1/*
2 * kmp_lock.h -- lock header file
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef KMP_LOCK_H
14#define KMP_LOCK_H
15
16#include <limits.h> // CHAR_BIT
17#include <stddef.h> // offsetof
18
19#include "kmp_debug.h"
20#include "kmp_os.h"
21
22#ifdef __cplusplus
23#include <atomic>
24
25extern "C" {
26#endif // __cplusplus
27
28// ----------------------------------------------------------------------------
29// Have to copy these definitions from kmp.h because kmp.h cannot be included
30// due to circular dependencies.  Will undef these at end of file.
31
32#define KMP_PAD(type, sz)                                                      \
33  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
34#define KMP_GTID_DNE (-2)
35
36// Forward declaration of ident and ident_t
37
38struct ident;
39typedef struct ident ident_t;
40
41// End of copied code.
42// ----------------------------------------------------------------------------
43
44// We need to know the size of the area we can assume that the compiler(s)
45// allocated for objects of type omp_lock_t and omp_nest_lock_t.  The Intel
46// compiler always allocates a pointer-sized area, as does visual studio.
47//
48// gcc however, only allocates 4 bytes for regular locks, even on 64-bit
49// intel archs.  It allocates at least 8 bytes for nested lock (more on
50// recent versions), but we are bounded by the pointer-sized chunks that
51// the Intel compiler allocates.
52
53#if KMP_OS_LINUX && defined(KMP_GOMP_COMPAT)
54#define OMP_LOCK_T_SIZE sizeof(int)
55#define OMP_NEST_LOCK_T_SIZE sizeof(void *)
56#else
57#define OMP_LOCK_T_SIZE sizeof(void *)
58#define OMP_NEST_LOCK_T_SIZE sizeof(void *)
59#endif
60
61// The Intel compiler allocates a 32-byte chunk for a critical section.
62// Both gcc and visual studio only allocate enough space for a pointer.
63// Sometimes we know that the space was allocated by the Intel compiler.
64#define OMP_CRITICAL_SIZE sizeof(void *)
65#define INTEL_CRITICAL_SIZE 32
66
67// lock flags
68typedef kmp_uint32 kmp_lock_flags_t;
69
70#define kmp_lf_critical_section 1
71
72// When a lock table is used, the indices are of kmp_lock_index_t
73typedef kmp_uint32 kmp_lock_index_t;
74
75// When memory allocated for locks are on the lock pool (free list),
76// it is treated as structs of this type.
77struct kmp_lock_pool {
78  union kmp_user_lock *next;
79  kmp_lock_index_t index;
80};
81
82typedef struct kmp_lock_pool kmp_lock_pool_t;
83
84extern void __kmp_validate_locks(void);
85
86// ----------------------------------------------------------------------------
87//  There are 5 lock implementations:
88//       1. Test and set locks.
89//       2. futex locks (Linux* OS on x86 and
90//          Intel(R) Many Integrated Core Architecture)
91//       3. Ticket (Lamport bakery) locks.
92//       4. Queuing locks (with separate spin fields).
93//       5. DRPA (Dynamically Reconfigurable Distributed Polling Area) locks
94//
95//   and 3 lock purposes:
96//       1. Bootstrap locks -- Used for a few locks available at library
97//       startup-shutdown time.
98//          These do not require non-negative global thread ID's.
99//       2. Internal RTL locks -- Used everywhere else in the RTL
100//       3. User locks (includes critical sections)
101// ----------------------------------------------------------------------------
102
103// ============================================================================
104// Lock implementations.
105//
106// Test and set locks.
107//
108// Non-nested test and set locks differ from the other lock kinds (except
109// futex) in that we use the memory allocated by the compiler for the lock,
110// rather than a pointer to it.
111//
112// On lin32, lin_32e, and win_32, the space allocated may be as small as 4
113// bytes, so we have to use a lock table for nested locks, and avoid accessing
114// the depth_locked field for non-nested locks.
115//
116// Information normally available to the tools, such as lock location, lock
117// usage (normal lock vs. critical section), etc. is not available with test and
118// set locks.
119// ----------------------------------------------------------------------------
120
121struct kmp_base_tas_lock {
122  // KMP_LOCK_FREE(tas) => unlocked; locked: (gtid+1) of owning thread
123  std::atomic<kmp_int32> poll;
124  kmp_int32 depth_locked; // depth locked, for nested locks only
125};
126
127typedef struct kmp_base_tas_lock kmp_base_tas_lock_t;
128
129union kmp_tas_lock {
130  kmp_base_tas_lock_t lk;
131  kmp_lock_pool_t pool; // make certain struct is large enough
132  double lk_align; // use worst case alignment; no cache line padding
133};
134
135typedef union kmp_tas_lock kmp_tas_lock_t;
136
137// Static initializer for test and set lock variables. Usage:
138//    kmp_tas_lock_t xlock = KMP_TAS_LOCK_INITIALIZER( xlock );
139#define KMP_TAS_LOCK_INITIALIZER(lock)                                         \
140  {                                                                            \
141    { ATOMIC_VAR_INIT(KMP_LOCK_FREE(tas)), 0 }                                 \
142  }
143
144extern int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
145extern int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
146extern int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
147extern void __kmp_init_tas_lock(kmp_tas_lock_t *lck);
148extern void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck);
149
150extern int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
151extern int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
152extern int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
153extern void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck);
154extern void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck);
155
156#define KMP_LOCK_RELEASED 1
157#define KMP_LOCK_STILL_HELD 0
158#define KMP_LOCK_ACQUIRED_FIRST 1
159#define KMP_LOCK_ACQUIRED_NEXT 0
160#ifndef KMP_USE_FUTEX
161#define KMP_USE_FUTEX                                                          \
162  (KMP_OS_LINUX && !KMP_OS_CNK &&                                              \
163   (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64))
164#endif
165#if KMP_USE_FUTEX
166
167// ----------------------------------------------------------------------------
168// futex locks.  futex locks are only available on Linux* OS.
169//
170// Like non-nested test and set lock, non-nested futex locks use the memory
171// allocated by the compiler for the lock, rather than a pointer to it.
172//
173// Information normally available to the tools, such as lock location, lock
174// usage (normal lock vs. critical section), etc. is not available with test and
175// set locks. With non-nested futex locks, the lock owner is not even available.
