1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Copyright (c) 2016, Intel Corporation.
25 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>
26 */
27
28/*
29 * The ZFS retire agent is responsible for managing hot spares across all pools.
30 * When we see a device fault or a device removal, we try to open the associated
31 * pool and look for any hot spares.  We iterate over any available hot spares
32 * and attempt a 'zpool replace' for each one.
33 *
34 * For vdevs diagnosed as faulty, the agent is also responsible for proactively
35 * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors).
36 */
37
38#include <sys/fs/zfs.h>
39#include <sys/fm/protocol.h>
40#include <sys/fm/fs/zfs.h>
41#include <libzfs.h>
42#include <string.h>
43
44#include "zfs_agents.h"
45#include "fmd_api.h"
46
47
48typedef struct zfs_retire_repaired {
49	struct zfs_retire_repaired	*zrr_next;
50	uint64_t			zrr_pool;
51	uint64_t			zrr_vdev;
52} zfs_retire_repaired_t;
53
54typedef struct zfs_retire_data {
55	libzfs_handle_t			*zrd_hdl;
56	zfs_retire_repaired_t		*zrd_repaired;
57} zfs_retire_data_t;
58
59static void
60zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp)
61{
62	zfs_retire_repaired_t *zrp;
63
64	while ((zrp = zdp->zrd_repaired) != NULL) {
65		zdp->zrd_repaired = zrp->zrr_next;
66		fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t));
67	}
68}
69
70/*
71 * Find a pool with a matching GUID.
72 */
73typedef struct find_cbdata {
74	uint64_t	cb_guid;
75	zpool_handle_t	*cb_zhp;
76	nvlist_t	*cb_vdev;
77} find_cbdata_t;
78
79static int
80find_pool(zpool_handle_t *zhp, void *data)
81{
82	find_cbdata_t *cbp = data;
83
84	if (cbp->cb_guid ==
85	    zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
86		cbp->cb_zhp = zhp;
87		return (1);
88	}
89
90	zpool_close(zhp);
91	return (0);
92}
93
94/*
95 * Find a vdev within a tree with a matching GUID.
96 */
97static nvlist_t *
98find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, uint64_t search_guid)
99{
100	uint64_t guid;
101	nvlist_t **child;
102	uint_t c, children;
103	nvlist_t *ret;
104
105	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 &&
106	    guid == search_guid) {
107		fmd_hdl_debug(fmd_module_hdl("zfs-retire"),
108		    "matched vdev %llu", guid);
109		return (nv);
110	}
111
112	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
113	    &child, &children) != 0)
114		return (NULL);
115
116	for (c = 0; c < children; c++) {
117		if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
118			return (ret);
119	}
120
121	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
122	    &child, &children) != 0)
123		return (NULL);
124
125	for (c = 0; c < children; c++) {
126		if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
127			return (ret);
128	}
129
130	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
131	    &child, &children) != 0)
132		return (NULL);
133
134	for (c = 0; c < children; c++) {
135		if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
136			return (ret);
137	}
138
139	return (NULL);
140}
141
142/*
143 * Given a (pool, vdev) GUID pair, find the matching pool and vdev.
144 */
145static zpool_handle_t *
146find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid,
147    nvlist_t **vdevp)
148{
149	find_cbdata_t cb;
150	zpool_handle_t *zhp;
151	nvlist_t *config, *nvroot;
152
153	/*
154	 * Find the corresponding pool and make sure the vdev still exists.
155	 */
156	cb.cb_guid = pool_guid;
157	if (zpool_iter(zhdl, find_pool, &cb) != 1)
158		return (NULL);
159
160	zhp = cb.cb_zhp;
161	config = zpool_get_config(zhp, NULL);
162	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
163	    &nvroot) != 0) {
164		zpool_close(zhp);
165		return (NULL);
166	}
167
168	if (vdev_guid != 0) {
169		if ((*vdevp = find_vdev(zhdl, nvroot, vdev_guid)) == NULL) {
170			zpool_close(zhp);
171			return (NULL);
172		}
173	}
174
175	return (zhp);
176}
177
178/*
179 * Given a vdev, attempt to replace it with every known spare until one
180 * succeeds or we run out of devices to try.
