */
1435
1436	/* We need at least two iovecs -- one for the AAD, one for the MAC. */
1437	nr_iovecs = 2;
1438
1439	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1440		/*
1441		 * This block may still be byteswapped. However, all of the
1442		 * values we use are either uint8_t's (for which byteswapping
1443		 * is a noop) or a * != 0 check, which will work regardless
1444		 * of whether or not we byteswap.
1445		 */
1446		if (sdnp[i].dn_type != DMU_OT_NONE &&
1447		    DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1448		    sdnp[i].dn_bonuslen != 0) {
1449			nr_iovecs++;
1450		}
1451	}
1452
1453	dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
1454
1455	/*
1456	 * Iterate through the dnodes again, this time filling in the uios
1457	 * we allocated earlier. We also concatenate any data we want to
1458	 * authenticate onto aadbuf.
1459	 */
1460
1461	/* The first iovec will contain the authbuf. */
1462	vec = 1;
1463
1464	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1465		dnp = &sdnp[i];
1466
1467		/* copy over the core fields and blkptrs (kept as plaintext) */
1468		bcopy(dnp, &ddnp[i], (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1469
1470		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1471			bcopy(DN_SPILL_BLKPTR(dnp), DN_SPILL_BLKPTR(&ddnp[i]),
1472			    sizeof (blkptr_t));
1473		}
1474
1475		/*
1476		 * Handle authenticated data. We authenticate everything in
1477		 * the dnode that can be brought over when we do a raw send.
1478		 * This includes all of the core fields as well as the MACs
1479		 * stored in the bp checksums and all of the portable bits
1480		 * from blk_prop. We include the dnode padding here in case it
1481		 * ever gets used in the future. Some dn_flags and dn_used are
1482		 * not portable so we mask those out values out of the
1483		 * authenticated data.
1484		 */
1485		crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1486		bcopy(dnp, aadp, crypt_len);
1487		adnp = (dnode_phys_t *)aadp;
1488		adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1489		adnp->dn_used = 0;
1490		aadp += crypt_len;
1491		aad_len += crypt_len;
1492
1493		for (j = 0; j < dnp->dn_nblkptr; j++) {
1494			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1495			    version, byteswap, &dnp->dn_blkptr[j]);
1496		}
1497
1498		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1499			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1500			    version, byteswap, DN_SPILL_BLKPTR(dnp));
1501		}
1502
1503		/*
1504		 * If this bonus buffer needs to be encrypted, we prepare an
1505		 * iovec_t. The encryption / decryption functions will fill
1506		 * this in for us with the encrypted or decrypted data.
1507		 * Otherwise we add the bonus buffer to the authenticated
1508		 * data buffer and copy it over to the destination. The
1509		 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1510		 * we can guarantee alignment with the AES block size
1511		 * (128 bits).
1512		 */
1513		crypt_len = DN_MAX_BONUS_LEN(dnp);
1514		if (dnp->dn_type != DMU_OT_NONE &&
1515		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1516		    dnp->dn_bonuslen != 0) {
1517			dst_iovecs[vec].iov_base = DN_BONUS(&ddnp[i]);
1518			dst_iovecs[vec].iov_len = crypt_len;
1519
1520			vec++;
1521			total_len += crypt_len;
1522		} else {
1523			bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), crypt_len);
1524			bcopy(DN_BONUS(dnp), aadp, crypt_len);
1525			aadp += crypt_len;
1526			aad_len += crypt_len;
1527		}
1528	}
1529
1530	/* The last iovec will contain the MAC. */
1531	ASSERT3U(vec, ==, nr_iovecs - 1);
1532
1533	/* AAD */
1534	dst_iovecs[0].iov_base = aadbuf;
1535	dst_iovecs[0].iov_len = aad_len;
1536	/* MAC */
1537	dst_iovecs[vec].iov_base = 0;
1538	dst_iovecs[vec].iov_len = 0;
1539
1540	*no_crypt = (vec == 1);
1541	*enc_len = total_len;
1542	*authbuf = aadbuf;
1543	*auth_len = aad_len;
1544	GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
1545	zfs_uio_iovcnt(out_uio) = nr_iovecs;
1546
1547	return (0);
1548}
1549
1550/* ARGSUSED */
1551static int
1552zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1553    uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *out_uio,
1554    uint_t *enc_len)
1555{
1556	int ret;
1557	uint_t nr_plain = 1, nr_cipher = 2;
1558	iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1559	void *src, *dst;
1560
1561	cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1562	    KM_SLEEP);
1563	if (!cipher_iovecs) {