176// ----------------------------------------------------------------------------
177
178struct kmp_base_futex_lock {
179  volatile kmp_int32 poll; // KMP_LOCK_FREE(futex) => unlocked
180  // 2*(gtid+1) of owning thread, 0 if unlocked
181  // locked: (gtid+1) of owning thread
182  kmp_int32 depth_locked; // depth locked, for nested locks only
183};
184
185typedef struct kmp_base_futex_lock kmp_base_futex_lock_t;
186
187union kmp_futex_lock {
188  kmp_base_futex_lock_t lk;
189  kmp_lock_pool_t pool; // make certain struct is large enough
190  double lk_align; // use worst case alignment
191  // no cache line padding
192};
193
194typedef union kmp_futex_lock kmp_futex_lock_t;
195
196// Static initializer for futex lock variables. Usage:
197//    kmp_futex_lock_t xlock = KMP_FUTEX_LOCK_INITIALIZER( xlock );
198#define KMP_FUTEX_LOCK_INITIALIZER(lock)                                       \
199  {                                                                            \
200    { KMP_LOCK_FREE(futex), 0 }                                                \
201  }
202
203extern int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
204extern int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
205extern int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
206extern void __kmp_init_futex_lock(kmp_futex_lock_t *lck);
207extern void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck);
208
209extern int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck,
210                                           kmp_int32 gtid);
211extern int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
212extern int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck,
213                                           kmp_int32 gtid);
214extern void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck);
215extern void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck);
216
217#endif // KMP_USE_FUTEX
218
219// ----------------------------------------------------------------------------
220// Ticket locks.
221
222#ifdef __cplusplus
223
224#ifdef _MSC_VER
225// MSVC won't allow use of std::atomic<> in a union since it has non-trivial
226// copy constructor.
227
228struct kmp_base_ticket_lock {
229  // `initialized' must be the first entry in the lock data structure!
230  std::atomic_bool initialized;
231  volatile union kmp_ticket_lock *self; // points to the lock union
232  ident_t const *location; // Source code location of omp_init_lock().
233  std::atomic_uint
234      next_ticket; // ticket number to give to next thread which acquires
235  std::atomic_uint now_serving; // ticket number for thread which holds the lock
236  std::atomic_int owner_id; // (gtid+1) of owning thread, 0 if unlocked
237  std::atomic_int depth_locked; // depth locked, for nested locks only
238  kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
239};
240#else
241struct kmp_base_ticket_lock {
242  // `initialized' must be the first entry in the lock data structure!
243  std::atomic<bool> initialized;
244  volatile union kmp_ticket_lock *self; // points to the lock union
245  ident_t const *location; // Source code location of omp_init_lock().
246  std::atomic<unsigned>
247      next_ticket; // ticket number to give to next thread which acquires
248  std::atomic<unsigned>
249      now_serving; // ticket number for thread which holds the lock
250  std::atomic<int> owner_id; // (gtid+1) of owning thread, 0 if unlocked
251  std::atomic<int> depth_locked; // depth locked, for nested locks only
252  kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
253};
254#endif
255
256#else // __cplusplus
257
258struct kmp_base_ticket_lock;
259
260#endif // !__cplusplus
261
262typedef struct kmp_base_ticket_lock kmp_base_ticket_lock_t;
263
264union KMP_ALIGN_CACHE kmp_ticket_lock {
265  kmp_base_ticket_lock_t
266      lk; // This field must be first to allow static initializing.
267  kmp_lock_pool_t pool;
268  double lk_align; // use worst case alignment
269  char lk_pad[KMP_PAD(kmp_base_ticket_lock_t, CACHE_LINE)];
270};
271
272typedef union kmp_ticket_lock kmp_ticket_lock_t;
273
274// Static initializer for simple ticket lock variables. Usage:
275//    kmp_ticket_lock_t xlock = KMP_TICKET_LOCK_INITIALIZER( xlock );
276// Note the macro argument. It is important to make var properly initialized.
277#define KMP_TICKET_LOCK_INITIALIZER(lock)                                      \
278  {                                                                            \
279    {                                                                          \
280      ATOMIC_VAR_INIT(true)                                                    \
281      , &(lock), NULL, ATOMIC_VAR_INIT(0U), ATOMIC_VAR_INIT(0U),               \
282          ATOMIC_VAR_INIT(0), ATOMIC_VAR_INIT(-1)                              \
283    }                                                                          \
284  }
285
286extern int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
287extern int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
288extern int __kmp_test_ticket_lock_with_cheks(kmp_ticket_lock_t *lck,
289                                             kmp_int32 gtid);
290extern int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
291extern void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck);
292extern void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck);
293
294extern int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck,
295                                            kmp_int32 gtid);
296extern int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck,
297                                         kmp_int32 gtid);
298extern int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck,
299                                            kmp_int32 gtid);
300extern void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck);
301extern void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck);
302
303// ----------------------------------------------------------------------------
304// Queuing locks.
305
306#if KMP_USE_ADAPTIVE_LOCKS
307
308struct kmp_adaptive_lock_info;
309
310typedef struct kmp_adaptive_lock_info kmp_adaptive_lock_info_t;
311
312#if KMP_DEBUG_ADAPTIVE_LOCKS
313
314struct kmp_adaptive_lock_statistics {
315  /* So we can get stats from locks that haven't been destroyed. */
316  kmp_adaptive_lock_info_t *next;
317  kmp_adaptive_lock_info_t *prev;
318
319  /* Other statistics */
320  kmp_uint32 successfulSpeculations;
321  kmp_uint32 hardFailedSpeculations;
322  kmp_uint32 softFailedSpeculations;
323  kmp_uint32 nonSpeculativeAcquires;
324  kmp_uint32 nonSpeculativeAcquireAttempts;
325  kmp_uint32 lemmingYields;
326};
327
328typedef struct kmp_adaptive_lock_statistics kmp_adaptive_lock_statistics_t;
329
330extern void __kmp_print_speculative_stats();
331extern void __kmp_init_speculative_stats();
332
333#endif // KMP_DEBUG_ADAPTIVE_LOCKS
334
335struct kmp_adaptive_lock_info {
336  /* Values used for adaptivity.
337     Although these are accessed from multiple threads we don't access them
338     atomically, because if we miss updates it probably doesn't matter much. (It
339     just affects our decision about whether to try speculation on the lock). */
340  kmp_uint32 volatile badness;
341  kmp_uint32 volatile acquire_attempts;
342  /* Parameters of the lock. */
343  kmp_uint32 max_badness;
344  kmp_uint32 max_soft_retries;
345
346#if KMP_DEBUG_ADAPTIVE_LOCKS
347  kmp_adaptive_lock_statistics_t volatile stats;
348#endif
349};
350
351#endif // KMP_USE_ADAPTIVE_LOCKS
352
353struct kmp_base_queuing_lock {
354
355  //  `initialized' must be the first entry in the lock data structure!