181 * Return whether we were successful or not in replacing the device.
182 */
183static boolean_t
184replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
185{
186	nvlist_t *config, *nvroot, *replacement;
187	nvlist_t **spares;
188	uint_t s, nspares;
189	char *dev_name;
190	zprop_source_t source;
191	int ashift;
192
193	config = zpool_get_config(zhp, NULL);
194	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
195	    &nvroot) != 0)
196		return (B_FALSE);
197
198	/*
199	 * Find out if there are any hot spares available in the pool.
200	 */
201	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
202	    &spares, &nspares) != 0)
203		return (B_FALSE);
204
205	/*
206	 * lookup "ashift" pool property, we may need it for the replacement
207	 */
208	ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source);
209
210	replacement = fmd_nvl_alloc(hdl, FMD_SLEEP);
211
212	(void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE,
213	    VDEV_TYPE_ROOT);
214
215	dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
216
217	/*
218	 * Try to replace each spare, ending when we successfully
219	 * replace it.
220	 */
221	for (s = 0; s < nspares; s++) {
222		boolean_t rebuild = B_FALSE;
223		char *spare_name, *type;
224
225		if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
226		    &spare_name) != 0)
227			continue;
228
229		/* prefer sequential resilvering for distributed spares */
230		if ((nvlist_lookup_string(spares[s], ZPOOL_CONFIG_TYPE,
231		    &type) == 0) && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
232			rebuild = B_TRUE;
233
234		/* if set, add the "ashift" pool property to the spare nvlist */
235		if (source != ZPROP_SRC_DEFAULT)
236			(void) nvlist_add_uint64(spares[s],
237			    ZPOOL_CONFIG_ASHIFT, ashift);
238
239		(void) nvlist_add_nvlist_array(replacement,
240		    ZPOOL_CONFIG_CHILDREN, &spares[s], 1);
241
242		fmd_hdl_debug(hdl, "zpool_vdev_replace '%s' with spare '%s'",
243		    dev_name, basename(spare_name));
244
245		if (zpool_vdev_attach(zhp, dev_name, spare_name,
246		    replacement, B_TRUE, rebuild) == 0) {
247			free(dev_name);
248			nvlist_free(replacement);
249			return (B_TRUE);
250		}
251	}
252
253	free(dev_name);
254	nvlist_free(replacement);
255
256	return (B_FALSE);
257}
258
259/*
260 * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and
261 * ASRU is now usable.  ZFS has found the device to be present and
262 * functioning.
263 */
264/*ARGSUSED*/
265static void
266zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl)
267{
268	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
269	zfs_retire_repaired_t *zrp;
270	uint64_t pool_guid, vdev_guid;
271	if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
272	    &pool_guid) != 0 || nvlist_lookup_uint64(nvl,
273	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
274		return;
275
276	/*
277	 * Before checking the state of the ASRU, go through and see if we've
278	 * already made an attempt to repair this ASRU.  This list is cleared
279	 * whenever we receive any kind of list event, and is designed to
280	 * prevent us from generating a feedback loop when we attempt repairs
281	 * against a faulted pool.  The problem is that checking the unusable
282	 * state of the ASRU can involve opening the pool, which can post
283	 * statechange events but otherwise leave the pool in the faulted
284	 * state.  This list allows us to detect when a statechange event is
285	 * due to our own request.
