1/*
2 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3 * Use is subject to license terms.
4 */
5
6/*
7 * The basic framework for this code came from the reference
8 * implementation for MD5.  That implementation is Copyright (C)
9 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
10 *
11 * License to copy and use this software is granted provided that it
12 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13 * Algorithm" in all material mentioning or referencing this software
14 * or this function.
15 *
16 * License is also granted to make and use derivative works provided
17 * that such works are identified as "derived from the RSA Data
18 * Security, Inc. MD5 Message-Digest Algorithm" in all material
19 * mentioning or referencing the derived work.
20 *
21 * RSA Data Security, Inc. makes no representations concerning either
22 * the merchantability of this software or the suitability of this
23 * software for any particular purpose. It is provided "as is"
24 * without express or implied warranty of any kind.
25 *
26 * These notices must be retained in any copies of any part of this
27 * documentation and/or software.
28 *
29 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
30 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
31 * Not as fast as one would like -- further optimizations are encouraged
32 * and appreciated.
33 */
34
35#include <sys/zfs_context.h>
36#include <sha1/sha1.h>
37#include <sha1/sha1_consts.h>
38
39#ifdef _LITTLE_ENDIAN
40#include <sys/byteorder.h>
41#define	HAVE_HTONL
42#endif
43
44#define	_RESTRICT_KYWD
45
46static void Encode(uint8_t *, const uint32_t *, size_t);
47
48#if	defined(__sparc)
49
50#define	SHA1_TRANSFORM(ctx, in) \
51	SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
52		(ctx)->state[3], (ctx)->state[4], (ctx), (in))
53
54static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
55	SHA1_CTX *, const uint8_t *);
56
57#elif	defined(__amd64)
58
59#define	SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
60#define	SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
61		(in), (num))
62
63void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
64
65#else
66
67#define	SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
68
69static void SHA1Transform(SHA1_CTX *, const uint8_t *);
70
71#endif
72
73
74static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
75
76/*
77 * F, G, and H are the basic SHA1 functions.
78 */
79#define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
80#define	G(b, c, d)	((b) ^ (c) ^ (d))
81#define	H(b, c, d)	(((b) & (c)) | (((b)|(c)) & (d)))
82
83/*
84 * SHA1Init()
85 *
86 * purpose: initializes the sha1 context and begins and sha1 digest operation
87 *   input: SHA1_CTX *	: the context to initializes.
88 *  output: void
89 */
90
91void
92SHA1Init(SHA1_CTX *ctx)
93{
94	ctx->count[0] = ctx->count[1] = 0;
95
96	/*
97	 * load magic initialization constants. Tell lint
98	 * that these constants are unsigned by using U.
99	 */
100
101	ctx->state[0] = 0x67452301U;
102	ctx->state[1] = 0xefcdab89U;
103	ctx->state[2] = 0x98badcfeU;
104	ctx->state[3] = 0x10325476U;
105	ctx->state[4] = 0xc3d2e1f0U;
106}
107
108void
109SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
110{
111	uint32_t i, buf_index, buf_len;
112	const uint8_t *input = inptr;
113#if defined(__amd64)
114	uint32_t	block_count;
115#endif	/* __amd64 */
116
117	/* check for noop */
118	if (input_len == 0)
119		return;
120
121	/* compute number of bytes mod 64 */
122	buf_index = (ctx->count[1] >> 3) & 0x3F;
123
124	/* update number of bits */
125	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
126		ctx->count[0]++;
127
128	ctx->count[0] += (input_len >> 29);
129
130	buf_len = 64 - buf_index;
131
132	/* transform as many times as possible */
133	i = 0;
134	if (input_len >= buf_len) {
135
136		/*
137		 * general optimization:
138		 *
139		 * only do initial bcopy() and SHA1Transform() if
140		 * buf_index != 0.  if buf_index == 0, we're just
141		 * wasting our time doing the bcopy() since there
142		 * wasn't any data left over from a previous call to
143		 * SHA1Update().
