1/*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions, and the following disclaimer,
15 *    without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 *    derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include <sys/param.h>
36#include <sys/types.h>
37#include <sys/stdint.h>
38
39#ifdef _KERNEL
40#include "opt_scsi.h"
41
42#include <sys/systm.h>
43#include <sys/libkern.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/ctype.h>
50#else
51#include <errno.h>
52#include <stdio.h>
53#include <stdlib.h>
54#include <string.h>
55#include <ctype.h>
56#endif
57
58#include <cam/cam.h>
59#include <cam/cam_ccb.h>
60#include <cam/cam_queue.h>
61#include <cam/cam_xpt.h>
62#include <cam/scsi/scsi_all.h>
63#include <sys/ata.h>
64#include <sys/sbuf.h>
65
66#ifdef _KERNEL
67#include <cam/cam_periph.h>
68#include <cam/cam_xpt_sim.h>
69#include <cam/cam_xpt_periph.h>
70#include <cam/cam_xpt_internal.h>
71#else
72#include <camlib.h>
73#include <stddef.h>
74
75#ifndef FALSE
76#define FALSE   0
77#endif /* FALSE */
78#ifndef TRUE
79#define TRUE    1
80#endif /* TRUE */
81#define ERESTART        -1              /* restart syscall */
82#define EJUSTRETURN     -2              /* don't modify regs, just return */
83#endif /* !_KERNEL */
84
85/*
86 * This is the default number of milliseconds we wait for devices to settle
87 * after a SCSI bus reset.
88 */
89#ifndef SCSI_DELAY
90#define SCSI_DELAY 2000
91#endif
92/*
93 * All devices need _some_ sort of bus settle delay, so we'll set it to
94 * a minimum value of 100ms. Note that this is pertinent only for SPI-
95 * not transport like Fibre Channel or iSCSI where 'delay' is completely
96 * meaningless.
97 */
98#ifndef SCSI_MIN_DELAY
99#define SCSI_MIN_DELAY 100
100#endif
101/*
102 * Make sure the user isn't using seconds instead of milliseconds.
103 */
104#if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
105#error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
106#endif
107
108int scsi_delay;
109
110static int	ascentrycomp(const void *key, const void *member);
111static int	senseentrycomp(const void *key, const void *member);
112static void	fetchtableentries(int sense_key, int asc, int ascq,
113				  struct scsi_inquiry_data *,
114				  const struct sense_key_table_entry **,
115				  const struct asc_table_entry **);
116
117#ifdef _KERNEL
118static void	init_scsi_delay(void);
119static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
120static int	set_scsi_delay(int delay);
121#endif
122
123#if !defined(SCSI_NO_OP_STRINGS)
124
125#define	D	(1 << T_DIRECT)
126#define	T	(1 << T_SEQUENTIAL)
127#define	L	(1 << T_PRINTER)
128#define	P	(1 << T_PROCESSOR)
129#define	W	(1 << T_WORM)
130#define	R	(1 << T_CDROM)
131#define	O	(1 << T_OPTICAL)
132#define	M	(1 << T_CHANGER)
133#define	A	(1 << T_STORARRAY)
134#define	E	(1 << T_ENCLOSURE)
135#define	B	(1 << T_RBC)
136#define	K	(1 << T_OCRW)
137#define	V	(1 << T_ADC)
138#define	F	(1 << T_OSD)
139#define	S	(1 << T_SCANNER)
140#define	C	(1 << T_COMM)
141
142#define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
143
144static struct op_table_entry plextor_cd_ops[] = {
145	{ 0xD8, R, "CD-DA READ" }
146};
147
148static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
149	{
150		/*
151		 * I believe that 0xD8 is the Plextor proprietary command
152		 * to read CD-DA data.  I'm not sure which Plextor CDROM
153		 * models support the command, though.  I know for sure
154		 * that the 4X, 8X, and 12X models do, and presumably the
155		 * 12-20X does.  I don't know about any earlier models,
156		 * though.  If anyone has any more complete information,
157		 * feel free to change this quirk entry.
158		 */
159		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
160		nitems(plextor_cd_ops),
161		plextor_cd_ops
162	}
163};
164
165static struct op_table_entry scsi_op_codes[] = {
166	/*
167	 * From: http://www.t10.org/lists/op-num.txt
168	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
169	 *              and Jung-uk Kim (jkim@FreeBSD.org)
170	 *
171	 * Note:  order is important in this table, scsi_op_desc() currently
172	 * depends on the opcodes in the table being in order to save
173	 * search time.
174	 * Note:  scanner and comm. devices are carried over from the previous
175	 * version because they were removed in the latest spec.
176	 */
177	/* File: OP-NUM.TXT
178	 *
179	 * SCSI Operation Codes
180	 * Numeric Sorted Listing
181	 * as of  5/26/15
182	 *
183	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
184	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
185	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
186	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
187	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
188	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
189	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
190	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
191	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
192	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
193	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
194	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
195	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
196	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
197	 * OP  DTLPWROMAEBKVF  Description
198	 * --  --------------  ---------------------------------------------- */
199	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
200	{ 0x00,	ALL, "TEST UNIT READY" },
201	/* 01   M              REWIND */
202	{ 0x01,	T, "REWIND" },
203	/* 01  Z V ZZZZ        REZERO UNIT */
204	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
205	/* 02  VVVVVV V */
206	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
207	{ 0x03,	ALL, "REQUEST SENSE" },
208	/* 04  M    OO         FORMAT UNIT */
209	{ 0x04,	D | R | O, "FORMAT UNIT" },
210	/* 04   O              FORMAT MEDIUM */
211	{ 0x04,	T, "FORMAT MEDIUM" },
212	/* 04    O             FORMAT */
213	{ 0x04,	L, "FORMAT" },
214	/* 05  VMVVVV V        READ BLOCK LIMITS */
215	{ 0x05,	T, "READ BLOCK LIMITS" },
216	/* 06  VVVVVV V */
217	/* 07  OVV O OV        REASSIGN BLOCKS */
218	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
219	/* 07         O        INITIALIZE ELEMENT STATUS */
220	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
221	/* 08  MOV O OV        READ(6) */
222	{ 0x08,	D | T | W | O, "READ(6)" },
223	/* 08     O            RECEIVE */
224	{ 0x08,	P, "RECEIVE" },
225	/* 08                  GET MESSAGE(6) */
226	{ 0x08, C, "GET MESSAGE(6)" },
227	/* 09  VVVVVV V */
228	/* 0A  OO  O OV        WRITE(6) */
229	{ 0x0A,	D | T | W | O, "WRITE(6)" },
230	/* 0A     M            SEND(6) */
231	{ 0x0A,	P, "SEND(6)" },
232	/* 0A                  SEND MESSAGE(6) */
233	{ 0x0A, C, "SEND MESSAGE(6)" },
234	/* 0A    M             PRINT */
235	{ 0x0A,	L, "PRINT" },
236	/* 0B  Z   ZOZV        SEEK(6) */
237	{ 0x0B,	D | W | R | O, "SEEK(6)" },
238	/* 0B   O              SET CAPACITY */
239	{ 0x0B,	T, "SET CAPACITY" },
240	/* 0B    O             SLEW AND PRINT */
241	{ 0x0B,	L, "SLEW AND PRINT" },
242	/* 0C  VVVVVV V */
243	/* 0D  VVVVVV V */
244	/* 0E  VVVVVV V */
245	/* 0F  VOVVVV V        READ REVERSE(6) */
246	{ 0x0F,	T, "READ REVERSE(6)" },
247	/* 10  VM VVV          WRITE FILEMARKS(6) */
248	{ 0x10,	T, "WRITE FILEMARKS(6)" },
249	/* 10    O             SYNCHRONIZE BUFFER */
250	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
251	/* 11  VMVVVV          SPACE(6) */
252	{ 0x11,	T, "SPACE(6)" },
253	/* 12  MMMMMMMMMMMMMM  INQUIRY */
254	{ 0x12,	ALL, "INQUIRY" },
255	/* 13  V VVVV */
256	/* 13   O              VERIFY(6) */
257	{ 0x13,	T, "VERIFY(6)" },
258	/* 14  VOOVVV          RECOVER BUFFERED DATA */
259	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
260	/* 15  OMO O OOOO OO   MODE SELECT(6) */
261	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
262	/* 16  ZZMZO OOOZ O    RESERVE(6) */
263	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
264	/* 16         Z        RESERVE ELEMENT(6) */
265	{ 0x16,	M, "RESERVE ELEMENT(6)" },
266	/* 17  ZZMZO OOOZ O    RELEASE(6) */
267	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
268	/* 17         Z        RELEASE ELEMENT(6) */
269	{ 0x17,	M, "RELEASE ELEMENT(6)" },
270	/* 18  ZZZZOZO    Z    COPY */
271	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
272	/* 19  VMVVVV          ERASE(6) */
273	{ 0x19,	T, "ERASE(6)" },
274	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
275	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
276	/* 1B  O   OOO O MO O  START STOP UNIT */
277	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
278	/* 1B   O          M   LOAD UNLOAD */
279	{ 0x1B,	T | V, "LOAD UNLOAD" },
280	/* 1B                  SCAN */
281	{ 0x1B, S, "SCAN" },
282	/* 1B    O             STOP PRINT */
283	{ 0x1B,	L, "STOP PRINT" },
284	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
285	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
286	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
287	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
288	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
289	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
290	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
291	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
292	/* 1F */
293	/* 20  V   VVV    V */
294	/* 21  V   VVV    V */
295	/* 22  V   VVV    V */
296	/* 23  V   V V    V */
297	/* 23       O          READ FORMAT CAPACITIES */
298	{ 0x23,	R, "READ FORMAT CAPACITIES" },
299	/* 24  V   VV          SET WINDOW */
300	{ 0x24, S, "SET WINDOW" },
301	/* 25  M   M M   M     READ CAPACITY(10) */
302	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
303	/* 25       O          READ CAPACITY */
304	{ 0x25,	R, "READ CAPACITY" },
305	/* 25             M    READ CARD CAPACITY */
306	{ 0x25,	K, "READ CARD CAPACITY" },
307	/* 25                  GET WINDOW */
308	{ 0x25, S, "GET WINDOW" },
309	/* 26  V   VV */
310	/* 27  V   VV */
311	/* 28  M   MOM   MM    READ(10) */
312	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
313	/* 28                  GET MESSAGE(10) */
314	{ 0x28, C, "GET MESSAGE(10)" },
315	/* 29  V   VVO         READ GENERATION */
316	{ 0x29,	O, "READ GENERATION" },
317	/* 2A  O   MOM   MO    WRITE(10) */
318	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
319	/* 2A                  SEND(10) */
320	{ 0x2A, S, "SEND(10)" },
321	/* 2A                  SEND MESSAGE(10) */
322	{ 0x2A, C, "SEND MESSAGE(10)" },
323	/* 2B  Z   OOO    O    SEEK(10) */
324	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
325	/* 2B   O              LOCATE(10) */
326	{ 0x2B,	T, "LOCATE(10)" },
327	/* 2B         O        POSITION TO ELEMENT */
328	{ 0x2B,	M, "POSITION TO ELEMENT" },
329	/* 2C  V    OO         ERASE(10) */
330	{ 0x2C,	R | O, "ERASE(10)" },
331	/* 2D        O         READ UPDATED BLOCK */
332	{ 0x2D,	O, "READ UPDATED BLOCK" },
333	/* 2D  V */
334	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
335	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
336	/* 2F  O   OOO         VERIFY(10) */
337	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
338	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
339	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
340	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
341	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
342	/* 31                  OBJECT POSITION */
343	{ 0x31, S, "OBJECT POSITION" },
344	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
345	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
346	/* 33  Z   OZO         SET LIMITS(10) */
347	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
348	/* 34  O   O O    O    PRE-FETCH(10) */
349	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
350	/* 34   M              READ POSITION */
351	{ 0x34,	T, "READ POSITION" },
352	/* 34                  GET DATA BUFFER STATUS */
353	{ 0x34, S, "GET DATA BUFFER STATUS" },
354	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
355	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
356	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
357	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
358	/* 37  O     O         READ DEFECT DATA(10) */
359	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
360	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
361	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
362	/* 38      O O    O    MEDIUM SCAN */
363	{ 0x38,	W | O | K, "MEDIUM SCAN" },
364	/* 39  ZZZZOZO    Z    COMPARE */
365	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
366	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
367	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
368	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
369	{ 0x3B,	ALL, "WRITE BUFFER" },
370	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
371	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
372	/* 3D        O         UPDATE BLOCK */
373	{ 0x3D,	O, "UPDATE BLOCK" },
374	/* 3E  O   O O         READ LONG(10) */
375	{ 0x3E,	D | W | O, "READ LONG(10)" },
376	/* 3F  O   O O         WRITE LONG(10) */
377	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
378	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
379	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
380	/* 41  O               WRITE SAME(10) */
381	{ 0x41,	D, "WRITE SAME(10)" },
382	/* 42  O               UNMAP */
383	{ 0x42,	D, "UNMAP" },
384	/* 42       O          READ SUB-CHANNEL */
385	{ 0x42,	R, "READ SUB-CHANNEL" },
386	/* 43       O          READ TOC/PMA/ATIP */
387	{ 0x43,	R, "READ TOC/PMA/ATIP" },
388	/* 44   M          M   REPORT DENSITY SUPPORT */
389	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
390	/* 44                  READ HEADER */
391	/* 45       O          PLAY AUDIO(10) */
392	{ 0x45,	R, "PLAY AUDIO(10)" },
393	/* 46       M          GET CONFIGURATION */
394	{ 0x46,	R, "GET CONFIGURATION" },
395	/* 47       O          PLAY AUDIO MSF */
396	{ 0x47,	R, "PLAY AUDIO MSF" },
397	/* 48  O               SANITIZE */
398	{ 0x48,	D, "SANITIZE" },
399	/* 49 */
400	/* 4A       M          GET EVENT STATUS NOTIFICATION */
401	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
402	/* 4B       O          PAUSE/RESUME */
403	{ 0x4B,	R, "PAUSE/RESUME" },
404	/* 4C  OOOOO OOOO OOO  LOG SELECT */
405	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
406	/* 4D  OOOOO OOOO OMO  LOG SENSE */
407	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
408	/* 4E       O          STOP PLAY/SCAN */
409	{ 0x4E,	R, "STOP PLAY/SCAN" },
410	/* 4F */
411	/* 50  O               XDWRITE(10) */
412	{ 0x50,	D, "XDWRITE(10)" },
413	/* 51  O               XPWRITE(10) */
414	{ 0x51,	D, "XPWRITE(10)" },
415	/* 51       O          READ DISC INFORMATION */
416	{ 0x51,	R, "READ DISC INFORMATION" },
417	/* 52  O               XDREAD(10) */
418	{ 0x52,	D, "XDREAD(10)" },
419	/* 52       O          READ TRACK INFORMATION */
420	{ 0x52,	R, "READ TRACK INFORMATION" },
421	/* 53       O          RESERVE TRACK */
422	{ 0x53,	R, "RESERVE TRACK" },
423	/* 54       O          SEND OPC INFORMATION */
424	{ 0x54,	R, "SEND OPC INFORMATION" },
425	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
426	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
427	/* 56  ZZMZO OOOZ      RESERVE(10) */
428	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
429	/* 56         Z        RESERVE ELEMENT(10) */
430	{ 0x56,	M, "RESERVE ELEMENT(10)" },
431	/* 57  ZZMZO OOOZ      RELEASE(10) */
432	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
433	/* 57         Z        RELEASE ELEMENT(10) */
434	{ 0x57,	M, "RELEASE ELEMENT(10)" },
435	/* 58       O          REPAIR TRACK */
436	{ 0x58,	R, "REPAIR TRACK" },
437	/* 59 */
438	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
439	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
440	/* 5B       O          CLOSE TRACK/SESSION */
441	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
442	/* 5C       O          READ BUFFER CAPACITY */
443	{ 0x5C,	R, "READ BUFFER CAPACITY" },
444	/* 5D       O          SEND CUE SHEET */
445	{ 0x5D,	R, "SEND CUE SHEET" },
446	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
447	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
448	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
449	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
450	/* 7E  OO   O OOOO O   extended CDB */
451	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
452	/* 7F  O            M  variable length CDB (more than 16 bytes) */
453	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
454	/* 80  Z               XDWRITE EXTENDED(16) */
455	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
456	/* 80   M              WRITE FILEMARKS(16) */
457	{ 0x80,	T, "WRITE FILEMARKS(16)" },
458	/* 81  Z               REBUILD(16) */
459	{ 0x81,	D, "REBUILD(16)" },
460	/* 81   O              READ REVERSE(16) */
461	{ 0x81,	T, "READ REVERSE(16)" },
462	/* 82  Z               REGENERATE(16) */
463	{ 0x82,	D, "REGENERATE(16)" },
464	/* 83  OOOOO O    OO   EXTENDED COPY */
465	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
466	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
467	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
468	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
469	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
470	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
471	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
472	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
473	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
474	/* 88  MM  O O   O     READ(16) */
475	{ 0x88,	D | T | W | O | B, "READ(16)" },
476	/* 89  O               COMPARE AND WRITE*/
477	{ 0x89,	D, "COMPARE AND WRITE" },
478	/* 8A  OM  O O   O     WRITE(16) */
479	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
480	/* 8B  O               ORWRITE */
481	{ 0x8B,	D, "ORWRITE" },
482	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
483	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
484	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
485	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
486	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
487	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
488	/* 8F  OO  O O   O     VERIFY(16) */
489	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
490	/* 90  O   O O   O     PRE-FETCH(16) */
491	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
492	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
493	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
494	/* 91   O              SPACE(16) */
495	{ 0x91,	T, "SPACE(16)" },
496	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
497	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
498	/* 92   O              LOCATE(16) */
499	{ 0x92,	T, "LOCATE(16)" },
500	/* 93  O               WRITE SAME(16) */
501	{ 0x93,	D, "WRITE SAME(16)" },
502	/* 93   M              ERASE(16) */
503	{ 0x93,	T, "ERASE(16)" },
504	/* 94  O               ZBC OUT */
505	{ 0x94,	ALL, "ZBC OUT" },
506	/* 95  O               ZBC IN */
507	{ 0x95,	ALL, "ZBC IN" },
508	/* 96 */
509	/* 97 */
510	/* 98 */
511	/* 99 */
512	/* 9A  O               WRITE STREAM(16) */
513	{ 0x9A,	D, "WRITE STREAM(16)" },
514	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
515	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
516	/* 9C  O              WRITE ATOMIC(16) */
517	{ 0x9C, D, "WRITE ATOMIC(16)" },
518	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
519	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
520	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
521	/* 9E                  SERVICE ACTION IN(16) */
522	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
523	/* 9F              M   SERVICE ACTION OUT(16) */
524	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
525	/* A0  MMOOO OMMM OMO  REPORT LUNS */
526	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
527	/* A1       O          BLANK */
528	{ 0xA1,	R, "BLANK" },
529	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
530	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
531	/* A2  OO   O      O   SECURITY PROTOCOL IN */
532	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
533	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
534	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
535	/* A3       O          SEND KEY */
536	{ 0xA3,	R, "SEND KEY" },
537	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
538	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
539	/* A4       O          REPORT KEY */
540	{ 0xA4,	R, "REPORT KEY" },
541	/* A5   O  O OM        MOVE MEDIUM */
542	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
543	/* A5       O          PLAY AUDIO(12) */
544	{ 0xA5,	R, "PLAY AUDIO(12)" },
545	/* A6         O        EXCHANGE MEDIUM */
546	{ 0xA6,	M, "EXCHANGE MEDIUM" },
547	/* A6       O          LOAD/UNLOAD C/DVD */
548	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
549	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
550	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
551	/* A7       O          SET READ AHEAD */
552	{ 0xA7,	R, "SET READ AHEAD" },
553	/* A8  O   OOO         READ(12) */
554	{ 0xA8,	D | W | R | O, "READ(12)" },
555	/* A8                  GET MESSAGE(12) */
556	{ 0xA8, C, "GET MESSAGE(12)" },
557	/* A9              O   SERVICE ACTION OUT(12) */
558	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
559	/* AA  O   OOO         WRITE(12) */
560	{ 0xAA,	D | W | R | O, "WRITE(12)" },
561	/* AA                  SEND MESSAGE(12) */
562	{ 0xAA, C, "SEND MESSAGE(12)" },
563	/* AB       O      O   SERVICE ACTION IN(12) */
564	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
565	/* AC        O         ERASE(12) */
566	{ 0xAC,	O, "ERASE(12)" },
567	/* AC       O          GET PERFORMANCE */
568	{ 0xAC,	R, "GET PERFORMANCE" },
569	/* AD       O          READ DVD STRUCTURE */
570	{ 0xAD,	R, "READ DVD STRUCTURE" },
571	/* AE  O   O O         WRITE AND VERIFY(12) */
572	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
573	/* AF  O   OZO         VERIFY(12) */
574	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
575	/* B0      ZZZ         SEARCH DATA HIGH(12) */
576	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
577	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
578	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
579	/* B2      ZZZ         SEARCH DATA LOW(12) */
580	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
581	/* B3  Z   OZO         SET LIMITS(12) */
582	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
583	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
584	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
585	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
586	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
587	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
588	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
589	/* B6         O        SEND VOLUME TAG */
590	{ 0xB6,	M, "SEND VOLUME TAG" },
591	/* B6       O          SET STREAMING */
592	{ 0xB6,	R, "SET STREAMING" },
593	/* B7  O     O         READ DEFECT DATA(12) */
594	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
595	/* B8   O  OZOM        READ ELEMENT STATUS */
596	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
597	/* B9       O          READ CD MSF */
598	{ 0xB9,	R, "READ CD MSF" },
599	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
600	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
601	/* BA       O          SCAN */
602	{ 0xBA,	R, "SCAN" },
603	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
604	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
605	/* BB       O          SET CD SPEED */
606	{ 0xBB,	R, "SET CD SPEED" },
607	/* BC  O   O OOMO      SPARE (IN) */
608	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
609	/* BD  O   O OOOO      SPARE (OUT) */
610	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
611	/* BD       O          MECHANISM STATUS */
612	{ 0xBD,	R, "MECHANISM STATUS" },
613	/* BE  O   O OOMO      VOLUME SET (IN) */
614	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
615	/* BE       O          READ CD */
616	{ 0xBE,	R, "READ CD" },
617	/* BF  O   O OOOO      VOLUME SET (OUT) */
618	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
619	/* BF       O          SEND DVD STRUCTURE */
620	{ 0xBF,	R, "SEND DVD STRUCTURE" }
621};
622
623const char *
624scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
625{
626	caddr_t match;
627	int i, j;
628	u_int32_t opmask;
629	u_int16_t pd_type;
630	int       num_ops[2];
631	struct op_table_entry *table[2];
632	int num_tables;
633
634	/*
635	 * If we've got inquiry data, use it to determine what type of
636	 * device we're dealing with here.  Otherwise, assume direct
637	 * access.
638	 */
639	if (inq_data == NULL) {
640		pd_type = T_DIRECT;
641		match = NULL;
642	} else {
643		pd_type = SID_TYPE(inq_data);
644
645		match = cam_quirkmatch((caddr_t)inq_data,
646				       (caddr_t)scsi_op_quirk_table,
647				       nitems(scsi_op_quirk_table),
648				       sizeof(*scsi_op_quirk_table),
649				       scsi_inquiry_match);
650	}
651
652	if (match != NULL) {
653		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
654		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
655		table[1] = scsi_op_codes;
656		num_ops[1] = nitems(scsi_op_codes);
657		num_tables = 2;
658	} else {
659		/*
660		 * If this is true, we have a vendor specific opcode that
661		 * wasn't covered in the quirk table.
662		 */
663		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
664			return("Vendor Specific Command");
665
666		table[0] = scsi_op_codes;
667		num_ops[0] = nitems(scsi_op_codes);
668		num_tables = 1;
669	}
670
671	/* RBC is 'Simplified' Direct Access Device */
672	if (pd_type == T_RBC)
673		pd_type = T_DIRECT;
674
675	/*
676	 * Host managed drives are direct access for the most part.
677	 */
678	if (pd_type == T_ZBC_HM)
679		pd_type = T_DIRECT;
680
681	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
682	if (pd_type == T_NODEVICE)
683		pd_type = T_DIRECT;
684
685	opmask = 1 << pd_type;
686
687	for (j = 0; j < num_tables; j++) {
688		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
689			if ((table[j][i].opcode == opcode)
690			 && ((table[j][i].opmask & opmask) != 0))
691				return(table[j][i].desc);
692		}
693	}
694
695	/*
696	 * If we can't find a match for the command in the table, we just
697	 * assume it's a vendor specifc command.
698	 */
699	return("Vendor Specific Command");
700
701}
702
703#else /* SCSI_NO_OP_STRINGS */
704
705const char *
706scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
707{
708	return("");
709}
710
711#endif
712
713#if !defined(SCSI_NO_SENSE_STRINGS)
714#define SST(asc, ascq, action, desc) \
715	asc, ascq, action, desc
716#else
717const char empty_string[] = "";
718
719#define SST(asc, ascq, action, desc) \
720	asc, ascq, action, empty_string
721#endif
722
723const struct sense_key_table_entry sense_key_table[] =
724{
725	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
726	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
727	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
728	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
729	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
730	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
731	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
732	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
733	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
734	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
735	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
736	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
737	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
738	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
739	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
740	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
741};
742
743static struct asc_table_entry quantum_fireball_entries[] = {
744	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
745	     "Logical unit not ready, initializing cmd. required") }
746};
747
748static struct asc_table_entry sony_mo_entries[] = {
749	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
750	     "Logical unit not ready, cause not reportable") }
751};
752
753static struct asc_table_entry hgst_entries[] = {
754	{ SST(0x04, 0xF0, SS_RDEF,
755	    "Vendor Unique - Logical Unit Not Ready") },
756	{ SST(0x0A, 0x01, SS_RDEF,
757	    "Unrecovered Super Certification Log Write Error") },
758	{ SST(0x0A, 0x02, SS_RDEF,
759	    "Unrecovered Super Certification Log Read Error") },
760	{ SST(0x15, 0x03, SS_RDEF,
761	    "Unrecovered Sector Error") },
762	{ SST(0x3E, 0x04, SS_RDEF,
763	    "Unrecovered Self-Test Hard-Cache Test Fail") },
764	{ SST(0x3E, 0x05, SS_RDEF,
765	    "Unrecovered Self-Test OTF-Cache Fail") },
766	{ SST(0x40, 0x00, SS_RDEF,
767	    "Unrecovered SAT No Buffer Overflow Error") },
768	{ SST(0x40, 0x01, SS_RDEF,
769	    "Unrecovered SAT Buffer Overflow Error") },
770	{ SST(0x40, 0x02, SS_RDEF,
771	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
772	{ SST(0x40, 0x03, SS_RDEF,
773	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
774	{ SST(0x40, 0x81, SS_RDEF,
775	    "DRAM Failure") },
776	{ SST(0x44, 0x0B, SS_RDEF,
777	    "Vendor Unique - Internal Target Failure") },
778	{ SST(0x44, 0xF2, SS_RDEF,
779	    "Vendor Unique - Internal Target Failure") },
780	{ SST(0x44, 0xF6, SS_RDEF,
781	    "Vendor Unique - Internal Target Failure") },
782	{ SST(0x44, 0xF9, SS_RDEF,
783	    "Vendor Unique - Internal Target Failure") },
784	{ SST(0x44, 0xFA, SS_RDEF,
785	    "Vendor Unique - Internal Target Failure") },
786	{ SST(0x5D, 0x22, SS_RDEF,
787	    "Extreme Over-Temperature Warning") },
788	{ SST(0x5D, 0x50, SS_RDEF,
789	    "Load/Unload cycle Count Warning") },
790	{ SST(0x81, 0x00, SS_RDEF,
791	    "Vendor Unique - Internal Logic Error") },
792	{ SST(0x85, 0x00, SS_RDEF,
793	    "Vendor Unique - Internal Key Seed Error") },
794};
795
796static struct asc_table_entry seagate_entries[] = {
797	{ SST(0x04, 0xF0, SS_RDEF,
798	    "Logical Unit Not Ready, super certify in Progress") },
799	{ SST(0x08, 0x86, SS_RDEF,
800	    "Write Fault Data Corruption") },
801	{ SST(0x09, 0x0D, SS_RDEF,
802	    "Tracking Failure") },
803	{ SST(0x09, 0x0E, SS_RDEF,
804	    "ETF Failure") },
805	{ SST(0x0B, 0x5D, SS_RDEF,
806	    "Pre-SMART Warning") },
807	{ SST(0x0B, 0x85, SS_RDEF,
808	    "5V Voltage Warning") },
809	{ SST(0x0B, 0x8C, SS_RDEF,
810	    "12V Voltage Warning") },
811	{ SST(0x0C, 0xFF, SS_RDEF,
812	    "Write Error - Too many error recovery revs") },
813	{ SST(0x11, 0xFF, SS_RDEF,
814	    "Unrecovered Read Error - Too many error recovery revs") },
815	{ SST(0x19, 0x0E, SS_RDEF,
816	    "Fewer than 1/2 defect list copies") },
817	{ SST(0x20, 0xF3, SS_RDEF,
818	    "Illegal CDB linked to skip mask cmd") },
819	{ SST(0x24, 0xF0, SS_RDEF,
820	    "Illegal byte in CDB, LBA not matching") },
821	{ SST(0x24, 0xF1, SS_RDEF,
822	    "Illegal byte in CDB, LEN not matching") },
823	{ SST(0x24, 0xF2, SS_RDEF,
824	    "Mask not matching transfer length") },
825	{ SST(0x24, 0xF3, SS_RDEF,
826	    "Drive formatted without plist") },
827	{ SST(0x26, 0x95, SS_RDEF,
828	    "Invalid Field Parameter - CAP File") },
829	{ SST(0x26, 0x96, SS_RDEF,
830	    "Invalid Field Parameter - RAP File") },
831	{ SST(0x26, 0x97, SS_RDEF,
832	    "Invalid Field Parameter - TMS Firmware Tag") },
833	{ SST(0x26, 0x98, SS_RDEF,
834	    "Invalid Field Parameter - Check Sum") },
835	{ SST(0x26, 0x99, SS_RDEF,
836	    "Invalid Field Parameter - Firmware Tag") },
837	{ SST(0x29, 0x08, SS_RDEF,
838	    "Write Log Dump data") },
839	{ SST(0x29, 0x09, SS_RDEF,
840	    "Write Log Dump data") },
841	{ SST(0x29, 0x0A, SS_RDEF,
842	    "Reserved disk space") },
843	{ SST(0x29, 0x0B, SS_RDEF,
844	    "SDBP") },
845	{ SST(0x29, 0x0C, SS_RDEF,
846	    "SDBP") },
847	{ SST(0x31, 0x91, SS_RDEF,
848	    "Format Corrupted World Wide Name (WWN) is Invalid") },
849	{ SST(0x32, 0x03, SS_RDEF,
850	    "Defect List - Length exceeds Command Allocated Length") },
851	{ SST(0x33, 0x00, SS_RDEF,
852	    "Flash not ready for access") },
853	{ SST(0x3F, 0x70, SS_RDEF,
854	    "Invalid RAP block") },
855	{ SST(0x3F, 0x71, SS_RDEF,
856	    "RAP/ETF mismatch") },
857	{ SST(0x3F, 0x90, SS_RDEF,
858	    "Invalid CAP block") },
859	{ SST(0x3F, 0x91, SS_RDEF,
860	    "World Wide Name (WWN) Mismatch") },
861	{ SST(0x40, 0x01, SS_RDEF,
862	    "DRAM Parity Error") },
863	{ SST(0x40, 0x02, SS_RDEF,
864	    "DRAM Parity Error") },
865	{ SST(0x42, 0x0A, SS_RDEF,
866	    "Loopback Test") },
867	{ SST(0x42, 0x0B, SS_RDEF,
868	    "Loopback Test") },
869	{ SST(0x44, 0xF2, SS_RDEF,
870	    "Compare error during data integrity check") },
871	{ SST(0x44, 0xF6, SS_RDEF,
872	    "Unrecoverable error during data integrity check") },
873	{ SST(0x47, 0x80, SS_RDEF,
874	    "Fibre Channel Sequence Error") },
875	{ SST(0x4E, 0x01, SS_RDEF,
876	    "Information Unit Too Short") },
877	{ SST(0x80, 0x00, SS_RDEF,
878	    "General Firmware Error / Command Timeout") },
879	{ SST(0x80, 0x01, SS_RDEF,
880	    "Command Timeout") },
881	{ SST(0x80, 0x02, SS_RDEF,
882	    "Command Timeout") },
883	{ SST(0x80, 0x80, SS_RDEF,
884	    "FC FIFO Error During Read Transfer") },
885	{ SST(0x80, 0x81, SS_RDEF,
886	    "FC FIFO Error During Write Transfer") },
887	{ SST(0x80, 0x82, SS_RDEF,
888	    "DISC FIFO Error During Read Transfer") },
889	{ SST(0x80, 0x83, SS_RDEF,
890	    "DISC FIFO Error During Write Transfer") },
891	{ SST(0x80, 0x84, SS_RDEF,
892	    "LBA Seeded LRC Error on Read") },
893	{ SST(0x80, 0x85, SS_RDEF,
894	    "LBA Seeded LRC Error on Write") },
895	{ SST(0x80, 0x86, SS_RDEF,
896	    "IOEDC Error on Read") },
897	{ SST(0x80, 0x87, SS_RDEF,
898	    "IOEDC Error on Write") },
899	{ SST(0x80, 0x88, SS_RDEF,
900	    "Host Parity Check Failed") },
901	{ SST(0x80, 0x89, SS_RDEF,
902	    "IOEDC error on read detected by formatter") },
903	{ SST(0x80, 0x8A, SS_RDEF,
904	    "Host Parity Errors / Host FIFO Initialization Failed") },
905	{ SST(0x80, 0x8B, SS_RDEF,
906	    "Host Parity Errors") },
907	{ SST(0x80, 0x8C, SS_RDEF,
908	    "Host Parity Errors") },
909	{ SST(0x80, 0x8D, SS_RDEF,
910	    "Host Parity Errors") },
911	{ SST(0x81, 0x00, SS_RDEF,
912	    "LA Check Failed") },
913	{ SST(0x82, 0x00, SS_RDEF,
914	    "Internal client detected insufficient buffer") },
915	{ SST(0x84, 0x00, SS_RDEF,
916	    "Scheduled Diagnostic And Repair") },
917};
918
919static struct scsi_sense_quirk_entry sense_quirk_table[] = {
920	{
921		/*
922		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
923		 * when they really should return 0x04 0x02.
924		 */
925		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
926		/*num_sense_keys*/0,
927		nitems(quantum_fireball_entries),
928		/*sense key entries*/NULL,
929		quantum_fireball_entries
930	},
931	{
932		/*
933		 * This Sony MO drive likes to return 0x04, 0x00 when it
934		 * isn't spun up.
