1//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines structures to encapsulate the machine model as described in
10// the target description.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenSchedule.h"
15#include "CodeGenInstruction.h"
16#include "CodeGenTarget.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/Regex.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/TableGen/Error.h"
27#include <algorithm>
28#include <iterator>
29#include <utility>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "subtarget-emitter"
34
35#ifndef NDEBUG
36static void dumpIdxVec(ArrayRef<unsigned> V) {
37  for (unsigned Idx : V)
38    dbgs() << Idx << ", ";
39}
40#endif
41
42namespace {
43
44// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45struct InstrsOp : public SetTheory::Operator {
46  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47             ArrayRef<SMLoc> Loc) override {
48    ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49  }
50};
51
52// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53struct InstRegexOp : public SetTheory::Operator {
54  const CodeGenTarget &Target;
55  InstRegexOp(const CodeGenTarget &t): Target(t) {}
56
57  /// Remove any text inside of parentheses from S.
58  static std::string removeParens(llvm::StringRef S) {
59    std::string Result;
60    unsigned Paren = 0;
61    // NB: We don't care about escaped parens here.
62    for (char C : S) {
63      switch (C) {
64      case '(':
65        ++Paren;
66        break;
67      case ')':
68        --Paren;
69        break;
70      default:
71        if (Paren == 0)
72          Result += C;
73      }
74    }
75    return Result;
76  }
77
78  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79             ArrayRef<SMLoc> Loc) override {
80    ArrayRef<const CodeGenInstruction *> Instructions =
81        Target.getInstructionsByEnumValue();
82
83    unsigned NumGeneric = Target.getNumFixedInstructions();
84    unsigned NumPseudos = Target.getNumPseudoInstructions();
85    auto Generics = Instructions.slice(0, NumGeneric);
86    auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87    auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88
89    for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90      StringInit *SI = dyn_cast<StringInit>(Arg);
91      if (!SI)
92        PrintFatalError(Loc, "instregex requires pattern string: " +
93                                 Expr->getAsString());
94      StringRef Original = SI->getValue();
95
96      // Extract a prefix that we can binary search on.
97      static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98      auto FirstMeta = Original.find_first_of(RegexMetachars);
99
100      // Look for top-level | or ?. We cannot optimize them to binary search.
101      if (removeParens(Original).find_first_of("|?") != std::string::npos)
102        FirstMeta = 0;
103
104      Optional<Regex> Regexpr = None;
105      StringRef Prefix = Original.substr(0, FirstMeta);
106      StringRef PatStr = Original.substr(FirstMeta);
107      if (!PatStr.empty()) {
108        // For the rest use a python-style prefix match.
109        std::string pat = std::string(PatStr);
110        if (pat[0] != '^') {
111          pat.insert(0, "^(");
112          pat.insert(pat.end(), ')');
113        }
114        Regexpr = Regex(pat);
115      }
116
117      int NumMatches = 0;
118
119      // The generic opcodes are unsorted, handle them manually.
120      for (auto *Inst : Generics) {
121        StringRef InstName = Inst->TheDef->getName();
122        if (InstName.startswith(Prefix) &&
123            (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124          Elts.insert(Inst->TheDef);
125          NumMatches++;
126        }
127      }
128
129      // Target instructions are split into two ranges: pseudo instructions
130      // first, than non-pseudos. Each range is in lexicographical order
131      // sorted by name. Find the sub-ranges that start with our prefix.
132      struct Comp {
133        bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134          return LHS->TheDef->getName() < RHS;
135        }
136        bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137          return LHS < RHS->TheDef->getName() &&
138                 !RHS->TheDef->getName().startswith(LHS);
139        }
140      };
141      auto Range1 =
142          std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143      auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144                                     Prefix, Comp());
145
146      // For these ranges we know that instruction names start with the prefix.
147      // Check if there's a regex that needs to be checked.
148      const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149        StringRef InstName = Inst->TheDef->getName();
150        if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151          Elts.insert(Inst->TheDef);
152          NumMatches++;
153        }
154      };
155      std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156      std::for_each(Range2.first, Range2.second, HandleNonGeneric);
157
158      if (0 == NumMatches)
159        PrintFatalError(Loc, "instregex has no matches: " + Original);
160    }
161  }
162};
163
164} // end anonymous namespace
165
166/// CodeGenModels ctor interprets machine model records and populates maps.
167CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168                                       const CodeGenTarget &TGT):
169  Records(RK), Target(TGT) {
170
171  Sets.addFieldExpander("InstRW", "Instrs");
172
173  // Allow Set evaluation to recognize the dags used in InstRW records:
174  // (instrs Op1, Op1...)
175  Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176  Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
177
178  // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179  // that are explicitly referenced in tablegen records. Resources associated
180  // with each processor will be derived later. Populate ProcModelMap with the
181  // CodeGenProcModel instances.
182  collectProcModels();
183
184  // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185  // defined, and populate SchedReads and SchedWrites vectors. Implicit
186  // SchedReadWrites that represent sequences derived from expanded variant will
187  // be inferred later.
188  collectSchedRW();
189
190  // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191  // required by an instruction definition, and populate SchedClassIdxMap. Set
192  // NumItineraryClasses to the number of explicit itinerary classes referenced
193  // by instructions. Set NumInstrSchedClasses to the number of itinerary
194  // classes plus any classes implied by instructions that derive from class
195  // Sched and provide SchedRW list. This does not infer any new classes from
196  // SchedVariant.
197  collectSchedClasses();
198
199  // Find instruction itineraries for each processor. Sort and populate
200  // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201  // all itinerary classes to be discovered.
202  collectProcItins();
203
204  // Find ItinRW records for each processor and itinerary class.
205  // (For per-operand resources mapped to itinerary classes).
206  collectProcItinRW();
207
208  // Find UnsupportedFeatures records for each processor.
209  // (For per-operand resources mapped to itinerary classes).
210  collectProcUnsupportedFeatures();
211
212  // Infer new SchedClasses from SchedVariant.
213  inferSchedClasses();
214
215  // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216  // ProcResourceDefs.
217  LLVM_DEBUG(
218      dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219  collectProcResources();
220
221  // Collect optional processor description.
222  collectOptionalProcessorInfo();
223
224  // Check MCInstPredicate definitions.
225  checkMCInstPredicates();
226
227  // Check STIPredicate definitions.
228  checkSTIPredicates();
229
230  // Find STIPredicate definitions for each processor model, and construct
231  // STIPredicateFunction objects.
232  collectSTIPredicates();
233
234  checkCompleteness();
235}
236
237void CodeGenSchedModels::checkSTIPredicates() const {
238  DenseMap<StringRef, const Record *> Declarations;
239
240  // There cannot be multiple declarations with the same name.
241  const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242  for (const Record *R : Decls) {
243    StringRef Name = R->getValueAsString("Name");
244    const auto It = Declarations.find(Name);
245    if (It == Declarations.end()) {
246      Declarations[Name] = R;
247      continue;
248    }
249
250    PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251    PrintNote(It->second->getLoc(), "Previous declaration was here.");
252    PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
253  }
254
255  // Disallow InstructionEquivalenceClasses with an empty instruction list.
256  const RecVec Defs =
257      Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
258  for (const Record *R : Defs) {
259    RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
260    if (Opcodes.empty()) {
261      PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
262                                   "defined with an empty opcode list.");
263    }
264  }
265}
266
267// Used by function `processSTIPredicate` to construct a mask of machine
268// instruction operands.
269static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
270  APInt OperandMask;
271  if (Indices.empty())
272    return OperandMask;
273
274  int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
275  assert(MaxIndex >= 0 && "Invalid negative indices in input!");
276  OperandMask = OperandMask.zext(MaxIndex + 1);
277  for (const int64_t Index : Indices) {
278    assert(Index >= 0 && "Invalid negative indices!");
279    OperandMask.setBit(Index);
280  }
281
282  return OperandMask;
283}
284
285static void
286processSTIPredicate(STIPredicateFunction &Fn,
287                    const DenseMap<Record *, unsigned> &ProcModelMap) {
288  DenseMap<const Record *, unsigned> Opcode2Index;
289  using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
290  std::vector<OpcodeMapPair> OpcodeMappings;
291  std::vector<std::pair<APInt, APInt>> OpcodeMasks;
292
293  DenseMap<const Record *, unsigned> Predicate2Index;
294  unsigned NumUniquePredicates = 0;
295
296  // Number unique predicates and opcodes used by InstructionEquivalenceClass
297  // definitions. Each unique opcode will be associated with an OpcodeInfo
298  // object.