356  volatile union kmp_queuing_lock
357      *initialized; // Points to the lock union if in initialized state.
358
359  ident_t const *location; // Source code location of omp_init_lock().
360
361  KMP_ALIGN(8) // tail_id  must be 8-byte aligned!
362
363  volatile kmp_int32
364      tail_id; // (gtid+1) of thread at tail of wait queue, 0 if empty
365  // Must be no padding here since head/tail used in 8-byte CAS
366  volatile kmp_int32
367      head_id; // (gtid+1) of thread at head of wait queue, 0 if empty
368  // Decl order assumes little endian
369  // bakery-style lock
370  volatile kmp_uint32
371      next_ticket; // ticket number to give to next thread which acquires
372  volatile kmp_uint32
373      now_serving; // ticket number for thread which holds the lock
374  volatile kmp_int32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
375  kmp_int32 depth_locked; // depth locked, for nested locks only
376
377  kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
378};
379
380typedef struct kmp_base_queuing_lock kmp_base_queuing_lock_t;
381
382KMP_BUILD_ASSERT(offsetof(kmp_base_queuing_lock_t, tail_id) % 8 == 0);
383
384union KMP_ALIGN_CACHE kmp_queuing_lock {
385  kmp_base_queuing_lock_t
386      lk; // This field must be first to allow static initializing.
387  kmp_lock_pool_t pool;
388  double lk_align; // use worst case alignment
389  char lk_pad[KMP_PAD(kmp_base_queuing_lock_t, CACHE_LINE)];
390};
391
392typedef union kmp_queuing_lock kmp_queuing_lock_t;
393
394extern int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
395extern int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
396extern int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
397extern void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck);
398extern void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck);
399
400extern int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck,
401                                             kmp_int32 gtid);
402extern int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck,
403                                          kmp_int32 gtid);
404extern int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck,
405                                             kmp_int32 gtid);
406extern void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck);
407extern void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck);
408
409#if KMP_USE_ADAPTIVE_LOCKS
410
411// ----------------------------------------------------------------------------
412// Adaptive locks.
413struct kmp_base_adaptive_lock {
414  kmp_base_queuing_lock qlk;
415  KMP_ALIGN(CACHE_LINE)
416  kmp_adaptive_lock_info_t
417      adaptive; // Information for the speculative adaptive lock
418};
419
420typedef struct kmp_base_adaptive_lock kmp_base_adaptive_lock_t;
421
422union KMP_ALIGN_CACHE kmp_adaptive_lock {
423  kmp_base_adaptive_lock_t lk;
424  kmp_lock_pool_t pool;
425  double lk_align;
426  char lk_pad[KMP_PAD(kmp_base_adaptive_lock_t, CACHE_LINE)];
427};
428typedef union kmp_adaptive_lock kmp_adaptive_lock_t;
429
430#define GET_QLK_PTR(l) ((kmp_queuing_lock_t *)&(l)->lk.qlk)
431
432#endif // KMP_USE_ADAPTIVE_LOCKS
433
434// ----------------------------------------------------------------------------
435// DRDPA ticket locks.
436struct kmp_base_drdpa_lock {
437  // All of the fields on the first cache line are only written when
438  // initializing or reconfiguring the lock.  These are relatively rare
439  // operations, so data from the first cache line will usually stay resident in
440  // the cache of each thread trying to acquire the lock.
441  //
442  // initialized must be the first entry in the lock data structure!
443  KMP_ALIGN_CACHE
444
445  volatile union kmp_drdpa_lock
446      *initialized; // points to the lock union if in initialized state
447  ident_t const *location; // Source code location of omp_init_lock().
448  std::atomic<std::atomic<kmp_uint64> *> polls;
449  std::atomic<kmp_uint64> mask; // is 2**num_polls-1 for mod op
450  kmp_uint64 cleanup_ticket; // thread with cleanup ticket
451  std::atomic<kmp_uint64> *old_polls; // will deallocate old_polls
452  kmp_uint32 num_polls; // must be power of 2
453
454  // next_ticket it needs to exist in a separate cache line, as it is
455  // invalidated every time a thread takes a new ticket.
456  KMP_ALIGN_CACHE
457
458  std::atomic<kmp_uint64> next_ticket;
459
460  // now_serving is used to store our ticket value while we hold the lock. It
461  // has a slightly different meaning in the DRDPA ticket locks (where it is
462  // written by the acquiring thread) than it does in the simple ticket locks
463  // (where it is written by the releasing thread).
464  //
465  // Since now_serving is only read and written in the critical section,
466  // it is non-volatile, but it needs to exist on a separate cache line,
467  // as it is invalidated at every lock acquire.
468  //
469  // Likewise, the vars used for nested locks (owner_id and depth_locked) are
470  // only written by the thread owning the lock, so they are put in this cache
471  // line.  owner_id is read by other threads, so it must be declared volatile.
472  KMP_ALIGN_CACHE
473  kmp_uint64 now_serving; // doesn't have to be volatile
474  volatile kmp_uint32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
475  kmp_int32 depth_locked; // depth locked
476  kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
477};
478
479typedef struct kmp_base_drdpa_lock kmp_base_drdpa_lock_t;
480
481union KMP_ALIGN_CACHE kmp_drdpa_lock {
482  kmp_base_drdpa_lock_t
483      lk; // This field must be first to allow static initializing. */
484  kmp_lock_pool_t pool;
485  double lk_align; // use worst case alignment
486  char lk_pad[KMP_PAD(kmp_base_drdpa_lock_t, CACHE_LINE)];
487};
488
489typedef union kmp_drdpa_lock kmp_drdpa_lock_t;
490
491extern int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
492extern int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
493extern int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
494extern void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck);
495extern void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck);
496
497extern int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
498                                           kmp_int32 gtid);
499extern int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
500extern int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
501                                           kmp_int32 gtid);
502extern void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
503extern void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
504
505// ============================================================================
506// Lock purposes.
507// ============================================================================
508
509// Bootstrap locks.
510//
511// Bootstrap locks -- very few locks used at library initialization time.
512// Bootstrap locks are currently implemented as ticket locks.