935		 */
936		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
937		/*num_sense_keys*/0,
938		nitems(sony_mo_entries),
939		/*sense key entries*/NULL,
940		sony_mo_entries
941	},
942	{
943		/*
944		 * HGST vendor-specific error codes
945		 */
946		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
947		/*num_sense_keys*/0,
948		nitems(hgst_entries),
949		/*sense key entries*/NULL,
950		hgst_entries
951	},
952	{
953		/*
954		 * SEAGATE vendor-specific error codes
955		 */
956		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
957		/*num_sense_keys*/0,
958		nitems(seagate_entries),
959		/*sense key entries*/NULL,
960		seagate_entries
961	}
962};
963
964const u_int sense_quirk_table_size = nitems(sense_quirk_table);
965
966static struct asc_table_entry asc_table[] = {
967	/*
968	 * From: http://www.t10.org/lists/asc-num.txt
969	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
970	 */
971	/*
972	 * File: ASC-NUM.TXT
973	 *
974	 * SCSI ASC/ASCQ Assignments
975	 * Numeric Sorted Listing
976	 * as of  8/12/15
977	 *
978	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
979	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
980	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
981	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
982	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
983	 * .  . R - CD DEVICE (MMC)
984	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
985	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
986	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
987	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
988	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
989	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
990	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
991	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
992	 * DTLPWROMAEBKVF
993	 * ASC      ASCQ  Action
994	 * Description
995	 */
996	/* DTLPWROMAEBKVF */
997	{ SST(0x00, 0x00, SS_NOP,
998	    "No additional sense information") },
999	/*  T             */
1000	{ SST(0x00, 0x01, SS_RDEF,
1001	    "Filemark detected") },
1002	/*  T             */
1003	{ SST(0x00, 0x02, SS_RDEF,
1004	    "End-of-partition/medium detected") },
1005	/*  T             */
1006	{ SST(0x00, 0x03, SS_RDEF,
1007	    "Setmark detected") },
1008	/*  T             */
1009	{ SST(0x00, 0x04, SS_RDEF,
1010	    "Beginning-of-partition/medium detected") },
1011	/*  TL            */
1012	{ SST(0x00, 0x05, SS_RDEF,
1013	    "End-of-data detected") },
1014	/* DTLPWROMAEBKVF */
1015	{ SST(0x00, 0x06, SS_RDEF,
1016	    "I/O process terminated") },
1017	/*  T             */
1018	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1019	    "Programmable early warning detected") },
1020	/*      R         */
1021	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1022	    "Audio play operation in progress") },
1023	/*      R         */
1024	{ SST(0x00, 0x12, SS_NOP,
1025	    "Audio play operation paused") },
1026	/*      R         */
1027	{ SST(0x00, 0x13, SS_NOP,
1028	    "Audio play operation successfully completed") },
1029	/*      R         */
1030	{ SST(0x00, 0x14, SS_RDEF,
1031	    "Audio play operation stopped due to error") },
1032	/*      R         */
1033	{ SST(0x00, 0x15, SS_NOP,
1034	    "No current audio status to return") },
1035	/* DTLPWROMAEBKVF */
1036	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1037	    "Operation in progress") },
1038	/* DTL WROMAEBKVF */
1039	{ SST(0x00, 0x17, SS_RDEF,
1040	    "Cleaning requested") },
1041	/*  T             */
1042	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1043	    "Erase operation in progress") },
1044	/*  T             */
1045	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1046	    "Locate operation in progress") },
1047	/*  T             */
1048	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1049	    "Rewind operation in progress") },
1050	/*  T             */
1051	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1052	    "Set capacity operation in progress") },
1053	/*  T             */
1054	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1055	    "Verify operation in progress") },
1056	/* DT        B    */
1057	{ SST(0x00, 0x1D, SS_NOP,
1058	    "ATA pass through information available") },
1059	/* DT   R MAEBKV  */
1060	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1061	    "Conflicting SA creation request") },
1062	/* DT        B    */
1063	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1064	    "Logical unit transitioning to another power condition") },
1065	/* DT P      B    */
1066	{ SST(0x00, 0x20, SS_NOP,
1067	    "Extended copy information available") },
1068	/* D              */
1069	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1070	    "Atomic command aborted due to ACA") },
1071	/* D   W O   BK   */
1072	{ SST(0x01, 0x00, SS_RDEF,
1073	    "No index/sector signal") },
1074	/* D   WRO   BK   */
1075	{ SST(0x02, 0x00, SS_RDEF,
1076	    "No seek complete") },
1077	/* DTL W O   BK   */
1078	{ SST(0x03, 0x00, SS_RDEF,
1079	    "Peripheral device write fault") },
1080	/*  T             */
1081	{ SST(0x03, 0x01, SS_RDEF,
1082	    "No write current") },
1083	/*  T             */
1084	{ SST(0x03, 0x02, SS_RDEF,
1085	    "Excessive write errors") },
1086	/* DTLPWROMAEBKVF */
1087	{ SST(0x04, 0x00, SS_RDEF,
1088	    "Logical unit not ready, cause not reportable") },
1089	/* DTLPWROMAEBKVF */
1090	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1091	    "Logical unit is in process of becoming ready") },
1092	/* DTLPWROMAEBKVF */
1093	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1094	    "Logical unit not ready, initializing command required") },
1095	/* DTLPWROMAEBKVF */
1096	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1097	    "Logical unit not ready, manual intervention required") },
1098	/* DTL  RO   B    */
1099	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1100	    "Logical unit not ready, format in progress") },
1101	/* DT  W O A BK F */
1102	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1103	    "Logical unit not ready, rebuild in progress") },
1104	/* DT  W O A BK   */
1105	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1106	    "Logical unit not ready, recalculation in progress") },
1107	/* DTLPWROMAEBKVF */
1108	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1109	    "Logical unit not ready, operation in progress") },
1110	/*      R         */
1111	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1112	    "Logical unit not ready, long write in progress") },
1113	/* DTLPWROMAEBKVF */
1114	{ SST(0x04, 0x09, SS_FATAL | EBUSY,
1115	    "Logical unit not ready, self-test in progress") },
1116	/* DTLPWROMAEBKVF */
1117	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1118	    "Logical unit not accessible, asymmetric access state transition")},
1119	/* DTLPWROMAEBKVF */
1120	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1121	    "Logical unit not accessible, target port in standby state") },
1122	/* DTLPWROMAEBKVF */
1123	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1124	    "Logical unit not accessible, target port in unavailable state") },
1125	/*              F */
1126	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1127	    "Logical unit not ready, structure check required") },
1128	/* DTL WR MAEBKVF */
1129	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1130	    "Logical unit not ready, security session in progress") },
1131	/* DT  WROM  B    */
1132	{ SST(0x04, 0x10, SS_FATAL | ENODEV,
1133	    "Logical unit not ready, auxiliary memory not accessible") },
1134	/* DT  WRO AEB VF */
1135	{ SST(0x04, 0x11, SS_WAIT | ENXIO,
1136	    "Logical unit not ready, notify (enable spinup) required") },
1137	/*        M    V  */
1138	{ SST(0x04, 0x12, SS_FATAL | ENXIO,
1139	    "Logical unit not ready, offline") },
1140	/* DT   R MAEBKV  */
1141	{ SST(0x04, 0x13, SS_WAIT | EBUSY,
1142	    "Logical unit not ready, SA creation in progress") },
1143	/* D         B    */
1144	{ SST(0x04, 0x14, SS_WAIT | ENOSPC,
1145	    "Logical unit not ready, space allocation in progress") },
1146	/*        M       */
1147	{ SST(0x04, 0x15, SS_FATAL | ENXIO,
1148	    "Logical unit not ready, robotics disabled") },
1149	/*        M       */
1150	{ SST(0x04, 0x16, SS_FATAL | ENXIO,
1151	    "Logical unit not ready, configuration required") },
1152	/*        M       */
1153	{ SST(0x04, 0x17, SS_FATAL | ENXIO,
1154	    "Logical unit not ready, calibration required") },
1155	/*        M       */
1156	{ SST(0x04, 0x18, SS_FATAL | ENXIO,
1157	    "Logical unit not ready, a door is open") },
1158	/*        M       */
1159	{ SST(0x04, 0x19, SS_FATAL | ENODEV,
1160	    "Logical unit not ready, operating in sequential mode") },
1161	/* DT        B    */
1162	{ SST(0x04, 0x1A, SS_WAIT | EBUSY,
1163	    "Logical unit not ready, START/STOP UNIT command in progress") },
1164	/* D         B    */
1165	{ SST(0x04, 0x1B, SS_WAIT | EBUSY,
1166	    "Logical unit not ready, sanitize in progress") },
1167	/* DT     MAEB    */
1168	{ SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1169	    "Logical unit not ready, additional power use not yet granted") },
1170	/* D              */
1171	{ SST(0x04, 0x1D, SS_WAIT | EBUSY,
1172	    "Logical unit not ready, configuration in progress") },
1173	/* D              */
1174	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1175	    "Logical unit not ready, microcode activation required") },
1176	/* DTLPWROMAEBKVF */
1177	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1178	    "Logical unit not ready, microcode download required") },
1179	/* DTLPWROMAEBKVF */
1180	{ SST(0x04, 0x20, SS_FATAL | ENXIO,
1181	    "Logical unit not ready, logical unit reset required") },
1182	/* DTLPWROMAEBKVF */
1183	{ SST(0x04, 0x21, SS_FATAL | ENXIO,
1184	    "Logical unit not ready, hard reset required") },
1185	/* DTLPWROMAEBKVF */
1186	{ SST(0x04, 0x22, SS_FATAL | ENXIO,
1187	    "Logical unit not ready, power cycle required") },
1188	/* D              */
1189	{ SST(0x04, 0x23, SS_FATAL | ENXIO,
1190	    "Logical unit not ready, affiliation required") },
1191	/* D              */
1192	{ SST(0x04, 0x24, SS_FATAL | EBUSY,
1193	    "Depopulation in progress") },
1194	/* D              */
1195	{ SST(0x04, 0x25, SS_FATAL | EBUSY,
1196	    "Depopulation restoration in progress") },
1197	/* DTL WROMAEBKVF */
1198	{ SST(0x05, 0x00, SS_RDEF,
1199	    "Logical unit does not respond to selection") },
1200	/* D   WROM  BK   */
1201	{ SST(0x06, 0x00, SS_RDEF,
1202	    "No reference position found") },
1203	/* DTL WROM  BK   */
1204	{ SST(0x07, 0x00, SS_RDEF,
1205	    "Multiple peripheral devices selected") },
1206	/* DTL WROMAEBKVF */
1207	{ SST(0x08, 0x00, SS_RDEF,
1208	    "Logical unit communication failure") },
1209	/* DTL WROMAEBKVF */
1210	{ SST(0x08, 0x01, SS_RDEF,
1211	    "Logical unit communication time-out") },
1212	/* DTL WROMAEBKVF */
1213	{ SST(0x08, 0x02, SS_RDEF,
1214	    "Logical unit communication parity error") },
1215	/* DT   ROM  BK   */
1216	{ SST(0x08, 0x03, SS_RDEF,
1217	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1218	/* DTLPWRO    K   */
1219	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1220	    "Unreachable copy target") },
1221	/* DT  WRO   B    */
1222	{ SST(0x09, 0x00, SS_RDEF,
1223	    "Track following error") },
1224	/*     WRO    K   */
1225	{ SST(0x09, 0x01, SS_RDEF,
1226	    "Tracking servo failure") },
1227	/*     WRO    K   */
1228	{ SST(0x09, 0x02, SS_RDEF,
1229	    "Focus servo failure") },
1230	/*     WRO        */
1231	{ SST(0x09, 0x03, SS_RDEF,
1232	    "Spindle servo failure") },
1233	/* DT  WRO   B    */
1234	{ SST(0x09, 0x04, SS_RDEF,
1235	    "Head select fault") },
1236	/* DT   RO   B    */
1237	{ SST(0x09, 0x05, SS_RDEF,
1238	    "Vibration induced tracking error") },
1239	/* DTLPWROMAEBKVF */
1240	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1241	    "Error log overflow") },
1242	/* DTLPWROMAEBKVF */
1243	{ SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1244	    "Warning") },
1245	/* DTLPWROMAEBKVF */
1246	{ SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1247	    "Warning - specified temperature exceeded") },
1248	/* DTLPWROMAEBKVF */
1249	{ SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1250	    "Warning - enclosure degraded") },
1251	/* DTLPWROMAEBKVF */
1252	{ SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1253	    "Warning - background self-test failed") },
1254	/* DTLPWRO AEBKVF */
1255	{ SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1256	    "Warning - background pre-scan detected medium error") },
1257	/* DTLPWRO AEBKVF */
1258	{ SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1259	    "Warning - background medium scan detected medium error") },
1260	/* DTLPWROMAEBKVF */
1261	{ SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1262	    "Warning - non-volatile cache now volatile") },
1263	/* DTLPWROMAEBKVF */
1264	{ SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1265	    "Warning - degraded power to non-volatile cache") },
1266	/* DTLPWROMAEBKVF */
1267	{ SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1268	    "Warning - power loss expected") },
1269	/* D              */
1270	{ SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1271	    "Warning - device statistics notification available") },
1272	/* DTLPWROMAEBKVF */
1273	{ SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1274	    "Warning - High critical temperature limit exceeded") },
1275	/* DTLPWROMAEBKVF */
1276	{ SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1277	    "Warning - Low critical temperature limit exceeded") },
1278	/* DTLPWROMAEBKVF */
1279	{ SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1280	    "Warning - High operating temperature limit exceeded") },
1281	/* DTLPWROMAEBKVF */
1282	{ SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1283	    "Warning - Low operating temperature limit exceeded") },
1284	/* DTLPWROMAEBKVF */
1285	{ SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1286	    "Warning - High citical humidity limit exceeded") },
1287	/* DTLPWROMAEBKVF */
1288	{ SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1289	    "Warning - Low citical humidity limit exceeded") },
1290	/* DTLPWROMAEBKVF */
1291	{ SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1292	    "Warning - High operating humidity limit exceeded") },
1293	/* DTLPWROMAEBKVF */
1294	{ SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1295	    "Warning - Low operating humidity limit exceeded") },
1296	/*  T   R         */
1297	{ SST(0x0C, 0x00, SS_RDEF,
1298	    "Write error") },
1299	/*            K   */
1300	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1301	    "Write error - recovered with auto reallocation") },
1302	/* D   W O   BK   */
1303	{ SST(0x0C, 0x02, SS_RDEF,
1304	    "Write error - auto reallocation failed") },
1305	/* D   W O   BK   */
1306	{ SST(0x0C, 0x03, SS_RDEF,
1307	    "Write error - recommend reassignment") },
1308	/* DT  W O   B    */
1309	{ SST(0x0C, 0x04, SS_RDEF,
1310	    "Compression check miscompare error") },
1311	/* DT  W O   B    */
1312	{ SST(0x0C, 0x05, SS_RDEF,
1313	    "Data expansion occurred during compression") },
1314	/* DT  W O   B    */
1315	{ SST(0x0C, 0x06, SS_RDEF,
1316	    "Block not compressible") },
1317	/*      R         */
1318	{ SST(0x0C, 0x07, SS_RDEF,
1319	    "Write error - recovery needed") },
1320	/*      R         */
1321	{ SST(0x0C, 0x08, SS_RDEF,
1322	    "Write error - recovery failed") },
1323	/*      R         */
1324	{ SST(0x0C, 0x09, SS_RDEF,
1325	    "Write error - loss of streaming") },
1326	/*      R         */
1327	{ SST(0x0C, 0x0A, SS_RDEF,
1328	    "Write error - padding blocks added") },
1329	/* DT  WROM  B    */
1330	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1331	    "Auxiliary memory write error") },
1332	/* DTLPWRO AEBKVF */
1333	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1334	    "Write error - unexpected unsolicited data") },
1335	/* DTLPWRO AEBKVF */
1336	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1337	    "Write error - not enough unsolicited data") },
1338	/* DT  W O   BK   */
1339	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1340	    "Multiple write errors") },
1341	/*      R         */
1342	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1343	    "Defects in error window") },
1344	/* D              */
1345	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1346	    "Incomplete multiple atomic write operations") },
1347	/* D              */
1348	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1349	    "Write error - recovery scan needed") },
1350	/* D              */
1351	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1352	    "Write error - insufficient zone resources") },
1353	/* DTLPWRO A  K   */
1354	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1355	    "Error detected by third party temporary initiator") },
1356	/* DTLPWRO A  K   */
1357	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1358	    "Third party device failure") },
1359	/* DTLPWRO A  K   */
1360	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1361	    "Copy target device not reachable") },
1362	/* DTLPWRO A  K   */
1363	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1364	    "Incorrect copy target device type") },
1365	/* DTLPWRO A  K   */
1366	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1367	    "Copy target device data underrun") },
1368	/* DTLPWRO A  K   */
1369	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1370	    "Copy target device data overrun") },
1371	/* DT PWROMAEBK F */
1372	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1373	    "Invalid information unit") },
1374	/* DT PWROMAEBK F */
1375	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1376	    "Information unit too short") },
1377	/* DT PWROMAEBK F */
1378	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1379	    "Information unit too long") },
1380	/* DT P R MAEBK F */
1381	{ SST(0x0E, 0x03, SS_FATAL | EINVAL,
1382	    "Invalid field in command information unit") },
1383	/* D   W O   BK   */
1384	{ SST(0x10, 0x00, SS_RDEF,
1385	    "ID CRC or ECC error") },
1386	/* DT  W O        */
1387	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1388	    "Logical block guard check failed") },
1389	/* DT  W O        */
1390	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1391	    "Logical block application tag check failed") },
1392	/* DT  W O        */
1393	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1394	    "Logical block reference tag check failed") },
1395	/*  T             */
1396	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1397	    "Logical block protection error on recovered buffer data") },
1398	/*  T             */
1399	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1400	    "Logical block protection method error") },
1401	/* DT  WRO   BK   */
1402	{ SST(0x11, 0x00, SS_FATAL|EIO,
1403	    "Unrecovered read error") },
1404	/* DT  WRO   BK   */
1405	{ SST(0x11, 0x01, SS_FATAL|EIO,
1406	    "Read retries exhausted") },
1407	/* DT  WRO   BK   */
1408	{ SST(0x11, 0x02, SS_FATAL|EIO,
1409	    "Error too long to correct") },
1410	/* DT  W O   BK   */
1411	{ SST(0x11, 0x03, SS_FATAL|EIO,
1412	    "Multiple read errors") },
1413	/* D   W O   BK   */
1414	{ SST(0x11, 0x04, SS_FATAL|EIO,
1415	    "Unrecovered read error - auto reallocate failed") },
1416	/*     WRO   B    */
1417	{ SST(0x11, 0x05, SS_FATAL|EIO,
1418	    "L-EC uncorrectable error") },
1419	/*     WRO   B    */
1420	{ SST(0x11, 0x06, SS_FATAL|EIO,
1421	    "CIRC unrecovered error") },
1422	/*     W O   B    */
1423	{ SST(0x11, 0x07, SS_RDEF,
1424	    "Data re-synchronization error") },
1425	/*  T             */
1426	{ SST(0x11, 0x08, SS_RDEF,
1427	    "Incomplete block read") },
1428	/*  T             */
1429	{ SST(0x11, 0x09, SS_RDEF,
1430	    "No gap found") },
1431	/* DT    O   BK   */
1432	{ SST(0x11, 0x0A, SS_RDEF,
1433	    "Miscorrected error") },
1434	/* D   W O   BK   */
1435	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1436	    "Unrecovered read error - recommend reassignment") },
1437	/* D   W O   BK   */
1438	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1439	    "Unrecovered read error - recommend rewrite the data") },
1440	/* DT  WRO   B    */
1441	{ SST(0x11, 0x0D, SS_RDEF,
1442	    "De-compression CRC error") },
1443	/* DT  WRO   B    */
1444	{ SST(0x11, 0x0E, SS_RDEF,
1445	    "Cannot decompress using declared algorithm") },
1446	/*      R         */
1447	{ SST(0x11, 0x0F, SS_RDEF,
1448	    "Error reading UPC/EAN number") },
1449	/*      R         */
1450	{ SST(0x11, 0x10, SS_RDEF,
1451	    "Error reading ISRC number") },
1452	/*      R         */
1453	{ SST(0x11, 0x11, SS_RDEF,
1454	    "Read error - loss of streaming") },
1455	/* DT  WROM  B    */
1456	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1457	    "Auxiliary memory read error") },
1458	/* DTLPWRO AEBKVF */
1459	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1460	    "Read error - failed retransmission request") },
1461	/* D              */
1462	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1463	    "Read error - LBA marked bad by application client") },
1464	/* D              */
1465	{ SST(0x11, 0x15, SS_FATAL | EIO,
1466	    "Write after sanitize required") },
1467	/* D   W O   BK   */
1468	{ SST(0x12, 0x00, SS_RDEF,
1469	    "Address mark not found for ID field") },
1470	/* D   W O   BK   */
1471	{ SST(0x13, 0x00, SS_RDEF,
1472	    "Address mark not found for data field") },
1473	/* DTL WRO   BK   */
1474	{ SST(0x14, 0x00, SS_RDEF,
1475	    "Recorded entity not found") },
1476	/* DT  WRO   BK   */
1477	{ SST(0x14, 0x01, SS_RDEF,
1478	    "Record not found") },
1479	/*  T             */
1480	{ SST(0x14, 0x02, SS_RDEF,
1481	    "Filemark or setmark not found") },
1482	/*  T             */
1483	{ SST(0x14, 0x03, SS_RDEF,
1484	    "End-of-data not found") },
1485	/*  T             */
1486	{ SST(0x14, 0x04, SS_RDEF,
1487	    "Block sequence error") },
1488	/* DT  W O   BK   */
1489	{ SST(0x14, 0x05, SS_RDEF,
1490	    "Record not found - recommend reassignment") },
1491	/* DT  W O   BK   */
1492	{ SST(0x14, 0x06, SS_RDEF,
1493	    "Record not found - data auto-reallocated") },
1494	/*  T             */
1495	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1496	    "Locate operation failure") },
1497	/* DTL WROM  BK   */
1498	{ SST(0x15, 0x00, SS_RDEF,
1499	    "Random positioning error") },
1500	/* DTL WROM  BK   */
1501	{ SST(0x15, 0x01, SS_RDEF,
1502	    "Mechanical positioning error") },
1503	/* DT  WRO   BK   */
1504	{ SST(0x15, 0x02, SS_RDEF,
1505	    "Positioning error detected by read of medium") },
1506	/* D   W O   BK   */
1507	{ SST(0x16, 0x00, SS_RDEF,
1508	    "Data synchronization mark error") },
1509	/* D   W O   BK   */
1510	{ SST(0x16, 0x01, SS_RDEF,
1511	    "Data sync error - data rewritten") },
1512	/* D   W O   BK   */
1513	{ SST(0x16, 0x02, SS_RDEF,
1514	    "Data sync error - recommend rewrite") },
1515	/* D   W O   BK   */
1516	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1517	    "Data sync error - data auto-reallocated") },
1518	/* D   W O   BK   */
1519	{ SST(0x16, 0x04, SS_RDEF,
1520	    "Data sync error - recommend reassignment") },
1521	/* DT  WRO   BK   */
1522	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1523	    "Recovered data with no error correction applied") },
1524	/* DT  WRO   BK   */
1525	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1526	    "Recovered data with retries") },
1527	/* DT  WRO   BK   */
1528	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1529	    "Recovered data with positive head offset") },
1530	/* DT  WRO   BK   */
1531	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1532	    "Recovered data with negative head offset") },
1533	/*     WRO   B    */
1534	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1535	    "Recovered data with retries and/or CIRC applied") },
1536	/* D   WRO   BK   */
1537	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1538	    "Recovered data using previous sector ID") },
1539	/* D   W O   BK   */
1540	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1541	    "Recovered data without ECC - data auto-reallocated") },
1542	/* D   WRO   BK   */
1543	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1544	    "Recovered data without ECC - recommend reassignment") },
1545	/* D   WRO   BK   */
1546	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1547	    "Recovered data without ECC - recommend rewrite") },
1548	/* D   WRO   BK   */
1549	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1550	    "Recovered data without ECC - data rewritten") },
1551	/* DT  WRO   BK   */
1552	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1553	    "Recovered data with error correction applied") },
1554	/* D   WRO   BK   */
1555	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1556	    "Recovered data with error corr. & retries applied") },
1557	/* D   WRO   BK   */
1558	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1559	    "Recovered data - data auto-reallocated") },
1560	/*      R         */
1561	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1562	    "Recovered data with CIRC") },
1563	/*      R         */
1564	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1565	    "Recovered data with L-EC") },
1566	/* D   WRO   BK   */
1567	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1568	    "Recovered data - recommend reassignment") },
1569	/* D   WRO   BK   */
1570	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1571	    "Recovered data - recommend rewrite") },
1572	/* D   W O   BK   */
1573	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1574	    "Recovered data with ECC - data rewritten") },
1575	/*      R         */
1576	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1577	    "Recovered data with linking") },
1578	/* D     O    K   */
1579	{ SST(0x19, 0x00, SS_RDEF,
1580	    "Defect list error") },
1581	/* D     O    K   */
1582	{ SST(0x19, 0x01, SS_RDEF,
1583	    "Defect list not available") },
1584	/* D     O    K   */
1585	{ SST(0x19, 0x02, SS_RDEF,
1586	    "Defect list error in primary list") },
1587	/* D     O    K   */
1588	{ SST(0x19, 0x03, SS_RDEF,
1589	    "Defect list error in grown list") },
1590	/* DTLPWROMAEBKVF */
1591	{ SST(0x1A, 0x00, SS_RDEF,
1592	    "Parameter list length error") },
1593	/* DTLPWROMAEBKVF */
1594	{ SST(0x1B, 0x00, SS_RDEF,
1595	    "Synchronous data transfer error") },
1596	/* D     O   BK   */
1597	{ SST(0x1C, 0x00, SS_RDEF,
1598	    "Defect list not found") },
1599	/* D     O   BK   */
1600	{ SST(0x1C, 0x01, SS_RDEF,
1601	    "Primary defect list not found") },
1602	/* D     O   BK   */
1603	{ SST(0x1C, 0x02, SS_RDEF,
1604	    "Grown defect list not found") },
1605	/* DT  WRO   BK   */
1606	{ SST(0x1D, 0x00, SS_FATAL,
1607	    "Miscompare during verify operation") },
1608	/* D         B    */
1609	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1610	    "Miscomparable verify of unmapped LBA") },
1611	/* D   W O   BK   */
1612	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1613	    "Recovered ID with ECC correction") },
1614	/* D     O    K   */
1615	{ SST(0x1F, 0x00, SS_RDEF,
1616	    "Partial defect list transfer") },
1617	/* DTLPWROMAEBKVF */
1618	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1619	    "Invalid command operation code") },
1620	/* DT PWROMAEBK   */
1621	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1622	    "Access denied - initiator pending-enrolled") },
1623	/* DT PWROMAEBK   */
1624	{ SST(0x20, 0x02, SS_FATAL | EPERM,
1625	    "Access denied - no access rights") },
1626	/* DT PWROMAEBK   */
1627	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1628	    "Access denied - invalid mgmt ID key") },
1629	/*  T             */
1630	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1631	    "Illegal command while in write capable state") },
1632	/*  T             */
1633	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1634	    "Obsolete") },
1635	/*  T             */
1636	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1637	    "Illegal command while in explicit address mode") },
1638	/*  T             */
1639	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1640	    "Illegal command while in implicit address mode") },
1641	/* DT PWROMAEBK   */
1642	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1643	    "Access denied - enrollment conflict") },
1644	/* DT PWROMAEBK   */
1645	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1646	    "Access denied - invalid LU identifier") },
1647	/* DT PWROMAEBK   */
1648	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1649	    "Access denied - invalid proxy token") },
1650	/* DT PWROMAEBK   */
1651	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1652	    "Access denied - ACL LUN conflict") },
1653	/*  T             */
1654	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1655	    "Illegal command when not in append-only mode") },
1656	/* DT  WRO   BK   */
1657	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1658	    "Logical block address out of range") },
1659	/* DT  WROM  BK   */
1660	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1661	    "Invalid element address") },
1662	/*      R         */
1663	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1664	    "Invalid address for write") },
1665	/*      R         */
1666	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1667	    "Invalid write crossing layer jump") },
1668	/* D              */
1669	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1670	    "Unaligned write command") },
1671	/* D              */
1672	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1673	    "Write boundary violation") },
1674	/* D              */
1675	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1676	    "Attempt to read invalid data") },
1677	/* D              */
1678	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1679	    "Read boundary violation") },
1680	/* D              */
1681	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1682	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1683	/* DT P      B    */
1684	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1685	    "Invalid token operation, cause not reportable") },
1686	/* DT P      B    */
1687	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1688	    "Invalid token operation, unsupported token type") },
1689	/* DT P      B    */
1690	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1691	    "Invalid token operation, remote token usage not supported") },
1692	/* DT P      B    */
1693	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1694	    "Invalid token operation, remote ROD token creation not supported") },
1695	/* DT P      B    */
1696	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1697	    "Invalid token operation, token unknown") },
1698	/* DT P      B    */
1699	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1700	    "Invalid token operation, token corrupt") },
1701	/* DT P      B    */
1702	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1703	    "Invalid token operation, token revoked") },
1704	/* DT P      B    */
1705	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1706	    "Invalid token operation, token expired") },
1707	/* DT P      B    */
1708	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1709	    "Invalid token operation, token cancelled") },
1710	/* DT P      B    */
1711	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1712	    "Invalid token operation, token deleted") },
1713	/* DT P      B    */
1714	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1715	    "Invalid token operation, invalid token length") },
1716	/* DTLPWROMAEBKVF */
1717	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1718	    "Invalid field in CDB") },
1719	/* DTLPWRO AEBKVF */
1720	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1721	    "CDB decryption error") },
1722	/*  T             */
1723	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1724	    "Obsolete") },
1725	/*  T             */
1726	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1727	    "Obsolete") },
1728	/*              F */
1729	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1730	    "Security audit value frozen") },
1731	/*              F */
1732	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1733	    "Security working key frozen") },
1734	/*              F */
1735	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1736	    "NONCE not unique") },
1737	/*              F */
1738	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1739	    "NONCE timestamp out of range") },
1740	/* DT   R MAEBKV  */
1741	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1742	    "Invalid XCDB") },
1743	/* DTLPWROMAEBKVF */
1744	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1745	    "Logical unit not supported") },
1746	/* DTLPWROMAEBKVF */
1747	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1748	    "Invalid field in parameter list") },
1749	/* DTLPWROMAEBKVF */
1750	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1751	    "Parameter not supported") },
1752	/* DTLPWROMAEBKVF */
1753	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1754	    "Parameter value invalid") },
1755	/* DTLPWROMAE K   */
1756	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1757	    "Threshold parameters not supported") },
1758	/* DTLPWROMAEBKVF */
1759	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1760	    "Invalid release of persistent reservation") },
1761	/* DTLPWRO A BK   */
1762	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1763	    "Data decryption error") },
1764	/* DTLPWRO    K   */
1765	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1766	    "Too many target descriptors") },
1767	/* DTLPWRO    K   */
1768	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1769	    "Unsupported target descriptor type code") },
1770	/* DTLPWRO    K   */
1771	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1772	    "Too many segment descriptors") },
1773	/* DTLPWRO    K   */
1774	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1775	    "Unsupported segment descriptor type code") },
1776	/* DTLPWRO    K   */
1777	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1778	    "Unexpected inexact segment") },
1779	/* DTLPWRO    K   */
1780	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1781	    "Inline data length exceeded") },
1782	/* DTLPWRO    K   */
1783	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1784	    "Invalid operation for copy source or destination") },
1785	/* DTLPWRO    K   */
1786	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1787	    "Copy segment granularity violation") },
1788	/* DT PWROMAEBK   */
1789	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1790	    "Invalid parameter while port is enabled") },
1791	/*              F */
1792	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1793	    "Invalid data-out buffer integrity check value") },
1794	/*  T             */
1795	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1796	    "Data decryption key fail limit reached") },
1797	/*  T             */
1798	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1799	    "Incomplete key-associated data set") },
1800	/*  T             */
1801	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1802	    "Vendor specific key reference not found") },
1803	/* D              */
1804	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1805	    "Application tag mode page is invalid") },
1806	/* DT  WRO   BK   */
1807	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1808	    "Write protected") },
1809	/* DT  WRO   BK   */
1810	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1811	    "Hardware write protected") },
1812	/* DT  WRO   BK   */
1813	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1814	    "Logical unit software write protected") },
1815	/*  T   R         */
1816	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1817	    "Associated write protect") },
1818	/*  T   R         */
1819	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1820	    "Persistent write protect") },
1821	/*  T   R         */
1822	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1823	    "Permanent write protect") },
1824	/*      R       F */
1825	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1826	    "Conditional write protect") },
1827	/* D         B    */
1828	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1829	    "Space allocation failed write protect") },
1830	/* D              */
1831	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1832	    "Zone is read only") },
1833	/* DTLPWROMAEBKVF */
1834	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1835	    "Not ready to ready change, medium may have changed") },
1836	/* DT  WROM  B    */
1837	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1838	    "Import or export element accessed") },
1839	/*      R         */
1840	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1841	    "Format-layer may have changed") },
1842	/*        M       */
1843	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1844	    "Import/export element accessed, medium changed") },
1845	/*
1846	 * XXX JGibbs - All of these should use the same errno, but I don't
1847	 * think ENXIO is the correct choice.  Should we borrow from
1848	 * the networking errnos?  ECONNRESET anyone?
