1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 Tsubai Masanari.
5 * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
6 * Copyright (c) 2013 Luiz Otavio O Souza <loos@freebsd.org>
7 * Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35/*
36 * Driver for bcm2835 i2c-compatible two-wire bus, named 'BSC' on this SoC.
37 *
38 * This controller can only perform complete transfers, it does not provide
39 * low-level control over sending start/repeat-start/stop sequences on the bus.
40 * In addition, bugs in the silicon make it somewhat difficult to perform a
41 * repeat-start, and limit the repeat-start to a read following a write on
42 * the same slave device.  (The i2c protocol allows a repeat start to change
43 * direction or not, and change slave address or not at any time.)
44 *
45 * The repeat-start bug and workaround are described in a problem report at
46 * https://github.com/raspberrypi/linux/issues/254 with the crucial part being
47 * in a comment block from a fragment of a GPU i2c driver, containing this:
48 *
49 * -----------------------------------------------------------------------------
50 * - See i2c.v: The I2C peripheral samples the values for rw_bit and xfer_count
51 * - in the IDLE state if start is set.
52 * -
53 * - We want to generate a ReSTART not a STOP at the end of the TX phase. In
54 * - order to do that we must ensure the state machine goes RACK1 -> RACK2 ->
55 * - SRSTRT1 (not RACK1 -> RACK2 -> SSTOP1).
56 * -
57 * - So, in the RACK2 state when (TX) xfer_count==0 we must therefore have
58 * - already set, ready to be sampled:
59 * -  READ ; rw_bit     <= I2CC bit 0 -- must be "read"
60 * -  ST;    start      <= I2CC bit 7 -- must be "Go" in order to not issue STOP
61 * -  DLEN;  xfer_count <= I2CDLEN    -- must be equal to our read amount
62 * -
63 * - The plan to do this is:
64 * -  1. Start the sub-address write, but don't let it finish
65 * -     (keep xfer_count > 0)
66 * -  2. Populate READ, DLEN and ST in preparation for ReSTART read sequence
67 * -  3. Let TX finish (write the rest of the data)
68 * -  4. Read back data as it arrives
69 * -----------------------------------------------------------------------------
70 *
71 * The transfer function below scans the list of messages passed to it, looking
72 * for a read following a write to the same slave.  When it finds that, it
73 * starts the write without prefilling the tx fifo, which holds xfer_count>0,
74 * then presets the direction, length, and start command for the following read,
75 * as described above.  Then the tx fifo is filled and the rest of the transfer
76 * proceeds as normal, with the controller automatically supplying a
77 * repeat-start on the bus when the write operation finishes.
78 *
79 * XXX I suspect the controller may be able to do a repeat-start on any
80 * write->read or write->write transition, even when the slave addresses differ.
81 * It's unclear whether the slave address can be prestaged along with the
82 * direction and length while the write xfer_count is being held at zero.  In
83 * fact, if it can't do this, then it couldn't be used to read EDID data.
84 */
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/kernel.h>
89#include <sys/lock.h>
90#include <sys/module.h>
91#include <sys/mutex.h>
92#include <sys/bus.h>
93#include <machine/resource.h>
94#include <machine/bus.h>
95#include <sys/rman.h>
96#include <sys/sysctl.h>
97
98#include <dev/iicbus/iicbus.h>
99#include <dev/iicbus/iiconf.h>
100#include <dev/ofw/ofw_bus.h>
101#include <dev/ofw/ofw_bus_subr.h>