1564		ret = SET_ERROR(ENOMEM);
1565		goto error;
1566	}
1567	bzero(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1568
1569	if (encrypt) {
1570		src = plainbuf;
1571		dst = cipherbuf;
1572	} else {
1573		src = cipherbuf;
1574		dst = plainbuf;
1575	}
1576	bcopy(src, dst, datalen);
1577	cipher_iovecs[0].iov_base = dst;
1578	cipher_iovecs[0].iov_len = datalen;
1579
1580	*enc_len = datalen;
1581	GET_UIO_STRUCT(out_uio)->uio_iov = cipher_iovecs;
1582	zfs_uio_iovcnt(out_uio) = nr_cipher;
1583
1584	return (0);
1585
1586error:
1587	if (plain_iovecs != NULL)
1588		kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1589	if (cipher_iovecs != NULL)
1590		kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1591
1592	*enc_len = 0;
1593	GET_UIO_STRUCT(out_uio)->uio_iov = NULL;
1594	zfs_uio_iovcnt(out_uio) = 0;
1595
1596	return (ret);
1597}
1598
1599/*
1600 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1601 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1602 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1603 * requiring special handling to parse out pieces that are to be encrypted. The
1604 * authbuf is used by these special cases to store additional authenticated
1605 * data (AAD) for the encryption modes.
1606 */
1607static int
1608zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1609    uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1610    uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1611    uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1612{
1613	int ret;
1614	iovec_t *mac_iov;
1615
1616	ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1617
1618	/* route to handler */
1619	switch (ot) {
1620	case DMU_OT_INTENT_LOG:
1621		ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1622		    datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1623		    no_crypt);
1624		break;
1625	case DMU_OT_DNODE:
1626		ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1627		    cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1628		    auth_len, no_crypt);
1629		break;
1630	default:
1631		ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1632		    datalen, puio, cuio, enc_len);
1633		*authbuf = NULL;
1634		*auth_len = 0;
1635		*no_crypt = B_FALSE;
1636		break;
1637	}
1638
1639	if (ret != 0)
1640		goto error;
1641
1642	/* populate the uios */
1643	zfs_uio_segflg(cuio) = UIO_SYSSPACE;
1644
1645	mac_iov =
1646	    ((iovec_t *)&(GET_UIO_STRUCT(cuio)->
1647	    uio_iov[zfs_uio_iovcnt(cuio) - 1]));
1648	mac_iov->iov_base = (void *)mac;
1649	mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1650
1651	return (0);
1652
1653error:
1654	return (ret);
1655}
1656
1657void *failed_decrypt_buf;
1658int faile_decrypt_size;
1659
1660/*
1661 * Primary encryption / decryption entrypoint for zio data.
1662 */
1663int
1664zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1665    dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1666    uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1667    boolean_t *no_crypt)
1668{
1669	int ret;
1670	boolean_t locked = B_FALSE;
1671	uint64_t crypt = key->zk_crypt;
1672	uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1673	uint_t enc_len, auth_len;
1674	zfs_uio_t puio, cuio;
1675	struct uio puio_s, cuio_s;
1676	uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1677	crypto_key_t tmp_ckey, *ckey = NULL;
1678	freebsd_crypt_session_t *tmpl = NULL;
1679	uint8_t *authbuf = NULL;
1680
1681
1682	zfs_uio_init(&puio, &puio_s);
1683	zfs_uio_init(&cuio, &cuio_s);
1684	bzero(GET_UIO_STRUCT(&puio), sizeof (struct uio));
1685	bzero(GET_UIO_STRUCT(&cuio), sizeof (struct uio));
1686
1687#ifdef FCRYPTO_DEBUG
1688	printf("%s(%s, %p, %p, %d, %p, %p, %u, %s, %p, %p, %p)\n",
1689	    __FUNCTION__,
1690	    encrypt ? "encrypt" : "decrypt",
1691	    key, salt, ot, iv, mac, datalen,
1692	    byteswap ? "byteswap" : "native_endian", plainbuf,
1693	    cipherbuf, no_crypt);
1694
1695	printf("\tkey = {");
1696	for (int i = 0; i < key->zk_current_key.ck_length/8; i++)
1697		printf("%02x ", ((uint8_t *)key->zk_current_key.ck_data)[i]);
1698	printf("}\n");
1699#endif
1700	/* create uios for encryption */
1701	ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1702	    cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1703	    &authbuf, &auth_len, no_crypt);
1704	if (ret != 0)
1705		return (ret);
1706
1707	/*
1708	 * If the needed key is the current one, just use it. Otherwise we
1709	 * need to generate a temporary one from the given salt + master key.