1849	 */
1850	/* DTLPWROMAEBKVF */
1851	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1852	    "Power on, reset, or bus device reset occurred") },
1853	/* DTLPWROMAEBKVF */
1854	{ SST(0x29, 0x01, SS_RDEF,
1855	    "Power on occurred") },
1856	/* DTLPWROMAEBKVF */
1857	{ SST(0x29, 0x02, SS_RDEF,
1858	    "SCSI bus reset occurred") },
1859	/* DTLPWROMAEBKVF */
1860	{ SST(0x29, 0x03, SS_RDEF,
1861	    "Bus device reset function occurred") },
1862	/* DTLPWROMAEBKVF */
1863	{ SST(0x29, 0x04, SS_RDEF,
1864	    "Device internal reset") },
1865	/* DTLPWROMAEBKVF */
1866	{ SST(0x29, 0x05, SS_RDEF,
1867	    "Transceiver mode changed to single-ended") },
1868	/* DTLPWROMAEBKVF */
1869	{ SST(0x29, 0x06, SS_RDEF,
1870	    "Transceiver mode changed to LVD") },
1871	/* DTLPWROMAEBKVF */
1872	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1873	    "I_T nexus loss occurred") },
1874	/* DTL WROMAEBKVF */
1875	{ SST(0x2A, 0x00, SS_RDEF,
1876	    "Parameters changed") },
1877	/* DTL WROMAEBKVF */
1878	{ SST(0x2A, 0x01, SS_RDEF,
1879	    "Mode parameters changed") },
1880	/* DTL WROMAE K   */
1881	{ SST(0x2A, 0x02, SS_RDEF,
1882	    "Log parameters changed") },
1883	/* DTLPWROMAE K   */
1884	{ SST(0x2A, 0x03, SS_RDEF,
1885	    "Reservations preempted") },
1886	/* DTLPWROMAE     */
1887	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1888	    "Reservations released") },
1889	/* DTLPWROMAE     */
1890	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1891	    "Registrations preempted") },
1892	/* DTLPWROMAEBKVF */
1893	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1894	    "Asymmetric access state changed") },
1895	/* DTLPWROMAEBKVF */
1896	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1897	    "Implicit asymmetric access state transition failed") },
1898	/* DT  WROMAEBKVF */
1899	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1900	    "Priority changed") },
1901	/* D              */
1902	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1903	    "Capacity data has changed") },
1904	/* DT             */
1905	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1906	    "Error history I_T nexus cleared") },
1907	/* DT             */
1908	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1909	    "Error history snapshot released") },
1910	/*              F */
1911	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1912	    "Error recovery attributes have changed") },
1913	/*  T             */
1914	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1915	    "Data encryption capabilities changed") },
1916	/* DT     M E  V  */
1917	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1918	    "Timestamp changed") },
1919	/*  T             */
1920	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1921	    "Data encryption parameters changed by another I_T nexus") },
1922	/*  T             */
1923	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1924	    "Data encryption parameters changed by vendor specific event") },
1925	/*  T             */
1926	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1927	    "Data encryption key instance counter has changed") },
1928	/* DT   R MAEBKV  */
1929	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1930	    "SA creation capabilities data has changed") },
1931	/*  T     M    V  */
1932	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1933	    "Medium removal prevention preempted") },
1934	/* DTLPWRO    K   */
1935	{ SST(0x2B, 0x00, SS_RDEF,
1936	    "Copy cannot execute since host cannot disconnect") },
1937	/* DTLPWROMAEBKVF */
1938	{ SST(0x2C, 0x00, SS_RDEF,
1939	    "Command sequence error") },
1940	/*                */
1941	{ SST(0x2C, 0x01, SS_RDEF,
1942	    "Too many windows specified") },
1943	/*                */
1944	{ SST(0x2C, 0x02, SS_RDEF,
1945	    "Invalid combination of windows specified") },
1946	/*      R         */
1947	{ SST(0x2C, 0x03, SS_RDEF,
1948	    "Current program area is not empty") },
1949	/*      R         */
1950	{ SST(0x2C, 0x04, SS_RDEF,
1951	    "Current program area is empty") },
1952	/*           B    */
1953	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1954	    "Illegal power condition request") },
1955	/*      R         */
1956	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1957	    "Persistent prevent conflict") },
1958	/* DTLPWROMAEBKVF */
1959	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1960	    "Previous busy status") },
1961	/* DTLPWROMAEBKVF */
1962	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1963	    "Previous task set full status") },
1964	/* DTLPWROM EBKVF */
1965	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1966	    "Previous reservation conflict status") },
1967	/*              F */
1968	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1969	    "Partition or collection contains user objects") },
1970	/*  T             */
1971	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1972	    "Not reserved") },
1973	/* D              */
1974	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1975	    "ORWRITE generation does not match") },
1976	/* D              */
1977	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1978	    "Reset write pointer not allowed") },
1979	/* D              */
1980	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1981	    "Zone is offline") },
1982	/* D              */
1983	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1984	    "Stream not open") },
1985	/* D              */
1986	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1987	    "Unwritten data in zone") },
1988	/*  T             */
1989	{ SST(0x2D, 0x00, SS_RDEF,
1990	    "Overwrite error on update in place") },
1991	/*      R         */
1992	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1993	    "Insufficient time for operation") },
1994	/* D              */
1995	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
1996	    "Command timeout before processing") },
1997	/* D              */
1998	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
1999	    "Command timeout during processing") },
2000	/* D              */
2001	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
2002	    "Command timeout during processing due to error recovery") },
2003	/* DTLPWROMAEBKVF */
2004	{ SST(0x2F, 0x00, SS_RDEF,
2005	    "Commands cleared by another initiator") },
2006	/* D              */
2007	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
2008	    "Commands cleared by power loss notification") },
2009	/* DTLPWROMAEBKVF */
2010	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2011	    "Commands cleared by device server") },
2012	/* DTLPWROMAEBKVF */
2013	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2014	    "Some commands cleared by queuing layer event") },
2015	/* DT  WROM  BK   */
2016	{ SST(0x30, 0x00, SS_RDEF,
2017	    "Incompatible medium installed") },
2018	/* DT  WRO   BK   */
2019	{ SST(0x30, 0x01, SS_RDEF,
2020	    "Cannot read medium - unknown format") },
2021	/* DT  WRO   BK   */
2022	{ SST(0x30, 0x02, SS_RDEF,
2023	    "Cannot read medium - incompatible format") },
2024	/* DT   R     K   */
2025	{ SST(0x30, 0x03, SS_RDEF,
2026	    "Cleaning cartridge installed") },
2027	/* DT  WRO   BK   */
2028	{ SST(0x30, 0x04, SS_RDEF,
2029	    "Cannot write medium - unknown format") },
2030	/* DT  WRO   BK   */
2031	{ SST(0x30, 0x05, SS_RDEF,
2032	    "Cannot write medium - incompatible format") },
2033	/* DT  WRO   B    */
2034	{ SST(0x30, 0x06, SS_RDEF,
2035	    "Cannot format medium - incompatible medium") },
2036	/* DTL WROMAEBKVF */
2037	{ SST(0x30, 0x07, SS_RDEF,
2038	    "Cleaning failure") },
2039	/*      R         */
2040	{ SST(0x30, 0x08, SS_RDEF,
2041	    "Cannot write - application code mismatch") },
2042	/*      R         */
2043	{ SST(0x30, 0x09, SS_RDEF,
2044	    "Current session not fixated for append") },
2045	/* DT  WRO AEBK   */
2046	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2047	    "Cleaning request rejected") },
2048	/*  T             */
2049	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2050	    "WORM medium - overwrite attempted") },
2051	/*  T             */
2052	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2053	    "WORM medium - integrity check") },
2054	/*      R         */
2055	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2056	    "Medium not formatted") },
2057	/*        M       */
2058	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2059	    "Incompatible volume type") },
2060	/*        M       */
2061	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2062	    "Incompatible volume qualifier") },
2063	/*        M       */
2064	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2065	    "Cleaning volume expired") },
2066	/* DT  WRO   BK   */
2067	{ SST(0x31, 0x00, SS_FATAL | ENXIO,
2068	    "Medium format corrupted") },
2069	/* D L  RO   B    */
2070	{ SST(0x31, 0x01, SS_RDEF,
2071	    "Format command failed") },
2072	/*      R         */
2073	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2074	    "Zoned formatting failed due to spare linking") },
2075	/* D         B    */
2076	{ SST(0x31, 0x03, SS_FATAL | EIO,
2077	    "SANITIZE command failed") },
2078	/* D              */
2079	{ SST(0x31, 0x04, SS_FATAL | EIO,
2080	    "Depopulation failed") },
2081	/* D              */
2082	{ SST(0x31, 0x05, SS_FATAL | EIO,
2083	    "Depopulation restoration failed") },
2084	/* D   W O   BK   */
2085	{ SST(0x32, 0x00, SS_RDEF,
2086	    "No defect spare location available") },
2087	/* D   W O   BK   */
2088	{ SST(0x32, 0x01, SS_RDEF,
2089	    "Defect list update failure") },
2090	/*  T             */
2091	{ SST(0x33, 0x00, SS_RDEF,
2092	    "Tape length error") },
2093	/* DTLPWROMAEBKVF */
2094	{ SST(0x34, 0x00, SS_RDEF,
2095	    "Enclosure failure") },
2096	/* DTLPWROMAEBKVF */
2097	{ SST(0x35, 0x00, SS_RDEF,
2098	    "Enclosure services failure") },
2099	/* DTLPWROMAEBKVF */
2100	{ SST(0x35, 0x01, SS_RDEF,
2101	    "Unsupported enclosure function") },
2102	/* DTLPWROMAEBKVF */
2103	{ SST(0x35, 0x02, SS_RDEF,
2104	    "Enclosure services unavailable") },
2105	/* DTLPWROMAEBKVF */
2106	{ SST(0x35, 0x03, SS_RDEF,
2107	    "Enclosure services transfer failure") },
2108	/* DTLPWROMAEBKVF */
2109	{ SST(0x35, 0x04, SS_RDEF,
2110	    "Enclosure services transfer refused") },
2111	/* DTL WROMAEBKVF */
2112	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2113	    "Enclosure services checksum error") },
2114	/*   L            */
2115	{ SST(0x36, 0x00, SS_RDEF,
2116	    "Ribbon, ink, or toner failure") },
2117	/* DTL WROMAEBKVF */
2118	{ SST(0x37, 0x00, SS_RDEF,
2119	    "Rounded parameter") },
2120	/*           B    */
2121	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2122	    "Event status notification") },
2123	/*           B    */
2124	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2125	    "ESN - power management class event") },
2126	/*           B    */
2127	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2128	    "ESN - media class event") },
2129	/*           B    */
2130	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2131	    "ESN - device busy class event") },
2132	/* D              */
2133	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2134	    "Thin provisioning soft threshold reached") },
2135	/* DTL WROMAE K   */
2136	{ SST(0x39, 0x00, SS_RDEF,
2137	    "Saving parameters not supported") },
2138	/* DTL WROM  BK   */
2139	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2140	    "Medium not present") },
2141	/* DT  WROM  BK   */
2142	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2143	    "Medium not present - tray closed") },
2144	/* DT  WROM  BK   */
2145	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2146	    "Medium not present - tray open") },
2147	/* DT  WROM  B    */
2148	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2149	    "Medium not present - loadable") },
2150	/* DT  WRO   B    */
2151	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2152	    "Medium not present - medium auxiliary memory accessible") },
2153	/*  TL            */
2154	{ SST(0x3B, 0x00, SS_RDEF,
2155	    "Sequential positioning error") },
2156	/*  T             */
2157	{ SST(0x3B, 0x01, SS_RDEF,
2158	    "Tape position error at beginning-of-medium") },
2159	/*  T             */
2160	{ SST(0x3B, 0x02, SS_RDEF,
2161	    "Tape position error at end-of-medium") },
2162	/*   L            */
2163	{ SST(0x3B, 0x03, SS_RDEF,
2164	    "Tape or electronic vertical forms unit not ready") },
2165	/*   L            */
2166	{ SST(0x3B, 0x04, SS_RDEF,
2167	    "Slew failure") },
2168	/*   L            */
2169	{ SST(0x3B, 0x05, SS_RDEF,
2170	    "Paper jam") },
2171	/*   L            */
2172	{ SST(0x3B, 0x06, SS_RDEF,
2173	    "Failed to sense top-of-form") },
2174	/*   L            */
2175	{ SST(0x3B, 0x07, SS_RDEF,
2176	    "Failed to sense bottom-of-form") },
2177	/*  T             */
2178	{ SST(0x3B, 0x08, SS_RDEF,
2179	    "Reposition error") },
2180	/*                */
2181	{ SST(0x3B, 0x09, SS_RDEF,
2182	    "Read past end of medium") },
2183	/*                */
2184	{ SST(0x3B, 0x0A, SS_RDEF,
2185	    "Read past beginning of medium") },
2186	/*                */
2187	{ SST(0x3B, 0x0B, SS_RDEF,
2188	    "Position past end of medium") },
2189	/*  T             */
2190	{ SST(0x3B, 0x0C, SS_RDEF,
2191	    "Position past beginning of medium") },
2192	/* DT  WROM  BK   */
2193	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2194	    "Medium destination element full") },
2195	/* DT  WROM  BK   */
2196	{ SST(0x3B, 0x0E, SS_RDEF,
2197	    "Medium source element empty") },
2198	/*      R         */
2199	{ SST(0x3B, 0x0F, SS_RDEF,
2200	    "End of medium reached") },
2201	/* DT  WROM  BK   */
2202	{ SST(0x3B, 0x11, SS_RDEF,
2203	    "Medium magazine not accessible") },
2204	/* DT  WROM  BK   */
2205	{ SST(0x3B, 0x12, SS_RDEF,
2206	    "Medium magazine removed") },
2207	/* DT  WROM  BK   */
2208	{ SST(0x3B, 0x13, SS_RDEF,
2209	    "Medium magazine inserted") },
2210	/* DT  WROM  BK   */
2211	{ SST(0x3B, 0x14, SS_RDEF,
2212	    "Medium magazine locked") },
2213	/* DT  WROM  BK   */
2214	{ SST(0x3B, 0x15, SS_RDEF,
2215	    "Medium magazine unlocked") },
2216	/*      R         */
2217	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2218	    "Mechanical positioning or changer error") },
2219	/*              F */
2220	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2221	    "Read past end of user object") },
2222	/*        M       */
2223	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2224	    "Element disabled") },
2225	/*        M       */
2226	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2227	    "Element enabled") },
2228	/*        M       */
2229	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2230	    "Data transfer device removed") },
2231	/*        M       */
2232	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2233	    "Data transfer device inserted") },
2234	/*  T             */
2235	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2236	    "Too many logical objects on partition to support operation") },
2237	/* DTLPWROMAE K   */
2238	{ SST(0x3D, 0x00, SS_RDEF,
2239	    "Invalid bits in IDENTIFY message") },
2240	/* DTLPWROMAEBKVF */
2241	{ SST(0x3E, 0x00, SS_RDEF,
2242	    "Logical unit has not self-configured yet") },
2243	/* DTLPWROMAEBKVF */
2244	{ SST(0x3E, 0x01, SS_RDEF,
2245	    "Logical unit failure") },
2246	/* DTLPWROMAEBKVF */
2247	{ SST(0x3E, 0x02, SS_RDEF,
2248	    "Timeout on logical unit") },
2249	/* DTLPWROMAEBKVF */
2250	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2251	    "Logical unit failed self-test") },
2252	/* DTLPWROMAEBKVF */
2253	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2254	    "Logical unit unable to update self-test log") },
2255	/* DTLPWROMAEBKVF */
2256	{ SST(0x3F, 0x00, SS_RDEF,
2257	    "Target operating conditions have changed") },
2258	/* DTLPWROMAEBKVF */
2259	{ SST(0x3F, 0x01, SS_RDEF,
2260	    "Microcode has been changed") },
2261	/* DTLPWROM  BK   */
2262	{ SST(0x3F, 0x02, SS_RDEF,
2263	    "Changed operating definition") },
2264	/* DTLPWROMAEBKVF */
2265	{ SST(0x3F, 0x03, SS_RDEF,
2266	    "INQUIRY data has changed") },
2267	/* DT  WROMAEBK   */
2268	{ SST(0x3F, 0x04, SS_RDEF,
2269	    "Component device attached") },
2270	/* DT  WROMAEBK   */
2271	{ SST(0x3F, 0x05, SS_RDEF,
2272	    "Device identifier changed") },
2273	/* DT  WROMAEB    */
2274	{ SST(0x3F, 0x06, SS_RDEF,
2275	    "Redundancy group created or modified") },
2276	/* DT  WROMAEB    */
2277	{ SST(0x3F, 0x07, SS_RDEF,
2278	    "Redundancy group deleted") },
2279	/* DT  WROMAEB    */
2280	{ SST(0x3F, 0x08, SS_RDEF,
2281	    "Spare created or modified") },
2282	/* DT  WROMAEB    */
2283	{ SST(0x3F, 0x09, SS_RDEF,
2284	    "Spare deleted") },
2285	/* DT  WROMAEBK   */
2286	{ SST(0x3F, 0x0A, SS_RDEF,
2287	    "Volume set created or modified") },
2288	/* DT  WROMAEBK   */
2289	{ SST(0x3F, 0x0B, SS_RDEF,
2290	    "Volume set deleted") },
2291	/* DT  WROMAEBK   */
2292	{ SST(0x3F, 0x0C, SS_RDEF,
2293	    "Volume set deassigned") },
2294	/* DT  WROMAEBK   */
2295	{ SST(0x3F, 0x0D, SS_RDEF,
2296	    "Volume set reassigned") },
2297	/* DTLPWROMAE     */
2298	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2299	    "Reported LUNs data has changed") },
2300	/* DTLPWROMAEBKVF */
2301	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2302	    "Echo buffer overwritten") },
2303	/* DT  WROM  B    */
2304	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2305	    "Medium loadable") },
2306	/* DT  WROM  B    */
2307	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2308	    "Medium auxiliary memory accessible") },
2309	/* DTLPWR MAEBK F */
2310	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2311	    "iSCSI IP address added") },
2312	/* DTLPWR MAEBK F */
2313	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2314	    "iSCSI IP address removed") },
2315	/* DTLPWR MAEBK F */
2316	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2317	    "iSCSI IP address changed") },
2318	/* DTLPWR MAEBK   */
2319	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2320	    "Inspect referrals sense descriptors") },
2321	/* DTLPWROMAEBKVF */
2322	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2323	    "Microcode has been changed without reset") },
2324	/* D              */
2325	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2326	    "Zone transition to full") },
2327	/* D              */
2328	{ SST(0x40, 0x00, SS_RDEF,
2329	    "RAM failure") },		/* deprecated - use 40 NN instead */
2330	/* DTLPWROMAEBKVF */
2331	{ SST(0x40, 0x80, SS_RDEF,
2332	    "Diagnostic failure: ASCQ = Component ID") },
2333	/* DTLPWROMAEBKVF */
2334	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2335	    NULL) },			/* Range 0x80->0xFF */
2336	/* D              */
2337	{ SST(0x41, 0x00, SS_RDEF,
2338	    "Data path failure") },	/* deprecated - use 40 NN instead */
2339	/* D              */
2340	{ SST(0x42, 0x00, SS_RDEF,
2341	    "Power-on or self-test failure") },
2342					/* deprecated - use 40 NN instead */
2343	/* DTLPWROMAEBKVF */
2344	{ SST(0x43, 0x00, SS_RDEF,
2345	    "Message error") },
2346	/* DTLPWROMAEBKVF */
2347	{ SST(0x44, 0x00, SS_FATAL | EIO,
2348	    "Internal target failure") },
2349	/* DT P   MAEBKVF */
2350	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2351	    "Persistent reservation information lost") },
2352	/* DT        B    */
2353	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2354	    "ATA device failed set features") },
2355	/* DTLPWROMAEBKVF */
2356	{ SST(0x45, 0x00, SS_RDEF,
2357	    "Select or reselect failure") },
2358	/* DTLPWROM  BK   */
2359	{ SST(0x46, 0x00, SS_RDEF,
2360	    "Unsuccessful soft reset") },
2361	/* DTLPWROMAEBKVF */
2362	{ SST(0x47, 0x00, SS_RDEF,
2363	    "SCSI parity error") },
2364	/* DTLPWROMAEBKVF */
2365	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2366	    "Data phase CRC error detected") },
2367	/* DTLPWROMAEBKVF */
2368	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2369	    "SCSI parity error detected during ST data phase") },
2370	/* DTLPWROMAEBKVF */
2371	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2372	    "Information unit iuCRC error detected") },
2373	/* DTLPWROMAEBKVF */
2374	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2375	    "Asynchronous information protection error detected") },
2376	/* DTLPWROMAEBKVF */
2377	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2378	    "Protocol service CRC error") },
2379	/* DT     MAEBKVF */
2380	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2381	    "PHY test function in progress") },
2382	/* DT PWROMAEBK   */
2383	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2384	    "Some commands cleared by iSCSI protocol event") },
2385	/* DTLPWROMAEBKVF */
2386	{ SST(0x48, 0x00, SS_RDEF,
2387	    "Initiator detected error message received") },
2388	/* DTLPWROMAEBKVF */
2389	{ SST(0x49, 0x00, SS_RDEF,
2390	    "Invalid message error") },
2391	/* DTLPWROMAEBKVF */
2392	{ SST(0x4A, 0x00, SS_RDEF,
2393	    "Command phase error") },
2394	/* DTLPWROMAEBKVF */
2395	{ SST(0x4B, 0x00, SS_RDEF,
2396	    "Data phase error") },
2397	/* DT PWROMAEBK   */
2398	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2399	    "Invalid target port transfer tag received") },
2400	/* DT PWROMAEBK   */
2401	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2402	    "Too much write data") },
2403	/* DT PWROMAEBK   */
2404	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2405	    "ACK/NAK timeout") },
2406	/* DT PWROMAEBK   */
2407	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2408	    "NAK received") },
2409	/* DT PWROMAEBK   */
2410	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2411	    "Data offset error") },
2412	/* DT PWROMAEBK   */
2413	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2414	    "Initiator response timeout") },
2415	/* DT PWROMAEBK F */
2416	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2417	    "Connection lost") },
2418	/* DT PWROMAEBK F */
2419	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2420	    "Data-in buffer overflow - data buffer size") },
2421	/* DT PWROMAEBK F */
2422	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2423	    "Data-in buffer overflow - data buffer descriptor area") },
2424	/* DT PWROMAEBK F */
2425	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2426	    "Data-in buffer error") },
2427	/* DT PWROMAEBK F */
2428	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2429	    "Data-out buffer overflow - data buffer size") },
2430	/* DT PWROMAEBK F */
2431	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2432	    "Data-out buffer overflow - data buffer descriptor area") },
2433	/* DT PWROMAEBK F */
2434	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2435	    "Data-out buffer error") },
2436	/* DT PWROMAEBK F */
2437	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2438	    "PCIe fabric error") },
2439	/* DT PWROMAEBK F */
2440	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2441	    "PCIe completion timeout") },
2442	/* DT PWROMAEBK F */
2443	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2444	    "PCIe completer abort") },
2445	/* DT PWROMAEBK F */
2446	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2447	    "PCIe poisoned TLP received") },
2448	/* DT PWROMAEBK F */
2449	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2450	    "PCIe ECRC check failed") },
2451	/* DT PWROMAEBK F */
2452	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2453	    "PCIe unsupported request") },
2454	/* DT PWROMAEBK F */
2455	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2456	    "PCIe ACS violation") },
2457	/* DT PWROMAEBK F */
2458	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2459	    "PCIe TLP prefix blocket") },
2460	/* DTLPWROMAEBKVF */
2461	{ SST(0x4C, 0x00, SS_RDEF,
2462	    "Logical unit failed self-configuration") },
2463	/* DTLPWROMAEBKVF */
2464	{ SST(0x4D, 0x00, SS_RDEF,
2465	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2466	/* DTLPWROMAEBKVF */
2467	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2468	    NULL) },			/* Range 0x00->0xFF */
2469	/* DTLPWROMAEBKVF */
2470	{ SST(0x4E, 0x00, SS_RDEF,
2471	    "Overlapped commands attempted") },
2472	/*  T             */
2473	{ SST(0x50, 0x00, SS_RDEF,
2474	    "Write append error") },
2475	/*  T             */
2476	{ SST(0x50, 0x01, SS_RDEF,
2477	    "Write append position error") },
2478	/*  T             */
2479	{ SST(0x50, 0x02, SS_RDEF,
2480	    "Position error related to timing") },
2481	/*  T   RO        */
2482	{ SST(0x51, 0x00, SS_RDEF,
2483	    "Erase failure") },
2484	/*      R         */
2485	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2486	    "Erase failure - incomplete erase operation detected") },
2487	/*  T             */
2488	{ SST(0x52, 0x00, SS_RDEF,
2489	    "Cartridge fault") },
2490	/* DTL WROM  BK   */
2491	{ SST(0x53, 0x00, SS_RDEF,
2492	    "Media load or eject failed") },
2493	/*  T             */
2494	{ SST(0x53, 0x01, SS_RDEF,
2495	    "Unload tape failure") },
2496	/* DT  WROM  BK   */
2497	{ SST(0x53, 0x02, SS_RDEF,
2498	    "Medium removal prevented") },
2499	/*        M       */
2500	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2501	    "Medium removal prevented by data transfer element") },
2502	/*  T             */
2503	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2504	    "Medium thread or unthread failure") },
2505	/*        M       */
2506	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2507	    "Volume identifier invalid") },
2508	/*  T             */
2509	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2510	    "Volume identifier missing") },
2511	/*        M       */
2512	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2513	    "Duplicate volume identifier") },
2514	/*        M       */
2515	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2516	    "Element status unknown") },
2517	/*        M       */
2518	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2519	    "Data transfer device error - load failed") },
2520	/*        M       */
2521	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2522	    "Data transfer device error - unload failed") },
2523	/*        M       */
2524	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2525	    "Data transfer device error - unload missing") },
2526	/*        M       */
2527	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2528	    "Data transfer device error - eject failed") },
2529	/*        M       */
2530	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2531	    "Data transfer device error - library communication failed") },
2532	/*    P           */
2533	{ SST(0x54, 0x00, SS_RDEF,
2534	    "SCSI to host system interface failure") },
2535	/*    P           */
2536	{ SST(0x55, 0x00, SS_RDEF,
2537	    "System resource failure") },
2538	/* D     O   BK   */
2539	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2540	    "System buffer full") },
2541	/* DTLPWROMAE K   */
2542	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2543	    "Insufficient reservation resources") },
2544	/* DTLPWROMAE K   */
2545	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2546	    "Insufficient resources") },
2547	/* DTLPWROMAE K   */
2548	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2549	    "Insufficient registration resources") },
2550	/* DT PWROMAEBK   */
2551	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2552	    "Insufficient access control resources") },
2553	/* DT  WROM  B    */
2554	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2555	    "Auxiliary memory out of space") },
2556	/*              F */
2557	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2558	    "Quota error") },
2559	/*  T             */
2560	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2561	    "Maximum number of supplemental decryption keys exceeded") },
2562	/*        M       */
2563	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2564	    "Medium auxiliary memory not accessible") },
2565	/*        M       */
2566	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2567	    "Data currently unavailable") },
2568	/* DTLPWROMAEBKVF */
2569	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2570	    "Insufficient power for operation") },
2571	/* DT P      B    */
2572	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2573	    "Insufficient resources to create ROD") },
2574	/* DT P      B    */
2575	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2576	    "Insufficient resources to create ROD token") },
2577	/* D              */
2578	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2579	    "Insufficient zone resources") },
2580	/* D              */
2581	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2582	    "Insufficient zone resources to complete write") },
2583	/* D              */
2584	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2585	    "Maximum number of streams open") },
2586	/*      R         */
2587	{ SST(0x57, 0x00, SS_RDEF,
2588	    "Unable to recover table-of-contents") },
2589	/*       O        */
2590	{ SST(0x58, 0x00, SS_RDEF,
2591	    "Generation does not exist") },
2592	/*       O        */
2593	{ SST(0x59, 0x00, SS_RDEF,
2594	    "Updated block read") },
2595	/* DTLPWRO   BK   */
2596	{ SST(0x5A, 0x00, SS_RDEF,
2597	    "Operator request or state change input") },
2598	/* DT  WROM  BK   */
2599	{ SST(0x5A, 0x01, SS_RDEF,
2600	    "Operator medium removal request") },
2601	/* DT  WRO A BK   */
2602	{ SST(0x5A, 0x02, SS_RDEF,
2603	    "Operator selected write protect") },
2604	/* DT  WRO A BK   */
2605	{ SST(0x5A, 0x03, SS_RDEF,
2606	    "Operator selected write permit") },
2607	/* DTLPWROM   K   */
2608	{ SST(0x5B, 0x00, SS_RDEF,
2609	    "Log exception") },
2610	/* DTLPWROM   K   */
2611	{ SST(0x5B, 0x01, SS_RDEF,
2612	    "Threshold condition met") },
2613	/* DTLPWROM   K   */
2614	{ SST(0x5B, 0x02, SS_RDEF,
2615	    "Log counter at maximum") },
2616	/* DTLPWROM   K   */
2617	{ SST(0x5B, 0x03, SS_RDEF,
2618	    "Log list codes exhausted") },
2619	/* D     O        */
2620	{ SST(0x5C, 0x00, SS_RDEF,
2621	    "RPL status change") },
2622	/* D     O        */
2623	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2624	    "Spindles synchronized") },
2625	/* D     O        */
2626	{ SST(0x5C, 0x02, SS_RDEF,
2627	    "Spindles not synchronized") },
2628	/* DTLPWROMAEBKVF */
2629	{ SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2630	    "Failure prediction threshold exceeded") },
2631	/*      R    B    */
2632	{ SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2633	    "Media failure prediction threshold exceeded") },
2634	/*      R         */
2635	{ SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2636	    "Logical unit failure prediction threshold exceeded") },
2637	/*      R         */
2638	{ SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2639	    "Spare area exhaustion prediction threshold exceeded") },
2640	/* D         B    */
2641	{ SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2642	    "Hardware impending failure general hard drive failure") },
2643	/* D         B    */
2644	{ SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2645	    "Hardware impending failure drive error rate too high") },
2646	/* D         B    */
2647	{ SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2648	    "Hardware impending failure data error rate too high") },
2649	/* D         B    */
2650	{ SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2651	    "Hardware impending failure seek error rate too high") },
2652	/* D         B    */
2653	{ SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2654	    "Hardware impending failure too many block reassigns") },
2655	/* D         B    */
2656	{ SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2657	    "Hardware impending failure access times too high") },
2658	/* D         B    */
2659	{ SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2660	    "Hardware impending failure start unit times too high") },
2661	/* D         B    */
2662	{ SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2663	    "Hardware impending failure channel parametrics") },
2664	/* D         B    */
2665	{ SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2666	    "Hardware impending failure controller detected") },
2667	/* D         B    */
2668	{ SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2669	    "Hardware impending failure throughput performance") },
2670	/* D         B    */
2671	{ SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2672	    "Hardware impending failure seek time performance") },
2673	/* D         B    */
2674	{ SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2675	    "Hardware impending failure spin-up retry count") },
2676	/* D         B    */
2677	{ SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2678	    "Hardware impending failure drive calibration retry count") },
2679	/* D         B    */
2680	{ SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2681	    "Hardware impending failure power loss protection circuit") },
2682	/* D         B    */
2683	{ SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2684	    "Controller impending failure general hard drive failure") },
2685	/* D         B    */
2686	{ SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2687	    "Controller impending failure drive error rate too high") },
2688	/* D         B    */
2689	{ SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2690	    "Controller impending failure data error rate too high") },
2691	/* D         B    */
2692	{ SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2693	    "Controller impending failure seek error rate too high") },
2694	/* D         B    */
2695	{ SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2696	    "Controller impending failure too many block reassigns") },
2697	/* D         B    */
2698	{ SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2699	    "Controller impending failure access times too high") },
2700	/* D         B    */
2701	{ SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2702	    "Controller impending failure start unit times too high") },
2703	/* D         B    */
2704	{ SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2705	    "Controller impending failure channel parametrics") },
2706	/* D         B    */
2707	{ SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2708	    "Controller impending failure controller detected") },
2709	/* D         B    */
2710	{ SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2711	    "Controller impending failure throughput performance") },
2712	/* D         B    */
2713	{ SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2714	    "Controller impending failure seek time performance") },
2715	/* D         B    */
2716	{ SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2717	    "Controller impending failure spin-up retry count") },
2718	/* D         B    */
2719	{ SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2720	    "Controller impending failure drive calibration retry count") },
2721	/* D         B    */
2722	{ SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2723	    "Data channel impending failure general hard drive failure") },
2724	/* D         B    */
2725	{ SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2726	    "Data channel impending failure drive error rate too high") },
2727	/* D         B    */
2728	{ SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2729	    "Data channel impending failure data error rate too high") },
2730	/* D         B    */
2731	{ SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2732	    "Data channel impending failure seek error rate too high") },
2733	/* D         B    */
2734	{ SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2735	    "Data channel impending failure too many block reassigns") },
2736	/* D         B    */
2737	{ SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2738	    "Data channel impending failure access times too high") },
2739	/* D         B    */
2740	{ SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2741	    "Data channel impending failure start unit times too high") },
2742	/* D         B    */
2743	{ SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2744	    "Data channel impending failure channel parametrics") },
2745	/* D         B    */
2746	{ SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2747	    "Data channel impending failure controller detected") },
2748	/* D         B    */
2749	{ SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2750	    "Data channel impending failure throughput performance") },
2751	/* D         B    */
2752	{ SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2753	    "Data channel impending failure seek time performance") },
2754	/* D         B    */
2755	{ SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2756	    "Data channel impending failure spin-up retry count") },
2757	/* D         B    */
2758	{ SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2759	    "Data channel impending failure drive calibration retry count") },
2760	/* D         B    */
2761	{ SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2762	    "Servo impending failure general hard drive failure") },
2763	/* D         B    */
2764	{ SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2765	    "Servo impending failure drive error rate too high") },
2766	/* D         B    */
2767	{ SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2768	    "Servo impending failure data error rate too high") },
2769	/* D         B    */
2770	{ SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2771	    "Servo impending failure seek error rate too high") },
2772	/* D         B    */
2773	{ SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2774	    "Servo impending failure too many block reassigns") },
2775	/* D         B    */
2776	{ SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2777	    "Servo impending failure access times too high") },
2778	/* D         B    */
2779	{ SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2780	    "Servo impending failure start unit times too high") },
2781	/* D         B    */
2782	{ SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2783	    "Servo impending failure channel parametrics") },
2784	/* D         B    */
2785	{ SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2786	    "Servo impending failure controller detected") },
2787	/* D         B    */
2788	{ SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2789	    "Servo impending failure throughput performance") },
2790	/* D         B    */
2791	{ SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2792	    "Servo impending failure seek time performance") },
2793	/* D         B    */
2794	{ SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2795	    "Servo impending failure spin-up retry count") },
2796	/* D         B    */
2797	{ SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2798	    "Servo impending failure drive calibration retry count") },
2799	/* D         B    */
2800	{ SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2801	    "Spindle impending failure general hard drive failure") },
2802	/* D         B    */
2803	{ SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2804	    "Spindle impending failure drive error rate too high") },
2805	/* D         B    */
2806	{ SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2807	    "Spindle impending failure data error rate too high") },
2808	/* D         B    */
2809	{ SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2810	    "Spindle impending failure seek error rate too high") },
2811	/* D         B    */
2812	{ SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2813	    "Spindle impending failure too many block reassigns") },
2814	/* D         B    */
2815	{ SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2816	    "Spindle impending failure access times too high") },
2817	/* D         B    */
2818	{ SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2819	    "Spindle impending failure start unit times too high") },
2820	/* D         B    */
2821	{ SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2822	    "Spindle impending failure channel parametrics") },
2823	/* D         B    */
2824	{ SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2825	    "Spindle impending failure controller detected") },
2826	/* D         B    */
2827	{ SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2828	    "Spindle impending failure throughput performance") },
2829	/* D         B    */
2830	{ SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2831	    "Spindle impending failure seek time performance") },
2832	/* D         B    */
2833	{ SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2834	    "Spindle impending failure spin-up retry count") },
2835	/* D         B    */
2836	{ SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2837	    "Spindle impending failure drive calibration retry count") },
2838	/* D         B    */
2839	{ SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2840	    "Firmware impending failure general hard drive failure") },
2841	/* D         B    */
2842	{ SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2843	    "Firmware impending failure drive error rate too high") },
2844	/* D         B    */
2845	{ SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2846	    "Firmware impending failure data error rate too high") },
2847	/* D         B    */
2848	{ SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2849	    "Firmware impending failure seek error rate too high") },
2850	/* D         B    */
2851	{ SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2852	    "Firmware impending failure too many block reassigns") },
2853	/* D         B    */
2854	{ SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2855	    "Firmware impending failure access times too high") },
2856	/* D         B    */
2857	{ SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2858	    "Firmware impending failure start unit times too high") },
2859	/* D         B    */
2860	{ SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2861	    "Firmware impending failure channel parametrics") },
2862	/* D         B    */
2863	{ SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2864	    "Firmware impending failure controller detected") },
2865	/* D         B    */
2866	{ SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2867	    "Firmware impending failure throughput performance") },
2868	/* D         B    */
2869	{ SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2870	    "Firmware impending failure seek time performance") },
2871	/* D         B    */
2872	{ SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2873	    "Firmware impending failure spin-up retry count") },
2874	/* D         B    */
2875	{ SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2876	    "Firmware impending failure drive calibration retry count") },
2877	/* D         B    */
2878	{ SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2879	    "Media impending failure endurance limit met") },
2880	/* DTLPWROMAEBKVF */
2881	{ SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2882	    "Failure prediction threshold exceeded (false)") },
2883	/* DTLPWRO A  K   */
2884	{ SST(0x5E, 0x00, SS_RDEF,
2885	    "Low power condition on") },
2886	/* DTLPWRO A  K   */
2887	{ SST(0x5E, 0x01, SS_RDEF,
2888	    "Idle condition activated by timer") },
2889	/* DTLPWRO A  K   */
2890	{ SST(0x5E, 0x02, SS_RDEF,
2891	    "Standby condition activated by timer") },
2892	/* DTLPWRO A  K   */
2893	{ SST(0x5E, 0x03, SS_RDEF,
2894	    "Idle condition activated by command") },
2895	/* DTLPWRO A  K   */
2896	{ SST(0x5E, 0x04, SS_RDEF,
2897	    "Standby condition activated by command") },
2898	/* DTLPWRO A  K   */
2899	{ SST(0x5E, 0x05, SS_RDEF,
2900	    "Idle-B condition activated by timer") },
2901	/* DTLPWRO A  K   */
2902	{ SST(0x5E, 0x06, SS_RDEF,
2903	    "Idle-B condition activated by command") },
2904	/* DTLPWRO A  K   */
2905	{ SST(0x5E, 0x07, SS_RDEF,
2906	    "Idle-C condition activated by timer") },
2907	/* DTLPWRO A  K   */
2908	{ SST(0x5E, 0x08, SS_RDEF,
2909	    "Idle-C condition activated by command") },
2910	/* DTLPWRO A  K   */
2911	{ SST(0x5E, 0x09, SS_RDEF,
2912	    "Standby-Y condition activated by timer") },
2913	/* DTLPWRO A  K   */
2914	{ SST(0x5E, 0x0A, SS_RDEF,
2915	    "Standby-Y condition activated by command") },
2916	/*           B    */
2917	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2918	    "Power state change to active") },
2919	/*           B    */
2920	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2921	    "Power state change to idle") },
2922	/*           B    */
2923	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2924	    "Power state change to standby") },
2925	/*           B    */
2926	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2927	    "Power state change to sleep") },
2928	/*           BK   */
2929	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2930	    "Power state change to device control") },
2931	/*                */
2932	{ SST(0x60, 0x00, SS_RDEF,
2933	    "Lamp failure") },
2934	/*                */
2935	{ SST(0x61, 0x00, SS_RDEF,
2936	    "Video acquisition error") },
2937	/*                */
2938	{ SST(0x61, 0x01, SS_RDEF,
2939	    "Unable to acquire video") },
2940	/*                */
2941	{ SST(0x61, 0x02, SS_RDEF,
2942	    "Out of focus") },
2943	/*                */
2944	{ SST(0x62, 0x00, SS_RDEF,
2945	    "Scan head positioning error") },
2946	/*      R         */
2947	{ SST(0x63, 0x00, SS_RDEF,
2948	    "End of user area encountered on this track") },
2949	/*      R         */
2950	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2951	    "Packet does not fit in available space") },
2952	/*      R         */
2953	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2954	    "Illegal mode for this track") },
2955	/*      R         */
2956	{ SST(0x64, 0x01, SS_RDEF,
2957	    "Invalid packet size") },
2958	/* DTLPWROMAEBKVF */
2959	{ SST(0x65, 0x00, SS_RDEF,
2960	    "Voltage fault") },
2961	/*                */
2962	{ SST(0x66, 0x00, SS_RDEF,
2963	    "Automatic document feeder cover up") },
2964	/*                */
2965	{ SST(0x66, 0x01, SS_RDEF,
2966	    "Automatic document feeder lift up") },
2967	/*                */
2968	{ SST(0x66, 0x02, SS_RDEF,
2969	    "Document jam in automatic document feeder") },
2970	/*                */
2971	{ SST(0x66, 0x03, SS_RDEF,
2972	    "Document miss feed automatic in document feeder") },
2973	/*         A      */
2974	{ SST(0x67, 0x00, SS_RDEF,
2975	    "Configuration failure") },
2976	/*         A      */
2977	{ SST(0x67, 0x01, SS_RDEF,
2978	    "Configuration of incapable logical units failed") },
2979	/*         A      */
2980	{ SST(0x67, 0x02, SS_RDEF,
2981	    "Add logical unit failed") },
2982	/*         A      */
2983	{ SST(0x67, 0x03, SS_RDEF,
2984	    "Modification of logical unit failed") },
2985	/*         A      */
2986	{ SST(0x67, 0x04, SS_RDEF,
2987	    "Exchange of logical unit failed") },
2988	/*         A      */
2989	{ SST(0x67, 0x05, SS_RDEF,
2990	    "Remove of logical unit failed") },
2991	/*         A      */
2992	{ SST(0x67, 0x06, SS_RDEF,
2993	    "Attachment of logical unit failed") },
2994	/*         A      */
2995	{ SST(0x67, 0x07, SS_RDEF,
2996	    "Creation of logical unit failed") },
2997	/*         A      */
2998	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2999	    "Assign failure occurred") },
3000	/*         A      */
3001	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
3002	    "Multiply assigned logical unit") },
3003	/* DTLPWROMAEBKVF */
3004	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
3005	    "Set target port groups command failed") },
3006	/* DT        B    */
3007	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
3008	    "ATA device feature not enabled") },
3009	/*         A      */
3010	{ SST(0x68, 0x00, SS_RDEF,
3011	    "Logical unit not configured") },
3012	/* D              */
3013	{ SST(0x68, 0x01, SS_RDEF,
3014	    "Subsidiary logical unit not configured") },
3015	/*         A      */
3016	{ SST(0x69, 0x00, SS_RDEF,
3017	    "Data loss on logical unit") },
3018	/*         A      */
3019	{ SST(0x69, 0x01, SS_RDEF,
3020	    "Multiple logical unit failures") },
3021	/*         A      */
3022	{ SST(0x69, 0x02, SS_RDEF,
3023	    "Parity/data mismatch") },
3024	/*         A      */
3025	{ SST(0x6A, 0x00, SS_RDEF,
3026	    "Informational, refer to log") },
3027	/*         A      */
3028	{ SST(0x6B, 0x00, SS_RDEF,
3029	    "State change has occurred") },
3030	/*         A      */
3031	{ SST(0x6B, 0x01, SS_RDEF,
3032	    "Redundancy level got better") },
3033	/*         A      */
3034	{ SST(0x6B, 0x02, SS_RDEF,
3035	    "Redundancy level got worse") },
3036	/*         A      */
3037	{ SST(0x6C, 0x00, SS_RDEF,
3038	    "Rebuild failure occurred") },
3039	/*         A      */
3040	{ SST(0x6D, 0x00, SS_RDEF,
3041	    "Recalculate failure occurred") },
3042	/*         A      */
3043	{ SST(0x6E, 0x00, SS_RDEF,
3044	    "Command to logical unit failed") },
3045	/*      R         */
3046	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3047	    "Copy protection key exchange failure - authentication failure") },
3048	/*      R         */
3049	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3050	    "Copy protection key exchange failure - key not present") },
3051	/*      R         */
3052	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3053	    "Copy protection key exchange failure - key not established") },
3054	/*      R         */
3055	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3056	    "Read of scrambled sector without authentication") },
3057	/*      R         */
3058	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3059	    "Media region code is mismatched to logical unit region") },
3060	/*      R         */
3061	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3062	    "Drive region must be permanent/region reset count error") },
3063	/*      R         */
3064	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3065	    "Insufficient block count for binding NONCE recording") },
3066	/*      R         */
3067	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3068	    "Conflict in binding NONCE recording") },
3069	/*  T             */
3070	{ SST(0x70, 0x00, SS_RDEF,
3071	    "Decompression exception short: ASCQ = Algorithm ID") },
3072	/*  T             */
3073	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3074	    NULL) },			/* Range 0x00 -> 0xFF */
3075	/*  T             */
3076	{ SST(0x71, 0x00, SS_RDEF,
3077	    "Decompression exception long: ASCQ = Algorithm ID") },
3078	/*  T             */
3079	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3080	    NULL) },			/* Range 0x00 -> 0xFF */
3081	/*      R         */
3082	{ SST(0x72, 0x00, SS_RDEF,
3083	    "Session fixation error") },
3084	/*      R         */
3085	{ SST(0x72, 0x01, SS_RDEF,
3086	    "Session fixation error writing lead-in") },
3087	/*      R         */
3088	{ SST(0x72, 0x02, SS_RDEF,
3089	    "Session fixation error writing lead-out") },
3090	/*      R         */
3091	{ SST(0x72, 0x03, SS_RDEF,
3092	    "Session fixation error - incomplete track in session") },
3093	/*      R         */
3094	{ SST(0x72, 0x04, SS_RDEF,
3095	    "Empty or partially written reserved track") },
3096	/*      R         */
3097	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3098	    "No more track reservations allowed") },
3099	/*      R         */
3100	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3101	    "RMZ extension is not allowed") },
3102	/*      R         */
3103	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3104	    "No more test zone extensions are allowed") },
3105	/*      R         */
3106	{ SST(0x73, 0x00, SS_RDEF,
3107	    "CD control error") },
3108	/*      R         */
3109	{ SST(0x73, 0x01, SS_RDEF,
3110	    "Power calibration area almost full") },
3111	/*      R         */
3112	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3113	    "Power calibration area is full") },
3114	/*      R         */
3115	{ SST(0x73, 0x03, SS_RDEF,
3116	    "Power calibration area error") },
3117	/*      R         */
3118	{ SST(0x73, 0x04, SS_RDEF,
3119	    "Program memory area update failure") },
3120	/*      R         */
3121	{ SST(0x73, 0x05, SS_RDEF,
3122	    "Program memory area is full") },
3123	/*      R         */
3124	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3125	    "RMA/PMA is almost full") },
3126	/*      R         */
3127	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3128	    "Current power calibration area almost full") },
3129	/*      R         */
3130	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3131	    "Current power calibration area is full") },
3132	/*      R         */
3133	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3134	    "RDZ is full") },
3135	/*  T             */
3136	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3137	    "Security error") },
3138	/*  T             */
3139	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3140	    "Unable to decrypt data") },
3141	/*  T             */
3142	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3143	    "Unencrypted data encountered while decrypting") },
3144	/*  T             */
3145	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3146	    "Incorrect data encryption key") },
3147	/*  T             */
3148	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3149	    "Cryptographic integrity validation failed") },
3150	/*  T             */
3151	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3152	    "Error decrypting data") },
3153	/*  T             */
3154	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3155	    "Unknown signature verification key") },
3156	/*  T             */
3157	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3158	    "Encryption parameters not useable") },
3159	/* DT   R M E  VF */
3160	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3161	    "Digital signature validation failure") },
3162	/*  T             */
3163	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3164	    "Encryption mode mismatch on read") },
3165	/*  T             */
3166	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3167	    "Encrypted block not raw read enabled") },
3168	/*  T             */
3169	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3170	    "Incorrect encryption parameters") },
3171	/* DT   R MAEBKV  */
3172	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3173	    "Unable to decrypt parameter list") },
3174	/*  T             */
3175	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3176	    "Encryption algorithm disabled") },
3177	/* DT   R MAEBKV  */
3178	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3179	    "SA creation parameter value invalid") },
3180	/* DT   R MAEBKV  */
3181	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3182	    "SA creation parameter value rejected") },
3183	/* DT   R MAEBKV  */
3184	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3185	    "Invalid SA usage") },
3186	/*  T             */
3187	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3188	    "Data encryption configuration prevented") },
3189	/* DT   R MAEBKV  */
3190	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3191	    "SA creation parameter not supported") },
3192	/* DT   R MAEBKV  */
3193	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3194	    "Authentication failed") },
3195	/*             V  */
3196	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3197	    "External data encryption key manager access error") },
3198	/*             V  */
3199	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3200	    "External data encryption key manager error") },
3201	/*             V  */
3202	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3203	    "External data encryption key not found") },
3204	/*             V  */
3205	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3206	    "External data encryption request not authorized") },
3207	/*  T             */
3208	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3209	    "External data encryption control timeout") },
3210	/*  T             */
3211	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3212	    "External data encryption control error") },
3213	/* DT   R M E  V  */
3214	{ SST(0x74, 0x71, SS_FATAL | EACCES,
3215	    "Logical unit access not authorized") },
3216	/* D              */
3217	{ SST(0x74, 0x79, SS_FATAL | EACCES,
3218	    "Security conflict in translated device") }
3219};
3220
3221const u_int asc_table_size = nitems(asc_table);
3222
3223struct asc_key
3224{
3225	int asc;
3226	int ascq;
3227};
3228
3229static int
3230ascentrycomp(const void *key, const void *member)
3231{
3232	int asc;
3233	int ascq;
3234	const struct asc_table_entry *table_entry;
3235
3236	asc = ((const struct asc_key *)key)->asc;
3237	ascq = ((const struct asc_key *)key)->ascq;
3238	table_entry = (const struct asc_table_entry *)member;
3239
3240	if (asc >= table_entry->asc) {
3241		if (asc > table_entry->asc)
3242			return (1);
3243
3244		if (ascq <= table_entry->ascq) {
3245			/* Check for ranges */
3246			if (ascq == table_entry->ascq
3247		 	 || ((table_entry->action & SSQ_RANGE) != 0
3248		  	   && ascq >= (table_entry - 1)->ascq))
3249				return (0);
3250			return (-1);
3251		}
3252		return (1);
3253	}
3254	return (-1);
3255}
3256
3257static int
3258senseentrycomp(const void *key, const void *member)
3259{
3260	int sense_key;
3261	const struct sense_key_table_entry *table_entry;
3262
3263	sense_key = *((const int *)key);
3264	table_entry = (const struct sense_key_table_entry *)member;
3265
3266	if (sense_key >= table_entry->sense_key) {
3267		if (sense_key == table_entry->sense_key)
3268			return (0);
3269		return (1);
3270	}
3271	return (-1);
3272}
3273
3274static void
3275fetchtableentries(int sense_key, int asc, int ascq,
3276		  struct scsi_inquiry_data *inq_data,
3277		  const struct sense_key_table_entry **sense_entry,
3278		  const struct asc_table_entry **asc_entry)
3279{
3280	caddr_t match;
3281	const struct asc_table_entry *asc_tables[2];
3282	const struct sense_key_table_entry *sense_tables[2];
3283	struct asc_key asc_ascq;
3284	size_t asc_tables_size[2];
3285	size_t sense_tables_size[2];
3286	int num_asc_tables;
3287	int num_sense_tables;
3288	int i;
3289
3290	/* Default to failure */
3291	*sense_entry = NULL;
3292	*asc_entry = NULL;
3293	match = NULL;
3294	if (inq_data != NULL)
3295		match = cam_quirkmatch((caddr_t)inq_data,
3296				       (caddr_t)sense_quirk_table,
3297				       sense_quirk_table_size,
3298				       sizeof(*sense_quirk_table),
3299				       scsi_inquiry_match);
3300
3301	if (match != NULL) {
3302		struct scsi_sense_quirk_entry *quirk;
3303
3304		quirk = (struct scsi_sense_quirk_entry *)match;
3305		asc_tables[0] = quirk->asc_info;
3306		asc_tables_size[0] = quirk->num_ascs;
3307		asc_tables[1] = asc_table;
3308		asc_tables_size[1] = asc_table_size;
3309		num_asc_tables = 2;
3310		sense_tables[0] = quirk->sense_key_info;
3311		sense_tables_size[0] = quirk->num_sense_keys;
3312		sense_tables[1] = sense_key_table;
3313		sense_tables_size[1] = nitems(sense_key_table);
3314		num_sense_tables = 2;
3315	} else {
3316		asc_tables[0] = asc_table;
3317		asc_tables_size[0] = asc_table_size;
3318		num_asc_tables = 1;
3319		sense_tables[0] = sense_key_table;
3320		sense_tables_size[0] = nitems(sense_key_table);
3321		num_sense_tables = 1;
3322	}
3323
3324	asc_ascq.asc = asc;
3325	asc_ascq.ascq = ascq;
3326	for (i = 0; i < num_asc_tables; i++) {
3327		void *found_entry;
3328
3329		found_entry = bsearch(&asc_ascq, asc_tables[i],
3330				      asc_tables_size[i],
3331				      sizeof(**asc_tables),
3332				      ascentrycomp);
3333
3334		if (found_entry) {
3335			*asc_entry = (struct asc_table_entry *)found_entry;
3336			break;
3337		}
3338	}
3339
3340	for (i = 0; i < num_sense_tables; i++) {
3341		void *found_entry;
3342
3343		found_entry = bsearch(&sense_key, sense_tables[i],
3344				      sense_tables_size[i],
3345				      sizeof(**sense_tables),
3346				      senseentrycomp);
3347
3348		if (found_entry) {
3349			*sense_entry =
3350			    (struct sense_key_table_entry *)found_entry;
3351			break;
3352		}
3353	}
3354}
3355
3356void
3357scsi_sense_desc(int sense_key, int asc, int ascq,
3358		struct scsi_inquiry_data *inq_data,
3359		const char **sense_key_desc, const char **asc_desc)
3360{
3361	const struct asc_table_entry *asc_entry;
3362	const struct sense_key_table_entry *sense_entry;
3363
3364	fetchtableentries(sense_key, asc, ascq,
3365			  inq_data,
3366			  &sense_entry,
3367			  &asc_entry);
3368
3369	if (sense_entry != NULL)
3370		*sense_key_desc = sense_entry->desc;
3371	else
3372		*sense_key_desc = "Invalid Sense Key";
3373
3374	if (asc_entry != NULL)
3375		*asc_desc = asc_entry->desc;
3376	else if (asc >= 0x80 && asc <= 0xff)
3377		*asc_desc = "Vendor Specific ASC";
3378	else if (ascq >= 0x80 && ascq <= 0xff)
3379		*asc_desc = "Vendor Specific ASCQ";
3380	else
3381		*asc_desc = "Reserved ASC/ASCQ pair";
3382}
3383
3384/*
3385 * Given sense and device type information, return the appropriate action.