102
103#include <arm/broadcom/bcm2835/bcm2835_bscreg.h>
104#include <arm/broadcom/bcm2835/bcm2835_bscvar.h>
105
106#include "iicbus_if.h"
107
108static struct ofw_compat_data compat_data[] = {
109	{"broadcom,bcm2835-bsc",	1},
110	{"brcm,bcm2708-i2c",		1},
111	{"brcm,bcm2835-i2c",		1},
112	{NULL,				0}
113};
114
115#define DEVICE_DEBUGF(sc, lvl, fmt, args...) \
116    if ((lvl) <= (sc)->sc_debug) \
117        device_printf((sc)->sc_dev, fmt, ##args)
118
119#define DEBUGF(sc, lvl, fmt, args...) \
120    if ((lvl) <= (sc)->sc_debug) \
121        printf(fmt, ##args)
122
123static void bcm_bsc_intr(void *);
124static int bcm_bsc_detach(device_t);
125
126static void
127bcm_bsc_modifyreg(struct bcm_bsc_softc *sc, uint32_t off, uint32_t mask,
128	uint32_t value)
129{
130	uint32_t reg;
131
132	mtx_assert(&sc->sc_mtx, MA_OWNED);
133	reg = BCM_BSC_READ(sc, off);
134	reg &= ~mask;
135	reg |= value;
136	BCM_BSC_WRITE(sc, off, reg);
137}
138
139static int
140bcm_bsc_clock_proc(SYSCTL_HANDLER_ARGS)
141{
142	struct bcm_bsc_softc *sc;
143	uint32_t clk;
144
145	sc = (struct bcm_bsc_softc *)arg1;
146	BCM_BSC_LOCK(sc);
147	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
148	BCM_BSC_UNLOCK(sc);
149	clk &= 0xffff;
150	if (clk == 0)
151		clk = 32768;
152	clk = BCM_BSC_CORE_CLK / clk;
153
154	return (sysctl_handle_int(oidp, &clk, 0, req));
155}
156
157static int
158bcm_bsc_clkt_proc(SYSCTL_HANDLER_ARGS)
159{
160	struct bcm_bsc_softc *sc;
161	uint32_t clkt;
162	int error;
163
164	sc = (struct bcm_bsc_softc *)arg1;
165
166	BCM_BSC_LOCK(sc);
167	clkt = BCM_BSC_READ(sc, BCM_BSC_CLKT);
168	BCM_BSC_UNLOCK(sc);
169	clkt &= 0xffff;
170	error = sysctl_handle_int(oidp, &clkt, sizeof(clkt), req);
171	if (error != 0 || req->newptr == NULL)
172		return (error);
173
174	BCM_BSC_LOCK(sc);
175	BCM_BSC_WRITE(sc, BCM_BSC_CLKT, clkt & 0xffff);
176	BCM_BSC_UNLOCK(sc);
177
178	return (0);
179}
180
181static int
182bcm_bsc_fall_proc(SYSCTL_HANDLER_ARGS)
183{
184	struct bcm_bsc_softc *sc;
185	uint32_t clk, reg;
186	int error;
187
188	sc = (struct bcm_bsc_softc *)arg1;
189
190	BCM_BSC_LOCK(sc);
191	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
192	BCM_BSC_UNLOCK(sc);
193	reg >>= 16;
194	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
195	if (error != 0 || req->newptr == NULL)
196		return (error);
197
198	BCM_BSC_LOCK(sc);
199	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
200	clk = BCM_BSC_CORE_CLK / clk;
201	if (reg > clk / 2)
202		reg = clk / 2 - 1;
203	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff0000, reg << 16);
204	BCM_BSC_UNLOCK(sc);
205
206	return (0);
207}
208
209static int
210bcm_bsc_rise_proc(SYSCTL_HANDLER_ARGS)
211{
212	struct bcm_bsc_softc *sc;
213	uint32_t clk, reg;
214	int error;
215
216	sc = (struct bcm_bsc_softc *)arg1;
217
218	BCM_BSC_LOCK(sc);
219	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
220	BCM_BSC_UNLOCK(sc);
221	reg &= 0xffff;
222	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
223	if (error != 0 || req->newptr == NULL)
224		return (error);
225
226	BCM_BSC_LOCK(sc);
227	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
228	clk = BCM_BSC_CORE_CLK / clk;
229	if (reg > clk / 2)
230		reg = clk / 2 - 1;
231	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff, reg);
232	BCM_BSC_UNLOCK(sc);
233
234	return (0);
235}
236
237static void
238bcm_bsc_sysctl_init(struct bcm_bsc_softc *sc)
239{
240	struct sysctl_ctx_list *ctx;
241	struct sysctl_oid *tree_node;
242	struct sysctl_oid_list *tree;
243
244	/*
245	 * Add system sysctl tree/handlers.