144		 */
145
146		if (buf_index) {
147			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
148			SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
149			i = buf_len;
150		}
151
152#if !defined(__amd64)
153		for (; i + 63 < input_len; i += 64)
154			SHA1_TRANSFORM(ctx, &input[i]);
155#else
156		block_count = (input_len - i) >> 6;
157		if (block_count > 0) {
158			SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
159			i += block_count << 6;
160		}
161#endif	/* !__amd64 */
162
163		/*
164		 * general optimization:
165		 *
166		 * if i and input_len are the same, return now instead
167		 * of calling bcopy(), since the bcopy() in this case
168		 * will be an expensive nop.
169		 */
170
171		if (input_len == i)
172			return;
173
174		buf_index = 0;
175	}
176
177	/* buffer remaining input */
178	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
179}
180
181/*
182 * SHA1Final()
183 *
184 * purpose: ends an sha1 digest operation, finalizing the message digest and
185 *          zeroing the context.
186 *   input: uchar_t *	: A buffer to store the digest.
187 *			: The function actually uses void* because many
188 *			: callers pass things other than uchar_t here.
189 *          SHA1_CTX *  : the context to finalize, save, and zero
190 *  output: void
191 */
192
193void
194SHA1Final(void *digest, SHA1_CTX *ctx)
195{
196	uint8_t		bitcount_be[sizeof (ctx->count)];
197	uint32_t	index = (ctx->count[1] >> 3) & 0x3f;
198
199	/* store bit count, big endian */
200	Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
201
202	/* pad out to 56 mod 64 */
203	SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
204
205	/* append length (before padding) */
206	SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
207
208	/* store state in digest */
209	Encode(digest, ctx->state, sizeof (ctx->state));
210
211	/* zeroize sensitive information */
212	bzero(ctx, sizeof (*ctx));
213}
214
215
216#if !defined(__amd64)
217
218typedef uint32_t sha1word;
219
220/*
221 * sparc optimization:
222 *
223 * on the sparc, we can load big endian 32-bit data easily.  note that
224 * special care must be taken to ensure the address is 32-bit aligned.
225 * in the interest of speed, we don't check to make sure, since
226 * careful programming can guarantee this for us.
227 */
228
229#if	defined(_ZFS_BIG_ENDIAN)
230#define	LOAD_BIG_32(addr)	(*(uint32_t *)(addr))
231
232#elif	defined(HAVE_HTONL)
233#define	LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
234
235#else
236#define	LOAD_BIG_32(addr)	BE_32(*((uint32_t *)(addr)))
237#endif	/* _BIG_ENDIAN */
238
239/*
240 * SHA1Transform()
241 */
242#if	defined(W_ARRAY)
243#define	W(n) w[n]
244#else	/* !defined(W_ARRAY) */
245#define	W(n) w_ ## n
246#endif	/* !defined(W_ARRAY) */
247
248/*
249 * ROTATE_LEFT rotates x left n bits.
250 */
251
252#if	defined(__GNUC__) && defined(_LP64)
253static __inline__ uint64_t
254ROTATE_LEFT(uint64_t value, uint32_t n)
255{
256	uint32_t t32;
257
258	t32 = (uint32_t)value;
259	return ((t32 << n) | (t32 >> (32 - n)));
260}
261
262#else
263
264#define	ROTATE_LEFT(x, n)	\
265	(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
266
267#endif
268
269#if	defined(__sparc)
270
271
272/*
273 * sparc register window optimization:
274 *
275 * `a', `b', `c', `d', and `e' are passed into SHA1Transform
276 * explicitly since it increases the number of registers available to
277 * the compiler.  under this scheme, these variables can be held in
278 * %i0 - %i4, which leaves more local and out registers available.