3386 * If we do not understand the specific error as identified by the ASC/ASCQ
3387 * pair, fall back on the more generic actions derived from the sense key.
3388 */
3389scsi_sense_action
3390scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3391		  u_int32_t sense_flags)
3392{
3393	const struct asc_table_entry *asc_entry;
3394	const struct sense_key_table_entry *sense_entry;
3395	int error_code, sense_key, asc, ascq;
3396	scsi_sense_action action;
3397
3398	if (!scsi_extract_sense_ccb((union ccb *)csio,
3399	    &error_code, &sense_key, &asc, &ascq)) {
3400		action = SS_RDEF;
3401	} else if ((error_code == SSD_DEFERRED_ERROR)
3402	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3403		/*
3404		 * XXX dufault@FreeBSD.org
3405		 * This error doesn't relate to the command associated
3406		 * with this request sense.  A deferred error is an error
3407		 * for a command that has already returned GOOD status
3408		 * (see SCSI2 8.2.14.2).
3409		 *
3410		 * By my reading of that section, it looks like the current
3411		 * command has been cancelled, we should now clean things up
3412		 * (hopefully recovering any lost data) and then retry the
3413		 * current command.  There are two easy choices, both wrong:
3414		 *
3415		 * 1. Drop through (like we had been doing), thus treating
3416		 *    this as if the error were for the current command and
3417		 *    return and stop the current command.
3418		 *
3419		 * 2. Issue a retry (like I made it do) thus hopefully
3420		 *    recovering the current transfer, and ignoring the
3421		 *    fact that we've dropped a command.
3422		 *
3423		 * These should probably be handled in a device specific
3424		 * sense handler or punted back up to a user mode daemon
3425		 */
3426		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3427	} else {
3428		fetchtableentries(sense_key, asc, ascq,
3429				  inq_data,
3430				  &sense_entry,
3431				  &asc_entry);
3432
3433		/*
3434		 * Override the 'No additional Sense' entry (0,0)
3435		 * with the error action of the sense key.
3436		 */
3437		if (asc_entry != NULL
3438		 && (asc != 0 || ascq != 0))
3439			action = asc_entry->action;
3440		else if (sense_entry != NULL)
3441			action = sense_entry->action;
3442		else
3443			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3444
3445		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3446			/*
3447			 * The action succeeded but the device wants
3448			 * the user to know that some recovery action
3449			 * was required.
3450			 */
3451			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3452			action |= SS_NOP|SSQ_PRINT_SENSE;
3453		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3454			if ((sense_flags & SF_QUIET_IR) != 0)
3455				action &= ~SSQ_PRINT_SENSE;
3456		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3457			if ((sense_flags & SF_RETRY_UA) != 0
3458			 && (action & SS_MASK) == SS_FAIL) {
3459				action &= ~(SS_MASK|SSQ_MASK);
3460				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3461					  SSQ_PRINT_SENSE;
3462			}
3463			action |= SSQ_UA;
3464		}
3465	}
3466	if ((action & SS_MASK) >= SS_START &&
3467	    (sense_flags & SF_NO_RECOVERY)) {
3468		action &= ~SS_MASK;
3469		action |= SS_FAIL;
3470	} else if ((action & SS_MASK) == SS_RETRY &&
3471	    (sense_flags & SF_NO_RETRY)) {
3472		action &= ~SS_MASK;
3473		action |= SS_FAIL;
3474	}
3475	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3476		action |= SSQ_PRINT_SENSE;
3477	else if ((sense_flags & SF_NO_PRINT) != 0)
3478		action &= ~SSQ_PRINT_SENSE;
3479
3480	return (action);
3481}
3482
3483char *
3484scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3485{
3486	struct sbuf sb;
3487	int error;
3488
3489	if (len == 0)
3490		return ("");
3491
3492	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3493
3494	scsi_cdb_sbuf(cdb_ptr, &sb);
3495
3496	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3497	error = sbuf_finish(&sb);
3498	if (error != 0 &&
3499#ifdef _KERNEL
3500	    error != ENOMEM)
3501#else
3502	    errno != ENOMEM)
3503#endif
3504		return ("");
3505
3506	return(sbuf_data(&sb));
3507}
3508
3509void
3510scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3511{
3512	u_int8_t cdb_len;
3513	int i;
3514
3515	if (cdb_ptr == NULL)
3516		return;
3517
3518	/*
3519	 * This is taken from the SCSI-3 draft spec.
3520	 * (T10/1157D revision 0.3)
3521	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3522	 * are the command code.
3523	 * Group 0:  six byte commands
3524	 * Group 1:  ten byte commands
3525	 * Group 2:  ten byte commands
3526	 * Group 3:  reserved
3527	 * Group 4:  sixteen byte commands
3528	 * Group 5:  twelve byte commands
3529	 * Group 6:  vendor specific
3530	 * Group 7:  vendor specific
3531	 */
3532	switch((*cdb_ptr >> 5) & 0x7) {
3533		case 0:
3534			cdb_len = 6;
3535			break;
3536		case 1:
3537		case 2:
3538			cdb_len = 10;
3539			break;
3540		case 3:
3541		case 6:
3542		case 7:
3543			/* in this case, just print out the opcode */
3544			cdb_len = 1;
3545			break;
3546		case 4:
3547			cdb_len = 16;
3548			break;
3549		case 5:
3550			cdb_len = 12;
3551			break;
3552	}
3553
3554	for (i = 0; i < cdb_len; i++)
3555		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3556
3557	return;
3558}
3559
3560const char *
3561scsi_status_string(struct ccb_scsiio *csio)
3562{
3563	switch(csio->scsi_status) {
3564	case SCSI_STATUS_OK:
3565		return("OK");
3566	case SCSI_STATUS_CHECK_COND:
3567		return("Check Condition");
3568	case SCSI_STATUS_BUSY:
3569		return("Busy");
3570	case SCSI_STATUS_INTERMED:
3571		return("Intermediate");
3572	case SCSI_STATUS_INTERMED_COND_MET:
3573		return("Intermediate-Condition Met");
3574	case SCSI_STATUS_RESERV_CONFLICT:
3575		return("Reservation Conflict");
3576	case SCSI_STATUS_CMD_TERMINATED:
3577		return("Command Terminated");
3578	case SCSI_STATUS_QUEUE_FULL:
3579		return("Queue Full");
3580	case SCSI_STATUS_ACA_ACTIVE:
3581		return("ACA Active");
3582	case SCSI_STATUS_TASK_ABORTED:
3583		return("Task Aborted");
3584	default: {
3585		static char unkstr[64];
3586		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3587			 csio->scsi_status);
3588		return(unkstr);
3589	}
3590	}
3591}
3592
3593/*
3594 * scsi_command_string() returns 0 for success and -1 for failure.
3595 */
3596#ifdef _KERNEL
3597int
3598scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3599#else /* !_KERNEL */
3600int
3601scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3602		    struct sbuf *sb)
3603#endif /* _KERNEL/!_KERNEL */
3604{
3605	struct scsi_inquiry_data *inq_data;
3606#ifdef _KERNEL
3607	struct	  ccb_getdev *cgd;
3608#endif /* _KERNEL */
3609
3610#ifdef _KERNEL
3611	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3612		return(-1);
3613	/*
3614	 * Get the device information.
3615	 */
3616	xpt_setup_ccb(&cgd->ccb_h,
3617		      csio->ccb_h.path,
3618		      CAM_PRIORITY_NORMAL);
3619	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3620	xpt_action((union ccb *)cgd);
3621
3622	/*
3623	 * If the device is unconfigured, just pretend that it is a hard
3624	 * drive.  scsi_op_desc() needs this.
3625	 */
3626	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3627		cgd->inq_data.device = T_DIRECT;
3628
3629	inq_data = &cgd->inq_data;
3630
3631#else /* !_KERNEL */
3632
3633	inq_data = &device->inq_data;
3634
3635#endif /* _KERNEL/!_KERNEL */
3636
3637	sbuf_printf(sb, "%s. CDB: ",
3638		    scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3639	scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3640
3641#ifdef _KERNEL
3642	xpt_free_ccb((union ccb *)cgd);
3643#endif
3644
3645	return(0);
3646}
3647
3648/*
3649 * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3650 * If iter_func() returns 0, list traversal continues.  If iter_func()
3651 * returns non-zero, list traversal is stopped.
3652 */
3653void
3654scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3655		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3656				   u_int, struct scsi_sense_desc_header *,
3657				   void *), void *arg)
3658{
3659	int cur_pos;
3660	int desc_len;
3661
3662	/*
3663	 * First make sure the extra length field is present.
3664	 */
3665	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3666		return;
3667
3668	/*
3669	 * The length of data actually returned may be different than the
3670	 * extra_len recorded in the structure.
3671	 */
3672	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3673
3674	/*
3675	 * Limit this further by the extra length reported, and the maximum
3676	 * allowed extra length.
3677	 */
3678	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3679
3680	/*
3681	 * Subtract the size of the header from the descriptor length.
3682	 * This is to ensure that we have at least the header left, so we
3683	 * don't have to check that inside the loop.  This can wind up
3684	 * being a negative value.
3685	 */
3686	desc_len -= sizeof(struct scsi_sense_desc_header);
3687
3688	for (cur_pos = 0; cur_pos < desc_len;) {
3689		struct scsi_sense_desc_header *header;
3690
3691		header = (struct scsi_sense_desc_header *)
3692			&sense->sense_desc[cur_pos];
3693
3694		/*
3695		 * Check to make sure we have the entire descriptor.  We
3696		 * don't call iter_func() unless we do.
3697		 *
3698		 * Note that although cur_pos is at the beginning of the
3699		 * descriptor, desc_len already has the header length
3700		 * subtracted.  So the comparison of the length in the
3701		 * header (which does not include the header itself) to
3702		 * desc_len - cur_pos is correct.
3703		 */
3704		if (header->length > (desc_len - cur_pos))
3705			break;
3706
3707		if (iter_func(sense, sense_len, header, arg) != 0)
3708			break;
3709
3710		cur_pos += sizeof(*header) + header->length;
3711	}
3712}
3713
3714struct scsi_find_desc_info {
3715	uint8_t desc_type;
3716	struct scsi_sense_desc_header *header;
3717};
3718
3719static int
3720scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3721		    struct scsi_sense_desc_header *header, void *arg)
3722{
3723	struct scsi_find_desc_info *desc_info;
3724
3725	desc_info = (struct scsi_find_desc_info *)arg;
3726
3727	if (header->desc_type == desc_info->desc_type) {
3728		desc_info->header = header;
3729
3730		/* We found the descriptor, tell the iterator to stop. */
3731		return (1);
3732	} else
3733		return (0);
3734}
3735
3736/*
3737 * Given a descriptor type, return a pointer to it if it is in the sense
3738 * data and not truncated.  Avoiding truncating sense data will simplify
3739 * things significantly for the caller.
3740 */
3741uint8_t *
3742scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3743	       uint8_t desc_type)
3744{
3745	struct scsi_find_desc_info desc_info;
3746
3747	desc_info.desc_type = desc_type;
3748	desc_info.header = NULL;
3749
3750	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3751
3752	return ((uint8_t *)desc_info.header);
3753}
3754
3755/*
3756 * Fill in SCSI descriptor sense data with the specified parameters.
3757 */
3758static void
3759scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3760    u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3761    int sense_key, int asc, int ascq, va_list ap)
3762{
3763	struct scsi_sense_data_desc *sense;
3764	scsi_sense_elem_type elem_type;
3765	int space, len;
3766	uint8_t *desc, *data;
3767
3768	memset(sense_data, 0, sizeof(*sense_data));
3769	sense = (struct scsi_sense_data_desc *)sense_data;
3770	if (current_error != 0)
3771		sense->error_code = SSD_DESC_CURRENT_ERROR;
3772	else
3773		sense->error_code = SSD_DESC_DEFERRED_ERROR;
3774	sense->sense_key = sense_key;
3775	sense->add_sense_code = asc;
3776	sense->add_sense_code_qual = ascq;
3777	sense->flags = 0;
3778
3779	desc = &sense->sense_desc[0];
3780	space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3781	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3782	    SSD_ELEM_NONE) {
3783		if (elem_type >= SSD_ELEM_MAX) {
3784			printf("%s: invalid sense type %d\n", __func__,
3785			       elem_type);
3786			break;
3787		}
3788		len = va_arg(ap, int);
3789		data = va_arg(ap, uint8_t *);
3790
3791		switch (elem_type) {
3792		case SSD_ELEM_SKIP:
3793			break;
3794		case SSD_ELEM_DESC:
3795			if (space < len) {
3796				sense->flags |= SSDD_SDAT_OVFL;
3797				break;
3798			}
3799			bcopy(data, desc, len);
3800			desc += len;
3801			space -= len;
3802			break;
3803		case SSD_ELEM_SKS: {
3804			struct scsi_sense_sks *sks = (void *)desc;
3805
3806			if (len > sizeof(sks->sense_key_spec))
3807				break;
3808			if (space < sizeof(*sks)) {
3809				sense->flags |= SSDD_SDAT_OVFL;
3810				break;
3811			}
3812			sks->desc_type = SSD_DESC_SKS;
3813			sks->length = sizeof(*sks) -
3814			    (offsetof(struct scsi_sense_sks, length) + 1);
3815			bcopy(data, &sks->sense_key_spec, len);
3816			desc += sizeof(*sks);
3817			space -= sizeof(*sks);
3818			break;
3819		}
3820		case SSD_ELEM_COMMAND: {
3821			struct scsi_sense_command *cmd = (void *)desc;
3822
3823			if (len > sizeof(cmd->command_info))
3824				break;
3825			if (space < sizeof(*cmd)) {
3826				sense->flags |= SSDD_SDAT_OVFL;
3827				break;
3828			}
3829			cmd->desc_type = SSD_DESC_COMMAND;
3830			cmd->length = sizeof(*cmd) -
3831			    (offsetof(struct scsi_sense_command, length) + 1);
3832			bcopy(data, &cmd->command_info[
3833			    sizeof(cmd->command_info) - len], len);
3834			desc += sizeof(*cmd);
3835			space -= sizeof(*cmd);
3836			break;
3837		}
3838		case SSD_ELEM_INFO: {
3839			struct scsi_sense_info *info = (void *)desc;
3840
3841			if (len > sizeof(info->info))
3842				break;
3843			if (space < sizeof(*info)) {
3844				sense->flags |= SSDD_SDAT_OVFL;
3845				break;
3846			}
3847			info->desc_type = SSD_DESC_INFO;
3848			info->length = sizeof(*info) -
3849			    (offsetof(struct scsi_sense_info, length) + 1);
3850			info->byte2 = SSD_INFO_VALID;
3851			bcopy(data, &info->info[sizeof(info->info) - len], len);
3852			desc += sizeof(*info);
3853			space -= sizeof(*info);
3854			break;
3855		}
3856		case SSD_ELEM_FRU: {
3857			struct scsi_sense_fru *fru = (void *)desc;
3858
3859			if (len > sizeof(fru->fru))
3860				break;
3861			if (space < sizeof(*fru)) {
3862				sense->flags |= SSDD_SDAT_OVFL;
3863				break;
3864			}
3865			fru->desc_type = SSD_DESC_FRU;
3866			fru->length = sizeof(*fru) -
3867			    (offsetof(struct scsi_sense_fru, length) + 1);
3868			fru->fru = *data;
3869			desc += sizeof(*fru);
3870			space -= sizeof(*fru);
3871			break;
3872		}
3873		case SSD_ELEM_STREAM: {
3874			struct scsi_sense_stream *stream = (void *)desc;
3875
3876			if (len > sizeof(stream->byte3))
3877				break;
3878			if (space < sizeof(*stream)) {
3879				sense->flags |= SSDD_SDAT_OVFL;
3880				break;
3881			}
3882			stream->desc_type = SSD_DESC_STREAM;
3883			stream->length = sizeof(*stream) -
3884			    (offsetof(struct scsi_sense_stream, length) + 1);
3885			stream->byte3 = *data;
3886			desc += sizeof(*stream);
3887			space -= sizeof(*stream);
3888			break;
3889		}
3890		default:
3891			/*
3892			 * We shouldn't get here, but if we do, do nothing.
3893			 * We've already consumed the arguments above.
3894			 */
3895			break;
3896		}
3897	}
3898	sense->extra_len = desc - &sense->sense_desc[0];
3899	*sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3900	    sense->extra_len;
3901}
3902
3903/*
3904 * Fill in SCSI fixed sense data with the specified parameters.
3905 */
3906static void
3907scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3908    u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3909    int sense_key, int asc, int ascq, va_list ap)
3910{
3911	struct scsi_sense_data_fixed *sense;
3912	scsi_sense_elem_type elem_type;
3913	uint8_t *data;
3914	int len;
3915
3916	memset(sense_data, 0, sizeof(*sense_data));
3917	sense = (struct scsi_sense_data_fixed *)sense_data;
3918	if (current_error != 0)
3919		sense->error_code = SSD_CURRENT_ERROR;
3920	else
3921		sense->error_code = SSD_DEFERRED_ERROR;
3922	sense->flags = sense_key & SSD_KEY;
3923	sense->extra_len = 0;
3924	if (*sense_len >= 13) {
3925		sense->add_sense_code = asc;
3926		sense->extra_len = MAX(sense->extra_len, 5);
3927	} else
3928		sense->flags |= SSD_SDAT_OVFL;
3929	if (*sense_len >= 14) {
3930		sense->add_sense_code_qual = ascq;
3931		sense->extra_len = MAX(sense->extra_len, 6);
3932	} else
3933		sense->flags |= SSD_SDAT_OVFL;
3934
3935	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3936	    SSD_ELEM_NONE) {
3937		if (elem_type >= SSD_ELEM_MAX) {
3938			printf("%s: invalid sense type %d\n", __func__,
3939			       elem_type);
3940			break;
3941		}
3942		len = va_arg(ap, int);
3943		data = va_arg(ap, uint8_t *);
3944
3945		switch (elem_type) {
3946		case SSD_ELEM_SKIP:
3947			break;
3948		case SSD_ELEM_SKS:
3949			if (len > sizeof(sense->sense_key_spec))
3950				break;
3951			if (*sense_len < 18) {
3952				sense->flags |= SSD_SDAT_OVFL;
3953				break;
3954			}
3955			bcopy(data, &sense->sense_key_spec[0], len);
3956			sense->extra_len = MAX(sense->extra_len, 10);
3957			break;
3958		case SSD_ELEM_COMMAND:
3959			if (*sense_len < 12) {
3960				sense->flags |= SSD_SDAT_OVFL;
3961				break;
3962			}
3963			if (len > sizeof(sense->cmd_spec_info)) {
3964				data += len - sizeof(sense->cmd_spec_info);
3965				len = sizeof(sense->cmd_spec_info);
3966			}
3967			bcopy(data, &sense->cmd_spec_info[
3968			    sizeof(sense->cmd_spec_info) - len], len);
3969			sense->extra_len = MAX(sense->extra_len, 4);
3970			break;
3971		case SSD_ELEM_INFO:
3972			/* Set VALID bit only if no overflow. */
3973			sense->error_code |= SSD_ERRCODE_VALID;
3974			while (len > sizeof(sense->info)) {
3975				if (data[0] != 0)
3976					sense->error_code &= ~SSD_ERRCODE_VALID;
3977				data ++;
3978				len --;
3979			}
3980			bcopy(data, &sense->info[sizeof(sense->info) - len], len);
3981			break;
3982		case SSD_ELEM_FRU:
3983			if (*sense_len < 15) {
3984				sense->flags |= SSD_SDAT_OVFL;
3985				break;
3986			}
3987			sense->fru = *data;
3988			sense->extra_len = MAX(sense->extra_len, 7);
3989			break;
3990		case SSD_ELEM_STREAM:
3991			sense->flags |= *data &
3992			    (SSD_ILI | SSD_EOM | SSD_FILEMARK);
3993			break;
3994		default:
3995
3996			/*
3997			 * We can't handle that in fixed format.  Skip it.
3998			 */
3999			break;
4000		}
4001	}
4002	*sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
4003	    sense->extra_len;
4004}
4005
4006/*
4007 * Fill in SCSI sense data with the specified parameters.  This routine can
4008 * fill in either fixed or descriptor type sense data.
4009 */
4010void
4011scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
4012		      scsi_sense_data_type sense_format, int current_error,
4013		      int sense_key, int asc, int ascq, va_list ap)
4014{
4015
4016	if (*sense_len > SSD_FULL_SIZE)
4017		*sense_len = SSD_FULL_SIZE;
4018	if (sense_format == SSD_TYPE_DESC)
4019		scsi_set_sense_data_desc_va(sense_data, sense_len,
4020		    sense_format, current_error, sense_key, asc, ascq, ap);
4021	else
4022		scsi_set_sense_data_fixed_va(sense_data, sense_len,
4023		    sense_format, current_error, sense_key, asc, ascq, ap);
4024}
4025
4026void
4027scsi_set_sense_data(struct scsi_sense_data *sense_data,
4028		    scsi_sense_data_type sense_format, int current_error,
4029		    int sense_key, int asc, int ascq, ...)
4030{
4031	va_list ap;
4032	u_int	sense_len = SSD_FULL_SIZE;
4033
4034	va_start(ap, ascq);
4035	scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4036	    current_error, sense_key, asc, ascq, ap);
4037	va_end(ap);
4038}
4039
4040void
4041scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4042		    scsi_sense_data_type sense_format, int current_error,
4043		    int sense_key, int asc, int ascq, ...)
4044{
4045	va_list ap;
4046
4047	va_start(ap, ascq);
4048	scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4049	    current_error, sense_key, asc, ascq, ap);
4050	va_end(ap);
4051}
4052
4053/*
4054 * Get sense information for three similar sense data types.
4055 */
4056int
4057scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4058		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4059{
4060	scsi_sense_data_type sense_type;
4061
4062	if (sense_len == 0)
4063		goto bailout;
4064
4065	sense_type = scsi_sense_type(sense_data);
4066
4067	switch (sense_type) {
4068	case SSD_TYPE_DESC: {
4069		struct scsi_sense_data_desc *sense;
4070		uint8_t *desc;
4071
4072		sense = (struct scsi_sense_data_desc *)sense_data;
4073
4074		desc = scsi_find_desc(sense, sense_len, info_type);
4075		if (desc == NULL)
4076			goto bailout;
4077
4078		switch (info_type) {
4079		case SSD_DESC_INFO: {
4080			struct scsi_sense_info *info_desc;
4081
4082			info_desc = (struct scsi_sense_info *)desc;
4083
4084			if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
4085				goto bailout;
4086
4087			*info = scsi_8btou64(info_desc->info);
4088			if (signed_info != NULL)
4089				*signed_info = *info;
4090			break;
4091		}
4092		case SSD_DESC_COMMAND: {
4093			struct scsi_sense_command *cmd_desc;
4094
4095			cmd_desc = (struct scsi_sense_command *)desc;
4096
4097			*info = scsi_8btou64(cmd_desc->command_info);
4098			if (signed_info != NULL)
4099				*signed_info = *info;
4100			break;
4101		}
4102		case SSD_DESC_FRU: {
4103			struct scsi_sense_fru *fru_desc;
4104
4105			fru_desc = (struct scsi_sense_fru *)desc;
4106
4107			if (fru_desc->fru == 0)
4108				goto bailout;
4109
4110			*info = fru_desc->fru;
4111			if (signed_info != NULL)
4112				*signed_info = (int8_t)fru_desc->fru;
4113			break;
4114		}
4115		default:
4116			goto bailout;
4117			break;
4118		}
4119		break;
4120	}
4121	case SSD_TYPE_FIXED: {
4122		struct scsi_sense_data_fixed *sense;
4123
4124		sense = (struct scsi_sense_data_fixed *)sense_data;
4125
4126		switch (info_type) {
4127		case SSD_DESC_INFO: {
4128			uint32_t info_val;
4129
4130			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4131				goto bailout;
4132
4133			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4134				goto bailout;
4135
4136			info_val = scsi_4btoul(sense->info);
4137
4138			*info = info_val;
4139			if (signed_info != NULL)
4140				*signed_info = (int32_t)info_val;
4141			break;
4142		}
4143		case SSD_DESC_COMMAND: {
4144			uint32_t cmd_val;
4145
4146			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4147			     cmd_spec_info) == 0)
4148			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4149				goto bailout;
4150
4151			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4152			if (cmd_val == 0)
4153				goto bailout;
4154
4155			*info = cmd_val;
4156			if (signed_info != NULL)
4157				*signed_info = (int32_t)cmd_val;
4158			break;
4159		}
4160		case SSD_DESC_FRU:
4161			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4162			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4163				goto bailout;
4164
4165			if (sense->fru == 0)
4166				goto bailout;
4167
4168			*info = sense->fru;
4169			if (signed_info != NULL)
4170				*signed_info = (int8_t)sense->fru;
4171			break;
4172		default:
4173			goto bailout;
4174			break;
4175		}
4176		break;
4177	}
4178	default:
4179		goto bailout;
4180		break;
4181	}
4182
4183	return (0);
4184bailout:
4185	return (1);
4186}
4187
4188int
4189scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4190{
4191	scsi_sense_data_type sense_type;
4192
4193	if (sense_len == 0)
4194		goto bailout;
4195
4196	sense_type = scsi_sense_type(sense_data);
4197
4198	switch (sense_type) {
4199	case SSD_TYPE_DESC: {
4200		struct scsi_sense_data_desc *sense;
4201		struct scsi_sense_sks *desc;
4202
4203		sense = (struct scsi_sense_data_desc *)sense_data;
4204
4205		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4206							       SSD_DESC_SKS);
4207		if (desc == NULL)
4208			goto bailout;
4209
4210		if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4211			goto bailout;
4212
4213		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4214		break;
4215	}
4216	case SSD_TYPE_FIXED: {
4217		struct scsi_sense_data_fixed *sense;
4218
4219		sense = (struct scsi_sense_data_fixed *)sense_data;
4220
4221		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4222		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4223			goto bailout;
4224
4225		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4226			goto bailout;
4227
4228		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4229		break;
4230	}
4231	default:
4232		goto bailout;
4233		break;
4234	}
4235	return (0);
4236bailout:
4237	return (1);
4238}
4239
4240/*
4241 * Provide a common interface for fixed and descriptor sense to detect
4242 * whether we have block-specific sense information.  It is clear by the
4243 * presence of the block descriptor in descriptor mode, but we have to
4244 * infer from the inquiry data and ILI bit in fixed mode.
