1/*
2 * Copyright 2012-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include "internal/constant_time.h"
11#include "ssl_local.h"
12#include "internal/cryptlib.h"
13
14#include <openssl/md5.h>
15#include <openssl/sha.h>
16
17/*
18 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
19 * length field. (SHA-384/512 have 128-bit length.)
20 */
21#define MAX_HASH_BIT_COUNT_BYTES 16
22
23/*
24 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
25 * Currently SHA-384/512 has a 128-byte block size and that's the largest
26 * supported by TLS.)
27 */
28#define MAX_HASH_BLOCK_SIZE 128
29
30/*
31 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
32 * little-endian order. The value of p is advanced by four.
33 */
34#define u32toLE(n, p) \
35        (*((p)++)=(unsigned char)(n), \
36         *((p)++)=(unsigned char)(n>>8), \
37         *((p)++)=(unsigned char)(n>>16), \
38         *((p)++)=(unsigned char)(n>>24))
39
40/*
41 * These functions serialize the state of a hash and thus perform the
42 * standard "final" operation without adding the padding and length that such
43 * a function typically does.
44 */
45static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
46{
47    MD5_CTX *md5 = ctx;
48    u32toLE(md5->A, md_out);
49    u32toLE(md5->B, md_out);
50    u32toLE(md5->C, md_out);
51    u32toLE(md5->D, md_out);
52}
53
54static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
55{
56    SHA_CTX *sha1 = ctx;
57    l2n(sha1->h0, md_out);
58    l2n(sha1->h1, md_out);
59    l2n(sha1->h2, md_out);
60    l2n(sha1->h3, md_out);
61    l2n(sha1->h4, md_out);
62}
63
64static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
65{
66    SHA256_CTX *sha256 = ctx;
67    unsigned i;
68
69    for (i = 0; i < 8; i++) {
70        l2n(sha256->h[i], md_out);
71    }
72}
73
74static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
75{
76    SHA512_CTX *sha512 = ctx;
77    unsigned i;
78
79    for (i = 0; i < 8; i++) {
80        l2n8(sha512->h[i], md_out);
81    }
82}
83
84#undef  LARGEST_DIGEST_CTX
85#define LARGEST_DIGEST_CTX SHA512_CTX
86
87/*
88 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
89 * which ssl3_cbc_digest_record supports.
90 */
91char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
92{
93    switch (EVP_MD_CTX_type(ctx)) {
94    case NID_md5:
95    case NID_sha1:
96    case NID_sha224:
97    case NID_sha256:
98    case NID_sha384:
99    case NID_sha512:
100        return 1;
101    default:
102        return 0;
103    }
104}
105
106/*-
107 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
108 * record.
109 *
110 *   ctx: the EVP_MD_CTX from which we take the hash function.
111 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
112 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
113 *   md_out_size: if non-NULL, the number of output bytes is written here.
114 *   header: the 13-byte, TLS record header.
115 *   data: the record data itself, less any preceding explicit IV.
116 *   data_plus_mac_size: the secret, reported length of the data and MAC
117 *     once the padding has been removed.
118 *   data_plus_mac_plus_padding_size: the public length of the whole
119 *     record, including padding.
120 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
121 *
122 * On entry: by virtue of having been through one of the remove_padding
123 * functions, above, we know that data_plus_mac_size is large enough to contain
124 * a padding byte and MAC. (If the padding was invalid, it might contain the
125 * padding too. )
126 * Returns 1 on success or 0 on error
127 */
128int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
129                           unsigned char *md_out,
130                           size_t *md_out_size,
131                           const unsigned char header[13],
132                           const unsigned char *data,
133                           size_t data_plus_mac_size,
134                           size_t data_plus_mac_plus_padding_size,
135                           const unsigned char *mac_secret,
136                           size_t mac_secret_length, char is_sslv3)
137{
138    union {
139        double align;
140        unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
141    } md_state;
142    void (*md_final_raw) (void *ctx, unsigned char *md_out);
143    void (*md_transform) (void *ctx, const unsigned char *block);
144    size_t md_size, md_block_size = 64;
145    size_t sslv3_pad_length = 40, header_length, variance_blocks,
146        len, max_mac_bytes, num_blocks,
147        num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
148    size_t bits;          /* at most 18 bits */
149    unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
150    /* hmac_pad is the masked HMAC key. */
151    unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
152    unsigned char first_block[MAX_HASH_BLOCK_SIZE];
153    unsigned char mac_out[EVP_MAX_MD_SIZE];
154    size_t i, j;
155    unsigned md_out_size_u;
156    EVP_MD_CTX *md_ctx = NULL;
157    /*
158     * mdLengthSize is the number of bytes in the length field that
159     * terminates * the hash.
160     */
161    size_t md_length_size = 8;
162    char length_is_big_endian = 1;
163    int ret;
164
165    /*
166     * This is a, hopefully redundant, check that allows us to forget about
167     * many possible overflows later in this function.