279 *
280 * purpose: sha1 transformation -- updates the digest based on `block'
281 *   input: uint32_t	: bytes  1 -  4 of the digest
282 *          uint32_t	: bytes  5 -  8 of the digest
283 *          uint32_t	: bytes  9 - 12 of the digest
284 *          uint32_t	: bytes 12 - 16 of the digest
285 *          uint32_t	: bytes 16 - 20 of the digest
286 *          SHA1_CTX *	: the context to update
287 *          uint8_t [64]: the block to use to update the digest
288 *  output: void
289 */
290
291
292void
293SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
294    SHA1_CTX *ctx, const uint8_t blk[64])
295{
296	/*
297	 * sparc optimization:
298	 *
299	 * while it is somewhat counter-intuitive, on sparc, it is
300	 * more efficient to place all the constants used in this
301	 * function in an array and load the values out of the array
302	 * than to manually load the constants.  this is because
303	 * setting a register to a 32-bit value takes two ops in most
304	 * cases: a `sethi' and an `or', but loading a 32-bit value
305	 * from memory only takes one `ld' (or `lduw' on v9).  while
306	 * this increases memory usage, the compiler can find enough
307	 * other things to do while waiting to keep the pipeline does
308	 * not stall.  additionally, it is likely that many of these
309	 * constants are cached so that later accesses do not even go
310	 * out to the bus.
311	 *
312	 * this array is declared `static' to keep the compiler from
313	 * having to bcopy() this array onto the stack frame of
314	 * SHA1Transform() each time it is called -- which is
315	 * unacceptably expensive.
316	 *
317	 * the `const' is to ensure that callers are good citizens and
318	 * do not try to munge the array.  since these routines are
319	 * going to be called from inside multithreaded kernelland,
320	 * this is a good safety check. -- `sha1_consts' will end up in
321	 * .rodata.
322	 *
323	 * unfortunately, loading from an array in this manner hurts
324	 * performance under Intel.  So, there is a macro,
325	 * SHA1_CONST(), used in SHA1Transform(), that either expands to
326	 * a reference to this array, or to the actual constant,
327	 * depending on what platform this code is compiled for.
328	 */
329
330
331	static const uint32_t sha1_consts[] = {
332		SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
333	};
334
335
336	/*
337	 * general optimization:
338	 *
339	 * use individual integers instead of using an array.  this is a
340	 * win, although the amount it wins by seems to vary quite a bit.
341	 */
342
343
344	uint32_t	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
345	uint32_t	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
346
347
348	/*
349	 * sparc optimization:
350	 *
351	 * if `block' is already aligned on a 4-byte boundary, use
352	 * LOAD_BIG_32() directly.  otherwise, bcopy() into a
353	 * buffer that *is* aligned on a 4-byte boundary and then do
354	 * the LOAD_BIG_32() on that buffer.  benchmarks have shown
355	 * that using the bcopy() is better than loading the bytes
356	 * individually and doing the endian-swap by hand.
357	 *
358	 * even though it's quite tempting to assign to do:
359	 *
360	 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
361	 *
362	 * and only have one set of LOAD_BIG_32()'s, the compiler
363	 * *does not* like that, so please resist the urge.
364	 */
365
366
367	if ((uintptr_t)blk & 0x3) {		/* not 4-byte aligned? */
368		bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
369		w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
370		w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
371		w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
372		w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
373		w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
374		w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
375		w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
376		w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