246	 */
247	ctx = device_get_sysctl_ctx(sc->sc_dev);
248	tree_node = device_get_sysctl_tree(sc->sc_dev);
249	tree = SYSCTL_CHILDREN(tree_node);
250	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "frequency",
251	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
252	    sc, sizeof(*sc),
253	    bcm_bsc_clock_proc, "IU", "I2C BUS clock frequency");
254	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock_stretch",
255	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
256	    sc, sizeof(*sc),
257	    bcm_bsc_clkt_proc, "IU", "I2C BUS clock stretch timeout");
258	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "fall_edge_delay",
259	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
260	    sc, sizeof(*sc),
261	    bcm_bsc_fall_proc, "IU", "I2C BUS falling edge delay");
262	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rise_edge_delay",
263	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
264	    sc, sizeof(*sc),
265	    bcm_bsc_rise_proc, "IU", "I2C BUS rising edge delay");
266	SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "debug",
267	    CTLFLAG_RWTUN, &sc->sc_debug, 0,
268	    "Enable debug; 1=reads/writes, 2=add starts/stops");
269}
270
271static void
272bcm_bsc_reset(struct bcm_bsc_softc *sc)
273{
274
275	/* Enable the BSC Controller, disable interrupts. */
276	BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN);
277	/* Clear pending interrupts. */
278	BCM_BSC_WRITE(sc, BCM_BSC_STATUS, BCM_BSC_STATUS_CLKT |
279	    BCM_BSC_STATUS_ERR | BCM_BSC_STATUS_DONE);
280	/* Clear the FIFO. */
281	bcm_bsc_modifyreg(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_CLEAR0,
282	    BCM_BSC_CTRL_CLEAR0);
283}
284
285static int
286bcm_bsc_probe(device_t dev)
287{
288
289	if (!ofw_bus_status_okay(dev))
290		return (ENXIO);
291
292	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
293		return (ENXIO);
294
295	device_set_desc(dev, "BCM2708/2835 BSC controller");
296
297	return (BUS_PROBE_DEFAULT);
298}
299
300static int
301bcm_bsc_attach(device_t dev)
302{
303	struct bcm_bsc_softc *sc;
304	int rid;
305
306	sc = device_get_softc(dev);
307	sc->sc_dev = dev;
308
309	rid = 0;
310	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
311	    RF_ACTIVE);
312	if (!sc->sc_mem_res) {
313		device_printf(dev, "cannot allocate memory window\n");
314		return (ENXIO);
315	}
316
317	sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
318	sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
319
320	rid = 0;
321	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
322	    RF_ACTIVE | RF_SHAREABLE);
323	if (!sc->sc_irq_res) {
324		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
325		device_printf(dev, "cannot allocate interrupt\n");
326		return (ENXIO);
327	}
328
329	/* Hook up our interrupt handler. */
330	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
331	    NULL, bcm_bsc_intr, sc, &sc->sc_intrhand)) {
332		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
333		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
334		device_printf(dev, "cannot setup the interrupt handler\n");
335		return (ENXIO);
336	}
337
338	mtx_init(&sc->sc_mtx, "bcm_bsc", NULL, MTX_DEF);
339
340	bcm_bsc_sysctl_init(sc);
341
342	/* Enable the BSC controller.  Flush the FIFO. */
343	BCM_BSC_LOCK(sc);
344	bcm_bsc_reset(sc);
345	BCM_BSC_UNLOCK(sc);
346
347	sc->sc_iicbus = device_add_child(dev, "iicbus", -1);
348	if (sc->sc_iicbus == NULL) {
349		bcm_bsc_detach(dev);
350		return (ENXIO);
351	}
352
353	/* Probe and attach the iicbus when interrupts are available. */
354	return (bus_delayed_attach_children(dev));
355}
356
357static int
358bcm_bsc_detach(device_t dev)
359{
360	struct bcm_bsc_softc *sc;
361
362	bus_generic_detach(dev);
363
364	sc = device_get_softc(dev);
365	if (sc->sc_iicbus != NULL)
366		device_delete_child(dev, sc->sc_iicbus);
367	mtx_destroy(&sc->sc_mtx);
368	if (sc->sc_intrhand)
369		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
370	if (sc->sc_irq_res)
371		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
372	if (sc->sc_mem_res)
373		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
374
375	return (0);
376}
377
378static void
379bcm_bsc_empty_rx_fifo(struct bcm_bsc_softc *sc)
380{
381	uint32_t status;
382
383	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_RXD is asserted on entry. */
384	do {
385		if (sc->sc_resid == 0) {
386			sc->sc_data  = sc->sc_curmsg->buf;
387			sc->sc_dlen  = sc->sc_curmsg->len;
388			sc->sc_resid = sc->sc_dlen;
389			++sc->sc_curmsg;
390		}
391		do {
392			*sc->sc_data = BCM_BSC_READ(sc, BCM_BSC_DATA);
393			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
394			++sc->sc_data;
395			--sc->sc_resid;
396			--sc->sc_totlen;
397			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
398		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_RXD));
399	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_RXD));
400}
401
402static void
403bcm_bsc_fill_tx_fifo(struct bcm_bsc_softc *sc)
404{
405	uint32_t status;
406
407	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_TXD is asserted on entry. */
408	do {
409		if (sc->sc_resid == 0) {
410			sc->sc_data  = sc->sc_curmsg->buf;
411			sc->sc_dlen  = sc->sc_curmsg->len;
412			sc->sc_resid = sc->sc_dlen;
413			++sc->sc_curmsg;
414		}
415		do {
416			BCM_BSC_WRITE(sc, BCM_BSC_DATA, *sc->sc_data);
417			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
418			++sc->sc_data;
419			--sc->sc_resid;
420			--sc->sc_totlen;
421			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
422		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_TXD));
423		/*
424		 * If a repeat-start was pending and we just hit the end of a tx
425		 * buffer, see if it's also the end of the writes that preceeded
426		 * the repeat-start.  If so, log the repeat-start and the start
427		 * of the following read, and return because we're not writing
428		 * anymore (and TXD will be true because there's room to write
429		 * in the fifo).