513// They could also be implemented as test and set lock, but cannot be
514// implemented with other lock kinds as they require gtids which are not
515// available at initialization time.
516
517typedef kmp_ticket_lock_t kmp_bootstrap_lock_t;
518
519#define KMP_BOOTSTRAP_LOCK_INITIALIZER(lock) KMP_TICKET_LOCK_INITIALIZER((lock))
520#define KMP_BOOTSTRAP_LOCK_INIT(lock)                                          \
521  kmp_bootstrap_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
522
523static inline int __kmp_acquire_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
524  return __kmp_acquire_ticket_lock(lck, KMP_GTID_DNE);
525}
526
527static inline int __kmp_test_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
528  return __kmp_test_ticket_lock(lck, KMP_GTID_DNE);
529}
530
531static inline void __kmp_release_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
532  __kmp_release_ticket_lock(lck, KMP_GTID_DNE);
533}
534
535static inline void __kmp_init_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
536  __kmp_init_ticket_lock(lck);
537}
538
539static inline void __kmp_destroy_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
540  __kmp_destroy_ticket_lock(lck);
541}
542
543// Internal RTL locks.
544//
545// Internal RTL locks are also implemented as ticket locks, for now.
546//
547// FIXME - We should go through and figure out which lock kind works best for
548// each internal lock, and use the type declaration and function calls for
549// that explicit lock kind (and get rid of this section).
550
551typedef kmp_ticket_lock_t kmp_lock_t;
552
553#define KMP_LOCK_INIT(lock) kmp_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
554
555static inline int __kmp_acquire_lock(kmp_lock_t *lck, kmp_int32 gtid) {
556  return __kmp_acquire_ticket_lock(lck, gtid);
557}
558
559static inline int __kmp_test_lock(kmp_lock_t *lck, kmp_int32 gtid) {
560  return __kmp_test_ticket_lock(lck, gtid);
561}
562
563static inline void __kmp_release_lock(kmp_lock_t *lck, kmp_int32 gtid) {
564  __kmp_release_ticket_lock(lck, gtid);
565}
566
567static inline void __kmp_init_lock(kmp_lock_t *lck) {
568  __kmp_init_ticket_lock(lck);
569}
570
571static inline void __kmp_destroy_lock(kmp_lock_t *lck) {
572  __kmp_destroy_ticket_lock(lck);
573}
574
575// User locks.
576//
577// Do not allocate objects of type union kmp_user_lock!!! This will waste space
578// unless __kmp_user_lock_kind == lk_drdpa. Instead, check the value of
579// __kmp_user_lock_kind and allocate objects of the type of the appropriate
580// union member, and cast their addresses to kmp_user_lock_p.
581
582enum kmp_lock_kind {
583  lk_default = 0,
584  lk_tas,
585#if KMP_USE_FUTEX
586  lk_futex,
587#endif
588#if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX
589  lk_hle,
590  lk_rtm,
591#endif
592  lk_ticket,
593  lk_queuing,
594  lk_drdpa,
595#if KMP_USE_ADAPTIVE_LOCKS
596  lk_adaptive
597#endif // KMP_USE_ADAPTIVE_LOCKS
598};
599
600typedef enum kmp_lock_kind kmp_lock_kind_t;
601
602extern kmp_lock_kind_t __kmp_user_lock_kind;
603
604union kmp_user_lock {
605  kmp_tas_lock_t tas;
606#if KMP_USE_FUTEX
607  kmp_futex_lock_t futex;
608#endif
609  kmp_ticket_lock_t ticket;
610  kmp_queuing_lock_t queuing;
611  kmp_drdpa_lock_t drdpa;
612#if KMP_USE_ADAPTIVE_LOCKS
613  kmp_adaptive_lock_t adaptive;
614#endif // KMP_USE_ADAPTIVE_LOCKS
615  kmp_lock_pool_t pool;
616};
617
618typedef union kmp_user_lock *kmp_user_lock_p;
619
620#if !KMP_USE_DYNAMIC_LOCK
621
622extern size_t __kmp_base_user_lock_size;
623extern size_t __kmp_user_lock_size;
624
625extern kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck);
626
627static inline kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck) {
628  KMP_DEBUG_ASSERT(__kmp_get_user_lock_owner_ != NULL);
629  return (*__kmp_get_user_lock_owner_)(lck);
630}
631
632extern int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
633                                                   kmp_int32 gtid);
634
635#if KMP_OS_LINUX &&                                                            \
636    (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
637
638#define __kmp_acquire_user_lock_with_checks(lck, gtid)                         \
639  if (__kmp_user_lock_kind == lk_tas) {                                        \
640    if (__kmp_env_consistency_check) {                                         \
641      char const *const func = "omp_set_lock";                                 \
642      if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&                       \
643          lck->tas.lk.depth_locked != -1) {                                    \
644        KMP_FATAL(LockNestableUsedAsSimple, func);                             \
645      }                                                                        \
646      if ((gtid >= 0) && (lck->tas.lk.poll - 1 == gtid)) {                     \
647        KMP_FATAL(LockIsAlreadyOwned, func);                                   \
648      }                                                                        \
649    }                                                                          \
650    if (lck->tas.lk.poll != 0 ||                                               \
651        !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) {     \
652      kmp_uint32 spins;                                                        \
653      KMP_FSYNC_PREPARE(lck);                                                  \
654      KMP_INIT_YIELD(spins);                                                   \
655      do {                                                                     \
656        KMP_YIELD_OVERSUB_ELSE_SPIN(spins);                                    \
657      } while (                                                                \
658          lck->tas.lk.poll != 0 ||                                             \
659          !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));    \
660    }                                                                          \
661    KMP_FSYNC_ACQUIRED(lck);                                                   \
662  } else {                                                                     \
663    KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL);            \
664    (*__kmp_acquire_user_lock_with_checks_)(lck, gtid);                        \
665  }
666
667#else
668static inline int __kmp_acquire_user_lock_with_checks(kmp_user_lock_p lck,
669                                                      kmp_int32 gtid) {
670  KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL);
671  return (*__kmp_acquire_user_lock_with_checks_)(lck, gtid);
672}
673#endif
674
675extern int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
676                                                kmp_int32 gtid);
677
678#if KMP_OS_LINUX &&                                                            \
679    (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
680
681#include "kmp_i18n.h" /* AC: KMP_FATAL definition */
682extern int __kmp_env_consistency_check; /* AC: copy from kmp.h here */
683static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
684                                                   kmp_int32 gtid) {
685  if (__kmp_user_lock_kind == lk_tas) {
686    if (__kmp_env_consistency_check) {
687      char const *const func = "omp_test_lock";
688      if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
689          lck->tas.lk.depth_locked != -1) {
690        KMP_FATAL(LockNestableUsedAsSimple, func);
691      }
692    }
693    return ((lck->tas.lk.poll == 0) &&
694            __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
695  } else {
696    KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
697    return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
698  }
699}
700#else
701static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
702                                                   kmp_int32 gtid) {
703  KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
704  return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
705}
706#endif
707
708extern int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
709                                                   kmp_int32 gtid);
710
711static inline void __kmp_release_user_lock_with_checks(kmp_user_lock_p lck,
712                                                       kmp_int32 gtid) {
713  KMP_DEBUG_ASSERT(__kmp_release_user_lock_with_checks_ != NULL);
714  (*__kmp_release_user_lock_with_checks_)(lck, gtid);
715}
716
717extern void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck);
718
719static inline void __kmp_init_user_lock_with_checks(kmp_user_lock_p lck) {
720  KMP_DEBUG_ASSERT(__kmp_init_user_lock_with_checks_ != NULL);
721  (*__kmp_init_user_lock_with_checks_)(lck);
722}
723
724// We need a non-checking version of destroy lock for when the RTL is
725// doing the cleanup as it can't always tell if the lock is nested or not.