286	 */
287	for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) {
288		if (zrp->zrr_pool == pool_guid &&
289		    zrp->zrr_vdev == vdev_guid)
290			return;
291	}
292
293	zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP);
294	zrp->zrr_next = zdp->zrd_repaired;
295	zrp->zrr_pool = pool_guid;
296	zrp->zrr_vdev = vdev_guid;
297	zdp->zrd_repaired = zrp;
298
299	fmd_hdl_debug(hdl, "marking repaired vdev %llu on pool %llu",
300	    vdev_guid, pool_guid);
301}
302
303/*ARGSUSED*/
304static void
305zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
306    const char *class)
307{
308	uint64_t pool_guid, vdev_guid;
309	zpool_handle_t *zhp;
310	nvlist_t *resource, *fault;
311	nvlist_t **faults;
312	uint_t f, nfaults;
313	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
314	libzfs_handle_t *zhdl = zdp->zrd_hdl;
315	boolean_t fault_device, degrade_device;
316	boolean_t is_repair;
317	char *scheme;
318	nvlist_t *vdev = NULL;
319	char *uuid;
320	int repair_done = 0;
321	boolean_t retire;
322	boolean_t is_disk;
323	vdev_aux_t aux;
324	uint64_t state = 0;
325
326	fmd_hdl_debug(hdl, "zfs_retire_recv: '%s'", class);
327
328	nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state);
329
330	/*
331	 * If this is a resource notifying us of device removal then simply
332	 * check for an available spare and continue unless the device is a
333	 * l2arc vdev, in which case we just offline it.
334	 */
335	if (strcmp(class, "resource.fs.zfs.removed") == 0 ||
336	    (strcmp(class, "resource.fs.zfs.statechange") == 0 &&
337	    (state == VDEV_STATE_REMOVED || state == VDEV_STATE_FAULTED))) {
338		char *devtype;
339		char *devname;
340
341		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
342		    &pool_guid) != 0 ||
343		    nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
344		    &vdev_guid) != 0)
345			return;
346
347		if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
348		    &vdev)) == NULL)
349			return;
350
351		devname = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
352
353		/* Can't replace l2arc with a spare: offline the device */
354		if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
355		    &devtype) == 0 && strcmp(devtype, VDEV_TYPE_L2CACHE) == 0) {
356			fmd_hdl_debug(hdl, "zpool_vdev_offline '%s'", devname);
357			zpool_vdev_offline(zhp, devname, B_TRUE);
358		} else if (!fmd_prop_get_int32(hdl, "spare_on_remove") ||
359		    replace_with_spare(hdl, zhp, vdev) == B_FALSE) {
360			/* Could not handle with spare */
361			fmd_hdl_debug(hdl, "no spare for '%s'", devname);
362		}
363
364		free(devname);
365		zpool_close(zhp);
366		return;
367	}
368
369	if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0)
370		return;
371
372	/*
373	 * Note: on Linux statechange events are more than just
374	 * healthy ones so we need to confirm the actual state value.
375	 */
376	if (strcmp(class, "resource.fs.zfs.statechange") == 0 &&
377	    state == VDEV_STATE_HEALTHY) {
378		zfs_vdev_repair(hdl, nvl);
379		return;
380	}
381	if (strcmp(class, "sysevent.fs.zfs.vdev_remove") == 0) {
382		zfs_vdev_repair(hdl, nvl);
383		return;
384	}
385
386	zfs_retire_clear_data(hdl, zdp);
387
388	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0)
389		is_repair = B_TRUE;
390	else
391		is_repair = B_FALSE;
392
393	/*
394	 * We subscribe to zfs faults as well as all repair events.
395	 */
396	if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
397	    &faults, &nfaults) != 0)
398		return;
399
400	for (f = 0; f < nfaults; f++) {
401		fault = faults[f];
402
403		fault_device = B_FALSE;
404		degrade_device = B_FALSE;
405		is_disk = B_FALSE;
406
407		if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE,
408		    &retire) == 0 && retire == 0)
409			continue;
410
411		/*
412		 * While we subscribe to fault.fs.zfs.*, we only take action
413		 * for faults targeting a specific vdev (open failure or SERD
414		 * failure).  We also subscribe to fault.io.* events, so that
415		 * faulty disks will be faulted in the ZFS configuration.
416		 */
417		if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) {
418			fault_device = B_TRUE;
419		} else if (fmd_nvl_class_match(hdl, fault,
420		    "fault.fs.zfs.vdev.checksum")) {
421			degrade_device = B_TRUE;
422		} else if (fmd_nvl_class_match(hdl, fault,
423		    "fault.fs.zfs.device")) {
424			fault_device = B_FALSE;
425		} else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) {
426			is_disk = B_TRUE;
427			fault_device = B_TRUE;
428		} else {
429			continue;
430		}
431
432		if (is_disk) {
433			continue;
434		} else {
435			/*
436			 * This is a ZFS fault.  Lookup the resource, and
437			 * attempt to find the matching vdev.