4245 */
4246int
4247scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4248		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4249{
4250	scsi_sense_data_type sense_type;
4251
4252	if (inq_data != NULL) {
4253		switch (SID_TYPE(inq_data)) {
4254		case T_DIRECT:
4255		case T_RBC:
4256		case T_ZBC_HM:
4257			break;
4258		default:
4259			goto bailout;
4260			break;
4261		}
4262	}
4263
4264	sense_type = scsi_sense_type(sense_data);
4265
4266	switch (sense_type) {
4267	case SSD_TYPE_DESC: {
4268		struct scsi_sense_data_desc *sense;
4269		struct scsi_sense_block *block;
4270
4271		sense = (struct scsi_sense_data_desc *)sense_data;
4272
4273		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4274		    sense_len, SSD_DESC_BLOCK);
4275		if (block == NULL)
4276			goto bailout;
4277
4278		*block_bits = block->byte3;
4279		break;
4280	}
4281	case SSD_TYPE_FIXED: {
4282		struct scsi_sense_data_fixed *sense;
4283
4284		sense = (struct scsi_sense_data_fixed *)sense_data;
4285
4286		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4287			goto bailout;
4288
4289		*block_bits = sense->flags & SSD_ILI;
4290		break;
4291	}
4292	default:
4293		goto bailout;
4294		break;
4295	}
4296	return (0);
4297bailout:
4298	return (1);
4299}
4300
4301int
4302scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4303		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4304{
4305	scsi_sense_data_type sense_type;
4306
4307	if (inq_data != NULL) {
4308		switch (SID_TYPE(inq_data)) {
4309		case T_SEQUENTIAL:
4310			break;
4311		default:
4312			goto bailout;
4313			break;
4314		}
4315	}
4316
4317	sense_type = scsi_sense_type(sense_data);
4318
4319	switch (sense_type) {
4320	case SSD_TYPE_DESC: {
4321		struct scsi_sense_data_desc *sense;
4322		struct scsi_sense_stream *stream;
4323
4324		sense = (struct scsi_sense_data_desc *)sense_data;
4325
4326		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4327		    sense_len, SSD_DESC_STREAM);
4328		if (stream == NULL)
4329			goto bailout;
4330
4331		*stream_bits = stream->byte3;
4332		break;
4333	}
4334	case SSD_TYPE_FIXED: {
4335		struct scsi_sense_data_fixed *sense;
4336
4337		sense = (struct scsi_sense_data_fixed *)sense_data;
4338
4339		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4340			goto bailout;
4341
4342		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4343		break;
4344	}
4345	default:
4346		goto bailout;
4347		break;
4348	}
4349	return (0);
4350bailout:
4351	return (1);
4352}
4353
4354void
4355scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4356	       struct scsi_inquiry_data *inq_data, uint64_t info)
4357{
4358	sbuf_printf(sb, "Info: %#jx", info);
4359}
4360
4361void
4362scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4363		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4364{
4365	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4366}
4367
4368void
4369scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4370{
4371	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4372		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4373		    progress, SSD_SKS_PROGRESS_DENOM);
4374}
4375
4376/*
4377 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4378 */
4379int
4380scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4381{
4382
4383	switch (sense_key) {
4384	case SSD_KEY_ILLEGAL_REQUEST: {
4385		struct scsi_sense_sks_field *field;
4386		int bad_command;
4387		char tmpstr[40];
4388
4389		/*Field Pointer*/
4390		field = (struct scsi_sense_sks_field *)sks;
4391
4392		if (field->byte0 & SSD_SKS_FIELD_CMD)
4393			bad_command = 1;
4394		else
4395			bad_command = 0;
4396
4397		tmpstr[0] = '\0';
4398
4399		/* Bit pointer is valid */
4400		if (field->byte0 & SSD_SKS_BPV)
4401			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4402				 field->byte0 & SSD_SKS_BIT_VALUE);
4403
4404		sbuf_printf(sb, "%s byte %d %sis invalid",
4405			    bad_command ? "Command" : "Data",
4406			    scsi_2btoul(field->field), tmpstr);
4407		break;
4408	}
4409	case SSD_KEY_UNIT_ATTENTION: {
4410		struct scsi_sense_sks_overflow *overflow;
4411
4412		overflow = (struct scsi_sense_sks_overflow *)sks;
4413
4414		/*UA Condition Queue Overflow*/
4415		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4416			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4417			    "Overflowed" : "Did Not Overflow??");
4418		break;
4419	}
4420	case SSD_KEY_RECOVERED_ERROR:
4421	case SSD_KEY_HARDWARE_ERROR:
4422	case SSD_KEY_MEDIUM_ERROR: {
4423		struct scsi_sense_sks_retry *retry;
4424
4425		/*Actual Retry Count*/
4426		retry = (struct scsi_sense_sks_retry *)sks;
4427
4428		sbuf_printf(sb, "Actual Retry Count: %d",
4429			    scsi_2btoul(retry->actual_retry_count));
4430		break;
4431	}
4432	case SSD_KEY_NO_SENSE:
4433	case SSD_KEY_NOT_READY: {
4434		struct scsi_sense_sks_progress *progress;
4435		int progress_val;
4436
4437		/*Progress Indication*/
4438		progress = (struct scsi_sense_sks_progress *)sks;
4439		progress_val = scsi_2btoul(progress->progress);
4440
4441		scsi_progress_sbuf(sb, progress_val);
4442		break;
4443	}
4444	case SSD_KEY_COPY_ABORTED: {
4445		struct scsi_sense_sks_segment *segment;
4446		char tmpstr[40];
4447
4448		/*Segment Pointer*/
4449		segment = (struct scsi_sense_sks_segment *)sks;
4450
4451		tmpstr[0] = '\0';
4452
4453		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4454			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4455				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4456
4457		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4458			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4459			    scsi_2btoul(segment->field), tmpstr);
4460		break;
4461	}
4462	default:
4463		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4464			    scsi_2btoul(&sks[1]));
4465		break;
4466	}
4467
4468	return (0);
4469}
4470
4471void
4472scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4473{
4474	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4475}
4476
4477void
4478scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
4479{
4480	int need_comma;
4481
4482	need_comma = 0;
4483	/*
4484	 * XXX KDM this needs more descriptive decoding.
4485	 */
4486	sbuf_printf(sb, "Stream Command Sense Data: ");
4487	if (stream_bits & SSD_DESC_STREAM_FM) {
4488		sbuf_printf(sb, "Filemark");
4489		need_comma = 1;
4490	}
4491
4492	if (stream_bits & SSD_DESC_STREAM_EOM) {
4493		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4494		need_comma = 1;
4495	}
4496
4497	if (stream_bits & SSD_DESC_STREAM_ILI)
4498		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4499}
4500
4501void
4502scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
4503{
4504
4505	sbuf_printf(sb, "Block Command Sense Data: ");
4506	if (block_bits & SSD_DESC_BLOCK_ILI)
4507		sbuf_printf(sb, "ILI");
4508}
4509
4510void
4511scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4512		     u_int sense_len, uint8_t *cdb, int cdb_len,
4513		     struct scsi_inquiry_data *inq_data,
4514		     struct scsi_sense_desc_header *header)
4515{
4516	struct scsi_sense_info *info;
4517
4518	info = (struct scsi_sense_info *)header;
4519
4520	if ((info->byte2 & SSD_INFO_VALID) == 0)
4521		return;
4522
4523	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4524}
4525
4526void
4527scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4528			u_int sense_len, uint8_t *cdb, int cdb_len,
4529			struct scsi_inquiry_data *inq_data,
4530			struct scsi_sense_desc_header *header)
4531{
4532	struct scsi_sense_command *command;
4533
4534	command = (struct scsi_sense_command *)header;
4535
4536	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4537			  scsi_8btou64(command->command_info));
4538}
4539
4540void
4541scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4542		    u_int sense_len, uint8_t *cdb, int cdb_len,
4543		    struct scsi_inquiry_data *inq_data,
4544		    struct scsi_sense_desc_header *header)
4545{
4546	struct scsi_sense_sks *sks;
4547	int error_code, sense_key, asc, ascq;
4548
4549	sks = (struct scsi_sense_sks *)header;
4550
4551	if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4552		return;
4553
4554	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4555			       &asc, &ascq, /*show_errors*/ 1);
4556
4557	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4558}
4559
4560void
4561scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4562		    u_int sense_len, uint8_t *cdb, int cdb_len,
4563		    struct scsi_inquiry_data *inq_data,
4564		    struct scsi_sense_desc_header *header)
4565{
4566	struct scsi_sense_fru *fru;
4567
4568	fru = (struct scsi_sense_fru *)header;
4569
4570	if (fru->fru == 0)
4571		return;
4572
4573	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4574}
4575
4576void
4577scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4578		       u_int sense_len, uint8_t *cdb, int cdb_len,
4579		       struct scsi_inquiry_data *inq_data,
4580		       struct scsi_sense_desc_header *header)
4581{
4582	struct scsi_sense_stream *stream;
4583
4584	stream = (struct scsi_sense_stream *)header;
4585	scsi_stream_sbuf(sb, stream->byte3);
4586}
4587
4588void
4589scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4590		      u_int sense_len, uint8_t *cdb, int cdb_len,
4591		      struct scsi_inquiry_data *inq_data,
4592		      struct scsi_sense_desc_header *header)
4593{
4594	struct scsi_sense_block *block;
4595
4596	block = (struct scsi_sense_block *)header;
4597	scsi_block_sbuf(sb, block->byte3);
4598}
4599
4600void
4601scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4602			 u_int sense_len, uint8_t *cdb, int cdb_len,
4603			 struct scsi_inquiry_data *inq_data,
4604			 struct scsi_sense_desc_header *header)
4605{
4606	struct scsi_sense_progress *progress;
4607	const char *sense_key_desc;
4608	const char *asc_desc;
4609	int progress_val;
4610
4611	progress = (struct scsi_sense_progress *)header;
4612
4613	/*
4614	 * Get descriptions for the sense key, ASC, and ASCQ in the
4615	 * progress descriptor.  These could be different than the values
4616	 * in the overall sense data.
4617	 */
4618	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4619			progress->add_sense_code_qual, inq_data,
4620			&sense_key_desc, &asc_desc);
4621
4622	progress_val = scsi_2btoul(progress->progress);
4623
4624	/*
4625	 * The progress indicator is for the operation described by the
4626	 * sense key, ASC, and ASCQ in the descriptor.
4627	 */
4628	sbuf_cat(sb, sense_key_desc);
4629	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4630		    progress->add_sense_code_qual, asc_desc);
4631	scsi_progress_sbuf(sb, progress_val);
4632}
4633
4634void
4635scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4636			 u_int sense_len, uint8_t *cdb, int cdb_len,
4637			 struct scsi_inquiry_data *inq_data,
4638			 struct scsi_sense_desc_header *header)
4639{
4640	struct scsi_sense_ata_ret_desc *res;
4641
4642	res = (struct scsi_sense_ata_ret_desc *)header;
4643
4644	sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4645	    res->status,
4646	    (res->status & 0x80) ? "BSY " : "",
4647	    (res->status & 0x40) ? "DRDY " : "",
4648	    (res->status & 0x20) ? "DF " : "",
4649	    (res->status & 0x10) ? "SERV " : "",
4650	    (res->status & 0x08) ? "DRQ " : "",
4651	    (res->status & 0x04) ? "CORR " : "",
4652	    (res->status & 0x02) ? "IDX " : "",
4653	    (res->status & 0x01) ? "ERR" : "");
4654	if (res->status & 1) {
4655	    sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4656		res->error,
4657		(res->error & 0x80) ? "ICRC " : "",
4658		(res->error & 0x40) ? "UNC " : "",
4659		(res->error & 0x20) ? "MC " : "",
4660		(res->error & 0x10) ? "IDNF " : "",
4661		(res->error & 0x08) ? "MCR " : "",
4662		(res->error & 0x04) ? "ABRT " : "",
4663		(res->error & 0x02) ? "NM " : "",
4664		(res->error & 0x01) ? "ILI" : "");
4665	}
4666
4667	if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4668		sbuf_printf(sb, "count: %02x%02x, ",
4669		    res->count_15_8, res->count_7_0);
4670		sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4671		    res->lba_47_40, res->lba_39_32, res->lba_31_24,
4672		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4673	} else {
4674		sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4675		sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4676		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4677	}
4678	sbuf_printf(sb, "device: %02x, ", res->device);
4679}
4680
4681void
4682scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4683			 u_int sense_len, uint8_t *cdb, int cdb_len,
4684			 struct scsi_inquiry_data *inq_data,
4685			 struct scsi_sense_desc_header *header)
4686{
4687	struct scsi_sense_forwarded *forwarded;
4688	const char *sense_key_desc;
4689	const char *asc_desc;
4690	int error_code, sense_key, asc, ascq;
4691
4692	forwarded = (struct scsi_sense_forwarded *)header;
4693	scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4694	    forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4695	scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4696
4697	sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4698	    sense_key_desc, asc, ascq, asc_desc);
4699}
4700
4701/*
4702 * Generic sense descriptor printing routine.  This is used when we have
4703 * not yet implemented a specific printing routine for this descriptor.
4704 */
4705void
4706scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4707			u_int sense_len, uint8_t *cdb, int cdb_len,
4708			struct scsi_inquiry_data *inq_data,
4709			struct scsi_sense_desc_header *header)
4710{
4711	int i;
4712	uint8_t *buf_ptr;
4713
4714	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4715
4716	buf_ptr = (uint8_t *)&header[1];
4717
4718	for (i = 0; i < header->length; i++, buf_ptr++)
4719		sbuf_printf(sb, " %02x", *buf_ptr);
4720}
4721
4722/*
4723 * Keep this list in numeric order.  This speeds the array traversal.
4724 */
4725struct scsi_sense_desc_printer {
4726	uint8_t desc_type;
4727	/*
4728	 * The function arguments here are the superset of what is needed
4729	 * to print out various different descriptors.  Command and
4730	 * information descriptors need inquiry data and command type.
4731	 * Sense key specific descriptors need the sense key.
4732	 *
4733	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4734	 * information printed may not be fully decoded as a result.
4735	 */
4736	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4737			   u_int sense_len, uint8_t *cdb, int cdb_len,
4738			   struct scsi_inquiry_data *inq_data,
4739			   struct scsi_sense_desc_header *header);
4740} scsi_sense_printers[] = {
4741	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4742	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4743	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4744	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4745	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4746	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4747	{SSD_DESC_ATA, scsi_sense_ata_sbuf},
4748	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4749	{SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4750};
4751
4752void
4753scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4754		     u_int sense_len, uint8_t *cdb, int cdb_len,
4755		     struct scsi_inquiry_data *inq_data,
4756		     struct scsi_sense_desc_header *header)
4757{
4758	u_int i;
4759
4760	for (i = 0; i < nitems(scsi_sense_printers); i++) {
4761		struct scsi_sense_desc_printer *printer;
4762
4763		printer = &scsi_sense_printers[i];
4764
4765		/*
4766		 * The list is sorted, so quit if we've passed our
4767		 * descriptor number.
4768		 */
4769		if (printer->desc_type > header->desc_type)
4770			break;
4771
4772		if (printer->desc_type != header->desc_type)
4773			continue;
4774
4775		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4776				    inq_data, header);
4777
4778		return;
4779	}
4780
4781	/*
4782	 * No specific printing routine, so use the generic routine.
4783	 */
4784	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4785				inq_data, header);
4786}
4787
4788scsi_sense_data_type
4789scsi_sense_type(struct scsi_sense_data *sense_data)
4790{
4791	switch (sense_data->error_code & SSD_ERRCODE) {
4792	case SSD_DESC_CURRENT_ERROR:
4793	case SSD_DESC_DEFERRED_ERROR:
4794		return (SSD_TYPE_DESC);
4795		break;
4796	case SSD_CURRENT_ERROR:
4797	case SSD_DEFERRED_ERROR:
4798		return (SSD_TYPE_FIXED);
4799		break;
4800	default:
4801		break;
4802	}
4803
4804	return (SSD_TYPE_NONE);
4805}
4806
4807struct scsi_print_sense_info {
4808	struct sbuf *sb;
4809	char *path_str;
4810	uint8_t *cdb;
4811	int cdb_len;
4812	struct scsi_inquiry_data *inq_data;
4813};
4814
4815static int
4816scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4817		     struct scsi_sense_desc_header *header, void *arg)
4818{
4819	struct scsi_print_sense_info *print_info;
4820
4821	print_info = (struct scsi_print_sense_info *)arg;
4822
4823	switch (header->desc_type) {
4824	case SSD_DESC_INFO:
4825	case SSD_DESC_FRU:
4826	case SSD_DESC_COMMAND:
4827	case SSD_DESC_SKS:
4828	case SSD_DESC_BLOCK:
4829	case SSD_DESC_STREAM:
4830		/*
4831		 * We have already printed these descriptors, if they are
4832		 * present.
4833		 */
4834		break;
4835	default: {
4836		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4837		scsi_sense_desc_sbuf(print_info->sb,
4838				     (struct scsi_sense_data *)sense, sense_len,
4839				     print_info->cdb, print_info->cdb_len,
4840				     print_info->inq_data, header);
4841		sbuf_printf(print_info->sb, "\n");
4842		break;
4843	}
4844	}
4845
4846	/*
4847	 * Tell the iterator that we want to see more descriptors if they
4848	 * are present.
4849	 */
4850	return (0);
4851}
4852
4853void
4854scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4855		     struct sbuf *sb, char *path_str,
4856		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4857		     int cdb_len)
4858{
4859	int error_code, sense_key, asc, ascq;
4860
4861	sbuf_cat(sb, path_str);
4862
4863	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4864			       &asc, &ascq, /*show_errors*/ 1);
4865
4866	sbuf_printf(sb, "SCSI sense: ");
4867	switch (error_code) {
4868	case SSD_DEFERRED_ERROR:
4869	case SSD_DESC_DEFERRED_ERROR:
4870		sbuf_printf(sb, "Deferred error: ");
4871
4872		/* FALLTHROUGH */
4873	case SSD_CURRENT_ERROR:
4874	case SSD_DESC_CURRENT_ERROR:
4875	{
4876		struct scsi_sense_data_desc *desc_sense;
4877		struct scsi_print_sense_info print_info;
4878		const char *sense_key_desc;
4879		const char *asc_desc;
4880		uint8_t sks[3];
4881		uint64_t val;
4882		uint8_t bits;
4883
4884		/*
4885		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4886		 * these aren't present in the sense data (i.e. the sense
4887		 * data isn't long enough), the -1 values that
4888		 * scsi_extract_sense_len() returns will yield default
4889		 * or error descriptions.
4890		 */
4891		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4892				&sense_key_desc, &asc_desc);
4893
4894		/*
4895		 * We first print the sense key and ASC/ASCQ.
4896		 */
4897		sbuf_cat(sb, sense_key_desc);
4898		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4899
4900		/*
4901		 * Print any block or stream device-specific information.
4902		 */
4903		if (scsi_get_block_info(sense, sense_len, inq_data,
4904		    &bits) == 0 && bits != 0) {
4905			sbuf_cat(sb, path_str);
4906			scsi_block_sbuf(sb, bits);
4907			sbuf_printf(sb, "\n");
4908		} else if (scsi_get_stream_info(sense, sense_len, inq_data,
4909		    &bits) == 0 && bits != 0) {
4910			sbuf_cat(sb, path_str);
4911			scsi_stream_sbuf(sb, bits);
4912			sbuf_printf(sb, "\n");
4913		}
4914
4915		/*
4916		 * Print the info field.
4917		 */
4918		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4919					&val, NULL) == 0) {
4920			sbuf_cat(sb, path_str);
4921			scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4922			sbuf_printf(sb, "\n");
4923		}
4924
4925		/*
4926		 * Print the FRU.
4927		 */
4928		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4929					&val, NULL) == 0) {
4930			sbuf_cat(sb, path_str);
4931			scsi_fru_sbuf(sb, val);
4932			sbuf_printf(sb, "\n");
4933		}
4934
4935		/*
4936		 * Print any command-specific information.
4937		 */
4938		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4939					&val, NULL) == 0) {
4940			sbuf_cat(sb, path_str);
4941			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4942			sbuf_printf(sb, "\n");
4943		}
4944
4945		/*
4946		 * Print out any sense-key-specific information.
4947		 */
4948		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4949			sbuf_cat(sb, path_str);
4950			scsi_sks_sbuf(sb, sense_key, sks);
4951			sbuf_printf(sb, "\n");
4952		}
4953
4954		/*
4955		 * If this is fixed sense, we're done.  If we have
4956		 * descriptor sense, we might have more information
4957		 * available.
4958		 */
4959		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4960			break;
4961
4962		desc_sense = (struct scsi_sense_data_desc *)sense;
4963
4964		print_info.sb = sb;
4965		print_info.path_str = path_str;
4966		print_info.cdb = cdb;
4967		print_info.cdb_len = cdb_len;
4968		print_info.inq_data = inq_data;
4969
4970		/*
4971		 * Print any sense descriptors that we have not already printed.
4972		 */
4973		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4974				  &print_info);
4975		break;
4976	}
4977	case -1:
4978		/*
4979		 * scsi_extract_sense_len() sets values to -1 if the
4980		 * show_errors flag is set and they aren't present in the
4981		 * sense data.  This means that sense_len is 0.
4982		 */
4983		sbuf_printf(sb, "No sense data present\n");
4984		break;
4985	default: {
4986		sbuf_printf(sb, "Error code 0x%x", error_code);
4987		if (sense->error_code & SSD_ERRCODE_VALID) {
4988			struct scsi_sense_data_fixed *fixed_sense;
4989
4990			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4991
4992			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4993				uint32_t info;
4994
4995				info = scsi_4btoul(fixed_sense->info);
4996
4997				sbuf_printf(sb, " at block no. %d (decimal)",
4998					    info);
4999			}
5000		}
5001		sbuf_printf(sb, "\n");
5002		break;
5003	}
5004	}
5005}
5006
5007/*
5008 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5009 */
5010#ifdef _KERNEL
5011int
5012scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5013		scsi_sense_string_flags flags)
5014#else /* !_KERNEL */
5015int
5016scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5017		struct sbuf *sb, scsi_sense_string_flags flags)
5018#endif /* _KERNEL/!_KERNEL */
5019{
5020	struct	  scsi_sense_data *sense;
5021	struct	  scsi_inquiry_data *inq_data;
5022#ifdef _KERNEL
5023	struct	  ccb_getdev *cgd;
5024#endif /* _KERNEL */
5025	char	  path_str[64];
5026
5027#ifndef _KERNEL
5028	if (device == NULL)
5029		return(-1);
5030#endif /* !_KERNEL */
5031	if ((csio == NULL) || (sb == NULL))
5032		return(-1);
5033
5034	/*
5035	 * If the CDB is a physical address, we can't deal with it..
5036	 */
5037	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5038		flags &= ~SSS_FLAG_PRINT_COMMAND;
5039
5040#ifdef _KERNEL
5041	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5042#else /* !_KERNEL */
5043	cam_path_string(device, path_str, sizeof(path_str));
5044#endif /* _KERNEL/!_KERNEL */
5045
5046#ifdef _KERNEL
5047	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5048		return(-1);
5049	/*
5050	 * Get the device information.
5051	 */
5052	xpt_setup_ccb(&cgd->ccb_h,
5053		      csio->ccb_h.path,
5054		      CAM_PRIORITY_NORMAL);
5055	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5056	xpt_action((union ccb *)cgd);
5057
5058	/*
5059	 * If the device is unconfigured, just pretend that it is a hard
5060	 * drive.  scsi_op_desc() needs this.
5061	 */
5062	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5063		cgd->inq_data.device = T_DIRECT;
5064
5065	inq_data = &cgd->inq_data;
5066
5067#else /* !_KERNEL */
5068
5069	inq_data = &device->inq_data;
5070
5071#endif /* _KERNEL/!_KERNEL */
5072
5073	sense = NULL;
5074
5075	if (flags & SSS_FLAG_PRINT_COMMAND) {
5076		sbuf_cat(sb, path_str);
5077
5078#ifdef _KERNEL
5079		scsi_command_string(csio, sb);
5080#else /* !_KERNEL */
5081		scsi_command_string(device, csio, sb);
5082#endif /* _KERNEL/!_KERNEL */
5083		sbuf_printf(sb, "\n");
5084	}
5085
5086	/*
5087	 * If the sense data is a physical pointer, forget it.
5088	 */
5089	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5090		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5091#ifdef _KERNEL
5092			xpt_free_ccb((union ccb*)cgd);
5093#endif /* _KERNEL/!_KERNEL */
5094			return(-1);
5095		} else {
5096			/*
5097			 * bcopy the pointer to avoid unaligned access
5098			 * errors on finicky architectures.  We don't
5099			 * ensure that the sense data is pointer aligned.
5100			 */
5101			bcopy((struct scsi_sense_data **)&csio->sense_data,
5102			    &sense, sizeof(struct scsi_sense_data *));
5103		}
5104	} else {
5105		/*
5106		 * If the physical sense flag is set, but the sense pointer
5107		 * is not also set, we assume that the user is an idiot and
5108		 * return.  (Well, okay, it could be that somehow, the
5109		 * entire csio is physical, but we would have probably core
5110		 * dumped on one of the bogus pointer deferences above
5111		 * already.)
5112		 */
5113		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5114#ifdef _KERNEL
5115			xpt_free_ccb((union ccb*)cgd);
5116#endif /* _KERNEL/!_KERNEL */
5117			return(-1);
5118		} else
5119			sense = &csio->sense_data;
5120	}
5121
5122	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5123	    path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5124
5125#ifdef _KERNEL
5126	xpt_free_ccb((union ccb*)cgd);
5127#endif /* _KERNEL/!_KERNEL */
5128	return(0);
5129}
5130
5131#ifdef _KERNEL
5132char *
5133scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5134#else /* !_KERNEL */
5135char *
5136scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5137		  char *str, int str_len)
5138#endif /* _KERNEL/!_KERNEL */
5139{
5140	struct sbuf sb;
5141
5142	sbuf_new(&sb, str, str_len, 0);
5143
5144#ifdef _KERNEL
5145	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5146#else /* !_KERNEL */
5147	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5148#endif /* _KERNEL/!_KERNEL */
5149
5150	sbuf_finish(&sb);
5151
5152	return(sbuf_data(&sb));
5153}
5154
5155#ifdef _KERNEL
5156void
5157scsi_sense_print(struct ccb_scsiio *csio)
5158{
5159	struct sbuf sb;
5160	char str[512];
5161
5162	sbuf_new(&sb, str, sizeof(str), 0);
5163
5164	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5165
5166	sbuf_finish(&sb);
5167
5168	sbuf_putbuf(&sb);
5169}
5170
5171#else /* !_KERNEL */
5172void
5173scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5174		 FILE *ofile)
5175{
5176	struct sbuf sb;
5177	char str[512];
5178
5179	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5180		return;
5181
5182	sbuf_new(&sb, str, sizeof(str), 0);
5183
5184	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5185
5186	sbuf_finish(&sb);
5187
5188	fprintf(ofile, "%s", sbuf_data(&sb));
5189}
5190
5191#endif /* _KERNEL/!_KERNEL */
5192
5193/*
5194 * Extract basic sense information.  This is backward-compatible with the
5195 * previous implementation.  For new implementations,
5196 * scsi_extract_sense_len() is recommended.
5197 */
5198void
5199scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5200		   int *sense_key, int *asc, int *ascq)
5201{
5202	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5203			       sense_key, asc, ascq, /*show_errors*/ 0);
5204}
5205
5206/*
5207 * Extract basic sense information from SCSI I/O CCB structure.
5208 */
5209int
5210scsi_extract_sense_ccb(union ccb *ccb,
5211    int *error_code, int *sense_key, int *asc, int *ascq)
5212{
5213	struct scsi_sense_data *sense_data;
5214
5215	/* Make sure there are some sense data we can access. */
5216	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5217	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5218	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5219	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5220	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5221		return (0);
5222
5223	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5224		bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5225		    &sense_data, sizeof(struct scsi_sense_data *));
5226	else
5227		sense_data = &ccb->csio.sense_data;
5228	scsi_extract_sense_len(sense_data,
5229	    ccb->csio.sense_len - ccb->csio.sense_resid,
5230	    error_code, sense_key, asc, ascq, 1);
5231	if (*error_code == -1)
5232		return (0);
5233	return (1);
5234}
5235
5236/*
5237 * Extract basic sense information.  If show_errors is set, sense values
5238 * will be set to -1 if they are not present.
5239 */
5240void
5241scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5242		       int *error_code, int *sense_key, int *asc, int *ascq,
5243		       int show_errors)
5244{
5245	/*
5246	 * If we have no length, we have no sense.
5247	 */
5248	if (sense_len == 0) {
5249		if (show_errors == 0) {
5250			*error_code = 0;
5251			*sense_key = 0;
5252			*asc = 0;
5253			*ascq = 0;
5254		} else {
5255			*error_code = -1;
5256			*sense_key = -1;
5257			*asc = -1;
5258			*ascq = -1;
5259		}
5260		return;
5261	}
5262
5263	*error_code = sense_data->error_code & SSD_ERRCODE;
5264
5265	switch (*error_code) {
5266	case SSD_DESC_CURRENT_ERROR:
5267	case SSD_DESC_DEFERRED_ERROR: {
5268		struct scsi_sense_data_desc *sense;
5269
5270		sense = (struct scsi_sense_data_desc *)sense_data;
5271
5272		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5273			*sense_key = sense->sense_key & SSD_KEY;
5274		else
5275			*sense_key = (show_errors) ? -1 : 0;
5276
5277		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5278			*asc = sense->add_sense_code;
5279		else
5280			*asc = (show_errors) ? -1 : 0;
5281
5282		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5283			*ascq = sense->add_sense_code_qual;
5284		else
5285			*ascq = (show_errors) ? -1 : 0;
5286		break;
5287	}
5288	case SSD_CURRENT_ERROR:
5289	case SSD_DEFERRED_ERROR:
5290	default: {
5291		struct scsi_sense_data_fixed *sense;
5292
5293		sense = (struct scsi_sense_data_fixed *)sense_data;
5294
5295		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5296			*sense_key = sense->flags & SSD_KEY;
5297		else
5298			*sense_key = (show_errors) ? -1 : 0;
5299
5300		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5301		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5302			*asc = sense->add_sense_code;
5303		else
5304			*asc = (show_errors) ? -1 : 0;
5305
5306		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5307		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5308			*ascq = sense->add_sense_code_qual;
5309		else
5310			*ascq = (show_errors) ? -1 : 0;
5311		break;
5312	}
5313	}
5314}
5315
5316int
5317scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5318		   int show_errors)
5319{
5320	int error_code, sense_key, asc, ascq;
5321
5322	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5323			       &sense_key, &asc, &ascq, show_errors);
5324
5325	return (sense_key);
5326}
5327
5328int
5329scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5330	     int show_errors)
5331{
5332	int error_code, sense_key, asc, ascq;
5333
5334	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5335			       &sense_key, &asc, &ascq, show_errors);
5336
5337	return (asc);
5338}
5339
5340int
5341scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5342	      int show_errors)
5343{
5344	int error_code, sense_key, asc, ascq;
5345
5346	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5347			       &sense_key, &asc, &ascq, show_errors);
5348
5349	return (ascq);
5350}
5351
5352/*
5353 * This function currently requires at least 36 bytes, or
5354 * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5355 * function needs more or less data in the future, another length should be
5356 * defined in scsi_all.h to indicate the minimum amount of data necessary
5357 * for this routine to function properly.
5358 */
5359void
5360scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5361{
5362	u_int8_t type;
5363	char *dtype, *qtype;
5364
5365	type = SID_TYPE(inq_data);
5366
5367	/*
5368	 * Figure out basic device type and qualifier.
5369	 */
5370	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5371		qtype = " (vendor-unique qualifier)";
5372	} else {
5373		switch (SID_QUAL(inq_data)) {
5374		case SID_QUAL_LU_CONNECTED:
5375			qtype = "";
5376			break;
5377
5378		case SID_QUAL_LU_OFFLINE:
5379			qtype = " (offline)";
5380			break;
5381
5382		case SID_QUAL_RSVD:
5383			qtype = " (reserved qualifier)";
5384			break;
5385		default:
5386		case SID_QUAL_BAD_LU:
5387			qtype = " (LUN not supported)";
5388			break;
5389		}
5390	}
5391
5392	switch (type) {
5393	case T_DIRECT:
5394		dtype = "Direct Access";
5395		break;
5396	case T_SEQUENTIAL:
5397		dtype = "Sequential Access";
5398		break;
5399	case T_PRINTER:
5400		dtype = "Printer";
5401		break;
5402	case T_PROCESSOR:
5403		dtype = "Processor";
5404		break;
5405	case T_WORM:
5406		dtype = "WORM";
5407		break;
5408	case T_CDROM:
5409		dtype = "CD-ROM";
5410		break;
5411	case T_SCANNER:
5412		dtype = "Scanner";
5413		break;
5414	case T_OPTICAL:
5415		dtype = "Optical";
5416		break;
5417	case T_CHANGER:
5418		dtype = "Changer";
5419		break;
5420	case T_COMM:
5421		dtype = "Communication";
5422		break;
5423	case T_STORARRAY:
5424		dtype = "Storage Array";
5425		break;
5426	case T_ENCLOSURE:
5427		dtype = "Enclosure Services";
5428		break;
5429	case T_RBC:
5430		dtype = "Simplified Direct Access";
5431		break;
5432	case T_OCRW:
5433		dtype = "Optical Card Read/Write";
5434		break;
5435	case T_OSD:
5436		dtype = "Object-Based Storage";
5437		break;
5438	case T_ADC:
5439		dtype = "Automation/Drive Interface";
5440		break;
5441	case T_ZBC_HM:
5442		dtype = "Host Managed Zoned Block";
5443		break;
5444	case T_NODEVICE:
5445		dtype = "Uninstalled";
5446		break;
5447	default:
5448		dtype = "unknown";
5449		break;
5450	}
5451
5452	scsi_print_inquiry_short_sbuf(sb, inq_data);
5453
5454	sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5455
5456	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5457		sbuf_printf(sb, "SCSI ");
5458	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5459		sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5460	} else {
5461		sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5462	}
5463	sbuf_printf(sb, "device%s\n", qtype);
5464}
5465
5466void
5467scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5468{
5469	struct sbuf	sb;
5470	char		buffer[120];
5471
5472	sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5473	scsi_print_inquiry_sbuf(&sb, inq_data);
5474	sbuf_finish(&sb);
5475	sbuf_putbuf(&sb);
5476}
5477
5478void
5479scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5480{
5481
5482	sbuf_printf(sb, "<");
5483	cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5484	sbuf_printf(sb, " ");
5485	cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5486	sbuf_printf(sb, " ");
5487	cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5488	sbuf_printf(sb, "> ");
5489}
5490
5491void
5492scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5493{
5494	struct sbuf	sb;
5495	char		buffer[84];
5496
5497	sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5498	scsi_print_inquiry_short_sbuf(&sb, inq_data);
5499	sbuf_finish(&sb);
5500	sbuf_putbuf(&sb);
5501}
5502
5503/*
5504 * Table of syncrates that don't follow the "divisible by 4"
5505 * rule. This table will be expanded in future SCSI specs.
5506 */
5507static struct {
5508	u_int period_factor;
5509	u_int period;	/* in 100ths of ns */
5510} scsi_syncrates[] = {
5511	{ 0x08, 625 },	/* FAST-160 */
5512	{ 0x09, 1250 },	/* FAST-80 */
5513	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5514	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5515	{ 0x0c, 5000 }	/* FAST-20 */
5516};
5517
5518/*
5519 * Return the frequency in kHz corresponding to the given
5520 * sync period factor.
5521 */
5522u_int
5523scsi_calc_syncsrate(u_int period_factor)
5524{
5525	u_int i;
5526	u_int num_syncrates;
5527
5528	/*
5529	 * It's a bug if period is zero, but if it is anyway, don't
5530	 * die with a divide fault- instead return something which
5531	 * 'approximates' async
5532	 */
5533	if (period_factor == 0) {
5534		return (3300);
5535	}
5536
5537	num_syncrates = nitems(scsi_syncrates);
5538	/* See if the period is in the "exception" table */
5539	for (i = 0; i < num_syncrates; i++) {
5540		if (period_factor == scsi_syncrates[i].period_factor) {
5541			/* Period in kHz */
5542			return (100000000 / scsi_syncrates[i].period);
5543		}
5544	}
5545
5546	/*
5547	 * Wasn't in the table, so use the standard
5548	 * 4 times conversion.
5549	 */
5550	return (10000000 / (period_factor * 4 * 10));
5551}
5552
5553/*
5554 * Return the SCSI sync parameter that corresponds to
5555 * the passed in period in 10ths of ns.
5556 */
5557u_int
5558scsi_calc_syncparam(u_int period)
5559{
5560	u_int i;
5561	u_int num_syncrates;
5562
5563	if (period == 0)
5564		return (~0);	/* Async */
5565
5566	/* Adjust for exception table being in 100ths. */
5567	period *= 10;
5568	num_syncrates = nitems(scsi_syncrates);
5569	/* See if the period is in the "exception" table */
5570	for (i = 0; i < num_syncrates; i++) {
5571		if (period <= scsi_syncrates[i].period) {
5572			/* Period in 100ths of ns */
5573			return (scsi_syncrates[i].period_factor);
5574		}
5575	}
5576
5577	/*
5578	 * Wasn't in the table, so use the standard
5579	 * 1/4 period in ns conversion.