726extern void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck);
727
728static inline void __kmp_destroy_user_lock(kmp_user_lock_p lck) {
729  KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_ != NULL);
730  (*__kmp_destroy_user_lock_)(lck);
731}
732
733extern void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck);
734
735static inline void __kmp_destroy_user_lock_with_checks(kmp_user_lock_p lck) {
736  KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_with_checks_ != NULL);
737  (*__kmp_destroy_user_lock_with_checks_)(lck);
738}
739
740extern int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
741                                                          kmp_int32 gtid);
742
743#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
744
745#define __kmp_acquire_nested_user_lock_with_checks(lck, gtid, depth)           \
746  if (__kmp_user_lock_kind == lk_tas) {                                        \
747    if (__kmp_env_consistency_check) {                                         \
748      char const *const func = "omp_set_nest_lock";                            \
749      if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) &&                  \
750          lck->tas.lk.depth_locked == -1) {                                    \
751        KMP_FATAL(LockSimpleUsedAsNestable, func);                             \
752      }                                                                        \
753    }                                                                          \
754    if (lck->tas.lk.poll - 1 == gtid) {                                        \
755      lck->tas.lk.depth_locked += 1;                                           \
756      *depth = KMP_LOCK_ACQUIRED_NEXT;                                         \
757    } else {                                                                   \
758      if ((lck->tas.lk.poll != 0) ||                                           \
759          !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) {   \
760        kmp_uint32 spins;                                                      \
761        KMP_FSYNC_PREPARE(lck);                                                \
762        KMP_INIT_YIELD(spins);                                                 \
763        do {                                                                   \
764          KMP_YIELD_OVERSUB_ELSE_SPIN(spins);                                  \
765        } while (                                                              \
766            (lck->tas.lk.poll != 0) ||                                         \
767            !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));  \
768      }                                                                        \
769      lck->tas.lk.depth_locked = 1;                                            \
770      *depth = KMP_LOCK_ACQUIRED_FIRST;                                        \
771    }                                                                          \
772    KMP_FSYNC_ACQUIRED(lck);                                                   \
773  } else {                                                                     \
774    KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL);     \
775    *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid);        \
776  }
777
778#else
779static inline void
780__kmp_acquire_nested_user_lock_with_checks(kmp_user_lock_p lck, kmp_int32 gtid,
781                                           int *depth) {
782  KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL);
783  *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid);
784}
785#endif
786
787extern int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
788                                                       kmp_int32 gtid);
789
790#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
791static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
792                                                          kmp_int32 gtid) {
793  if (__kmp_user_lock_kind == lk_tas) {
794    int retval;
795    if (__kmp_env_consistency_check) {
796      char const *const func = "omp_test_nest_lock";
797      if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) &&
798          lck->tas.lk.depth_locked == -1) {
799        KMP_FATAL(LockSimpleUsedAsNestable, func);
800      }
801    }
802    KMP_DEBUG_ASSERT(gtid >= 0);
803    if (lck->tas.lk.poll - 1 ==
804        gtid) { /* __kmp_get_tas_lock_owner( lck ) == gtid */
805      return ++lck->tas.lk.depth_locked; /* same owner, depth increased */
806    }
807    retval = ((lck->tas.lk.poll == 0) &&
808              __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
809    if (retval) {
810      KMP_MB();
811      lck->tas.lk.depth_locked = 1;
812    }
813    return retval;
814  } else {
815    KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
816    return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
817  }
818}
819#else
820static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
821                                                          kmp_int32 gtid) {
822  KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
823  return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
824}
825#endif
826
827extern int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
828                                                          kmp_int32 gtid);
829
830static inline int
831__kmp_release_nested_user_lock_with_checks(kmp_user_lock_p lck,
832                                           kmp_int32 gtid) {
833  KMP_DEBUG_ASSERT(__kmp_release_nested_user_lock_with_checks_ != NULL);
834  return (*__kmp_release_nested_user_lock_with_checks_)(lck, gtid);
835}
836
837extern void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
838
839static inline void
840__kmp_init_nested_user_lock_with_checks(kmp_user_lock_p lck) {
841  KMP_DEBUG_ASSERT(__kmp_init_nested_user_lock_with_checks_ != NULL);
842  (*__kmp_init_nested_user_lock_with_checks_)(lck);
843}
844
845extern void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
846
847static inline void
848__kmp_destroy_nested_user_lock_with_checks(kmp_user_lock_p lck) {
849  KMP_DEBUG_ASSERT(__kmp_destroy_nested_user_lock_with_checks_ != NULL);
850  (*__kmp_destroy_nested_user_lock_with_checks_)(lck);
851}
852
853// user lock functions which do not necessarily exist for all lock kinds.
854//
855// The "set" functions usually have wrapper routines that check for a NULL set
856// function pointer and call it if non-NULL.
857//
858// In some cases, it makes sense to have a "get" wrapper function check for a
859// NULL get function pointer and return NULL / invalid value / error code if
860// the function pointer is NULL.
861//
862// In other cases, the calling code really should differentiate between an
863// unimplemented function and one that is implemented but returning NULL /
864// invalid value.  If this is the case, no get function wrapper exists.