377		w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
378		w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
379		w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
380		w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
381		w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
382		w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
383		w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
384		w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
385	} else {
386		/* LINTED E_BAD_PTR_CAST_ALIGN */
387		w_15 = LOAD_BIG_32(blk + 60);
388		/* LINTED E_BAD_PTR_CAST_ALIGN */
389		w_14 = LOAD_BIG_32(blk + 56);
390		/* LINTED E_BAD_PTR_CAST_ALIGN */
391		w_13 = LOAD_BIG_32(blk + 52);
392		/* LINTED E_BAD_PTR_CAST_ALIGN */
393		w_12 = LOAD_BIG_32(blk + 48);
394		/* LINTED E_BAD_PTR_CAST_ALIGN */
395		w_11 = LOAD_BIG_32(blk + 44);
396		/* LINTED E_BAD_PTR_CAST_ALIGN */
397		w_10 = LOAD_BIG_32(blk + 40);
398		/* LINTED E_BAD_PTR_CAST_ALIGN */
399		w_9  = LOAD_BIG_32(blk + 36);
400		/* LINTED E_BAD_PTR_CAST_ALIGN */
401		w_8  = LOAD_BIG_32(blk + 32);
402		/* LINTED E_BAD_PTR_CAST_ALIGN */
403		w_7  = LOAD_BIG_32(blk + 28);
404		/* LINTED E_BAD_PTR_CAST_ALIGN */
405		w_6  = LOAD_BIG_32(blk + 24);
406		/* LINTED E_BAD_PTR_CAST_ALIGN */
407		w_5  = LOAD_BIG_32(blk + 20);
408		/* LINTED E_BAD_PTR_CAST_ALIGN */
409		w_4  = LOAD_BIG_32(blk + 16);
410		/* LINTED E_BAD_PTR_CAST_ALIGN */
411		w_3  = LOAD_BIG_32(blk + 12);
412		/* LINTED E_BAD_PTR_CAST_ALIGN */
413		w_2  = LOAD_BIG_32(blk +  8);
414		/* LINTED E_BAD_PTR_CAST_ALIGN */
415		w_1  = LOAD_BIG_32(blk +  4);
416		/* LINTED E_BAD_PTR_CAST_ALIGN */
417		w_0  = LOAD_BIG_32(blk +  0);
418	}
419#else	/* !defined(__sparc) */
420
421void /* CSTYLED */
422SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
423{
424	/* CSTYLED */
425	sha1word a = ctx->state[0];
426	sha1word b = ctx->state[1];
427	sha1word c = ctx->state[2];
428	sha1word d = ctx->state[3];
429	sha1word e = ctx->state[4];
430
431#if	defined(W_ARRAY)
432	sha1word	w[16];
433#else	/* !defined(W_ARRAY) */
434	sha1word	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
435	sha1word	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
436#endif	/* !defined(W_ARRAY) */
437
438	W(0)  = LOAD_BIG_32((void *)(blk +  0));
439	W(1)  = LOAD_BIG_32((void *)(blk +  4));
440	W(2)  = LOAD_BIG_32((void *)(blk +  8));
441	W(3)  = LOAD_BIG_32((void *)(blk + 12));
442	W(4)  = LOAD_BIG_32((void *)(blk + 16));
443	W(5)  = LOAD_BIG_32((void *)(blk + 20));
444	W(6)  = LOAD_BIG_32((void *)(blk + 24));
445	W(7)  = LOAD_BIG_32((void *)(blk + 28));
446	W(8)  = LOAD_BIG_32((void *)(blk + 32));
447	W(9)  = LOAD_BIG_32((void *)(blk + 36));
448	W(10) = LOAD_BIG_32((void *)(blk + 40));
449	W(11) = LOAD_BIG_32((void *)(blk + 44));
450	W(12) = LOAD_BIG_32((void *)(blk + 48));
451	W(13) = LOAD_BIG_32((void *)(blk + 52));
452	W(14) = LOAD_BIG_32((void *)(blk + 56));
453	W(15) = LOAD_BIG_32((void *)(blk + 60));
454
455#endif /* !defined(__sparc) */
456
457	/*
458	 * general optimization:
459	 *
460	 * even though this approach is described in the standard as
461	 * being slower algorithmically, it is 30-40% faster than the
462	 * "faster" version under SPARC, because this version has more
463	 * of the constraints specified at compile-time and uses fewer
464	 * variables (and therefore has better register utilization)
465	 * than its "speedier" brother.  (i've tried both, trust me)
466	 *
467	 * for either method given in the spec, there is an "assignment"
468	 * phase where the following takes place:
469	 *
470	 *	tmp = (main_computation);
471	 *	e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
472	 *
473	 * we can make the algorithm go faster by not doing this work,
474	 * but just pretending that `d' is now `e', etc. this works
475	 * really well and obviates the need for a temporary variable.
476	 * however, we still explicitly perform the rotate action,
477	 * since it is cheaper on SPARC to do it once than to have to
478	 * do it over and over again.