430		 */
431		if (sc->sc_replen > 0 && sc->sc_resid == 0) {
432			sc->sc_replen -= sc->sc_dlen;
433			if (sc->sc_replen == 0) {
434				DEBUGF(sc, 1, " err=0\n");
435				DEVICE_DEBUGF(sc, 2, "rstart 0x%02x\n",
436				    sc->sc_curmsg->slave | 0x01);
437				DEVICE_DEBUGF(sc, 1,
438				    "read   0x%02x len %d: ",
439				    sc->sc_curmsg->slave | 0x01,
440				    sc->sc_totlen);
441				sc->sc_flags |= BCM_I2C_READ;
442				return;
443			}
444		}
445	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_TXD));
446}
447
448static void
449bcm_bsc_intr(void *arg)
450{
451	struct bcm_bsc_softc *sc;
452	uint32_t status;
453
454	sc = (struct bcm_bsc_softc *)arg;
455
456	BCM_BSC_LOCK(sc);
457
458	/* The I2C interrupt is shared among all the BSC controllers. */
459	if ((sc->sc_flags & BCM_I2C_BUSY) == 0) {
460		BCM_BSC_UNLOCK(sc);
461		return;
462	}
463
464	status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
465	DEBUGF(sc, 4, " <intrstatus=0x%08x> ", status);
466
467	/* RXD and DONE can assert together, empty fifo before checking done. */
468	if ((sc->sc_flags & BCM_I2C_READ) && (status & BCM_BSC_STATUS_RXD))
469		bcm_bsc_empty_rx_fifo(sc);
470
471	/* Check for completion. */
472	if (status & (BCM_BSC_STATUS_ERRBITS | BCM_BSC_STATUS_DONE)) {
473		sc->sc_flags |= BCM_I2C_DONE;
474		if (status & BCM_BSC_STATUS_ERRBITS)
475			sc->sc_flags |= BCM_I2C_ERROR;
476		/* Disable interrupts. */
477		bcm_bsc_reset(sc);
478		wakeup(sc);
479	} else if (!(sc->sc_flags & BCM_I2C_READ)) {
480		/*
481		 * Don't check for TXD until after determining whether the
482		 * transfer is complete; TXD will be asserted along with ERR or
483		 * DONE if there is room in the fifo.
484		 */
485		if ((status & BCM_BSC_STATUS_TXD) && sc->sc_totlen > 0)
486			bcm_bsc_fill_tx_fifo(sc);
487	}
488
489	BCM_BSC_UNLOCK(sc);
490}
491
492static int
493bcm_bsc_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
494{
495	struct bcm_bsc_softc *sc;
496	struct iic_msg *endmsgs, *nxtmsg;
497	uint32_t readctl, status;
498	int err;
499	uint16_t curlen;
500	uint8_t curisread, curslave, nxtisread, nxtslave;
501
502	sc = device_get_softc(dev);
503	BCM_BSC_LOCK(sc);
504
505	/* If the controller is busy wait until it is available. */
506	while (sc->sc_flags & BCM_I2C_BUSY)
507		mtx_sleep(dev, &sc->sc_mtx, 0, "bscbusw", 0);
508
509	/* Now we have control over the BSC controller. */
510	sc->sc_flags = BCM_I2C_BUSY;
511
512	DEVICE_DEBUGF(sc, 3, "Transfer %d msgs\n", nmsgs);
513
514	/* Clear the FIFO and the pending interrupts. */
515	bcm_bsc_reset(sc);
516
517	/*
518	 * Perform all the transfers requested in the array of msgs.  Note that
519	 * it is bcm_bsc_empty_rx_fifo() and bcm_bsc_fill_tx_fifo() that advance
520	 * sc->sc_curmsg through the array of messages, as the data from each
521	 * message is fully consumed, but it is this loop that notices when we
522	 * have no more messages to process.