865
866extern int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck);
867
868// no set function; fields set during local allocation
869
870extern const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck);
871
872static inline const ident_t *__kmp_get_user_lock_location(kmp_user_lock_p lck) {
873  if (__kmp_get_user_lock_location_ != NULL) {
874    return (*__kmp_get_user_lock_location_)(lck);
875  } else {
876    return NULL;
877  }
878}
879
880extern void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
881                                             const ident_t *loc);
882
883static inline void __kmp_set_user_lock_location(kmp_user_lock_p lck,
884                                                const ident_t *loc) {
885  if (__kmp_set_user_lock_location_ != NULL) {
886    (*__kmp_set_user_lock_location_)(lck, loc);
887  }
888}
889
890extern kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck);
891
892extern void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
893                                          kmp_lock_flags_t flags);
894
895static inline void __kmp_set_user_lock_flags(kmp_user_lock_p lck,
896                                             kmp_lock_flags_t flags) {
897  if (__kmp_set_user_lock_flags_ != NULL) {
898    (*__kmp_set_user_lock_flags_)(lck, flags);
899  }
900}
901
902// The function which sets up all of the vtbl pointers for kmp_user_lock_t.
903extern void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind);
904
905// Macros for binding user lock functions.
906#define KMP_BIND_USER_LOCK_TEMPLATE(nest, kind, suffix)                        \
907  {                                                                            \
908    __kmp_acquire##nest##user_lock_with_checks_ = (int (*)(                    \
909        kmp_user_lock_p, kmp_int32))__kmp_acquire##nest##kind##_##suffix;      \
910    __kmp_release##nest##user_lock_with_checks_ = (int (*)(                    \
911        kmp_user_lock_p, kmp_int32))__kmp_release##nest##kind##_##suffix;      \
912    __kmp_test##nest##user_lock_with_checks_ = (int (*)(                       \
913        kmp_user_lock_p, kmp_int32))__kmp_test##nest##kind##_##suffix;         \
914    __kmp_init##nest##user_lock_with_checks_ =                                 \
915        (void (*)(kmp_user_lock_p))__kmp_init##nest##kind##_##suffix;          \
916    __kmp_destroy##nest##user_lock_with_checks_ =                              \
917        (void (*)(kmp_user_lock_p))__kmp_destroy##nest##kind##_##suffix;       \
918  }
919
920#define KMP_BIND_USER_LOCK(kind) KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock)
921#define KMP_BIND_USER_LOCK_WITH_CHECKS(kind)                                   \
922  KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock_with_checks)
923#define KMP_BIND_NESTED_USER_LOCK(kind)                                        \
924  KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock)
925#define KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(kind)                            \
926  KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock_with_checks)
927
928// User lock table & lock allocation
929/* On 64-bit Linux* OS (and OS X*) GNU compiler allocates only 4 bytems memory
930   for lock variable, which is not enough to store a pointer, so we have to use
931   lock indexes instead of pointers and maintain lock table to map indexes to
932   pointers.
933
934
935   Note: The first element of the table is not a pointer to lock! It is a
936   pointer to previously allocated table (or NULL if it is the first table).
937
938   Usage:
939
940   if ( OMP_LOCK_T_SIZE < sizeof( <lock> ) ) { // or OMP_NEST_LOCK_T_SIZE
941     Lock table is fully utilized. User locks are indexes, so table is used on
942     user lock operation.
943     Note: it may be the case (lin_32) that we don't need to use a lock
944     table for regular locks, but do need the table for nested locks.
945   }
946   else {
947     Lock table initialized but not actually used.
948   }
949*/
950
951struct kmp_lock_table {
952  kmp_lock_index_t used; // Number of used elements
953  kmp_lock_index_t allocated; // Number of allocated elements
954  kmp_user_lock_p *table; // Lock table.
955};
956
957typedef struct kmp_lock_table kmp_lock_table_t;
958
959extern kmp_lock_table_t __kmp_user_lock_table;
960extern kmp_user_lock_p __kmp_lock_pool;
961
962struct kmp_block_of_locks {
963  struct kmp_block_of_locks *next_block;
964  void *locks;
965};
966
967typedef struct kmp_block_of_locks kmp_block_of_locks_t;
968
969extern kmp_block_of_locks_t *__kmp_lock_blocks;
970extern int __kmp_num_locks_in_block;
971
972extern kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock,
973                                                kmp_int32 gtid,
974                                                kmp_lock_flags_t flags);
975extern void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
976                                 kmp_user_lock_p lck);
977extern kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock,
978                                              char const *func);
979extern void __kmp_cleanup_user_locks();
980
981#define KMP_CHECK_USER_LOCK_INIT()                                             \
982  {                                                                            \
983    if (!TCR_4(__kmp_init_user_locks)) {                                       \
984      __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);                         \
985      if (!TCR_4(__kmp_init_user_locks)) {                                     \
986        TCW_4(__kmp_init_user_locks, TRUE);                                    \
987      }                                                                        \
988      __kmp_release_bootstrap_lock(&__kmp_initz_lock);                         \
989    }                                                                          \
990  }
991
992#endif // KMP_USE_DYNAMIC_LOCK
993
994#undef KMP_PAD
995#undef KMP_GTID_DNE
996
997#if KMP_USE_DYNAMIC_LOCK
998// KMP_USE_DYNAMIC_LOCK enables dynamic dispatch of lock functions without
999// breaking the current compatibility. Essential functionality of this new code
1000// is dynamic dispatch, but it also implements (or enables implementation of)
1001// hinted user lock and critical section which will be part of OMP 4.5 soon.
1002//
1003// Lock type can be decided at creation time (i.e., lock initialization), and
1004// subsequent lock function call on the created lock object requires type
1005// extraction and call through jump table using the extracted type. This type
1006// information is stored in two different ways depending on the size of the lock
1007// object, and we differentiate lock types by this size requirement - direct and
1008// indirect locks.
1009//
1010// Direct locks:
1011// A direct lock object fits into the space created by the compiler for an
1012// omp_lock_t object, and TAS/Futex lock falls into this category. We use low
1013// one byte of the lock object as the storage for the lock type, and appropriate
1014// bit operation is required to access the data meaningful to the lock
1015// algorithms. Also, to differentiate direct lock from indirect lock, 1 is
1016// written to LSB of the lock object. The newly introduced "hle" lock is also a
1017// direct lock.