5580	 */
5581	return (period/400);
5582}
5583
5584int
5585scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5586{
5587	struct scsi_vpd_id_descriptor *descr;
5588	struct scsi_vpd_id_naa_basic *naa;
5589	int n;
5590
5591	descr = (struct scsi_vpd_id_descriptor *)bufp;
5592	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5593	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5594		return 0;
5595	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5596		return 0;
5597	n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
5598	if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
5599		return 0;
5600	return 1;
5601}
5602
5603int
5604scsi_devid_is_sas_target(uint8_t *bufp)
5605{
5606	struct scsi_vpd_id_descriptor *descr;
5607
5608	descr = (struct scsi_vpd_id_descriptor *)bufp;
5609	if (!scsi_devid_is_naa_ieee_reg(bufp))
5610		return 0;
5611	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5612		return 0;
5613	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5614		return 0;
5615	return 1;
5616}
5617
5618int
5619scsi_devid_is_lun_eui64(uint8_t *bufp)
5620{
5621	struct scsi_vpd_id_descriptor *descr;
5622
5623	descr = (struct scsi_vpd_id_descriptor *)bufp;
5624	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5625		return 0;
5626	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5627		return 0;
5628	return 1;
5629}
5630
5631int
5632scsi_devid_is_lun_naa(uint8_t *bufp)
5633{
5634	struct scsi_vpd_id_descriptor *descr;
5635
5636	descr = (struct scsi_vpd_id_descriptor *)bufp;
5637	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5638		return 0;
5639	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5640		return 0;
5641	return 1;
5642}
5643
5644int
5645scsi_devid_is_lun_t10(uint8_t *bufp)
5646{
5647	struct scsi_vpd_id_descriptor *descr;
5648
5649	descr = (struct scsi_vpd_id_descriptor *)bufp;
5650	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5651		return 0;
5652	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5653		return 0;
5654	return 1;
5655}
5656
5657int
5658scsi_devid_is_lun_name(uint8_t *bufp)
5659{
5660	struct scsi_vpd_id_descriptor *descr;
5661
5662	descr = (struct scsi_vpd_id_descriptor *)bufp;
5663	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5664		return 0;
5665	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5666		return 0;
5667	return 1;
5668}
5669
5670int
5671scsi_devid_is_lun_md5(uint8_t *bufp)
5672{
5673	struct scsi_vpd_id_descriptor *descr;
5674
5675	descr = (struct scsi_vpd_id_descriptor *)bufp;
5676	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5677		return 0;
5678	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5679		return 0;
5680	return 1;
5681}
5682
5683int
5684scsi_devid_is_lun_uuid(uint8_t *bufp)
5685{
5686	struct scsi_vpd_id_descriptor *descr;
5687
5688	descr = (struct scsi_vpd_id_descriptor *)bufp;
5689	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5690		return 0;
5691	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5692		return 0;
5693	return 1;
5694}
5695
5696int
5697scsi_devid_is_port_naa(uint8_t *bufp)
5698{
5699	struct scsi_vpd_id_descriptor *descr;
5700
5701	descr = (struct scsi_vpd_id_descriptor *)bufp;
5702	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5703		return 0;
5704	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5705		return 0;
5706	return 1;
5707}
5708
5709struct scsi_vpd_id_descriptor *
5710scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5711    scsi_devid_checkfn_t ck_fn)
5712{
5713	uint8_t *desc_buf_end;
5714
5715	desc_buf_end = (uint8_t *)desc + len;
5716
5717	for (; desc->identifier <= desc_buf_end &&
5718	    desc->identifier + desc->length <= desc_buf_end;
5719	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5720						    + desc->length)) {
5721		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5722			return (desc);
5723	}
5724	return (NULL);
5725}
5726
5727struct scsi_vpd_id_descriptor *
5728scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5729    scsi_devid_checkfn_t ck_fn)
5730{
5731	uint32_t len;
5732
5733	if (page_len < sizeof(*id))
5734		return (NULL);
5735	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5736	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5737	    id->desc_list, len, ck_fn));
5738}
5739
5740int
5741scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5742		      uint32_t valid_len)
5743{
5744	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5745	case SCSI_PROTO_FC: {
5746		struct scsi_transportid_fcp *fcp;
5747		uint64_t n_port_name;
5748
5749		fcp = (struct scsi_transportid_fcp *)hdr;
5750
5751		n_port_name = scsi_8btou64(fcp->n_port_name);
5752
5753		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5754		break;
5755	}
5756	case SCSI_PROTO_SPI: {
5757		struct scsi_transportid_spi *spi;
5758
5759		spi = (struct scsi_transportid_spi *)hdr;
5760
5761		sbuf_printf(sb, "SPI address: %u,%u",
5762			    scsi_2btoul(spi->scsi_addr),
5763			    scsi_2btoul(spi->rel_trgt_port_id));
5764		break;
5765	}
5766	case SCSI_PROTO_SSA:
5767		/*
5768		 * XXX KDM there is no transport ID defined in SPC-4 for
5769		 * SSA.
5770		 */
5771		break;
5772	case SCSI_PROTO_1394: {
5773		struct scsi_transportid_1394 *sbp;
5774		uint64_t eui64;
5775
5776		sbp = (struct scsi_transportid_1394 *)hdr;
5777
5778		eui64 = scsi_8btou64(sbp->eui64);
5779		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5780		break;
5781	}
5782	case SCSI_PROTO_RDMA: {
5783		struct scsi_transportid_rdma *rdma;
5784		unsigned int i;
5785
5786		rdma = (struct scsi_transportid_rdma *)hdr;
5787
5788		sbuf_printf(sb, "RDMA address: 0x");
5789		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5790			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5791		break;
5792	}
5793	case SCSI_PROTO_ISCSI: {
5794		uint32_t add_len, i;
5795		uint8_t *iscsi_name = NULL;
5796		int nul_found = 0;
5797
5798		sbuf_printf(sb, "iSCSI address: ");
5799		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5800		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5801			struct scsi_transportid_iscsi_device *dev;
5802
5803			dev = (struct scsi_transportid_iscsi_device *)hdr;
5804
5805			/*
5806			 * Verify how much additional data we really have.
5807			 */
5808			add_len = scsi_2btoul(dev->additional_length);
5809			add_len = MIN(add_len, valid_len -
5810				__offsetof(struct scsi_transportid_iscsi_device,
5811					   iscsi_name));
5812			iscsi_name = &dev->iscsi_name[0];
5813
5814		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5815			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5816			struct scsi_transportid_iscsi_port *port;
5817
5818			port = (struct scsi_transportid_iscsi_port *)hdr;
5819
5820			add_len = scsi_2btoul(port->additional_length);
5821			add_len = MIN(add_len, valid_len -
5822				__offsetof(struct scsi_transportid_iscsi_port,
5823					   iscsi_name));
5824			iscsi_name = &port->iscsi_name[0];
5825		} else {
5826			sbuf_printf(sb, "unknown format %x",
5827				    (hdr->format_protocol &
5828				     SCSI_TRN_FORMAT_MASK) >>
5829				     SCSI_TRN_FORMAT_SHIFT);
5830			break;
5831		}
5832		if (add_len == 0) {
5833			sbuf_printf(sb, "not enough data");
5834			break;
5835		}
5836		/*
5837		 * This is supposed to be a NUL-terminated ASCII
5838		 * string, but you never know.  So we're going to
5839		 * check.  We need to do this because there is no
5840		 * sbuf equivalent of strncat().
5841		 */
5842		for (i = 0; i < add_len; i++) {
5843			if (iscsi_name[i] == '\0') {
5844				nul_found = 1;
5845				break;
5846			}
5847		}
5848		/*
5849		 * If there is a NUL in the name, we can just use
5850		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5851		 */
5852		if (nul_found != 0)
5853			sbuf_cat(sb, iscsi_name);
5854		else
5855			sbuf_bcat(sb, iscsi_name, add_len);
5856		break;
5857	}
5858	case SCSI_PROTO_SAS: {
5859		struct scsi_transportid_sas *sas;
5860		uint64_t sas_addr;
5861
5862		sas = (struct scsi_transportid_sas *)hdr;
5863
5864		sas_addr = scsi_8btou64(sas->sas_address);
5865		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5866		break;
5867	}
5868	case SCSI_PROTO_ADITP:
5869	case SCSI_PROTO_ATA:
5870	case SCSI_PROTO_UAS:
5871		/*
5872		 * No Transport ID format for ADI, ATA or USB is defined in
5873		 * SPC-4.
5874		 */
5875		sbuf_printf(sb, "No known Transport ID format for protocol "
5876			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5877		break;
5878	case SCSI_PROTO_SOP: {
5879		struct scsi_transportid_sop *sop;
5880		struct scsi_sop_routing_id_norm *rid;
5881
5882		sop = (struct scsi_transportid_sop *)hdr;
5883		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5884
5885		/*
5886		 * Note that there is no alternate format specified in SPC-4
5887		 * for the PCIe routing ID, so we don't really have a way
5888		 * to know whether the second byte of the routing ID is
5889		 * a device and function or just a function.  So we just
5890		 * assume bus,device,function.
5891		 */
5892		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5893			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5894			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5895		break;
5896	}
5897	case SCSI_PROTO_NONE:
5898	default:
5899		sbuf_printf(sb, "Unknown protocol %#x",
5900			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5901		break;
5902	}
5903
5904	return (0);
5905}
5906
5907struct scsi_nv scsi_proto_map[] = {
5908	{ "fcp", SCSI_PROTO_FC },
5909	{ "spi", SCSI_PROTO_SPI },
5910	{ "ssa", SCSI_PROTO_SSA },
5911	{ "sbp", SCSI_PROTO_1394 },
5912	{ "1394", SCSI_PROTO_1394 },
5913	{ "srp", SCSI_PROTO_RDMA },
5914	{ "rdma", SCSI_PROTO_RDMA },
5915	{ "iscsi", SCSI_PROTO_ISCSI },
5916	{ "iqn", SCSI_PROTO_ISCSI },
5917	{ "sas", SCSI_PROTO_SAS },
5918	{ "aditp", SCSI_PROTO_ADITP },
5919	{ "ata", SCSI_PROTO_ATA },
5920	{ "uas", SCSI_PROTO_UAS },
5921	{ "usb", SCSI_PROTO_UAS },
5922	{ "sop", SCSI_PROTO_SOP }
5923};
5924
5925const char *
5926scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5927{
5928	int i;
5929
5930	for (i = 0; i < num_table_entries; i++) {
5931		if (table[i].value == value)
5932			return (table[i].name);
5933	}
5934
5935	return (NULL);
5936}
5937
5938/*
5939 * Given a name/value table, find a value matching the given name.
5940 * Return values:
5941 *	SCSI_NV_FOUND - match found
5942 *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5943 *	SCSI_NV_NOT_FOUND - no match found
5944 */
5945scsi_nv_status
5946scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5947	    char *name, int *table_entry, scsi_nv_flags flags)
5948{
5949	int i, num_matches = 0;
5950
5951	for (i = 0; i < num_table_entries; i++) {
5952		size_t table_len, name_len;
5953
5954		table_len = strlen(table[i].name);
5955		name_len = strlen(name);
5956
5957		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5958		  && (strncasecmp(table[i].name, name, name_len) == 0))
5959		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5960		 && (strncmp(table[i].name, name, name_len) == 0))) {
5961			*table_entry = i;
5962
5963			/*
5964			 * Check for an exact match.  If we have the same
5965			 * number of characters in the table as the argument,
5966			 * and we already know they're the same, we have
5967			 * an exact match.
5968		 	 */
5969			if (table_len == name_len)
5970				return (SCSI_NV_FOUND);
5971
5972			/*
5973			 * Otherwise, bump up the number of matches.  We'll
5974			 * see later how many we have.
5975			 */
5976			num_matches++;
5977		}
5978	}
5979
5980	if (num_matches > 1)
5981		return (SCSI_NV_AMBIGUOUS);
5982	else if (num_matches == 1)
5983		return (SCSI_NV_FOUND);
5984	else
5985		return (SCSI_NV_NOT_FOUND);
5986}
5987
5988/*
5989 * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5990 * all 64-bit numbers, the code is similar.
5991 */
5992int
5993scsi_parse_transportid_64bit(int proto_id, char *id_str,
5994			     struct scsi_transportid_header **hdr,
5995			     unsigned int *alloc_len,
5996#ifdef _KERNEL
5997			     struct malloc_type *type, int flags,
5998#endif
5999			     char *error_str, int error_str_len)
6000{
6001	uint64_t value;
6002	char *endptr;
6003	int retval;
6004	size_t alloc_size;
6005
6006	retval = 0;
6007
6008	value = strtouq(id_str, &endptr, 0);
6009	if (*endptr != '\0') {
6010		if (error_str != NULL) {
6011			snprintf(error_str, error_str_len, "%s: error "
6012				 "parsing ID %s, 64-bit number required",
6013				 __func__, id_str);
6014		}
6015		retval = 1;
6016		goto bailout;
6017	}
6018
6019	switch (proto_id) {
6020	case SCSI_PROTO_FC:
6021		alloc_size = sizeof(struct scsi_transportid_fcp);
6022		break;
6023	case SCSI_PROTO_1394:
6024		alloc_size = sizeof(struct scsi_transportid_1394);
6025		break;
6026	case SCSI_PROTO_SAS:
6027		alloc_size = sizeof(struct scsi_transportid_sas);
6028		break;
6029	default:
6030		if (error_str != NULL) {
6031			snprintf(error_str, error_str_len, "%s: unsupported "
6032				 "protocol %d", __func__, proto_id);
6033		}
6034		retval = 1;
6035		goto bailout;
6036		break; /* NOTREACHED */
6037	}
6038#ifdef _KERNEL
6039	*hdr = malloc(alloc_size, type, flags);
6040#else /* _KERNEL */
6041	*hdr = malloc(alloc_size);
6042#endif /*_KERNEL */
6043	if (*hdr == NULL) {
6044		if (error_str != NULL) {
6045			snprintf(error_str, error_str_len, "%s: unable to "
6046				 "allocate %zu bytes", __func__, alloc_size);
6047		}
6048		retval = 1;
6049		goto bailout;
6050	}
6051
6052	*alloc_len = alloc_size;
6053
6054	bzero(*hdr, alloc_size);
6055
6056	switch (proto_id) {
6057	case SCSI_PROTO_FC: {
6058		struct scsi_transportid_fcp *fcp;
6059
6060		fcp = (struct scsi_transportid_fcp *)(*hdr);
6061		fcp->format_protocol = SCSI_PROTO_FC |
6062				       SCSI_TRN_FCP_FORMAT_DEFAULT;
6063		scsi_u64to8b(value, fcp->n_port_name);
6064		break;
6065	}
6066	case SCSI_PROTO_1394: {
6067		struct scsi_transportid_1394 *sbp;
6068
6069		sbp = (struct scsi_transportid_1394 *)(*hdr);
6070		sbp->format_protocol = SCSI_PROTO_1394 |
6071				       SCSI_TRN_1394_FORMAT_DEFAULT;
6072		scsi_u64to8b(value, sbp->eui64);
6073		break;
6074	}
6075	case SCSI_PROTO_SAS: {
6076		struct scsi_transportid_sas *sas;
6077
6078		sas = (struct scsi_transportid_sas *)(*hdr);
6079		sas->format_protocol = SCSI_PROTO_SAS |
6080				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6081		scsi_u64to8b(value, sas->sas_address);
6082		break;
6083	}
6084	default:
6085		break;
6086	}
6087bailout:
6088	return (retval);
6089}
6090
6091/*
6092 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6093 */
6094int
6095scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6096			   unsigned int *alloc_len,
6097#ifdef _KERNEL
6098			   struct malloc_type *type, int flags,
6099#endif
6100			   char *error_str, int error_str_len)
6101{
6102	unsigned long scsi_addr, target_port;
6103	struct scsi_transportid_spi *spi;
6104	char *tmpstr, *endptr;
6105	int retval;
6106
6107	retval = 0;
6108
6109	tmpstr = strsep(&id_str, ",");
6110	if (tmpstr == NULL) {
6111		if (error_str != NULL) {
6112			snprintf(error_str, error_str_len,
6113				 "%s: no ID found", __func__);
6114		}
6115		retval = 1;
6116		goto bailout;
6117	}
6118	scsi_addr = strtoul(tmpstr, &endptr, 0);
6119	if (*endptr != '\0') {
6120		if (error_str != NULL) {
6121			snprintf(error_str, error_str_len, "%s: error "
6122				 "parsing SCSI ID %s, number required",
6123				 __func__, tmpstr);
6124		}
6125		retval = 1;
6126		goto bailout;
6127	}
6128
6129	if (id_str == NULL) {
6130		if (error_str != NULL) {
6131			snprintf(error_str, error_str_len, "%s: no relative "
6132				 "target port found", __func__);
6133		}
6134		retval = 1;
6135		goto bailout;
6136	}
6137
6138	target_port = strtoul(id_str, &endptr, 0);
6139	if (*endptr != '\0') {
6140		if (error_str != NULL) {
6141			snprintf(error_str, error_str_len, "%s: error "
6142				 "parsing relative target port %s, number "
6143				 "required", __func__, id_str);
6144		}
6145		retval = 1;
6146		goto bailout;
6147	}
6148#ifdef _KERNEL
6149	spi = malloc(sizeof(*spi), type, flags);
6150#else
6151	spi = malloc(sizeof(*spi));
6152#endif
6153	if (spi == NULL) {
6154		if (error_str != NULL) {
6155			snprintf(error_str, error_str_len, "%s: unable to "
6156				 "allocate %zu bytes", __func__,
6157				 sizeof(*spi));
6158		}
6159		retval = 1;
6160		goto bailout;
6161	}
6162	*alloc_len = sizeof(*spi);
6163	bzero(spi, sizeof(*spi));
6164
6165	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6166	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6167	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6168
6169	*hdr = (struct scsi_transportid_header *)spi;
6170bailout:
6171	return (retval);
6172}
6173
6174/*
6175 * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6176 * optionally prefixed by "0x" or "0X".
6177 */
6178int
6179scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6180			    unsigned int *alloc_len,
6181#ifdef _KERNEL
6182			    struct malloc_type *type, int flags,
6183#endif
6184			    char *error_str, int error_str_len)
6185{
6186	struct scsi_transportid_rdma *rdma;
6187	int retval;
6188	size_t id_len, rdma_id_size;
6189	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6190	char *tmpstr;
6191	unsigned int i, j;
6192
6193	retval = 0;
6194	id_len = strlen(id_str);
6195	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6196
6197	/*
6198	 * Check the size.  It needs to be either 32 or 34 characters long.
6199	 */
6200	if ((id_len != (rdma_id_size * 2))
6201	 && (id_len != ((rdma_id_size * 2) + 2))) {
6202		if (error_str != NULL) {
6203			snprintf(error_str, error_str_len, "%s: RDMA ID "
6204				 "must be 32 hex digits (0x prefix "
6205				 "optional), only %zu seen", __func__, id_len);
6206		}
6207		retval = 1;
6208		goto bailout;
6209	}
6210
6211	tmpstr = id_str;
6212	/*
6213	 * If the user gave us 34 characters, the string needs to start
6214	 * with '0x'.
6215	 */
6216	if (id_len == ((rdma_id_size * 2) + 2)) {
6217	 	if ((tmpstr[0] == '0')
6218		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6219			tmpstr += 2;
6220		} else {
6221			if (error_str != NULL) {
6222				snprintf(error_str, error_str_len, "%s: RDMA "
6223					 "ID prefix, if used, must be \"0x\", "
6224					 "got %s", __func__, tmpstr);
6225			}
6226			retval = 1;
6227			goto bailout;
6228		}
6229	}
6230	bzero(rdma_id, sizeof(rdma_id));
6231
6232	/*
6233	 * Convert ASCII hex into binary bytes.  There is no standard
6234	 * 128-bit integer type, and so no strtou128t() routine to convert
6235	 * from hex into a large integer.  In the end, we're not going to
6236	 * an integer, but rather to a byte array, so that and the fact
6237	 * that we require the user to give us 32 hex digits simplifies the
6238	 * logic.
6239	 */
6240	for (i = 0; i < (rdma_id_size * 2); i++) {
6241		int cur_shift;
6242		unsigned char c;
6243
6244		/* Increment the byte array one for every 2 hex digits */
6245		j = i >> 1;
6246
6247		/*
6248		 * The first digit in every pair is the most significant
6249		 * 4 bits.  The second is the least significant 4 bits.
6250		 */
6251		if ((i % 2) == 0)
6252			cur_shift = 4;
6253		else
6254			cur_shift = 0;
6255
6256		c = tmpstr[i];
6257		/* Convert the ASCII hex character into a number */
6258		if (isdigit(c))
6259			c -= '0';
6260		else if (isalpha(c))
6261			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6262		else {
6263			if (error_str != NULL) {
6264				snprintf(error_str, error_str_len, "%s: "
6265					 "RDMA ID must be hex digits, got "
6266					 "invalid character %c", __func__,
6267					 tmpstr[i]);
6268			}
6269			retval = 1;
6270			goto bailout;
6271		}
6272		/*
6273		 * The converted number can't be less than 0; the type is
6274		 * unsigned, and the subtraction logic will not give us
6275		 * a negative number.  So we only need to make sure that
6276		 * the value is not greater than 0xf.  (i.e. make sure the
6277		 * user didn't give us a value like "0x12jklmno").
6278		 */
6279		if (c > 0xf) {
6280			if (error_str != NULL) {
6281				snprintf(error_str, error_str_len, "%s: "
6282					 "RDMA ID must be hex digits, got "
6283					 "invalid character %c", __func__,
6284					 tmpstr[i]);
6285			}
6286			retval = 1;
6287			goto bailout;
6288		}
6289
6290		rdma_id[j] |= c << cur_shift;
6291	}
6292
6293#ifdef _KERNEL
6294	rdma = malloc(sizeof(*rdma), type, flags);
6295#else
6296	rdma = malloc(sizeof(*rdma));
6297#endif
6298	if (rdma == NULL) {
6299		if (error_str != NULL) {
6300			snprintf(error_str, error_str_len, "%s: unable to "
6301				 "allocate %zu bytes", __func__,
6302				 sizeof(*rdma));
6303		}
6304		retval = 1;
6305		goto bailout;
6306	}
6307	*alloc_len = sizeof(*rdma);
6308	bzero(rdma, *alloc_len);
6309
6310	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6311	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6312
6313	*hdr = (struct scsi_transportid_header *)rdma;
6314
6315bailout:
6316	return (retval);
6317}
6318
6319/*
6320 * Parse an iSCSI name.  The format is either just the name:
6321 *
6322 *	iqn.2012-06.com.example:target0
6323 * or the name, separator and initiator session ID:
6324 *
6325 *	iqn.2012-06.com.example:target0,i,0x123
6326 *
6327 * The separator format is exact.
6328 */
6329int
6330scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6331			     unsigned int *alloc_len,
6332#ifdef _KERNEL
6333			     struct malloc_type *type, int flags,
6334#endif
6335			     char *error_str, int error_str_len)
6336{
6337	size_t id_len, sep_len, id_size, name_len;
6338	int retval;
6339	unsigned int i, sep_pos, sep_found;
6340	const char *sep_template = ",i,0x";
6341	const char *iqn_prefix = "iqn.";
6342	struct scsi_transportid_iscsi_device *iscsi;
6343
6344	retval = 0;
6345	sep_found = 0;
6346
6347	id_len = strlen(id_str);
6348	sep_len = strlen(sep_template);
6349
6350	/*
6351	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6352	 * or any other form, is an error.  So look for a comma, and once
6353	 * we find that, the next few characters must match the separator
6354	 * exactly.  Once we get through the separator, there should be at
6355	 * least one character.
6356	 */
6357	for (i = 0, sep_pos = 0; i < id_len; i++) {
6358		if (sep_pos == 0) {
6359		 	if (id_str[i] == sep_template[sep_pos])
6360				sep_pos++;
6361
6362			continue;
6363		}
6364		if (sep_pos < sep_len) {
6365			if (id_str[i] == sep_template[sep_pos]) {
6366				sep_pos++;
6367				continue;
6368			}
6369			if (error_str != NULL) {
6370				snprintf(error_str, error_str_len, "%s: "
6371					 "invalid separator in iSCSI name "
6372					 "\"%s\"",
6373					 __func__, id_str);
6374			}
6375			retval = 1;
6376			goto bailout;
6377		} else {
6378			sep_found = 1;
6379			break;
6380		}
6381	}
6382
6383	/*
6384	 * Check to see whether we have a separator but no digits after it.
6385	 */
6386	if ((sep_pos != 0)
6387	 && (sep_found == 0)) {
6388		if (error_str != NULL) {
6389			snprintf(error_str, error_str_len, "%s: no digits "
6390				 "found after separator in iSCSI name \"%s\"",
6391				 __func__, id_str);
6392		}
6393		retval = 1;
6394		goto bailout;
6395	}
6396
6397	/*
6398	 * The incoming ID string has the "iqn." prefix stripped off.  We
6399	 * need enough space for the base structure (the structures are the
6400	 * same for the two iSCSI forms), the prefix, the ID string and a
6401	 * terminating NUL.
6402	 */
6403	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6404
6405#ifdef _KERNEL
6406	iscsi = malloc(id_size, type, flags);
6407#else
6408	iscsi = malloc(id_size);
6409#endif
6410	if (iscsi == NULL) {
6411		if (error_str != NULL) {
6412			snprintf(error_str, error_str_len, "%s: unable to "
6413				 "allocate %zu bytes", __func__, id_size);
6414		}
6415		retval = 1;
6416		goto bailout;
6417	}
6418	*alloc_len = id_size;
6419	bzero(iscsi, id_size);
6420
6421	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6422	if (sep_found == 0)
6423		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6424	else
6425		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6426	name_len = id_size - sizeof(*iscsi);
6427	scsi_ulto2b(name_len, iscsi->additional_length);
6428	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6429
6430	*hdr = (struct scsi_transportid_header *)iscsi;
6431
6432bailout:
6433	return (retval);
6434}
6435
6436/*
6437 * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6438 * of the form 'bus,device,function' or 'bus,function'.
6439 */
6440int
6441scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6442			   unsigned int *alloc_len,
6443#ifdef _KERNEL
6444			   struct malloc_type *type, int flags,
6445#endif
6446			   char *error_str, int error_str_len)
6447{
6448	struct scsi_transportid_sop *sop;
6449	unsigned long bus, device, function;
6450	char *tmpstr, *endptr;
6451	int retval, device_spec;
6452
6453	retval = 0;
6454	device_spec = 0;
6455	device = 0;
6456
6457	tmpstr = strsep(&id_str, ",");
6458	if ((tmpstr == NULL)
6459	 || (*tmpstr == '\0')) {
6460		if (error_str != NULL) {
6461			snprintf(error_str, error_str_len, "%s: no ID found",
6462				 __func__);
6463		}
6464		retval = 1;
6465		goto bailout;
6466	}
6467	bus = strtoul(tmpstr, &endptr, 0);
6468	if (*endptr != '\0') {
6469		if (error_str != NULL) {
6470			snprintf(error_str, error_str_len, "%s: error "
6471				 "parsing PCIe bus %s, number required",
6472				 __func__, tmpstr);
6473		}
6474		retval = 1;
6475		goto bailout;
6476	}
6477	if ((id_str == NULL)
6478	 || (*id_str == '\0')) {
6479		if (error_str != NULL) {
6480			snprintf(error_str, error_str_len, "%s: no PCIe "
6481				 "device or function found", __func__);
6482		}
6483		retval = 1;
6484		goto bailout;
6485	}
6486	tmpstr = strsep(&id_str, ",");
6487	function = strtoul(tmpstr, &endptr, 0);
6488	if (*endptr != '\0') {
6489		if (error_str != NULL) {
6490			snprintf(error_str, error_str_len, "%s: error "
6491				 "parsing PCIe device/function %s, number "
6492				 "required", __func__, tmpstr);
6493		}
6494		retval = 1;
6495		goto bailout;
6496	}
6497	/*
6498	 * Check to see whether the user specified a third value.  If so,
6499	 * the second is the device.
6500	 */
6501	if (id_str != NULL) {
6502		if (*id_str == '\0') {
6503			if (error_str != NULL) {
6504				snprintf(error_str, error_str_len, "%s: "
6505					 "no PCIe function found", __func__);
6506			}
6507			retval = 1;
6508			goto bailout;
6509		}
6510		device = function;
6511		device_spec = 1;
6512		function = strtoul(id_str, &endptr, 0);
6513		if (*endptr != '\0') {
6514			if (error_str != NULL) {
6515				snprintf(error_str, error_str_len, "%s: "
6516					 "error parsing PCIe function %s, "
6517					 "number required", __func__, id_str);
6518			}
6519			retval = 1;
6520			goto bailout;
6521		}
6522	}
6523	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6524		if (error_str != NULL) {
6525			snprintf(error_str, error_str_len, "%s: bus value "
6526				 "%lu greater than maximum %u", __func__,
6527				 bus, SCSI_TRN_SOP_BUS_MAX);
6528		}
6529		retval = 1;
6530		goto bailout;
6531	}
6532
6533	if ((device_spec != 0)
6534	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6535		if (error_str != NULL) {
6536			snprintf(error_str, error_str_len, "%s: device value "
6537				 "%lu greater than maximum %u", __func__,
6538				 device, SCSI_TRN_SOP_DEV_MAX);
6539		}
6540		retval = 1;
6541		goto bailout;
6542	}
6543
6544	if (((device_spec != 0)
6545	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6546	 || ((device_spec == 0)
6547	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6548		if (error_str != NULL) {
6549			snprintf(error_str, error_str_len, "%s: function value "
6550				 "%lu greater than maximum %u", __func__,
6551				 function, (device_spec == 0) ?
6552				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6553				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6554		}
6555		retval = 1;
6556		goto bailout;
6557	}
6558
6559#ifdef _KERNEL
6560	sop = malloc(sizeof(*sop), type, flags);
6561#else
6562	sop = malloc(sizeof(*sop));
6563#endif
6564	if (sop == NULL) {
6565		if (error_str != NULL) {
6566			snprintf(error_str, error_str_len, "%s: unable to "
6567				 "allocate %zu bytes", __func__, sizeof(*sop));
6568		}
6569		retval = 1;
6570		goto bailout;
6571	}
6572	*alloc_len = sizeof(*sop);
6573	bzero(sop, sizeof(*sop));
6574	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6575	if (device_spec != 0) {
6576		struct scsi_sop_routing_id_norm rid;
6577
6578		rid.bus = bus;
6579		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6580		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6581		      sizeof(sop->routing_id)));
6582	} else {
6583		struct scsi_sop_routing_id_alt rid;
6584
6585		rid.bus = bus;
6586		rid.function = function;
6587		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6588		      sizeof(sop->routing_id)));
6589	}
6590
6591	*hdr = (struct scsi_transportid_header *)sop;
6592bailout:
6593	return (retval);
6594}
6595
6596/*
6597 * transportid_str: NUL-terminated string with format: protcol,id
6598 *		    The ID is protocol specific.
6599 * hdr:		    Storage will be allocated for the transport ID.
6600 * alloc_len:	    The amount of memory allocated is returned here.
6601 * type:	    Malloc bucket (kernel only).
6602 * flags:	    Malloc flags (kernel only).
6603 * error_str:	    If non-NULL, it will contain error information (without
6604 * 		    a terminating newline) if an error is returned.
6605 * error_str_len:   Allocated length of the error string.
6606 *
6607 * Returns 0 for success, non-zero for failure.
6608 */
6609int
6610scsi_parse_transportid(char *transportid_str,
6611		       struct scsi_transportid_header **hdr,
6612		       unsigned int *alloc_len,
6613#ifdef _KERNEL
6614		       struct malloc_type *type, int flags,
6615#endif
6616		       char *error_str, int error_str_len)
6617{
6618	char *tmpstr;
6619	scsi_nv_status status;
6620	u_int num_proto_entries;
6621	int retval, table_entry;
6622
6623	retval = 0;
6624	table_entry = 0;
6625
6626	/*
6627	 * We do allow a period as well as a comma to separate the protocol
6628	 * from the ID string.  This is to accommodate iSCSI names, which
6629	 * start with "iqn.".
6630	 */
6631	tmpstr = strsep(&transportid_str, ",.");
6632	if (tmpstr == NULL) {
6633		if (error_str != NULL) {
6634			snprintf(error_str, error_str_len,
6635				 "%s: transportid_str is NULL", __func__);
6636		}
6637		retval = 1;
6638		goto bailout;
6639	}
6640
6641	num_proto_entries = nitems(scsi_proto_map);
6642	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6643			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6644	if (status != SCSI_NV_FOUND) {
6645		if (error_str != NULL) {
6646			snprintf(error_str, error_str_len, "%s: %s protocol "
6647				 "name %s", __func__,
6648				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6649				 "invalid", tmpstr);
6650		}
6651		retval = 1;
6652		goto bailout;
6653	}
6654	switch (scsi_proto_map[table_entry].value) {
6655	case SCSI_PROTO_FC:
6656	case SCSI_PROTO_1394:
6657	case SCSI_PROTO_SAS:
6658		retval = scsi_parse_transportid_64bit(
6659		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6660		    alloc_len,
6661#ifdef _KERNEL
6662		    type, flags,
6663#endif
6664		    error_str, error_str_len);
6665		break;
6666	case SCSI_PROTO_SPI:
6667		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6668		    alloc_len,
6669#ifdef _KERNEL
6670		    type, flags,
6671#endif
6672		    error_str, error_str_len);
6673		break;
6674	case SCSI_PROTO_RDMA:
6675		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6676		    alloc_len,
6677#ifdef _KERNEL
6678		    type, flags,
6679#endif
6680		    error_str, error_str_len);
6681		break;
6682	case SCSI_PROTO_ISCSI:
6683		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6684		    alloc_len,
6685#ifdef _KERNEL
6686		    type, flags,
6687#endif
6688		    error_str, error_str_len);
6689		break;
6690	case SCSI_PROTO_SOP:
6691		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6692		    alloc_len,
6693#ifdef _KERNEL
6694		    type, flags,
6695#endif
6696		    error_str, error_str_len);
6697		break;
6698	case SCSI_PROTO_SSA:
6699	case SCSI_PROTO_ADITP:
6700	case SCSI_PROTO_ATA:
6701	case SCSI_PROTO_UAS:
6702	case SCSI_PROTO_NONE:
6703	default:
6704		/*
6705		 * There is no format defined for a Transport ID for these
6706		 * protocols.  So even if the user gives us something, we
6707		 * have no way to turn it into a standard SCSI Transport ID.
6708		 */
6709		retval = 1;
6710		if (error_str != NULL) {
6711			snprintf(error_str, error_str_len, "%s: no Transport "
6712				 "ID format exists for protocol %s",
6713				 __func__, tmpstr);
6714		}
6715		goto bailout;
6716		break;	/* NOTREACHED */
6717	}
6718bailout:
6719	return (retval);
6720}
6721
6722struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6723	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6724	  "Remaining Capacity in Partition",
6725	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6726	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6727	  "Maximum Capacity in Partition",
6728	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6729	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6730	  "TapeAlert Flags",
6731	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6732	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6733	  "Load Count",
6734	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6735	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6736	  "MAM Space Remaining",
6737	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6738	  /*parse_str*/ NULL },
6739	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6740	  "Assigning Organization",
6741	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6742	  /*parse_str*/ NULL },
6743	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6744	  "Format Density Code",
6745	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6746	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6747	  "Initialization Count",
6748	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6749	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6750	  "Volume Identifier",
6751	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6752	  /*parse_str*/ NULL },
6753	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6754	  "Volume Change Reference",
6755	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6756	  /*parse_str*/ NULL },
6757	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6758	  "Device Vendor/Serial at Last Load",
6759	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6760	  /*parse_str*/ NULL },
6761	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6762	  "Device Vendor/Serial at Last Load - 1",
6763	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6764	  /*parse_str*/ NULL },
6765	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6766	  "Device Vendor/Serial at Last Load - 2",
6767	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6768	  /*parse_str*/ NULL },
6769	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6770	  "Device Vendor/Serial at Last Load - 3",
6771	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6772	  /*parse_str*/ NULL },
6773	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6774	  "Total MB Written in Medium Life",
6775	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6776	  /*parse_str*/ NULL },
6777	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6778	  "Total MB Read in Medium Life",
6779	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6780	  /*parse_str*/ NULL },
6781	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6782	  "Total MB Written in Current/Last Load",
6783	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6784	  /*parse_str*/ NULL },
6785	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6786	  "Total MB Read in Current/Last Load",
6787	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6788	  /*parse_str*/ NULL },
6789	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6790	  "Logical Position of First Encrypted Block",
6791	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6792	  /*parse_str*/ NULL },
6793	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6794	  "Logical Position of First Unencrypted Block after First "
6795	  "Encrypted Block",
6796	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6797	  /*parse_str*/ NULL },
6798	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6799	  "Medium Usage History",
6800	  /*suffix*/ NULL, /*to_str*/ NULL,
6801	  /*parse_str*/ NULL },
6802	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6803	  "Partition Usage History",
6804	  /*suffix*/ NULL, /*to_str*/ NULL,
6805	  /*parse_str*/ NULL },
6806	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6807	  "Medium Manufacturer",
6808	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6809	  /*parse_str*/ NULL },
6810	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6811	  "Medium Serial Number",
6812	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6813	  /*parse_str*/ NULL },
6814	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6815	  "Medium Length",
6816	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6817	  /*parse_str*/ NULL },
6818	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6819	  SCSI_ATTR_FLAG_FP_1DIGIT,
6820	  "Medium Width",
6821	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6822	  /*parse_str*/ NULL },
6823	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6824	  "Assigning Organization",
6825	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6826	  /*parse_str*/ NULL },
6827	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6828	  "Medium Density Code",
6829	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6830	  /*parse_str*/ NULL },
6831	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6832	  "Medium Manufacture Date",
6833	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6834	  /*parse_str*/ NULL },
6835	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6836	  "MAM Capacity",
6837	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6838	  /*parse_str*/ NULL },
6839	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6840	  "Medium Type",
6841	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6842	  /*parse_str*/ NULL },
6843	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6844	  "Medium Type Information",
6845	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6846	  /*parse_str*/ NULL },
6847	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6848	  "Medium Serial Number",
6849	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6850	  /*parse_str*/ NULL },
6851	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6852	  "Application Vendor",
6853	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6854	  /*parse_str*/ NULL },
6855	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6856	  "Application Name",
6857	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6858	  /*parse_str*/ NULL },
6859	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6860	  "Application Version",
6861	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6862	  /*parse_str*/ NULL },
6863	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6864	  "User Medium Text Label",
6865	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6866	  /*parse_str*/ NULL },
6867	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6868	  "Date and Time Last Written",
6869	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6870	  /*parse_str*/ NULL },
6871	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6872	  "Text Localization Identifier",
6873	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6874	  /*parse_str*/ NULL },
6875	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6876	  "Barcode",
6877	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6878	  /*parse_str*/ NULL },
6879	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6880	  "Owning Host Textual Name",
6881	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6882	  /*parse_str*/ NULL },
6883	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6884	  "Media Pool",
6885	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6886	  /*parse_str*/ NULL },
6887	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6888	  "Partition User Text Label",
6889	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6890	  /*parse_str*/ NULL },
6891	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6892	  "Load/Unload at Partition",
6893	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6894	  /*parse_str*/ NULL },
6895	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6896	  "Application Format Version",
6897	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6898	  /*parse_str*/ NULL },
6899	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6900	  "Volume Coherency Information",
6901	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6902	  /*parse_str*/ NULL },
6903	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6904	  "Spectra MLM Creation",
6905	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6906	  /*parse_str*/ NULL },
6907	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6908	  "Spectra MLM C3",
6909	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6910	  /*parse_str*/ NULL },
6911	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6912	  "Spectra MLM RW",
6913	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6914	  /*parse_str*/ NULL },
6915	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6916	  "Spectra MLM SDC List",
6917	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6918	  /*parse_str*/ NULL },
6919	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6920	  "Spectra MLM Post Scan",
6921	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6922	  /*parse_str*/ NULL },
6923	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6924	  "Spectra MLM Checksum",
6925	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6926	  /*parse_str*/ NULL },
6927	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6928	  "Spectra MLM Creation",
6929	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6930	  /*parse_str*/ NULL },
6931	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6932	  "Spectra MLM C3",
6933	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6934	  /*parse_str*/ NULL },
6935	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6936	  "Spectra MLM RW",
6937	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6938	  /*parse_str*/ NULL },
6939	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6940	  "Spectra MLM SDC List",
6941	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6942	  /*parse_str*/ NULL },
6943	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6944	  "Spectra MLM Post Scan",
6945	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6946	  /*parse_str*/ NULL },
6947	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6948	  "Spectra MLM Checksum",
6949	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6950	  /*parse_str*/ NULL },
6951};
6952
6953/*
6954 * Print out Volume Coherency Information (Attribute 0x080c).