479	 */
480
481	/* round 1 */
482	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
483	b = ROTATE_LEFT(b, 30);
484
485	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
486	a = ROTATE_LEFT(a, 30);
487
488	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
489	e = ROTATE_LEFT(e, 30);
490
491	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
492	d = ROTATE_LEFT(d, 30);
493
494	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
495	c = ROTATE_LEFT(c, 30);
496
497	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
498	b = ROTATE_LEFT(b, 30);
499
500	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
501	a = ROTATE_LEFT(a, 30);
502
503	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
504	e = ROTATE_LEFT(e, 30);
505
506	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
507	d = ROTATE_LEFT(d, 30);
508
509	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
510	c = ROTATE_LEFT(c, 30);
511
512	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
513	b = ROTATE_LEFT(b, 30);
514
515	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
516	a = ROTATE_LEFT(a, 30);
517
518	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
519	e = ROTATE_LEFT(e, 30);
520
521	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
522	d = ROTATE_LEFT(d, 30);
523
524	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
525	c = ROTATE_LEFT(c, 30);
526
527	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
528	b = ROTATE_LEFT(b, 30);
529
530	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 16 */
531	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
532	a = ROTATE_LEFT(a, 30);
533
534	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 17 */
535	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
536	e = ROTATE_LEFT(e, 30);
537
538	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 18 */
539	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
540	d = ROTATE_LEFT(d, 30);
541
542	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 19 */
543	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
544	c = ROTATE_LEFT(c, 30);
545
546	/* round 2 */
547	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 20 */
548	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
549	b = ROTATE_LEFT(b, 30);
550
551	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 21 */
552	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
553	a = ROTATE_LEFT(a, 30);
554
555	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 22 */
556	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
557	e = ROTATE_LEFT(e, 30);
558
559	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 23 */
560	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
561	d = ROTATE_LEFT(d, 30);
562
563	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 24 */
564	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
565	c = ROTATE_LEFT(c, 30);
566
567	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 25 */
568	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
569	b = ROTATE_LEFT(b, 30);
570
571	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 26 */
572	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
573	a = ROTATE_LEFT(a, 30);
574
575	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 27 */
576	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
577	e = ROTATE_LEFT(e, 30);
578
579	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 28 */
580	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
581	d = ROTATE_LEFT(d, 30);
582
583	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 29 */
584	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
585	c = ROTATE_LEFT(c, 30);
586
587	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 30 */
588	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
589	b = ROTATE_LEFT(b, 30);
590
591	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 31 */
592	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
593	a = ROTATE_LEFT(a, 30);
594
595	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 32 */
596	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
597	e = ROTATE_LEFT(e, 30);
598
599	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 33 */
600	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
601	d = ROTATE_LEFT(d, 30);
602
603	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 34 */
604	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
605	c = ROTATE_LEFT(c, 30);
606
607	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 35 */
608	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
609	b = ROTATE_LEFT(b, 30);
610
611	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 36 */
612	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
613	a = ROTATE_LEFT(a, 30);
614
615	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 37 */
616	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
617	e = ROTATE_LEFT(e, 30);
618
619	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 38 */
620	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
621	d = ROTATE_LEFT(d, 30);
622
623	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 39 */
624	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
625	c = ROTATE_LEFT(c, 30);
626
627	/* round 3 */
628	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 40 */
629	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
630	b = ROTATE_LEFT(b, 30);
631
632	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 41 */
633	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
634	a = ROTATE_LEFT(a, 30);
635
636	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 42 */
637	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
638	e = ROTATE_LEFT(e, 30);
639
640	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 43 */
641	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
642	d = ROTATE_LEFT(d, 30);
643
644	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 44 */
645	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
646	c = ROTATE_LEFT(c, 30);
647
648	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 45 */
649	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
650	b = ROTATE_LEFT(b, 30);
651
652	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 46 */
653	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
654	a = ROTATE_LEFT(a, 30);
655
656	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 47 */