523	 */
524	err = 0;
525	sc->sc_resid = 0;
526	sc->sc_curmsg = msgs;
527	endmsgs = &msgs[nmsgs];
528	while (sc->sc_curmsg < endmsgs) {
529		readctl = 0;
530		curslave = sc->sc_curmsg->slave >> 1;
531		curisread = sc->sc_curmsg->flags & IIC_M_RD;
532		sc->sc_replen = 0;
533		sc->sc_totlen = sc->sc_curmsg->len;
534		/*
535		 * Scan for scatter/gather IO (same slave and direction) or
536		 * repeat-start (read following write for the same slave).
537		 */
538		for (nxtmsg = sc->sc_curmsg + 1; nxtmsg < endmsgs; ++nxtmsg) {
539			nxtslave = nxtmsg->slave >> 1;
540			if (curslave == nxtslave) {
541				nxtisread = nxtmsg->flags & IIC_M_RD;
542				if (curisread == nxtisread) {
543					/*
544					 * Same slave and direction, this
545					 * message will be part of the same
546					 * transfer as the previous one.
547					 */
548					sc->sc_totlen += nxtmsg->len;
549					continue;
550				} else if (curisread == IIC_M_WR) {
551					/*
552					 * Read after write to same slave means
553					 * repeat-start, remember how many bytes
554					 * come before the repeat-start, switch
555					 * the direction to IIC_M_RD, and gather
556					 * up following reads to the same slave.
557					 */
558					curisread = IIC_M_RD;
559					sc->sc_replen = sc->sc_totlen;
560					sc->sc_totlen += nxtmsg->len;
561					continue;
562				}
563			}
564			break;
565		}
566
567		/*
568		 * curslave and curisread temporaries from above may refer to
569		 * the after-repstart msg, reset them to reflect sc_curmsg.
570		 */
571		curisread = (sc->sc_curmsg->flags & IIC_M_RD) ? 1 : 0;
572		curslave = sc->sc_curmsg->slave | curisread;
573
574		/* Write the slave address. */
575		BCM_BSC_WRITE(sc, BCM_BSC_SLAVE, curslave >> 1);
576
577		DEVICE_DEBUGF(sc, 2, "start  0x%02x\n", curslave);
578
579		/*
580		 * Either set up read length and direction variables for a
581		 * simple transfer or get the hardware started on the first
582		 * piece of a transfer that involves a repeat-start and set up
583		 * the read length and direction vars for the second piece.
584		 */
585		if (sc->sc_replen == 0) {
586			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
587			    (curisread) ? "read" : "write", curslave,
588			    sc->sc_totlen);
589			curlen = sc->sc_totlen;
590			if (curisread) {
591				readctl = BCM_BSC_CTRL_READ;
592				sc->sc_flags |= BCM_I2C_READ;
593			} else {
594				readctl = 0;
595				sc->sc_flags &= ~BCM_I2C_READ;
596			}
597		} else {
598			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
599			    (curisread) ? "read" : "write", curslave,
600			    sc->sc_replen);
601
602			/*
603			 * Start the write transfer with an empty fifo and wait
604			 * for the 'transfer active' status bit to light up;
605			 * that indicates that the hardware has latched the
606			 * direction and length for the write, and we can safely
607			 * reload those registers and issue the start for the
608			 * following read; interrupts are not enabled here.
609			 */
610			BCM_BSC_WRITE(sc, BCM_BSC_DLEN, sc->sc_replen);
611			BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN |
612			    BCM_BSC_CTRL_ST);
613			do {
614				status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
615				if (status & BCM_BSC_STATUS_ERR) {
616					/* no ACK on slave addr */
617					err = EIO;
618					goto xfer_done;
619				}
620			} while ((status & BCM_BSC_STATUS_TA) == 0);
621			/*
622			 * Set curlen and readctl for the repeat-start read that
623			 * we need to set up below, but set sc_flags to write,
624			 * because that is the operation in progress right now.