6955 * This field has two variable length members, including one at the
6956 * beginning, so it isn't practical to have a fixed structure definition.
6957 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6958 * 2013.
6959 */
6960int
6961scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6962			 uint32_t valid_len, uint32_t flags,
6963			 uint32_t output_flags, char *error_str,
6964			 int error_str_len)
6965{
6966	size_t avail_len;
6967	uint32_t field_size;
6968	uint64_t tmp_val;
6969	uint8_t *cur_ptr;
6970	int retval;
6971	int vcr_len, as_len;
6972
6973	retval = 0;
6974	tmp_val = 0;
6975
6976	field_size = scsi_2btoul(hdr->length);
6977	avail_len = valid_len - sizeof(*hdr);
6978	if (field_size > avail_len) {
6979		if (error_str != NULL) {
6980			snprintf(error_str, error_str_len, "Available "
6981				 "length of attribute ID 0x%.4x %zu < field "
6982				 "length %u", scsi_2btoul(hdr->id), avail_len,
6983				 field_size);
6984		}
6985		retval = 1;
6986		goto bailout;
6987	} else if (field_size == 0) {
6988		/*
6989		 * It isn't clear from the spec whether a field length of
6990		 * 0 is invalid here.  It probably is, but be lenient here
6991		 * to avoid inconveniencing the user.
6992		 */
6993		goto bailout;
6994	}
6995	cur_ptr = hdr->attribute;
6996	vcr_len = *cur_ptr;
6997	cur_ptr++;
6998
6999	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
7000
7001	switch (vcr_len) {
7002	case 0:
7003		if (error_str != NULL) {
7004			snprintf(error_str, error_str_len, "Volume Change "
7005				 "Reference value has length of 0");
7006		}
7007		retval = 1;
7008		goto bailout;
7009		break; /*NOTREACHED*/
7010	case 1:
7011		tmp_val = *cur_ptr;
7012		break;
7013	case 2:
7014		tmp_val = scsi_2btoul(cur_ptr);
7015		break;
7016	case 3:
7017		tmp_val = scsi_3btoul(cur_ptr);
7018		break;
7019	case 4:
7020		tmp_val = scsi_4btoul(cur_ptr);
7021		break;
7022	case 8:
7023		tmp_val = scsi_8btou64(cur_ptr);
7024		break;
7025	default:
7026		sbuf_printf(sb, "\n");
7027		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7028		break;
7029	}
7030	if (vcr_len <= 8)
7031		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7032
7033	cur_ptr += vcr_len;
7034	tmp_val = scsi_8btou64(cur_ptr);
7035	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7036
7037	cur_ptr += sizeof(tmp_val);
7038	tmp_val = scsi_8btou64(cur_ptr);
7039	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7040		    (uintmax_t)tmp_val);
7041
7042	/*
7043	 * Figure out how long the Application Client Specific Information
7044	 * is and produce a hexdump.
7045	 */
7046	cur_ptr += sizeof(tmp_val);
7047	as_len = scsi_2btoul(cur_ptr);
7048	cur_ptr += sizeof(uint16_t);
7049	sbuf_printf(sb, "\tApplication Client Specific Information: ");
7050	if (((as_len == SCSI_LTFS_VER0_LEN)
7051	  || (as_len == SCSI_LTFS_VER1_LEN))
7052	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7053		sbuf_printf(sb, "LTFS\n");
7054		cur_ptr += SCSI_LTFS_STR_LEN + 1;
7055		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7056			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7057		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7058		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7059		/* XXX KDM check the length */
7060		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7061	} else {
7062		sbuf_printf(sb, "Unknown\n");
7063		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7064	}
7065
7066bailout:
7067	return (retval);
7068}
7069
7070int
7071scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7072			 uint32_t valid_len, uint32_t flags,
7073			 uint32_t output_flags, char *error_str,
7074			 int error_str_len)
7075{
7076	size_t avail_len;
7077	uint32_t field_size;
7078	struct scsi_attrib_vendser *vendser;
7079	cam_strvis_flags strvis_flags;
7080	int retval = 0;
7081
7082	field_size = scsi_2btoul(hdr->length);
7083	avail_len = valid_len - sizeof(*hdr);
7084	if (field_size > avail_len) {
7085		if (error_str != NULL) {
7086			snprintf(error_str, error_str_len, "Available "
7087				 "length of attribute ID 0x%.4x %zu < field "
7088				 "length %u", scsi_2btoul(hdr->id), avail_len,
7089				 field_size);
7090		}
7091		retval = 1;
7092		goto bailout;
7093	} else if (field_size == 0) {
7094		/*
7095		 * A field size of 0 doesn't make sense here.  The device
7096		 * can at least give you the vendor ID, even if it can't
7097		 * give you the serial number.
7098		 */
7099		if (error_str != NULL) {
7100			snprintf(error_str, error_str_len, "The length of "
7101				 "attribute ID 0x%.4x is 0",
7102				 scsi_2btoul(hdr->id));
7103		}
7104		retval = 1;
7105		goto bailout;
7106	}
7107	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7108
7109	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7110	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7111		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7112		break;
7113	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7114		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7115		break;
7116	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7117	default:
7118		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7119		break;
7120	}
7121	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7122	    strvis_flags);
7123	sbuf_putc(sb, ' ');
7124	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7125	    strvis_flags);
7126bailout:
7127	return (retval);
7128}
7129
7130int
7131scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7132			 uint32_t valid_len, uint32_t flags,
7133			 uint32_t output_flags, char *error_str,
7134			 int error_str_len)
7135{
7136	uint32_t field_size;
7137	ssize_t avail_len;
7138	uint32_t print_len;
7139	uint8_t *num_ptr;
7140	int retval = 0;
7141
7142	field_size = scsi_2btoul(hdr->length);
7143	avail_len = valid_len - sizeof(*hdr);
7144	print_len = MIN(avail_len, field_size);
7145	num_ptr = hdr->attribute;
7146
7147	if (print_len > 0) {
7148		sbuf_printf(sb, "\n");
7149		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7150	}
7151
7152	return (retval);
7153}
7154
7155int
7156scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7157		     uint32_t valid_len, uint32_t flags,
7158		     uint32_t output_flags, char *error_str,
7159		     int error_str_len)
7160{
7161	uint64_t print_number;
7162	size_t avail_len;
7163	uint32_t number_size;
7164	int retval = 0;
7165
7166	number_size = scsi_2btoul(hdr->length);
7167
7168	avail_len = valid_len - sizeof(*hdr);
7169	if (avail_len < number_size) {
7170		if (error_str != NULL) {
7171			snprintf(error_str, error_str_len, "Available "
7172				 "length of attribute ID 0x%.4x %zu < field "
7173				 "length %u", scsi_2btoul(hdr->id), avail_len,
7174				 number_size);
7175		}
7176		retval = 1;
7177		goto bailout;
7178	}
7179
7180	switch (number_size) {
7181	case 0:
7182		/*
7183		 * We don't treat this as an error, since there may be
7184		 * scenarios where a device reports a field but then gives
7185		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7186		 */
7187		goto bailout;
7188		break; /*NOTREACHED*/
7189	case 1:
7190		print_number = hdr->attribute[0];
7191		break;
7192	case 2:
7193		print_number = scsi_2btoul(hdr->attribute);
7194		break;
7195	case 3:
7196		print_number = scsi_3btoul(hdr->attribute);
7197		break;
7198	case 4:
7199		print_number = scsi_4btoul(hdr->attribute);
7200		break;
7201	case 8:
7202		print_number = scsi_8btou64(hdr->attribute);
7203		break;
7204	default:
7205		/*
7206		 * If we wind up here, the number is too big to print
7207		 * normally, so just do a hexdump.
7208		 */
7209		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7210						  flags, output_flags,
7211						  error_str, error_str_len);
7212		goto bailout;
7213		break;
7214	}
7215
7216	if (flags & SCSI_ATTR_FLAG_FP) {
7217#ifndef _KERNEL
7218		long double num_float;
7219
7220		num_float = (long double)print_number;
7221
7222		if (flags & SCSI_ATTR_FLAG_DIV_10)
7223			num_float /= 10;
7224
7225		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7226			    1 : 0, num_float);
7227#else /* _KERNEL */
7228		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7229			    (print_number / 10) : print_number);
7230#endif /* _KERNEL */
7231	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7232		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7233	} else
7234		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7235
7236bailout:
7237	return (retval);
7238}
7239
7240int
7241scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7242		       uint32_t valid_len, uint32_t flags,
7243		       uint32_t output_flags, char *error_str,
7244		       int error_str_len)
7245{
7246	size_t avail_len;
7247	uint32_t field_size, print_size;
7248	int retval = 0;
7249
7250	avail_len = valid_len - sizeof(*hdr);
7251	field_size = scsi_2btoul(hdr->length);
7252	print_size = MIN(avail_len, field_size);
7253
7254	if (print_size > 0) {
7255		cam_strvis_flags strvis_flags;
7256
7257		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7258		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7259			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7260			break;
7261		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7262			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7263			break;
7264		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7265		default:
7266			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7267			break;
7268		}
7269		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7270	} else if (avail_len < field_size) {
7271		/*
7272		 * We only report an error if the user didn't allocate
7273		 * enough space to hold the full value of this field.  If
7274		 * the field length is 0, that is allowed by the spec.
7275		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7276		 * "This attribute indicates the current volume identifier
7277		 * (see SMC-3) of the medium. If the device server supports
7278		 * this attribute but does not have access to the volume
7279		 * identifier, the device server shall report this attribute
7280		 * with an attribute length value of zero."
7281		 */
7282		if (error_str != NULL) {
7283			snprintf(error_str, error_str_len, "Available "
7284				 "length of attribute ID 0x%.4x %zu < field "
7285				 "length %u", scsi_2btoul(hdr->id), avail_len,
7286				 field_size);
7287		}
7288		retval = 1;
7289	}
7290
7291	return (retval);
7292}
7293
7294int
7295scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7296		      uint32_t valid_len, uint32_t flags,
7297		      uint32_t output_flags, char *error_str,
7298		      int error_str_len)
7299{
7300	size_t avail_len;
7301	uint32_t field_size, print_size;
7302	int retval = 0;
7303	int esc_text = 1;
7304
7305	avail_len = valid_len - sizeof(*hdr);
7306	field_size = scsi_2btoul(hdr->length);
7307	print_size = MIN(avail_len, field_size);
7308
7309	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7310	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7311		esc_text = 0;
7312
7313	if (print_size > 0) {
7314		uint32_t i;
7315
7316		for (i = 0; i < print_size; i++) {
7317			if (hdr->attribute[i] == '\0')
7318				continue;
7319			else if (((unsigned char)hdr->attribute[i] < 0x80)
7320			      || (esc_text == 0))
7321				sbuf_putc(sb, hdr->attribute[i]);
7322			else
7323				sbuf_printf(sb, "%%%02x",
7324				    (unsigned char)hdr->attribute[i]);
7325		}
7326	} else if (avail_len < field_size) {
7327		/*
7328		 * We only report an error if the user didn't allocate
7329		 * enough space to hold the full value of this field.
7330		 */
7331		if (error_str != NULL) {
7332			snprintf(error_str, error_str_len, "Available "
7333				 "length of attribute ID 0x%.4x %zu < field "
7334				 "length %u", scsi_2btoul(hdr->id), avail_len,
7335				 field_size);
7336		}
7337		retval = 1;
7338	}
7339
7340	return (retval);
7341}
7342
7343struct scsi_attrib_table_entry *
7344scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7345		       size_t num_table_entries, uint32_t id)
7346{
7347	uint32_t i;
7348
7349	for (i = 0; i < num_table_entries; i++) {
7350		if (table[i].id == id)
7351			return (&table[i]);
7352	}
7353
7354	return (NULL);
7355}
7356
7357struct scsi_attrib_table_entry *
7358scsi_get_attrib_entry(uint32_t id)
7359{
7360	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7361	    nitems(scsi_mam_attr_table), id));
7362}
7363
7364int
7365scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7366   struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7367   char *error_str, size_t error_str_len)
7368{
7369	int retval;
7370
7371	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7372	case SMA_FORMAT_ASCII:
7373		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7374		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7375		break;
7376	case SMA_FORMAT_BINARY:
7377		if (scsi_2btoul(hdr->length) <= 8)
7378			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7379			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7380			    error_str_len);
7381		else
7382			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7383			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7384			    error_str_len);
7385		break;
7386	case SMA_FORMAT_TEXT:
7387		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7388		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7389		    error_str_len);
7390		break;
7391	default:
7392		if (error_str != NULL) {
7393			snprintf(error_str, error_str_len, "Unknown attribute "
7394			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7395		}
7396		retval = 1;
7397		goto bailout;
7398		break; /*NOTREACHED*/
7399	}
7400
7401	sbuf_trim(sb);
7402
7403bailout:
7404
7405	return (retval);
7406}
7407
7408void
7409scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7410			struct scsi_mam_attribute_header *hdr,
7411			uint32_t valid_len, const char *desc)
7412{
7413	int need_space = 0;
7414	uint32_t len;
7415	uint32_t id;
7416
7417	/*
7418	 * We can't do anything if we don't have enough valid data for the
7419	 * header.
7420	 */
7421	if (valid_len < sizeof(*hdr))
7422		return;
7423
7424	id = scsi_2btoul(hdr->id);
7425	/*
7426	 * Note that we print out the value of the attribute listed in the
7427	 * header, regardless of whether we actually got that many bytes
7428	 * back from the device through the controller.  A truncated result
7429	 * could be the result of a failure to ask for enough data; the
7430	 * header indicates how many bytes are allocated for this attribute
7431	 * in the MAM.
7432	 */
7433	len = scsi_2btoul(hdr->length);
7434
7435	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7436	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7437		return;
7438
7439	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7440	 && (desc != NULL)) {
7441		sbuf_printf(sb, "%s", desc);
7442		need_space = 1;
7443	}
7444
7445	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7446		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7447		need_space = 0;
7448	}
7449
7450	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7451		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7452		need_space = 0;
7453	}
7454	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7455		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7456			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7457	}
7458	sbuf_printf(sb, ": ");
7459}
7460
7461int
7462scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7463		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7464		 size_t num_user_entries, int prefer_user_table,
7465		 uint32_t output_flags, char *error_str, int error_str_len)
7466{
7467	int retval;
7468	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7469	struct scsi_attrib_table_entry *entry = NULL;
7470	size_t table1_size = 0, table2_size = 0;
7471	uint32_t id;
7472
7473	retval = 0;
7474
7475	if (valid_len < sizeof(*hdr)) {
7476		retval = 1;
7477		goto bailout;
7478	}
7479
7480	id = scsi_2btoul(hdr->id);
7481
7482	if (user_table != NULL) {
7483		if (prefer_user_table != 0) {
7484			table1 = user_table;
7485			table1_size = num_user_entries;
7486			table2 = scsi_mam_attr_table;
7487			table2_size = nitems(scsi_mam_attr_table);
7488		} else {
7489			table1 = scsi_mam_attr_table;
7490			table1_size = nitems(scsi_mam_attr_table);
7491			table2 = user_table;
7492			table2_size = num_user_entries;
7493		}
7494	} else {
7495		table1 = scsi_mam_attr_table;
7496		table1_size = nitems(scsi_mam_attr_table);
7497	}
7498
7499	entry = scsi_find_attrib_entry(table1, table1_size, id);
7500	if (entry != NULL) {
7501		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7502					entry->desc);
7503		if (entry->to_str == NULL)
7504			goto print_default;
7505		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7506				       output_flags, error_str, error_str_len);
7507		goto bailout;
7508	}
7509	if (table2 != NULL) {
7510		entry = scsi_find_attrib_entry(table2, table2_size, id);
7511		if (entry != NULL) {
7512			if (entry->to_str == NULL)
7513				goto print_default;
7514
7515			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7516						valid_len, entry->desc);
7517			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7518					       output_flags, error_str,
7519					       error_str_len);
7520			goto bailout;
7521		}
7522	}
7523
7524	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7525
7526print_default:
7527	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7528	    error_str, error_str_len);
7529bailout:
7530	if (retval == 0) {
7531	 	if ((entry != NULL)
7532		 && (entry->suffix != NULL))
7533			sbuf_printf(sb, " %s", entry->suffix);
7534
7535		sbuf_trim(sb);
7536		sbuf_printf(sb, "\n");
7537	}
7538
7539	return (retval);
7540}
7541
7542void
7543scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7544		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7545		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7546{
7547	struct scsi_test_unit_ready *scsi_cmd;
7548
7549	cam_fill_csio(csio,
7550		      retries,
7551		      cbfcnp,
7552		      CAM_DIR_NONE,
7553		      tag_action,
7554		      /*data_ptr*/NULL,
7555		      /*dxfer_len*/0,
7556		      sense_len,
7557		      sizeof(*scsi_cmd),
7558		      timeout);
7559
7560	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7561	bzero(scsi_cmd, sizeof(*scsi_cmd));
7562	scsi_cmd->opcode = TEST_UNIT_READY;
7563}
7564
7565void
7566scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7567		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7568		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7569		   u_int8_t sense_len, u_int32_t timeout)
7570{
7571	struct scsi_request_sense *scsi_cmd;
7572
7573	cam_fill_csio(csio,
7574		      retries,
7575		      cbfcnp,
7576		      CAM_DIR_IN,
7577		      tag_action,
7578		      data_ptr,
7579		      dxfer_len,
7580		      sense_len,
7581		      sizeof(*scsi_cmd),
7582		      timeout);
7583
7584	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7585	bzero(scsi_cmd, sizeof(*scsi_cmd));
7586	scsi_cmd->opcode = REQUEST_SENSE;
7587	scsi_cmd->length = dxfer_len;
7588}
7589
7590void
7591scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7592	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7593	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7594	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7595	     u_int32_t timeout)
7596{
7597	struct scsi_inquiry *scsi_cmd;
7598
7599	cam_fill_csio(csio,
7600		      retries,
7601		      cbfcnp,
7602		      /*flags*/CAM_DIR_IN,
7603		      tag_action,
7604		      /*data_ptr*/inq_buf,
7605		      /*dxfer_len*/inq_len,
7606		      sense_len,
7607		      sizeof(*scsi_cmd),
7608		      timeout);
7609
7610	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7611	bzero(scsi_cmd, sizeof(*scsi_cmd));
7612	scsi_cmd->opcode = INQUIRY;
7613	if (evpd) {
7614		scsi_cmd->byte2 |= SI_EVPD;
7615		scsi_cmd->page_code = page_code;
7616	}
7617	scsi_ulto2b(inq_len, scsi_cmd->length);
7618}
7619
7620void
7621scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7622    void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7623    int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7624    uint8_t sense_len, uint32_t timeout)
7625{
7626
7627	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7628	    pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7629}
7630
7631void
7632scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7633    void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7634    int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7635    int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7636{
7637
7638	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7639	    pc, page, 0, param_buf, param_len, minimum_cmd_size,
7640	    sense_len, timeout);
7641}
7642
7643void
7644scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7645    void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7646    int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7647    uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7648    uint32_t timeout)
7649{
7650	u_int8_t cdb_len;
7651
7652	/*
7653	 * Use the smallest possible command to perform the operation.
7654	 */
7655	if ((param_len < 256)
7656	 && (minimum_cmd_size < 10)) {
7657		/*
7658		 * We can fit in a 6 byte cdb.
7659		 */
7660		struct scsi_mode_sense_6 *scsi_cmd;
7661
7662		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7663		bzero(scsi_cmd, sizeof(*scsi_cmd));
7664		scsi_cmd->opcode = MODE_SENSE_6;
7665		if (dbd != 0)
7666			scsi_cmd->byte2 |= SMS_DBD;
7667		scsi_cmd->page = pc | page;
7668		scsi_cmd->subpage = subpage;
7669		scsi_cmd->length = param_len;
7670		cdb_len = sizeof(*scsi_cmd);
7671	} else {
7672		/*
7673		 * Need a 10 byte cdb.
7674		 */
7675		struct scsi_mode_sense_10 *scsi_cmd;
7676
7677		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7678		bzero(scsi_cmd, sizeof(*scsi_cmd));
7679		scsi_cmd->opcode = MODE_SENSE_10;
7680		if (dbd != 0)
7681			scsi_cmd->byte2 |= SMS_DBD;
7682		scsi_cmd->page = pc | page;
7683		scsi_cmd->subpage = subpage;
7684		scsi_ulto2b(param_len, scsi_cmd->length);
7685		cdb_len = sizeof(*scsi_cmd);
7686	}
7687	cam_fill_csio(csio,
7688		      retries,
7689		      cbfcnp,
7690		      CAM_DIR_IN,
7691		      tag_action,
7692		      param_buf,
7693		      param_len,
7694		      sense_len,
7695		      cdb_len,
7696		      timeout);
7697}
7698
7699void
7700scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7701		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7702		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7703		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7704		 u_int32_t timeout)
7705{
7706	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7707			     scsi_page_fmt, save_pages, param_buf,
7708			     param_len, 0, sense_len, timeout);
7709}
7710
7711void
7712scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7713		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7714		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7715		     u_int8_t *param_buf, u_int32_t param_len,
7716		     int minimum_cmd_size, u_int8_t sense_len,
7717		     u_int32_t timeout)
7718{
7719	u_int8_t cdb_len;
7720
7721	/*
7722	 * Use the smallest possible command to perform the operation.
7723	 */
7724	if ((param_len < 256)
7725	 && (minimum_cmd_size < 10)) {
7726		/*
7727		 * We can fit in a 6 byte cdb.
7728		 */
7729		struct scsi_mode_select_6 *scsi_cmd;
7730
7731		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7732		bzero(scsi_cmd, sizeof(*scsi_cmd));
7733		scsi_cmd->opcode = MODE_SELECT_6;
7734		if (scsi_page_fmt != 0)
7735			scsi_cmd->byte2 |= SMS_PF;
7736		if (save_pages != 0)
7737			scsi_cmd->byte2 |= SMS_SP;
7738		scsi_cmd->length = param_len;
7739		cdb_len = sizeof(*scsi_cmd);
7740	} else {
7741		/*
7742		 * Need a 10 byte cdb.
7743		 */
7744		struct scsi_mode_select_10 *scsi_cmd;
7745
7746		scsi_cmd =
7747		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7748		bzero(scsi_cmd, sizeof(*scsi_cmd));
7749		scsi_cmd->opcode = MODE_SELECT_10;
7750		if (scsi_page_fmt != 0)
7751			scsi_cmd->byte2 |= SMS_PF;
7752		if (save_pages != 0)
7753			scsi_cmd->byte2 |= SMS_SP;
7754		scsi_ulto2b(param_len, scsi_cmd->length);
7755		cdb_len = sizeof(*scsi_cmd);
7756	}
7757	cam_fill_csio(csio,
7758		      retries,
7759		      cbfcnp,
7760		      CAM_DIR_OUT,
7761		      tag_action,
7762		      param_buf,
7763		      param_len,
7764		      sense_len,
7765		      cdb_len,
7766		      timeout);
7767}
7768
7769void
7770scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7771	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7772	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7773	       int save_pages, int ppc, u_int32_t paramptr,
7774	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7775	       u_int32_t timeout)
7776{
7777	struct scsi_log_sense *scsi_cmd;
7778	u_int8_t cdb_len;
7779
7780	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7781	bzero(scsi_cmd, sizeof(*scsi_cmd));
7782	scsi_cmd->opcode = LOG_SENSE;
7783	scsi_cmd->page = page_code | page;
7784	if (save_pages != 0)
7785		scsi_cmd->byte2 |= SLS_SP;
7786	if (ppc != 0)
7787		scsi_cmd->byte2 |= SLS_PPC;
7788	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7789	scsi_ulto2b(param_len, scsi_cmd->length);
7790	cdb_len = sizeof(*scsi_cmd);
7791
7792	cam_fill_csio(csio,
7793		      retries,
7794		      cbfcnp,
7795		      /*flags*/CAM_DIR_IN,
7796		      tag_action,
7797		      /*data_ptr*/param_buf,
7798		      /*dxfer_len*/param_len,
7799		      sense_len,
7800		      cdb_len,
7801		      timeout);
7802}
7803
7804void
7805scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7806		void (*cbfcnp)(struct cam_periph *, union ccb *),
7807		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7808		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7809		u_int8_t sense_len, u_int32_t timeout)
7810{
7811	struct scsi_log_select *scsi_cmd;
7812	u_int8_t cdb_len;
7813
7814	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7815	bzero(scsi_cmd, sizeof(*scsi_cmd));
7816	scsi_cmd->opcode = LOG_SELECT;
7817	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7818	if (save_pages != 0)
7819		scsi_cmd->byte2 |= SLS_SP;
7820	if (pc_reset != 0)
7821		scsi_cmd->byte2 |= SLS_PCR;
7822	scsi_ulto2b(param_len, scsi_cmd->length);
7823	cdb_len = sizeof(*scsi_cmd);
7824
7825	cam_fill_csio(csio,
7826		      retries,
7827		      cbfcnp,
7828		      /*flags*/CAM_DIR_OUT,
7829		      tag_action,
7830		      /*data_ptr*/param_buf,
7831		      /*dxfer_len*/param_len,
7832		      sense_len,
7833		      cdb_len,
7834		      timeout);
7835}
7836
7837/*
7838 * Prevent or allow the user to remove the media
7839 */
7840void
7841scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7842	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7843	     u_int8_t tag_action, u_int8_t action,
7844	     u_int8_t sense_len, u_int32_t timeout)
7845{
7846	struct scsi_prevent *scsi_cmd;
7847
7848	cam_fill_csio(csio,
7849		      retries,
7850		      cbfcnp,
7851		      /*flags*/CAM_DIR_NONE,
7852		      tag_action,
7853		      /*data_ptr*/NULL,
7854		      /*dxfer_len*/0,
7855		      sense_len,
7856		      sizeof(*scsi_cmd),
7857		      timeout);
7858
7859	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7860	bzero(scsi_cmd, sizeof(*scsi_cmd));
7861	scsi_cmd->opcode = PREVENT_ALLOW;
7862	scsi_cmd->how = action;
7863}
7864
7865/* XXX allow specification of address and PMI bit and LBA */
7866void
7867scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7868		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7869		   u_int8_t tag_action,
7870		   struct scsi_read_capacity_data *rcap_buf,
7871		   u_int8_t sense_len, u_int32_t timeout)
7872{
7873	struct scsi_read_capacity *scsi_cmd;
7874
7875	cam_fill_csio(csio,
7876		      retries,
7877		      cbfcnp,
7878		      /*flags*/CAM_DIR_IN,
7879		      tag_action,
7880		      /*data_ptr*/(u_int8_t *)rcap_buf,
7881		      /*dxfer_len*/sizeof(*rcap_buf),
7882		      sense_len,
7883		      sizeof(*scsi_cmd),
7884		      timeout);
7885
7886	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7887	bzero(scsi_cmd, sizeof(*scsi_cmd));
7888	scsi_cmd->opcode = READ_CAPACITY;
7889}
7890
7891void
7892scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7893		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7894		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7895		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7896		      uint32_t timeout)
7897{
7898	struct scsi_read_capacity_16 *scsi_cmd;
7899
7900	cam_fill_csio(csio,
7901		      retries,
7902		      cbfcnp,
7903		      /*flags*/CAM_DIR_IN,
7904		      tag_action,
7905		      /*data_ptr*/(u_int8_t *)rcap_buf,
7906		      /*dxfer_len*/rcap_buf_len,
7907		      sense_len,
7908		      sizeof(*scsi_cmd),
7909		      timeout);
7910	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7911	bzero(scsi_cmd, sizeof(*scsi_cmd));
7912	scsi_cmd->opcode = SERVICE_ACTION_IN;
7913	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7914	scsi_u64to8b(lba, scsi_cmd->addr);
7915	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7916	if (pmi)
7917		reladr |= SRC16_PMI;
7918	if (reladr)
7919		reladr |= SRC16_RELADR;
7920}
7921
7922void
7923scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7924		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7925		 u_int8_t tag_action, u_int8_t select_report,
7926		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7927		 u_int8_t sense_len, u_int32_t timeout)
7928{
7929	struct scsi_report_luns *scsi_cmd;
7930
7931	cam_fill_csio(csio,
7932		      retries,
7933		      cbfcnp,
7934		      /*flags*/CAM_DIR_IN,
7935		      tag_action,
7936		      /*data_ptr*/(u_int8_t *)rpl_buf,
7937		      /*dxfer_len*/alloc_len,
7938		      sense_len,
7939		      sizeof(*scsi_cmd),
7940		      timeout);
7941	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7942	bzero(scsi_cmd, sizeof(*scsi_cmd));
7943	scsi_cmd->opcode = REPORT_LUNS;
7944	scsi_cmd->select_report = select_report;
7945	scsi_ulto4b(alloc_len, scsi_cmd->length);
7946}
7947
7948void
7949scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7950		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7951		 u_int8_t tag_action, u_int8_t pdf,
7952		 void *buf, u_int32_t alloc_len,
7953		 u_int8_t sense_len, u_int32_t timeout)
7954{
7955	struct scsi_target_group *scsi_cmd;
7956
7957	cam_fill_csio(csio,
7958		      retries,
7959		      cbfcnp,
7960		      /*flags*/CAM_DIR_IN,
7961		      tag_action,
7962		      /*data_ptr*/(u_int8_t *)buf,
7963		      /*dxfer_len*/alloc_len,
7964		      sense_len,
7965		      sizeof(*scsi_cmd),
7966		      timeout);
7967	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7968	bzero(scsi_cmd, sizeof(*scsi_cmd));
7969	scsi_cmd->opcode = MAINTENANCE_IN;
7970	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7971	scsi_ulto4b(alloc_len, scsi_cmd->length);
7972}
7973
7974void
7975scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
7976		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7977		 u_int8_t tag_action, u_int8_t pdf,
7978		 void *buf, u_int32_t alloc_len,
7979		 u_int8_t sense_len, u_int32_t timeout)
7980{
7981	struct scsi_timestamp *scsi_cmd;
7982
7983	cam_fill_csio(csio,
7984		      retries,
7985		      cbfcnp,
7986		      /*flags*/CAM_DIR_IN,
7987		      tag_action,
7988		      /*data_ptr*/(u_int8_t *)buf,
7989		      /*dxfer_len*/alloc_len,
7990		      sense_len,
7991		      sizeof(*scsi_cmd),
7992		      timeout);
7993	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
7994	bzero(scsi_cmd, sizeof(*scsi_cmd));
7995	scsi_cmd->opcode = MAINTENANCE_IN;
7996	scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
7997	scsi_ulto4b(alloc_len, scsi_cmd->length);
7998}
7999
8000void
8001scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
8002		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8003		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
8004		 u_int8_t sense_len, u_int32_t timeout)
8005{
8006	struct scsi_target_group *scsi_cmd;
8007
8008	cam_fill_csio(csio,
8009		      retries,
8010		      cbfcnp,
8011		      /*flags*/CAM_DIR_OUT,
8012		      tag_action,
8013		      /*data_ptr*/(u_int8_t *)buf,
8014		      /*dxfer_len*/alloc_len,
8015		      sense_len,
8016		      sizeof(*scsi_cmd),
8017		      timeout);
8018	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8019	bzero(scsi_cmd, sizeof(*scsi_cmd));
8020	scsi_cmd->opcode = MAINTENANCE_OUT;
8021	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8022	scsi_ulto4b(alloc_len, scsi_cmd->length);
8023}
8024
8025void
8026scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8027		      uint64_t timestamp)
8028{
8029	uint8_t buf[8];
8030	scsi_u64to8b(timestamp, buf);
8031	/*
8032	 * Using memcopy starting at buf[2] because the set timestamp parameters
8033	 * only has six bytes for the timestamp to fit into, and we don't have a
8034	 * scsi_u64to6b function.
8035	 */
8036	memcpy(timestamp_6b_buf, &buf[2], 6);
8037}
8038
8039void
8040scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
8041		   void (*cbfcnp)(struct cam_periph *, union ccb *),
8042		   u_int8_t tag_action, void *buf, u_int32_t alloc_len,
8043		   u_int8_t sense_len, u_int32_t timeout)
8044{
8045	struct scsi_timestamp *scsi_cmd;
8046
8047	cam_fill_csio(csio,
8048		      retries,
8049		      cbfcnp,
8050		      /*flags*/CAM_DIR_OUT,
8051		      tag_action,
8052		      /*data_ptr*/(u_int8_t *) buf,
8053		      /*dxfer_len*/alloc_len,
8054		      sense_len,
8055		      sizeof(*scsi_cmd),
8056		      timeout);
8057	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8058	bzero(scsi_cmd, sizeof(*scsi_cmd));
8059	scsi_cmd->opcode = MAINTENANCE_OUT;
8060	scsi_cmd->service_action = SET_TIMESTAMP;
8061	scsi_ulto4b(alloc_len, scsi_cmd->length);
8062}
8063
8064/*
8065 * Syncronize the media to the contents of the cache for
8066 * the given lba/count pair.  Specifying 0/0 means sync
8067 * the whole cache.
8068 */
8069void
8070scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
8071		       void (*cbfcnp)(struct cam_periph *, union ccb *),
8072		       u_int8_t tag_action, u_int32_t begin_lba,
8073		       u_int16_t lb_count, u_int8_t sense_len,
8074		       u_int32_t timeout)
8075{
8076	struct scsi_sync_cache *scsi_cmd;
8077
8078	cam_fill_csio(csio,
8079		      retries,
8080		      cbfcnp,
8081		      /*flags*/CAM_DIR_NONE,
8082		      tag_action,
8083		      /*data_ptr*/NULL,
8084		      /*dxfer_len*/0,
8085		      sense_len,
8086		      sizeof(*scsi_cmd),
8087		      timeout);
8088
8089	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8090	bzero(scsi_cmd, sizeof(*scsi_cmd));
8091	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8092	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8093	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8094}
8095
8096void
8097scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
8098		void (*cbfcnp)(struct cam_periph *, union ccb *),
8099		u_int8_t tag_action, int readop, u_int8_t byte2,
8100		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8101		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8102		u_int32_t timeout)
8103{
8104	int read;
8105	u_int8_t cdb_len;
8106
8107	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8108
8109	/*
8110	 * Use the smallest possible command to perform the operation
8111	 * as some legacy hardware does not support the 10 byte commands.
8112	 * If any of the bits in byte2 is set, we have to go with a larger
8113	 * command.
8114	 */
8115	if ((minimum_cmd_size < 10)
8116	 && ((lba & 0x1fffff) == lba)
8117	 && ((block_count & 0xff) == block_count)
8118	 && (byte2 == 0)) {
8119		/*
8120		 * We can fit in a 6 byte cdb.