1018//
1019// Indirect locks:
1020// An indirect lock object requires more space than the compiler-generated
1021// space, and it should be allocated from heap. Depending on the size of the
1022// compiler-generated space for the lock (i.e., size of omp_lock_t), this
1023// omp_lock_t object stores either the address of the heap-allocated indirect
1024// lock (void * fits in the object) or an index to the indirect lock table entry
1025// that holds the address. Ticket/Queuing/DRDPA/Adaptive lock falls into this
1026// category, and the newly introduced "rtm" lock is also an indirect lock which
1027// was implemented on top of the Queuing lock. When the omp_lock_t object holds
1028// an index (not lock address), 0 is written to LSB to differentiate the lock
1029// from a direct lock, and the remaining part is the actual index to the
1030// indirect lock table.
1031
1032#include <stdint.h> // for uintptr_t
1033
1034// Shortcuts
1035#define KMP_USE_INLINED_TAS                                                    \
1036  (KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)) && 1
1037#define KMP_USE_INLINED_FUTEX KMP_USE_FUTEX && 0
1038
1039// List of lock definitions; all nested locks are indirect locks.
1040// hle lock is xchg lock prefixed with XACQUIRE/XRELEASE.
1041// All nested locks are indirect lock types.
1042#if KMP_USE_TSX
1043#if KMP_USE_FUTEX
1044#define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) m(hle, a)
1045#define KMP_FOREACH_I_LOCK(m, a)                                               \
1046  m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm, a)              \
1047      m(nested_tas, a) m(nested_futex, a) m(nested_ticket, a)                  \
1048          m(nested_queuing, a) m(nested_drdpa, a)
1049#else
1050#define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(hle, a)
1051#define KMP_FOREACH_I_LOCK(m, a)                                               \
1052  m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm, a)              \
1053      m(nested_tas, a) m(nested_ticket, a) m(nested_queuing, a)                \
1054          m(nested_drdpa, a)
1055#endif // KMP_USE_FUTEX
1056#define KMP_LAST_D_LOCK lockseq_hle
1057#else
1058#if KMP_USE_FUTEX
1059#define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a)
1060#define KMP_FOREACH_I_LOCK(m, a)                                               \
1061  m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_futex, a)   \
1062      m(nested_ticket, a) m(nested_queuing, a) m(nested_drdpa, a)
1063#define KMP_LAST_D_LOCK lockseq_futex
1064#else
1065#define KMP_FOREACH_D_LOCK(m, a) m(tas, a)
1066#define KMP_FOREACH_I_LOCK(m, a)                                               \
1067  m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_ticket, a)  \
1068      m(nested_queuing, a) m(nested_drdpa, a)
1069#define KMP_LAST_D_LOCK lockseq_tas
1070#endif // KMP_USE_FUTEX
1071#endif // KMP_USE_TSX
1072
1073// Information used in dynamic dispatch
1074#define KMP_LOCK_SHIFT                                                         \
1075  8 // number of low bits to be used as tag for direct locks
1076#define KMP_FIRST_D_LOCK lockseq_tas
1077#define KMP_FIRST_I_LOCK lockseq_ticket
1078#define KMP_LAST_I_LOCK lockseq_nested_drdpa
1079#define KMP_NUM_I_LOCKS                                                        \
1080  (locktag_nested_drdpa + 1) // number of indirect lock types
1081
1082// Base type for dynamic locks.
1083typedef kmp_uint32 kmp_dyna_lock_t;
1084
1085// Lock sequence that enumerates all lock kinds. Always make this enumeration
1086// consistent with kmp_lockseq_t in the include directory.
1087typedef enum {
1088  lockseq_indirect = 0,
1089#define expand_seq(l, a) lockseq_##l,
1090  KMP_FOREACH_D_LOCK(expand_seq, 0) KMP_FOREACH_I_LOCK(expand_seq, 0)
1091#undef expand_seq
1092} kmp_dyna_lockseq_t;
1093
1094// Enumerates indirect lock tags.
1095typedef enum {
1096#define expand_tag(l, a) locktag_##l,
1097  KMP_FOREACH_I_LOCK(expand_tag, 0)
1098#undef expand_tag
1099} kmp_indirect_locktag_t;
1100
1101// Utility macros that extract information from lock sequences.
1102#define KMP_IS_D_LOCK(seq)                                                     \
1103  ((seq) >= KMP_FIRST_D_LOCK && (seq) <= KMP_LAST_D_LOCK)
1104#define KMP_IS_I_LOCK(seq)                                                     \
1105  ((seq) >= KMP_FIRST_I_LOCK && (seq) <= KMP_LAST_I_LOCK)
1106#define KMP_GET_I_TAG(seq) (kmp_indirect_locktag_t)((seq)-KMP_FIRST_I_LOCK)
1107#define KMP_GET_D_TAG(seq) ((seq) << 1 | 1)
1108
1109// Enumerates direct lock tags starting from indirect tag.
1110typedef enum {
1111#define expand_tag(l, a) locktag_##l = KMP_GET_D_TAG(lockseq_##l),
1112  KMP_FOREACH_D_LOCK(expand_tag, 0)
1113#undef expand_tag
1114} kmp_direct_locktag_t;
1115
1116// Indirect lock type
1117typedef struct {
1118  kmp_user_lock_p lock;
1119  kmp_indirect_locktag_t type;
1120} kmp_indirect_lock_t;
1121
1122// Function tables for direct locks. Set/unset/test differentiate functions
1123// with/without consistency checking.
1124extern void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t);
1125extern void (**__kmp_direct_destroy)(kmp_dyna_lock_t *);
1126extern int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32);
1127extern int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32);
1128extern int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32);
1129
1130// Function tables for indirect locks. Set/unset/test differentiate functions
1131// with/without consistency checking.
1132extern void (*__kmp_indirect_init[])(kmp_user_lock_p);
1133extern void (**__kmp_indirect_destroy)(kmp_user_lock_p);
1134extern int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32);
1135extern int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32);
1136extern int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32);
1137
1138// Extracts direct lock tag from a user lock pointer
1139#define KMP_EXTRACT_D_TAG(l)                                                   \
1140  (*((kmp_dyna_lock_t *)(l)) & ((1 << KMP_LOCK_SHIFT) - 1) &                   \
1141   -(*((kmp_dyna_lock_t *)(l)) & 1))
1142
1143// Extracts indirect lock index from a user lock pointer
1144#define KMP_EXTRACT_I_INDEX(l) (*(kmp_lock_index_t *)(l) >> 1)
1145
1146// Returns function pointer to the direct lock function with l (kmp_dyna_lock_t
1147// *) and op (operation type).