168     */
169    if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
170        return 0;
171
172    switch (EVP_MD_CTX_type(ctx)) {
173    case NID_md5:
174        if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
175            return 0;
176        md_final_raw = tls1_md5_final_raw;
177        md_transform =
178            (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
179        md_size = 16;
180        sslv3_pad_length = 48;
181        length_is_big_endian = 0;
182        break;
183    case NID_sha1:
184        if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
185            return 0;
186        md_final_raw = tls1_sha1_final_raw;
187        md_transform =
188            (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
189        md_size = 20;
190        break;
191    case NID_sha224:
192        if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
193            return 0;
194        md_final_raw = tls1_sha256_final_raw;
195        md_transform =
196            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
197        md_size = 224 / 8;
198        break;
199    case NID_sha256:
200        if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
201            return 0;
202        md_final_raw = tls1_sha256_final_raw;
203        md_transform =
204            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
205        md_size = 32;
206        break;
207    case NID_sha384:
208        if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
209            return 0;
210        md_final_raw = tls1_sha512_final_raw;
211        md_transform =
212            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
213        md_size = 384 / 8;
214        md_block_size = 128;
215        md_length_size = 16;
216        break;
217    case NID_sha512:
218        if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
219            return 0;
220        md_final_raw = tls1_sha512_final_raw;
221        md_transform =
222            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
223        md_size = 64;
224        md_block_size = 128;
225        md_length_size = 16;
226        break;
227    default:
228        /*
229         * ssl3_cbc_record_digest_supported should have been called first to
230         * check that the hash function is supported.
231         */
232        if (md_out_size != NULL)
233            *md_out_size = 0;
234        return ossl_assert(0);
235    }
236
237    if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
238            || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
239            || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
240        return 0;
241
242    header_length = 13;
243    if (is_sslv3) {
244        header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
245                                                                  * number */  +
246            1 /* record type */  +
247            2 /* record length */ ;
248    }
249
250    /*
251     * variance_blocks is the number of blocks of the hash that we have to
252     * calculate in constant time because they could be altered by the
253     * padding value. In SSLv3, the padding must be minimal so the end of
254     * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
255     * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
256     * of hash termination (0x80 + 64-bit length) don't fit in the final
257     * block, we say that the final two blocks can vary based on the padding.
258     * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
259     * required to be minimal. Therefore we say that the final |variance_blocks|
260     * blocks can
261     * vary based on the padding. Later in the function, if the message is
262     * short and there obviously cannot be this many blocks then
263     * variance_blocks can be reduced.
264     */
265    variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
266    /*
267     * From now on we're dealing with the MAC, which conceptually has 13
268     * bytes of `header' before the start of the data (TLS) or 71/75 bytes
269     * (SSLv3)
270     */
271    len = data_plus_mac_plus_padding_size + header_length;
272    /*
273     * max_mac_bytes contains the maximum bytes of bytes in the MAC,
274     * including * |header|, assuming that there's no padding.
275     */
276    max_mac_bytes = len - md_size - 1;
277    /* num_blocks is the maximum number of hash blocks. */
278    num_blocks =
279        (max_mac_bytes + 1 + md_length_size + md_block_size -
280         1) / md_block_size;
281    /*
282     * In order to calculate the MAC in constant time we have to handle the
283     * final blocks specially because the padding value could cause the end
284     * to appear somewhere in the final |variance_blocks| blocks and we can't
285     * leak where. However, |num_starting_blocks| worth of data can be hashed
286     * right away because no padding value can affect whether they are
287     * plaintext.
288     */
289    num_starting_blocks = 0;
290    /*
291     * k is the starting byte offset into the conceptual header||data where
292     * we start processing.
293     */
294    k = 0;
295    /*
296     * mac_end_offset is the index just past the end of the data to be MACed.
297     */
298    mac_end_offset = data_plus_mac_size + header_length - md_size;
299    /*
300     * c is the index of the 0x80 byte in the final hash block that contains
301     * application data.
302     */
303    c = mac_end_offset % md_block_size;
304    /*
305     * index_a is the hash block number that contains the 0x80 terminating
306     * value.
307     */
308    index_a = mac_end_offset / md_block_size;
309    /*
310     * index_b is the hash block number that contains the 64-bit hash length,
311     * in bits.
312     */
313    index_b = (mac_end_offset + md_length_size) / md_block_size;
314    /*
315     * bits is the hash-length in bits. It includes the additional hash block
316     * for the masked HMAC key, or whole of |header| in the case of SSLv3.
317     */
318
319    /*
320     * For SSLv3, if we're going to have any starting blocks then we need at
321     * least two because the header is larger than a single block.
322     */
323    if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
324        num_starting_blocks = num_blocks - variance_blocks;
325        k = md_block_size * num_starting_blocks;
326    }
327
328    bits = 8 * mac_end_offset;
329    if (!is_sslv3) {
330        /*
331         * Compute the initial HMAC block. For SSLv3, the padding and secret
332         * bytes are included in |header| because they take more than a
333         * single block.