438			 */
439			if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE,
440			    &resource) != 0 ||
441			    nvlist_lookup_string(resource, FM_FMRI_SCHEME,
442			    &scheme) != 0)
443				continue;
444
445			if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0)
446				continue;
447
448			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL,
449			    &pool_guid) != 0)
450				continue;
451
452			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV,
453			    &vdev_guid) != 0) {
454				if (is_repair)
455					vdev_guid = 0;
456				else
457					continue;
458			}
459
460			if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
461			    &vdev)) == NULL)
462				continue;
463
464			aux = VDEV_AUX_ERR_EXCEEDED;
465		}
466
467		if (vdev_guid == 0) {
468			/*
469			 * For pool-level repair events, clear the entire pool.
470			 */
471			fmd_hdl_debug(hdl, "zpool_clear of pool '%s'",
472			    zpool_get_name(zhp));
473			(void) zpool_clear(zhp, NULL, NULL);
474			zpool_close(zhp);
475			continue;
476		}
477
478		/*
479		 * If this is a repair event, then mark the vdev as repaired and
480		 * continue.
481		 */
482		if (is_repair) {
483			repair_done = 1;
484			fmd_hdl_debug(hdl, "zpool_clear of pool '%s' vdev %llu",
485			    zpool_get_name(zhp), vdev_guid);
486			(void) zpool_vdev_clear(zhp, vdev_guid);
487			zpool_close(zhp);
488			continue;
489		}
490
491		/*
492		 * Actively fault the device if needed.
493		 */
494		if (fault_device)
495			(void) zpool_vdev_fault(zhp, vdev_guid, aux);
496		if (degrade_device)
497			(void) zpool_vdev_degrade(zhp, vdev_guid, aux);
498
499		if (fault_device || degrade_device)
500			fmd_hdl_debug(hdl, "zpool_vdev_%s: vdev %llu on '%s'",
501			    fault_device ? "fault" : "degrade", vdev_guid,
502			    zpool_get_name(zhp));
503
504		/*
505		 * Attempt to substitute a hot spare.
506		 */
507		(void) replace_with_spare(hdl, zhp, vdev);
508
509		zpool_close(zhp);
510	}
511
512	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done &&
513	    nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0)
514		fmd_case_uuresolved(hdl, uuid);
515}
516
517static const fmd_hdl_ops_t fmd_ops = {
518	zfs_retire_recv,	/* fmdo_recv */
519	NULL,			/* fmdo_timeout */
520	NULL,			/* fmdo_close */
521	NULL,			/* fmdo_stats */
522	NULL,			/* fmdo_gc */
523};
524
525static const fmd_prop_t fmd_props[] = {
526	{ "spare_on_remove", FMD_TYPE_BOOL, "true" },
527	{ NULL, 0, NULL }
528};
529
530static const fmd_hdl_info_t fmd_info = {
531	"ZFS Retire Agent", "1.0", &fmd_ops, fmd_props
532};
533
534void
535_zfs_retire_init(fmd_hdl_t *hdl)
536{
537	zfs_retire_data_t *zdp;
538	libzfs_handle_t *zhdl;
539
540	if ((zhdl = libzfs_init()) == NULL)
541		return;
542
543	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
544		libzfs_fini(zhdl);
545		return;
546	}
547
548	zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP);
549	zdp->zrd_hdl = zhdl;
550
551	fmd_hdl_setspecific(hdl, zdp);
552}
553
554void
555_zfs_retire_fini(fmd_hdl_t *hdl)
556{
557	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
558
559	if (zdp != NULL) {
560		zfs_retire_clear_data(hdl, zdp);
561		libzfs_fini(zdp->zrd_hdl);
562		fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t));
563	}
564}
565