1148#define KMP_D_LOCK_FUNC(l, op) __kmp_direct_##op[KMP_EXTRACT_D_TAG(l)]
1149
1150// Returns function pointer to the indirect lock function with l
1151// (kmp_indirect_lock_t *) and op (operation type).
1152#define KMP_I_LOCK_FUNC(l, op)                                                 \
1153  __kmp_indirect_##op[((kmp_indirect_lock_t *)(l))->type]
1154
1155// Initializes a direct lock with the given lock pointer and lock sequence.
1156#define KMP_INIT_D_LOCK(l, seq)                                                \
1157  __kmp_direct_init[KMP_GET_D_TAG(seq)]((kmp_dyna_lock_t *)l, seq)
1158
1159// Initializes an indirect lock with the given lock pointer and lock sequence.
1160#define KMP_INIT_I_LOCK(l, seq)                                                \
1161  __kmp_direct_init[0]((kmp_dyna_lock_t *)(l), seq)
1162
1163// Returns "free" lock value for the given lock type.
1164#define KMP_LOCK_FREE(type) (locktag_##type)
1165
1166// Returns "busy" lock value for the given lock teyp.
1167#define KMP_LOCK_BUSY(v, type) ((v) << KMP_LOCK_SHIFT | locktag_##type)
1168
1169// Returns lock value after removing (shifting) lock tag.
1170#define KMP_LOCK_STRIP(v) ((v) >> KMP_LOCK_SHIFT)
1171
1172// Initializes global states and data structures for managing dynamic user
1173// locks.
1174extern void __kmp_init_dynamic_user_locks();
1175
1176// Allocates and returns an indirect lock with the given indirect lock tag.
1177extern kmp_indirect_lock_t *
1178__kmp_allocate_indirect_lock(void **, kmp_int32, kmp_indirect_locktag_t);
1179
1180// Cleans up global states and data structures for managing dynamic user locks.
1181extern void __kmp_cleanup_indirect_user_locks();
1182
1183// Default user lock sequence when not using hinted locks.
1184extern kmp_dyna_lockseq_t __kmp_user_lock_seq;
1185
1186// Jump table for "set lock location", available only for indirect locks.
1187extern void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1188                                                            const ident_t *);
1189#define KMP_SET_I_LOCK_LOCATION(lck, loc)                                      \
1190  {                                                                            \
1191    if (__kmp_indirect_set_location[(lck)->type] != NULL)                      \
1192      __kmp_indirect_set_location[(lck)->type]((lck)->lock, loc);              \
1193  }
1194
1195// Jump table for "set lock flags", available only for indirect locks.
1196extern void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1197                                                         kmp_lock_flags_t);
1198#define KMP_SET_I_LOCK_FLAGS(lck, flag)                                        \
1199  {                                                                            \
1200    if (__kmp_indirect_set_flags[(lck)->type] != NULL)                         \
1201      __kmp_indirect_set_flags[(lck)->type]((lck)->lock, flag);                \
1202  }
1203
1204// Jump table for "get lock location", available only for indirect locks.
1205extern const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
1206    kmp_user_lock_p);
1207#define KMP_GET_I_LOCK_LOCATION(lck)                                           \
1208  (__kmp_indirect_get_location[(lck)->type] != NULL                            \
1209       ? __kmp_indirect_get_location[(lck)->type]((lck)->lock)                 \
1210       : NULL)
1211
1212// Jump table for "get lock flags", available only for indirect locks.
1213extern kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
1214    kmp_user_lock_p);
1215#define KMP_GET_I_LOCK_FLAGS(lck)                                              \
1216  (__kmp_indirect_get_flags[(lck)->type] != NULL                               \
1217       ? __kmp_indirect_get_flags[(lck)->type]((lck)->lock)                    \
1218       : NULL)
1219
1220#define KMP_I_LOCK_CHUNK                                                       \
1221  1024 // number of kmp_indirect_lock_t objects to be allocated together
1222
1223// Lock table for indirect locks.
1224typedef struct kmp_indirect_lock_table {
1225  kmp_indirect_lock_t **table; // blocks of indirect locks allocated
1226  kmp_lock_index_t size; // size of the indirect lock table
1227  kmp_lock_index_t next; // index to the next lock to be allocated
1228} kmp_indirect_lock_table_t;
1229
1230extern kmp_indirect_lock_table_t __kmp_i_lock_table;
1231
1232// Returns the indirect lock associated with the given index.
1233#define KMP_GET_I_LOCK(index)                                                  \
1234  (*(__kmp_i_lock_table.table + (index) / KMP_I_LOCK_CHUNK) +                  \
1235   (index) % KMP_I_LOCK_CHUNK)
1236
1237// Number of locks in a lock block, which is fixed to "1" now.
1238// TODO: No lock block implementation now. If we do support, we need to manage
1239// lock block data structure for each indirect lock type.
1240extern int __kmp_num_locks_in_block;
1241
1242// Fast lock table lookup without consistency checking
1243#define KMP_LOOKUP_I_LOCK(l)                                                   \
1244  ((OMP_LOCK_T_SIZE < sizeof(void *)) ? KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(l)) \
1245                                      : *((kmp_indirect_lock_t **)(l)))
1246
1247// Used once in kmp_error.cpp
1248extern kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p, kmp_uint32);
1249
1250#else // KMP_USE_DYNAMIC_LOCK
1251
1252#define KMP_LOCK_BUSY(v, type) (v)
1253#define KMP_LOCK_FREE(type) 0
1254#define KMP_LOCK_STRIP(v) (v)
1255
1256#endif // KMP_USE_DYNAMIC_LOCK
1257
1258// data structure for using backoff within spin locks.
1259typedef struct {
1260  kmp_uint32 step; // current step
1261  kmp_uint32 max_backoff; // upper bound of outer delay loop
1262  kmp_uint32 min_tick; // size of inner delay loop in ticks (machine-dependent)
1263} kmp_backoff_t;
1264
1265// Runtime's default backoff parameters
1266extern kmp_backoff_t __kmp_spin_backoff_params;
1267
1268// Backoff function
1269extern void __kmp_spin_backoff(kmp_backoff_t *);
1270
1271#ifdef __cplusplus
1272} // extern "C"
1273#endif // __cplusplus
1274
1275#endif /* KMP_LOCK_H */
1276