334         */
335        bits += 8 * md_block_size;
336        memset(hmac_pad, 0, md_block_size);
337        if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
338            return 0;
339        memcpy(hmac_pad, mac_secret, mac_secret_length);
340        for (i = 0; i < md_block_size; i++)
341            hmac_pad[i] ^= 0x36;
342
343        md_transform(md_state.c, hmac_pad);
344    }
345
346    if (length_is_big_endian) {
347        memset(length_bytes, 0, md_length_size - 4);
348        length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
349        length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
350        length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
351        length_bytes[md_length_size - 1] = (unsigned char)bits;
352    } else {
353        memset(length_bytes, 0, md_length_size);
354        length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
355        length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
356        length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
357        length_bytes[md_length_size - 8] = (unsigned char)bits;
358    }
359
360    if (k > 0) {
361        if (is_sslv3) {
362            size_t overhang;
363
364            /*
365             * The SSLv3 header is larger than a single block. overhang is
366             * the number of bytes beyond a single block that the header
367             * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
368             * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
369             * therefore we can be confident that the header_length will be
370             * greater than |md_block_size|. However we add a sanity check just
371             * in case
372             */
373            if (header_length <= md_block_size) {
374                /* Should never happen */
375                return 0;
376            }
377            overhang = header_length - md_block_size;
378            md_transform(md_state.c, header);
379            memcpy(first_block, header + md_block_size, overhang);
380            memcpy(first_block + overhang, data, md_block_size - overhang);
381            md_transform(md_state.c, first_block);
382            for (i = 1; i < k / md_block_size - 1; i++)
383                md_transform(md_state.c, data + md_block_size * i - overhang);
384        } else {
385            /* k is a multiple of md_block_size. */
386            memcpy(first_block, header, 13);
387            memcpy(first_block + 13, data, md_block_size - 13);
388            md_transform(md_state.c, first_block);
389            for (i = 1; i < k / md_block_size; i++)
390                md_transform(md_state.c, data + md_block_size * i - 13);
391        }
392    }
393
394    memset(mac_out, 0, sizeof(mac_out));
395
396    /*
397     * We now process the final hash blocks. For each block, we construct it
398     * in constant time. If the |i==index_a| then we'll include the 0x80
399     * bytes and zero pad etc. For each block we selectively copy it, in
400     * constant time, to |mac_out|.
401     */
402    for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
403         i++) {
404        unsigned char block[MAX_HASH_BLOCK_SIZE];
405        unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
406        unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
407        for (j = 0; j < md_block_size; j++) {
408            unsigned char b = 0, is_past_c, is_past_cp1;
409            if (k < header_length)
410                b = header[k];
411            else if (k < data_plus_mac_plus_padding_size + header_length)
412                b = data[k - header_length];
413            k++;
414
415            is_past_c = is_block_a & constant_time_ge_8_s(j, c);
416            is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
417            /*
418             * If this is the block containing the end of the application
419             * data, and we are at the offset for the 0x80 value, then
420             * overwrite b with 0x80.
421             */
422            b = constant_time_select_8(is_past_c, 0x80, b);
423            /*
424             * If this block contains the end of the application data
425             * and we're past the 0x80 value then just write zero.
426             */
427            b = b & ~is_past_cp1;
428            /*
429             * If this is index_b (the final block), but not index_a (the end
430             * of the data), then the 64-bit length didn't fit into index_a
431             * and we're having to add an extra block of zeros.
432             */
433            b &= ~is_block_b | is_block_a;
434
435            /*
436             * The final bytes of one of the blocks contains the length.
437             */
438            if (j >= md_block_size - md_length_size) {
439                /* If this is index_b, write a length byte. */
440                b = constant_time_select_8(is_block_b,
441                                           length_bytes[j -
442                                                        (md_block_size -
443                                                         md_length_size)], b);
444            }
445            block[j] = b;
446        }
447
448        md_transform(md_state.c, block);
449        md_final_raw(md_state.c, block);
450        /* If this is index_b, copy the hash value to |mac_out|. */
451        for (j = 0; j < md_size; j++)
452            mac_out[j] |= block[j] & is_block_b;
453    }
454
455    md_ctx = EVP_MD_CTX_new();
456    if (md_ctx == NULL)
457        goto err;
458    if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
459        goto err;
460    if (is_sslv3) {
461        /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
462        memset(hmac_pad, 0x5c, sslv3_pad_length);
463
464        if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
465            || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
466            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
467            goto err;
468    } else {
469        /* Complete the HMAC in the standard manner. */
470        for (i = 0; i < md_block_size; i++)
471            hmac_pad[i] ^= 0x6a;
472
473        if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
474            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
475            goto err;
476    }
477    /* TODO(size_t): Convert me */
478    ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
479    if (ret && md_out_size)
480        *md_out_size = md_out_size_u;
481    EVP_MD_CTX_free(md_ctx);
482
483    return 1;
484 err:
485    EVP_MD_CTX_free(md_ctx);
486    return 0;
487}
488