1710	 * If we are encrypting, we must return a copy of the current salt
1711	 * so that it can be stored in the blkptr_t.
1712	 */
1713	rw_enter(&key->zk_salt_lock, RW_READER);
1714	locked = B_TRUE;
1715
1716	if (bcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1717		ckey = &key->zk_current_key;
1718		tmpl = &key->zk_session;
1719	} else {
1720		rw_exit(&key->zk_salt_lock);
1721		locked = B_FALSE;
1722
1723		ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1724		    salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1725		if (ret != 0)
1726			goto error;
1727		tmp_ckey.ck_format = CRYPTO_KEY_RAW;
1728		tmp_ckey.ck_data = enc_keydata;
1729		tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1730
1731		ckey = &tmp_ckey;
1732		tmpl = NULL;
1733	}
1734
1735	/* perform the encryption / decryption */
1736	ret = zio_do_crypt_uio_opencrypto(encrypt, tmpl, key->zk_crypt,
1737	    ckey, iv, enc_len, &cuio, auth_len);
1738	if (ret != 0)
1739		goto error;
1740	if (locked) {
1741		rw_exit(&key->zk_salt_lock);
1742		locked = B_FALSE;
1743	}
1744
1745	if (authbuf != NULL)
1746		zio_buf_free(authbuf, datalen);
1747	if (ckey == &tmp_ckey)
1748		bzero(enc_keydata, keydata_len);
1749	zio_crypt_destroy_uio(&puio);
1750	zio_crypt_destroy_uio(&cuio);
1751
1752	return (0);
1753
1754error:
1755	if (!encrypt) {
1756		if (failed_decrypt_buf != NULL)
1757			kmem_free(failed_decrypt_buf, failed_decrypt_size);
1758		failed_decrypt_buf = kmem_alloc(datalen, KM_SLEEP);
1759		failed_decrypt_size = datalen;
1760		bcopy(cipherbuf, failed_decrypt_buf, datalen);
1761	}
1762	if (locked)
1763		rw_exit(&key->zk_salt_lock);
1764	if (authbuf != NULL)
1765		zio_buf_free(authbuf, datalen);
1766	if (ckey == &tmp_ckey)
1767		bzero(enc_keydata, keydata_len);
1768	zio_crypt_destroy_uio(&puio);
1769	zio_crypt_destroy_uio(&cuio);
1770	return (SET_ERROR(ret));
1771}
1772
1773/*
1774 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
1775 * linear buffers.
1776 */
1777int
1778zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
1779    boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
1780    uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
1781{
1782	int ret;
1783	void *ptmp, *ctmp;
1784
1785	if (encrypt) {
1786		ptmp = abd_borrow_buf_copy(pabd, datalen);
1787		ctmp = abd_borrow_buf(cabd, datalen);
1788	} else {
1789		ptmp = abd_borrow_buf(pabd, datalen);
1790		ctmp = abd_borrow_buf_copy(cabd, datalen);
1791	}
1792
1793	ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
1794	    datalen, ptmp, ctmp, no_crypt);
1795	if (ret != 0)
1796		goto error;
1797
1798	if (encrypt) {
1799		abd_return_buf(pabd, ptmp, datalen);
1800		abd_return_buf_copy(cabd, ctmp, datalen);
1801	} else {
1802		abd_return_buf_copy(pabd, ptmp, datalen);
1803		abd_return_buf(cabd, ctmp, datalen);
1804	}
1805
1806	return (0);
1807
1808error:
1809	if (encrypt) {
1810		abd_return_buf(pabd, ptmp, datalen);
1811		abd_return_buf_copy(cabd, ctmp, datalen);
1812	} else {
1813		abd_return_buf_copy(pabd, ptmp, datalen);
1814		abd_return_buf(cabd, ctmp, datalen);
1815	}
1816
1817	return (SET_ERROR(ret));
1818}
1819
1820#if defined(_KERNEL) && defined(HAVE_SPL)
1821/* BEGIN CSTYLED */
1822module_param(zfs_key_max_salt_uses, ulong, 0644);
1823MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
1824	"can be used for generating encryption keys before it is rotated");
1825/* END CSTYLED */
1826#endif
1827