625			 */
626			curlen = sc->sc_totlen - sc->sc_replen;
627			readctl = BCM_BSC_CTRL_READ;
628			sc->sc_flags &= ~BCM_I2C_READ;
629		}
630
631		/*
632		 * Start the transfer with interrupts enabled, then if doing a
633		 * write, fill the tx fifo.  Not prefilling the fifo until after
634		 * this start command is the key workaround for making
635		 * repeat-start work, and it's harmless to do it in this order
636		 * for a regular write too.
637		 */
638		BCM_BSC_WRITE(sc, BCM_BSC_DLEN, curlen);
639		BCM_BSC_WRITE(sc, BCM_BSC_CTRL, readctl | BCM_BSC_CTRL_I2CEN |
640		    BCM_BSC_CTRL_ST | BCM_BSC_CTRL_INT_ALL);
641
642		if (!(sc->sc_curmsg->flags & IIC_M_RD)) {
643			bcm_bsc_fill_tx_fifo(sc);
644		}
645
646		/* Wait for the transaction to complete. */
647		while (err == 0 && !(sc->sc_flags & BCM_I2C_DONE)) {
648			err = mtx_sleep(sc, &sc->sc_mtx, 0, "bsciow", hz);
649		}
650		/* Check for errors. */
651		if (err == 0 && (sc->sc_flags & BCM_I2C_ERROR))
652			err = EIO;
653xfer_done:
654		DEBUGF(sc, 1, " err=%d\n", err);
655		DEVICE_DEBUGF(sc, 2, "stop\n");
656		if (err != 0)
657			break;
658	}
659
660	/* Disable interrupts, clean fifo, etc. */
661	bcm_bsc_reset(sc);
662
663	/* Clean the controller flags. */
664	sc->sc_flags = 0;
665
666	/* Wake up the threads waiting for bus. */
667	wakeup(dev);
668
669	BCM_BSC_UNLOCK(sc);
670
671	return (err);
672}
673
674static int
675bcm_bsc_iicbus_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
676{
677	struct bcm_bsc_softc *sc;
678	uint32_t busfreq;
679
680	sc = device_get_softc(dev);
681	BCM_BSC_LOCK(sc);
682	bcm_bsc_reset(sc);
683	if (sc->sc_iicbus == NULL)
684		busfreq = 100000;
685	else
686		busfreq = IICBUS_GET_FREQUENCY(sc->sc_iicbus, speed);
687	BCM_BSC_WRITE(sc, BCM_BSC_CLOCK, BCM_BSC_CORE_CLK / busfreq);
688	BCM_BSC_UNLOCK(sc);
689
690	return (IIC_ENOADDR);
691}
692
693static phandle_t
694bcm_bsc_get_node(device_t bus, device_t dev)
695{
696
697	/* We only have one child, the I2C bus, which needs our own node. */
698	return (ofw_bus_get_node(bus));
699}
700
701static device_method_t bcm_bsc_methods[] = {
702	/* Device interface */
703	DEVMETHOD(device_probe,		bcm_bsc_probe),
704	DEVMETHOD(device_attach,	bcm_bsc_attach),
705	DEVMETHOD(device_detach,	bcm_bsc_detach),
706
707	/* iicbus interface */
708	DEVMETHOD(iicbus_reset,		bcm_bsc_iicbus_reset),
709	DEVMETHOD(iicbus_callback,	iicbus_null_callback),
710	DEVMETHOD(iicbus_transfer,	bcm_bsc_transfer),
711
712	/* ofw_bus interface */
713	DEVMETHOD(ofw_bus_get_node,	bcm_bsc_get_node),
714
715	DEVMETHOD_END
716};
717
718static devclass_t bcm_bsc_devclass;
719
720static driver_t bcm_bsc_driver = {
721	"iichb",
722	bcm_bsc_methods,
723	sizeof(struct bcm_bsc_softc),
724};
725
726DRIVER_MODULE(iicbus, bcm2835_bsc, iicbus_driver, iicbus_devclass, 0, 0);
727DRIVER_MODULE(bcm2835_bsc, simplebus, bcm_bsc_driver, bcm_bsc_devclass, 0, 0);
728