657	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
658	e = ROTATE_LEFT(e, 30);
659
660	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 48 */
661	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
662	d = ROTATE_LEFT(d, 30);
663
664	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 49 */
665	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
666	c = ROTATE_LEFT(c, 30);
667
668	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 50 */
669	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
670	b = ROTATE_LEFT(b, 30);
671
672	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 51 */
673	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
674	a = ROTATE_LEFT(a, 30);
675
676	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 52 */
677	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
678	e = ROTATE_LEFT(e, 30);
679
680	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 53 */
681	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
682	d = ROTATE_LEFT(d, 30);
683
684	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 54 */
685	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
686	c = ROTATE_LEFT(c, 30);
687
688	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 55 */
689	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
690	b = ROTATE_LEFT(b, 30);
691
692	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 56 */
693	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
694	a = ROTATE_LEFT(a, 30);
695
696	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 57 */
697	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
698	e = ROTATE_LEFT(e, 30);
699
700	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 58 */
701	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
702	d = ROTATE_LEFT(d, 30);
703
704	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 59 */
705	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
706	c = ROTATE_LEFT(c, 30);
707
708	/* round 4 */
709	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 60 */
710	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
711	b = ROTATE_LEFT(b, 30);
712
713	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 61 */
714	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
715	a = ROTATE_LEFT(a, 30);
716
717	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 62 */
718	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
719	e = ROTATE_LEFT(e, 30);
720
721	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 63 */
722	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
723	d = ROTATE_LEFT(d, 30);
724
725	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 64 */
726	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
727	c = ROTATE_LEFT(c, 30);
728
729	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 65 */
730	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
731	b = ROTATE_LEFT(b, 30);
732
733	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 66 */
734	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
735	a = ROTATE_LEFT(a, 30);
736
737	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 67 */
738	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
739	e = ROTATE_LEFT(e, 30);
740
741	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 68 */
742	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
743	d = ROTATE_LEFT(d, 30);
744
745	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 69 */
746	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
747	c = ROTATE_LEFT(c, 30);
748
749	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 70 */
750	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
751	b = ROTATE_LEFT(b, 30);
752
753	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 71 */
754	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
755	a = ROTATE_LEFT(a, 30);
756
757	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 72 */
758	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
759	e = ROTATE_LEFT(e, 30);
760
761	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 73 */
762	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
763	d = ROTATE_LEFT(d, 30);
764
765	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 74 */
766	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
767	c = ROTATE_LEFT(c, 30);
768
769	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 75 */
770	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
771	b = ROTATE_LEFT(b, 30);
772
773	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 76 */
774	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
775	a = ROTATE_LEFT(a, 30);
776
777	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 77 */
778	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
779	e = ROTATE_LEFT(e, 30);
780
781	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 78 */
782	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
783	d = ROTATE_LEFT(d, 30);
784
785	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 79 */
786
787	ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
788	    SHA1_CONST(3);
789	ctx->state[1] += b;
790	ctx->state[2] += ROTATE_LEFT(c, 30);
791	ctx->state[3] += d;
792	ctx->state[4] += e;
793
794	/* zeroize sensitive information */
795	W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
796	W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
797}
798#endif	/* !__amd64 */
799
800
801/*
802 * Encode()
803 *
804 * purpose: to convert a list of numbers from little endian to big endian
805 *   input: uint8_t *	: place to store the converted big endian numbers
806 *	    uint32_t *	: place to get numbers to convert from
807 *          size_t	: the length of the input in bytes
808 *  output: void
809 */
810
811static void
812Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
813    size_t len)
814{
815	size_t		i, j;
816
817#if defined(__sparc)
818	if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
819		for (i = 0, j = 0; j < len; i++, j += 4) {
820			/* LINTED E_BAD_PTR_CAST_ALIGN */
821			*((uint32_t *)(output + j)) = input[i];
822		}
823	} else {
824#endif /* little endian -- will work on big endian, but slowly */
825
826		for (i = 0, j = 0; j < len; i++, j += 4) {
827			output[j]	= (input[i] >> 24) & 0xff;
828			output[j + 1]	= (input[i] >> 16) & 0xff;
829			output[j + 2]	= (input[i] >>  8) & 0xff;
830			output[j + 3]	= input[i] & 0xff;
831		}
832#if defined(__sparc)
833	}
834#endif
835}
836