8121		 */
8122		struct scsi_rw_6 *scsi_cmd;
8123
8124		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8125		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8126		scsi_ulto3b(lba, scsi_cmd->addr);
8127		scsi_cmd->length = block_count & 0xff;
8128		scsi_cmd->control = 0;
8129		cdb_len = sizeof(*scsi_cmd);
8130
8131		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8132			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8133			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8134			   scsi_cmd->length, dxfer_len));
8135	} else if ((minimum_cmd_size < 12)
8136		&& ((block_count & 0xffff) == block_count)
8137		&& ((lba & 0xffffffff) == lba)) {
8138		/*
8139		 * Need a 10 byte cdb.
8140		 */
8141		struct scsi_rw_10 *scsi_cmd;
8142
8143		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8144		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8145		scsi_cmd->byte2 = byte2;
8146		scsi_ulto4b(lba, scsi_cmd->addr);
8147		scsi_cmd->reserved = 0;
8148		scsi_ulto2b(block_count, scsi_cmd->length);
8149		scsi_cmd->control = 0;
8150		cdb_len = sizeof(*scsi_cmd);
8151
8152		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8153			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8154			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8155			   scsi_cmd->addr[3], scsi_cmd->length[0],
8156			   scsi_cmd->length[1], dxfer_len));
8157	} else if ((minimum_cmd_size < 16)
8158		&& ((block_count & 0xffffffff) == block_count)
8159		&& ((lba & 0xffffffff) == lba)) {
8160		/*
8161		 * The block count is too big for a 10 byte CDB, use a 12
8162		 * byte CDB.
8163		 */
8164		struct scsi_rw_12 *scsi_cmd;
8165
8166		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8167		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8168		scsi_cmd->byte2 = byte2;
8169		scsi_ulto4b(lba, scsi_cmd->addr);
8170		scsi_cmd->reserved = 0;
8171		scsi_ulto4b(block_count, scsi_cmd->length);
8172		scsi_cmd->control = 0;
8173		cdb_len = sizeof(*scsi_cmd);
8174
8175		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8176			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8177			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8178			   scsi_cmd->addr[3], scsi_cmd->length[0],
8179			   scsi_cmd->length[1], scsi_cmd->length[2],
8180			   scsi_cmd->length[3], dxfer_len));
8181	} else {
8182		/*
8183		 * 16 byte CDB.  We'll only get here if the LBA is larger
8184		 * than 2^32, or if the user asks for a 16 byte command.
8185		 */
8186		struct scsi_rw_16 *scsi_cmd;
8187
8188		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8189		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8190		scsi_cmd->byte2 = byte2;
8191		scsi_u64to8b(lba, scsi_cmd->addr);
8192		scsi_cmd->reserved = 0;
8193		scsi_ulto4b(block_count, scsi_cmd->length);
8194		scsi_cmd->control = 0;
8195		cdb_len = sizeof(*scsi_cmd);
8196	}
8197	cam_fill_csio(csio,
8198		      retries,
8199		      cbfcnp,
8200		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8201		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8202		      tag_action,
8203		      data_ptr,
8204		      dxfer_len,
8205		      sense_len,
8206		      cdb_len,
8207		      timeout);
8208}
8209
8210void
8211scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8212		void (*cbfcnp)(struct cam_periph *, union ccb *),
8213		u_int8_t tag_action, u_int8_t byte2,
8214		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8215		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8216		u_int32_t timeout)
8217{
8218	u_int8_t cdb_len;
8219	if ((minimum_cmd_size < 16) &&
8220	    ((block_count & 0xffff) == block_count) &&
8221	    ((lba & 0xffffffff) == lba)) {
8222		/*
8223		 * Need a 10 byte cdb.
8224		 */
8225		struct scsi_write_same_10 *scsi_cmd;
8226
8227		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8228		scsi_cmd->opcode = WRITE_SAME_10;
8229		scsi_cmd->byte2 = byte2;
8230		scsi_ulto4b(lba, scsi_cmd->addr);
8231		scsi_cmd->group = 0;
8232		scsi_ulto2b(block_count, scsi_cmd->length);
8233		scsi_cmd->control = 0;
8234		cdb_len = sizeof(*scsi_cmd);
8235
8236		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8237			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8238			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8239			   scsi_cmd->addr[3], scsi_cmd->length[0],
8240			   scsi_cmd->length[1], dxfer_len));
8241	} else {
8242		/*
8243		 * 16 byte CDB.  We'll only get here if the LBA is larger
8244		 * than 2^32, or if the user asks for a 16 byte command.
8245		 */
8246		struct scsi_write_same_16 *scsi_cmd;
8247
8248		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8249		scsi_cmd->opcode = WRITE_SAME_16;
8250		scsi_cmd->byte2 = byte2;
8251		scsi_u64to8b(lba, scsi_cmd->addr);
8252		scsi_ulto4b(block_count, scsi_cmd->length);
8253		scsi_cmd->group = 0;
8254		scsi_cmd->control = 0;
8255		cdb_len = sizeof(*scsi_cmd);
8256
8257		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8258			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8259			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8260			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8261			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8262			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8263			   scsi_cmd->length[0], scsi_cmd->length[1],
8264			   scsi_cmd->length[2], scsi_cmd->length[3],
8265			   dxfer_len));
8266	}
8267	cam_fill_csio(csio,
8268		      retries,
8269		      cbfcnp,
8270		      /*flags*/CAM_DIR_OUT,
8271		      tag_action,
8272		      data_ptr,
8273		      dxfer_len,
8274		      sense_len,
8275		      cdb_len,
8276		      timeout);
8277}
8278
8279void
8280scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8281		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8282		  u_int8_t tag_action, u_int8_t *data_ptr,
8283		  u_int16_t dxfer_len, u_int8_t sense_len,
8284		  u_int32_t timeout)
8285{
8286	scsi_ata_pass(csio,
8287		      retries,
8288		      cbfcnp,
8289		      /*flags*/CAM_DIR_IN,
8290		      tag_action,
8291		      /*protocol*/AP_PROTO_PIO_IN,
8292		      /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8293				   AP_FLAG_BYT_BLOK_BLOCKS |
8294				   AP_FLAG_TLEN_SECT_CNT,
8295		      /*features*/0,
8296		      /*sector_count*/dxfer_len / 512,
8297		      /*lba*/0,
8298		      /*command*/ATA_ATA_IDENTIFY,
8299		      /*device*/ 0,
8300		      /*icc*/ 0,
8301		      /*auxiliary*/ 0,
8302		      /*control*/0,
8303		      data_ptr,
8304		      dxfer_len,
8305		      /*cdb_storage*/ NULL,
8306		      /*cdb_storage_len*/ 0,
8307		      /*minimum_cmd_size*/ 0,
8308		      sense_len,
8309		      timeout);
8310}
8311
8312void
8313scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8314	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8315	      u_int8_t tag_action, u_int16_t block_count,
8316	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8317	      u_int32_t timeout)
8318{
8319	scsi_ata_pass_16(csio,
8320			 retries,
8321			 cbfcnp,
8322			 /*flags*/CAM_DIR_OUT,
8323			 tag_action,
8324			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8325			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8326			 /*features*/ATA_DSM_TRIM,
8327			 /*sector_count*/block_count,
8328			 /*lba*/0,
8329			 /*command*/ATA_DATA_SET_MANAGEMENT,
8330			 /*control*/0,
8331			 data_ptr,
8332			 dxfer_len,
8333			 sense_len,
8334			 timeout);
8335}
8336
8337int
8338scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8339		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8340		  uint8_t tag_action, uint32_t log_address,
8341		  uint32_t page_number, uint16_t block_count,
8342		  uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8343		  uint8_t sense_len, uint32_t timeout)
8344{
8345	uint8_t command, protocol_out;
8346	uint16_t count_out;
8347	uint64_t lba;
8348	int retval;
8349
8350	retval = 0;
8351
8352	switch (protocol) {
8353	case AP_PROTO_DMA:
8354		count_out = block_count;
8355		command = ATA_READ_LOG_DMA_EXT;
8356		protocol_out = AP_PROTO_DMA;
8357		break;
8358	case AP_PROTO_PIO_IN:
8359	default:
8360		count_out = block_count;
8361		command = ATA_READ_LOG_EXT;
8362		protocol_out = AP_PROTO_PIO_IN;
8363		break;
8364	}
8365
8366	lba = (((uint64_t)page_number & 0xff00) << 32) |
8367	      ((page_number & 0x00ff) << 8) |
8368	      (log_address & 0xff);
8369
8370	protocol_out |= AP_EXTEND;
8371
8372	retval = scsi_ata_pass(csio,
8373			       retries,
8374			       cbfcnp,
8375			       /*flags*/CAM_DIR_IN,
8376			       tag_action,
8377			       /*protocol*/ protocol_out,
8378			       /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8379					    AP_FLAG_BYT_BLOK_BLOCKS |
8380					    AP_FLAG_TDIR_FROM_DEV,
8381			       /*feature*/ 0,
8382			       /*sector_count*/ count_out,
8383			       /*lba*/ lba,
8384			       /*command*/ command,
8385			       /*device*/ 0,
8386			       /*icc*/ 0,
8387			       /*auxiliary*/ 0,
8388			       /*control*/0,
8389			       data_ptr,
8390			       dxfer_len,
8391			       /*cdb_storage*/ NULL,
8392			       /*cdb_storage_len*/ 0,
8393			       /*minimum_cmd_size*/ 0,
8394			       sense_len,
8395			       timeout);
8396
8397	return (retval);
8398}
8399
8400int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
8401			 void (*cbfcnp)(struct cam_periph *, union ccb *),
8402			 uint8_t tag_action, uint8_t feature,
8403			 uint64_t lba, uint32_t count,
8404			 uint8_t sense_len, uint32_t timeout)
8405{
8406	return (scsi_ata_pass(csio,
8407		retries,
8408		cbfcnp,
8409		/*flags*/CAM_DIR_NONE,
8410		tag_action,
8411		/*protocol*/AP_PROTO_PIO_IN,
8412		/*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8413			     AP_FLAG_BYT_BLOK_BYTES |
8414			     AP_FLAG_TLEN_SECT_CNT,
8415		/*features*/feature,
8416		/*sector_count*/count,
8417		/*lba*/lba,
8418		/*command*/ATA_SETFEATURES,
8419		/*device*/ 0,
8420		/*icc*/ 0,
8421		/*auxiliary*/0,
8422		/*control*/0,
8423		/*data_ptr*/NULL,
8424		/*dxfer_len*/0,
8425		/*cdb_storage*/NULL,
8426		/*cdb_storage_len*/0,
8427		/*minimum_cmd_size*/0,
8428		sense_len,
8429		timeout));
8430}
8431
8432/*
8433 * Note! This is an unusual CDB building function because it can return
8434 * an error in the event that the command in question requires a variable
8435 * length CDB, but the caller has not given storage space for one or has not
8436 * given enough storage space.  If there is enough space available in the
8437 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8438 */
8439int
8440scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8441	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8442	      uint32_t flags, uint8_t tag_action,
8443	      uint8_t protocol, uint8_t ata_flags, uint16_t features,
8444	      uint16_t sector_count, uint64_t lba, uint8_t command,
8445	      uint8_t device, uint8_t icc, uint32_t auxiliary,
8446	      uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len,
8447	      uint8_t *cdb_storage, size_t cdb_storage_len,
8448	      int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
8449{
8450	uint32_t cam_flags;
8451	uint8_t *cdb_ptr;
8452	int cmd_size;
8453	int retval;
8454	uint8_t cdb_len;
8455
8456	retval = 0;
8457	cam_flags = flags;
8458
8459	/*
8460	 * Round the user's request to the nearest command size that is at
8461	 * least as big as what he requested.
8462	 */
8463	if (minimum_cmd_size <= 12)
8464		cmd_size = 12;
8465	else if (minimum_cmd_size > 16)
8466		cmd_size = 32;
8467	else
8468		cmd_size = 16;
8469
8470	/*
8471	 * If we have parameters that require a 48-bit ATA command, we have to
8472	 * use the 16 byte ATA PASS-THROUGH command at least.
8473	 */
8474	if (((lba > ATA_MAX_28BIT_LBA)
8475	  || (sector_count > 255)
8476	  || (features > 255)
8477	  || (protocol & AP_EXTEND))
8478	 && ((cmd_size < 16)
8479	  || ((protocol & AP_EXTEND) == 0))) {
8480		if (cmd_size < 16)
8481			cmd_size = 16;
8482		protocol |= AP_EXTEND;
8483	}
8484
8485	/*
8486	 * The icc and auxiliary ATA registers are only supported in the
8487	 * 32-byte version of the ATA PASS-THROUGH command.
8488	 */
8489	if ((icc != 0)
8490	 || (auxiliary != 0)) {
8491		cmd_size = 32;
8492		protocol |= AP_EXTEND;
8493	}
8494
8495	if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8496	 && ((cdb_storage == NULL)
8497	  || (cdb_storage_len < cmd_size))) {
8498		retval = 1;
8499		goto bailout;
8500	}
8501
8502	/*
8503	 * At this point we know we have enough space to store the command
8504	 * in one place or another.  We prefer the built-in array, but used
8505	 * the passed in storage if necessary.
8506	 */
8507	if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8508		cdb_ptr = csio->cdb_io.cdb_bytes;
8509	else {
8510		cdb_ptr = cdb_storage;
8511		cam_flags |= CAM_CDB_POINTER;
8512	}
8513
8514	if (cmd_size <= 12) {
8515		struct ata_pass_12 *cdb;
8516
8517		cdb = (struct ata_pass_12 *)cdb_ptr;
8518		cdb_len = sizeof(*cdb);
8519		bzero(cdb, cdb_len);
8520
8521		cdb->opcode = ATA_PASS_12;
8522		cdb->protocol = protocol;
8523		cdb->flags = ata_flags;
8524		cdb->features = features;
8525		cdb->sector_count = sector_count;
8526		cdb->lba_low = lba & 0xff;
8527		cdb->lba_mid = (lba >> 8) & 0xff;
8528		cdb->lba_high = (lba >> 16) & 0xff;
8529		cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8530		cdb->command = command;
8531		cdb->control = control;
8532	} else if (cmd_size <= 16) {
8533		struct ata_pass_16 *cdb;
8534
8535		cdb = (struct ata_pass_16 *)cdb_ptr;
8536		cdb_len = sizeof(*cdb);
8537		bzero(cdb, cdb_len);
8538
8539		cdb->opcode = ATA_PASS_16;
8540		cdb->protocol = protocol;
8541		cdb->flags = ata_flags;
8542		cdb->features = features & 0xff;
8543		cdb->sector_count = sector_count & 0xff;
8544		cdb->lba_low = lba & 0xff;
8545		cdb->lba_mid = (lba >> 8) & 0xff;
8546		cdb->lba_high = (lba >> 16) & 0xff;
8547		/*
8548		 * If AP_EXTEND is set, we're sending a 48-bit command.
8549		 * Otherwise it's a 28-bit command.
8550		 */
8551		if (protocol & AP_EXTEND) {
8552			cdb->lba_low_ext = (lba >> 24) & 0xff;
8553			cdb->lba_mid_ext = (lba >> 32) & 0xff;
8554			cdb->lba_high_ext = (lba >> 40) & 0xff;
8555			cdb->features_ext = (features >> 8) & 0xff;
8556			cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8557			cdb->device = device | ATA_DEV_LBA;
8558		} else {
8559			cdb->lba_low_ext = (lba >> 24) & 0xf;
8560			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8561		}
8562		cdb->command = command;
8563		cdb->control = control;
8564	} else {
8565		struct ata_pass_32 *cdb;
8566		uint8_t tmp_lba[8];
8567
8568		cdb = (struct ata_pass_32 *)cdb_ptr;
8569		cdb_len = sizeof(*cdb);
8570		bzero(cdb, cdb_len);
8571		cdb->opcode = VARIABLE_LEN_CDB;
8572		cdb->control = control;
8573		cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8574							service_action);
8575		scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8576		cdb->protocol = protocol;
8577		cdb->flags = ata_flags;
8578
8579		if ((protocol & AP_EXTEND) == 0) {
8580			lba &= 0x0fffffff;
8581			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8582			features &= 0xff;
8583			sector_count &= 0xff;
8584		} else {
8585			cdb->device = device | ATA_DEV_LBA;
8586		}
8587		scsi_u64to8b(lba, tmp_lba);
8588		bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8589		scsi_ulto2b(features, cdb->features);
8590		scsi_ulto2b(sector_count, cdb->count);
8591		cdb->command = command;
8592		cdb->icc = icc;
8593		scsi_ulto4b(auxiliary, cdb->auxiliary);
8594	}
8595
8596	cam_fill_csio(csio,
8597		      retries,
8598		      cbfcnp,
8599		      cam_flags,
8600		      tag_action,
8601		      data_ptr,
8602		      dxfer_len,
8603		      sense_len,
8604		      cmd_size,
8605		      timeout);
8606bailout:
8607	return (retval);
8608}
8609
8610void
8611scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8612		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8613		 u_int32_t flags, u_int8_t tag_action,
8614		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8615		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8616		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8617		 u_int8_t sense_len, u_int32_t timeout)
8618{
8619	struct ata_pass_16 *ata_cmd;
8620
8621	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8622	ata_cmd->opcode = ATA_PASS_16;
8623	ata_cmd->protocol = protocol;
8624	ata_cmd->flags = ata_flags;
8625	ata_cmd->features_ext = features >> 8;
8626	ata_cmd->features = features;
8627	ata_cmd->sector_count_ext = sector_count >> 8;
8628	ata_cmd->sector_count = sector_count;
8629	ata_cmd->lba_low = lba;
8630	ata_cmd->lba_mid = lba >> 8;
8631	ata_cmd->lba_high = lba >> 16;
8632	ata_cmd->device = ATA_DEV_LBA;
8633	if (protocol & AP_EXTEND) {
8634		ata_cmd->lba_low_ext = lba >> 24;
8635		ata_cmd->lba_mid_ext = lba >> 32;
8636		ata_cmd->lba_high_ext = lba >> 40;
8637	} else
8638		ata_cmd->device |= (lba >> 24) & 0x0f;
8639	ata_cmd->command = command;
8640	ata_cmd->control = control;
8641
8642	cam_fill_csio(csio,
8643		      retries,
8644		      cbfcnp,
8645		      flags,
8646		      tag_action,
8647		      data_ptr,
8648		      dxfer_len,
8649		      sense_len,
8650		      sizeof(*ata_cmd),
8651		      timeout);
8652}
8653
8654void
8655scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8656	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8657	   u_int8_t tag_action, u_int8_t byte2,
8658	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8659	   u_int32_t timeout)
8660{
8661	struct scsi_unmap *scsi_cmd;
8662
8663	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8664	scsi_cmd->opcode = UNMAP;
8665	scsi_cmd->byte2 = byte2;
8666	scsi_ulto4b(0, scsi_cmd->reserved);
8667	scsi_cmd->group = 0;
8668	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8669	scsi_cmd->control = 0;
8670
8671	cam_fill_csio(csio,
8672		      retries,
8673		      cbfcnp,
8674		      /*flags*/CAM_DIR_OUT,
8675		      tag_action,
8676		      data_ptr,
8677		      dxfer_len,
8678		      sense_len,
8679		      sizeof(*scsi_cmd),
8680		      timeout);
8681}
8682
8683void
8684scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8685				void (*cbfcnp)(struct cam_periph *, union ccb*),
8686				uint8_t tag_action, int pcv, uint8_t page_code,
8687				uint8_t *data_ptr, uint16_t allocation_length,
8688				uint8_t sense_len, uint32_t timeout)
8689{
8690	struct scsi_receive_diag *scsi_cmd;
8691
8692	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8693	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8694	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8695	if (pcv) {
8696		scsi_cmd->byte2 |= SRD_PCV;
8697		scsi_cmd->page_code = page_code;
8698	}
8699	scsi_ulto2b(allocation_length, scsi_cmd->length);
8700
8701	cam_fill_csio(csio,
8702		      retries,
8703		      cbfcnp,
8704		      /*flags*/CAM_DIR_IN,
8705		      tag_action,
8706		      data_ptr,
8707		      allocation_length,
8708		      sense_len,
8709		      sizeof(*scsi_cmd),
8710		      timeout);
8711}
8712
8713void
8714scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8715		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8716		     uint8_t tag_action, int unit_offline, int device_offline,
8717		     int self_test, int page_format, int self_test_code,
8718		     uint8_t *data_ptr, uint16_t param_list_length,
8719		     uint8_t sense_len, uint32_t timeout)
8720{
8721	struct scsi_send_diag *scsi_cmd;
8722
8723	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8724	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8725	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8726
8727	/*
8728	 * The default self-test mode control and specific test
8729	 * control are mutually exclusive.
8730	 */
8731	if (self_test)
8732		self_test_code = SSD_SELF_TEST_CODE_NONE;
8733
8734	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8735			 & SSD_SELF_TEST_CODE_MASK)
8736			| (unit_offline   ? SSD_UNITOFFL : 0)
8737			| (device_offline ? SSD_DEVOFFL  : 0)
8738			| (self_test      ? SSD_SELFTEST : 0)
8739			| (page_format    ? SSD_PF       : 0);
8740	scsi_ulto2b(param_list_length, scsi_cmd->length);
8741
8742	cam_fill_csio(csio,
8743		      retries,
8744		      cbfcnp,
8745		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8746		      tag_action,
8747		      data_ptr,
8748		      param_list_length,
8749		      sense_len,
8750		      sizeof(*scsi_cmd),
8751		      timeout);
8752}
8753
8754void
8755scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8756			void (*cbfcnp)(struct cam_periph *, union ccb*),
8757			uint8_t tag_action, int mode,
8758			uint8_t buffer_id, u_int32_t offset,
8759			uint8_t *data_ptr, uint32_t allocation_length,
8760			uint8_t sense_len, uint32_t timeout)
8761{
8762	struct scsi_read_buffer *scsi_cmd;
8763
8764	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8765	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8766	scsi_cmd->opcode = READ_BUFFER;
8767	scsi_cmd->byte2 = mode;
8768	scsi_cmd->buffer_id = buffer_id;
8769	scsi_ulto3b(offset, scsi_cmd->offset);
8770	scsi_ulto3b(allocation_length, scsi_cmd->length);
8771
8772	cam_fill_csio(csio,
8773		      retries,
8774		      cbfcnp,
8775		      /*flags*/CAM_DIR_IN,
8776		      tag_action,
8777		      data_ptr,
8778		      allocation_length,
8779		      sense_len,
8780		      sizeof(*scsi_cmd),
8781		      timeout);
8782}
8783
8784void
8785scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8786			void (*cbfcnp)(struct cam_periph *, union ccb *),
8787			uint8_t tag_action, int mode,
8788			uint8_t buffer_id, u_int32_t offset,
8789			uint8_t *data_ptr, uint32_t param_list_length,
8790			uint8_t sense_len, uint32_t timeout)
8791{
8792	struct scsi_write_buffer *scsi_cmd;
8793
8794	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8795	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8796	scsi_cmd->opcode = WRITE_BUFFER;
8797	scsi_cmd->byte2 = mode;
8798	scsi_cmd->buffer_id = buffer_id;
8799	scsi_ulto3b(offset, scsi_cmd->offset);
8800	scsi_ulto3b(param_list_length, scsi_cmd->length);
8801
8802	cam_fill_csio(csio,
8803		      retries,
8804		      cbfcnp,
8805		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8806		      tag_action,
8807		      data_ptr,
8808		      param_list_length,
8809		      sense_len,
8810		      sizeof(*scsi_cmd),
8811		      timeout);
8812}
8813
8814void
8815scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8816		void (*cbfcnp)(struct cam_periph *, union ccb *),
8817		u_int8_t tag_action, int start, int load_eject,
8818		int immediate, u_int8_t sense_len, u_int32_t timeout)
8819{
8820	struct scsi_start_stop_unit *scsi_cmd;
8821	int extra_flags = 0;
8822
8823	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8824	bzero(scsi_cmd, sizeof(*scsi_cmd));
8825	scsi_cmd->opcode = START_STOP_UNIT;
8826	if (start != 0) {
8827		scsi_cmd->how |= SSS_START;
8828		/* it takes a lot of power to start a drive */
8829		extra_flags |= CAM_HIGH_POWER;
8830	}
8831	if (load_eject != 0)
8832		scsi_cmd->how |= SSS_LOEJ;
8833	if (immediate != 0)
8834		scsi_cmd->byte2 |= SSS_IMMED;
8835
8836	cam_fill_csio(csio,
8837		      retries,
8838		      cbfcnp,
8839		      /*flags*/CAM_DIR_NONE | extra_flags,
8840		      tag_action,
8841		      /*data_ptr*/NULL,
8842		      /*dxfer_len*/0,
8843		      sense_len,
8844		      sizeof(*scsi_cmd),
8845		      timeout);
8846}
8847
8848void
8849scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8850		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8851		    u_int8_t tag_action, u_int8_t service_action,
8852		    uint32_t element, u_int8_t elem_type, int logical_volume,
8853		    int partition, u_int32_t first_attribute, int cache,
8854		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8855		    u_int32_t timeout)
8856{
8857	struct scsi_read_attribute *scsi_cmd;
8858
8859	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8860	bzero(scsi_cmd, sizeof(*scsi_cmd));
8861
8862	scsi_cmd->opcode = READ_ATTRIBUTE;
8863	scsi_cmd->service_action = service_action;
8864	scsi_ulto2b(element, scsi_cmd->element);
8865	scsi_cmd->elem_type = elem_type;
8866	scsi_cmd->logical_volume = logical_volume;
8867	scsi_cmd->partition = partition;
8868	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8869	scsi_ulto4b(length, scsi_cmd->length);
8870	if (cache != 0)
8871		scsi_cmd->cache |= SRA_CACHE;
8872
8873	cam_fill_csio(csio,
8874		      retries,
8875		      cbfcnp,
8876		      /*flags*/CAM_DIR_IN,
8877		      tag_action,
8878		      /*data_ptr*/data_ptr,
8879		      /*dxfer_len*/length,
8880		      sense_len,
8881		      sizeof(*scsi_cmd),
8882		      timeout);
8883}
8884
8885void
8886scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8887		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8888		    u_int8_t tag_action, uint32_t element, int logical_volume,
8889		    int partition, int wtc, u_int8_t *data_ptr,
8890		    u_int32_t length, int sense_len, u_int32_t timeout)
8891{
8892	struct scsi_write_attribute *scsi_cmd;
8893
8894	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8895	bzero(scsi_cmd, sizeof(*scsi_cmd));
8896
8897	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8898	if (wtc != 0)
8899		scsi_cmd->byte2 = SWA_WTC;
8900	scsi_ulto3b(element, scsi_cmd->element);
8901	scsi_cmd->logical_volume = logical_volume;
8902	scsi_cmd->partition = partition;
8903	scsi_ulto4b(length, scsi_cmd->length);
8904
8905	cam_fill_csio(csio,
8906		      retries,
8907		      cbfcnp,
8908		      /*flags*/CAM_DIR_OUT,
8909		      tag_action,
8910		      /*data_ptr*/data_ptr,
8911		      /*dxfer_len*/length,
8912		      sense_len,
8913		      sizeof(*scsi_cmd),
8914		      timeout);
8915}
8916
8917void
8918scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8919			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8920			   uint8_t tag_action, int service_action,
8921			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8922			   int timeout)
8923{
8924	struct scsi_per_res_in *scsi_cmd;
8925
8926	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8927	bzero(scsi_cmd, sizeof(*scsi_cmd));
8928
8929	scsi_cmd->opcode = PERSISTENT_RES_IN;
8930	scsi_cmd->action = service_action;
8931	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8932
8933	cam_fill_csio(csio,
8934		      retries,
8935		      cbfcnp,
8936		      /*flags*/CAM_DIR_IN,
8937		      tag_action,
8938		      data_ptr,
8939		      dxfer_len,
8940		      sense_len,
8941		      sizeof(*scsi_cmd),
8942		      timeout);
8943}
8944
8945void
8946scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8947			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8948			    uint8_t tag_action, int service_action,
8949			    int scope, int res_type, uint8_t *data_ptr,
8950			    uint32_t dxfer_len, int sense_len, int timeout)
8951{
8952	struct scsi_per_res_out *scsi_cmd;
8953
8954	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8955	bzero(scsi_cmd, sizeof(*scsi_cmd));
8956
8957	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8958	scsi_cmd->action = service_action;
8959	scsi_cmd->scope_type = scope | res_type;
8960	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8961
8962	cam_fill_csio(csio,
8963		      retries,
8964		      cbfcnp,
8965		      /*flags*/CAM_DIR_OUT,
8966		      tag_action,
8967		      /*data_ptr*/data_ptr,
8968		      /*dxfer_len*/dxfer_len,
8969		      sense_len,
8970		      sizeof(*scsi_cmd),
8971		      timeout);
8972}
8973
8974void
8975scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8976			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8977			  uint8_t tag_action, uint32_t security_protocol,
8978			  uint32_t security_protocol_specific, int byte4,
8979			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8980			  int timeout)
8981{
8982	struct scsi_security_protocol_in *scsi_cmd;
8983
8984	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8985	bzero(scsi_cmd, sizeof(*scsi_cmd));
8986
8987	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8988
8989	scsi_cmd->security_protocol = security_protocol;
8990	scsi_ulto2b(security_protocol_specific,
8991		    scsi_cmd->security_protocol_specific);
8992	scsi_cmd->byte4 = byte4;
8993	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8994
8995	cam_fill_csio(csio,
8996		      retries,
8997		      cbfcnp,
8998		      /*flags*/CAM_DIR_IN,
8999		      tag_action,
9000		      data_ptr,
9001		      dxfer_len,
9002		      sense_len,
9003		      sizeof(*scsi_cmd),
9004		      timeout);
9005}
9006
9007void
9008scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
9009			   void (*cbfcnp)(struct cam_periph *, union ccb *),
9010			   uint8_t tag_action, uint32_t security_protocol,
9011			   uint32_t security_protocol_specific, int byte4,
9012			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9013			   int timeout)
9014{
9015	struct scsi_security_protocol_out *scsi_cmd;
9016
9017	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
9018	bzero(scsi_cmd, sizeof(*scsi_cmd));
9019
9020	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
9021
9022	scsi_cmd->security_protocol = security_protocol;
9023	scsi_ulto2b(security_protocol_specific,
9024		    scsi_cmd->security_protocol_specific);
9025	scsi_cmd->byte4 = byte4;
9026	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9027
9028	cam_fill_csio(csio,
9029		      retries,
9030		      cbfcnp,
9031		      /*flags*/CAM_DIR_OUT,
9032		      tag_action,
9033		      data_ptr,
9034		      dxfer_len,
9035		      sense_len,
9036		      sizeof(*scsi_cmd),
9037		      timeout);
9038}
9039
9040void
9041scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9042			      void (*cbfcnp)(struct cam_periph *, union ccb *),
9043			      uint8_t tag_action, int options, int req_opcode,
9044			      int req_service_action, uint8_t *data_ptr,
9045			      uint32_t dxfer_len, int sense_len, int timeout)
9046{
9047	struct scsi_report_supported_opcodes *scsi_cmd;
9048
9049	scsi_cmd = (struct scsi_report_supported_opcodes *)
9050	    &csio->cdb_io.cdb_bytes;
9051	bzero(scsi_cmd, sizeof(*scsi_cmd));
9052
9053	scsi_cmd->opcode = MAINTENANCE_IN;
9054	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9055	scsi_cmd->options = options;
9056	scsi_cmd->requested_opcode = req_opcode;
9057	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9058	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9059
9060	cam_fill_csio(csio,
9061		      retries,
9062		      cbfcnp,
9063		      /*flags*/CAM_DIR_IN,
9064		      tag_action,
9065		      data_ptr,
9066		      dxfer_len,
9067		      sense_len,
9068		      sizeof(*scsi_cmd),
9069		      timeout);
9070}
9071
9072/*
9073 * Try make as good a match as possible with
9074 * available sub drivers
9075 */
9076int
9077scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9078{
9079	struct scsi_inquiry_pattern *entry;
9080	struct scsi_inquiry_data *inq;
9081
9082	entry = (struct scsi_inquiry_pattern *)table_entry;
9083	inq = (struct scsi_inquiry_data *)inqbuffer;
9084
9085	if (((SID_TYPE(inq) == entry->type)
9086	  || (entry->type == T_ANY))
9087	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9088				   : entry->media_type & SIP_MEDIA_FIXED)
9089	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9090	 && (cam_strmatch(inq->product, entry->product,
9091			  sizeof(inq->product)) == 0)
9092	 && (cam_strmatch(inq->revision, entry->revision,
9093			  sizeof(inq->revision)) == 0)) {
9094		return (0);
9095	}
9096        return (-1);
9097}
9098
9099/*
9100 * Try make as good a match as possible with
9101 * available sub drivers
9102 */
9103int
9104scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9105{
9106	struct scsi_static_inquiry_pattern *entry;
9107	struct scsi_inquiry_data *inq;
9108
9109	entry = (struct scsi_static_inquiry_pattern *)table_entry;
9110	inq = (struct scsi_inquiry_data *)inqbuffer;
9111
9112	if (((SID_TYPE(inq) == entry->type)
9113	  || (entry->type == T_ANY))
9114	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9115				   : entry->media_type & SIP_MEDIA_FIXED)
9116	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9117	 && (cam_strmatch(inq->product, entry->product,
9118			  sizeof(inq->product)) == 0)
9119	 && (cam_strmatch(inq->revision, entry->revision,
9120			  sizeof(inq->revision)) == 0)) {
9121		return (0);
9122	}
9123        return (-1);
9124}
9125
9126/**
9127 * Compare two buffers of vpd device descriptors for a match.
9128 *
9129 * \param lhs      Pointer to first buffer of descriptors to compare.
9130 * \param lhs_len  The length of the first buffer.
9131 * \param rhs	   Pointer to second buffer of descriptors to compare.
9132 * \param rhs_len  The length of the second buffer.
9133 *
9134 * \return  0 on a match, -1 otherwise.
9135 *
9136 * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
9137 * against each element in rhs until all data are exhausted or we have found
9138 * a match.
9139 */
9140int
9141scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9142{
9143	struct scsi_vpd_id_descriptor *lhs_id;
9144	struct scsi_vpd_id_descriptor *lhs_last;
9145	struct scsi_vpd_id_descriptor *rhs_last;
9146	uint8_t *lhs_end;
9147	uint8_t *rhs_end;
9148
9149	lhs_end = lhs + lhs_len;
9150	rhs_end = rhs + rhs_len;
9151
9152	/*
9153	 * rhs_last and lhs_last are the last posible position of a valid
9154	 * descriptor assuming it had a zero length identifier.  We use
9155	 * these variables to insure we can safely dereference the length
9156	 * field in our loop termination tests.
9157	 */
9158	lhs_last = (struct scsi_vpd_id_descriptor *)
9159	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9160	rhs_last = (struct scsi_vpd_id_descriptor *)
9161	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9162
9163	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9164	while (lhs_id <= lhs_last
9165	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9166		struct scsi_vpd_id_descriptor *rhs_id;
9167
9168		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9169		while (rhs_id <= rhs_last
9170		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9171			if ((rhs_id->id_type &
9172			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9173			    (lhs_id->id_type &
9174			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9175			 && rhs_id->length == lhs_id->length
9176			 && memcmp(rhs_id->identifier, lhs_id->identifier,
9177				   rhs_id->length) == 0)
9178				return (0);
9179
9180			rhs_id = (struct scsi_vpd_id_descriptor *)
9181			   (rhs_id->identifier + rhs_id->length);
9182		}
9183		lhs_id = (struct scsi_vpd_id_descriptor *)
9184		   (lhs_id->identifier + lhs_id->length);
9185	}
9186	return (-1);
9187}
9188
9189#ifdef _KERNEL
9190int
9191scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9192{
9193	struct cam_ed *device;
9194	struct scsi_vpd_supported_pages *vpds;
9195	int i, num_pages;
9196
9197	device = periph->path->device;
9198	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9199
9200	if (vpds != NULL) {
9201		num_pages = device->supported_vpds_len -
9202		    SVPD_SUPPORTED_PAGES_HDR_LEN;
9203		for (i = 0; i < num_pages; i++) {
9204			if (vpds->page_list[i] == page_id)
9205				return (1);
9206		}
9207	}
9208
9209	return (0);
9210}
9211
9212static void
9213init_scsi_delay(void)
9214{
9215	int delay;
9216
9217	delay = SCSI_DELAY;
9218	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9219
9220	if (set_scsi_delay(delay) != 0) {
9221		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9222		set_scsi_delay(SCSI_DELAY);
9223	}
9224}
9225SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9226
9227static int
9228sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9229{
9230	int error, delay;
9231
9232	delay = scsi_delay;
9233	error = sysctl_handle_int(oidp, &delay, 0, req);
9234	if (error != 0 || req->newptr == NULL)
9235		return (error);
9236	return (set_scsi_delay(delay));
9237}
9238SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
9239    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_scsi_delay, "I",
9240    "Delay to allow devices to settle after a SCSI bus reset (ms)");
9241
9242static int
9243set_scsi_delay(int delay)
9244{
9245	/*
9246         * If someone sets this to 0, we assume that they want the
9247         * minimum allowable bus settle delay.
9248	 */
9249	if (delay == 0) {
9250		printf("cam: using minimum scsi_delay (%dms)\n",
9251		    SCSI_MIN_DELAY);
9252		delay = SCSI_MIN_DELAY;
9253	}
9254	if (delay < SCSI_MIN_DELAY)
9255		return (EINVAL);
9256	scsi_delay = delay;
9257	return (0);
9258}
9259#endif /* _KERNEL */
9260