299  for (const Record *Def : Fn.getDefinitions()) {
300    RecVec Classes = Def->getValueAsListOfDefs("Classes");
301    for (const Record *EC : Classes) {
302      const Record *Pred = EC->getValueAsDef("Predicate");
303      if (Predicate2Index.find(Pred) == Predicate2Index.end())
304        Predicate2Index[Pred] = NumUniquePredicates++;
305
306      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
307      for (const Record *Opcode : Opcodes) {
308        if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
309          Opcode2Index[Opcode] = OpcodeMappings.size();
310          OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
311        }
312      }
313    }
314  }
315
316  // Initialize vector `OpcodeMasks` with default values.  We want to keep track
317  // of which processors "use" which opcodes.  We also want to be able to
318  // identify predicates that are used by different processors for a same
319  // opcode.
320  // This information is used later on by this algorithm to sort OpcodeMapping
321  // elements based on their processor and predicate sets.
322  OpcodeMasks.resize(OpcodeMappings.size());
323  APInt DefaultProcMask(ProcModelMap.size(), 0);
324  APInt DefaultPredMask(NumUniquePredicates, 0);
325  for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
326    MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
327
328  // Construct a OpcodeInfo object for every unique opcode declared by an
329  // InstructionEquivalenceClass definition.
330  for (const Record *Def : Fn.getDefinitions()) {
331    RecVec Classes = Def->getValueAsListOfDefs("Classes");
332    const Record *SchedModel = Def->getValueAsDef("SchedModel");
333    unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
334    APInt ProcMask(ProcModelMap.size(), 0);
335    ProcMask.setBit(ProcIndex);
336
337    for (const Record *EC : Classes) {
338      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
339
340      std::vector<int64_t> OpIndices =
341          EC->getValueAsListOfInts("OperandIndices");
342      APInt OperandMask = constructOperandMask(OpIndices);
343
344      const Record *Pred = EC->getValueAsDef("Predicate");
345      APInt PredMask(NumUniquePredicates, 0);
346      PredMask.setBit(Predicate2Index[Pred]);
347
348      for (const Record *Opcode : Opcodes) {
349        unsigned OpcodeIdx = Opcode2Index[Opcode];
350        if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
351          std::string Message =
352              "Opcode " + Opcode->getName().str() +
353              " used by multiple InstructionEquivalenceClass definitions.";
354          PrintFatalError(EC->getLoc(), Message);
355        }
356        OpcodeMasks[OpcodeIdx].first |= ProcMask;
357        OpcodeMasks[OpcodeIdx].second |= PredMask;
358        OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
359
360        OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
361      }
362    }
363  }
364
365  // Sort OpcodeMappings elements based on their CPU and predicate masks.
366  // As a last resort, order elements by opcode identifier.
367  llvm::sort(OpcodeMappings,
368             [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
369               unsigned LhsIdx = Opcode2Index[Lhs.first];
370               unsigned RhsIdx = Opcode2Index[Rhs.first];
371               const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
372               const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
373
374               auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
375                 unsigned LhsCountPopulation = Lhs.countPopulation();
376                 unsigned RhsCountPopulation = Rhs.countPopulation();
377                 return ((LhsCountPopulation < RhsCountPopulation) ||
378                         ((LhsCountPopulation == RhsCountPopulation) &&
379                          (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
380               };
381
382               if (LhsMasks.first != RhsMasks.first)
383                 return LessThan(LhsMasks.first, RhsMasks.first);
384
385               if (LhsMasks.second != RhsMasks.second)
386                 return LessThan(LhsMasks.second, RhsMasks.second);
387
388               return LhsIdx < RhsIdx;
389             });
390
391  // Now construct opcode groups. Groups are used by the SubtargetEmitter when
392  // expanding the body of a STIPredicate function. In particular, each opcode
393  // group is expanded into a sequence of labels in a switch statement.
394  // It identifies opcodes for which different processors define same predicates
395  // and same opcode masks.
396  for (OpcodeMapPair &Info : OpcodeMappings)
397    Fn.addOpcode(Info.first, std::move(Info.second));
398}
399
400void CodeGenSchedModels::collectSTIPredicates() {
401  // Map STIPredicateDecl records to elements of vector
402  // CodeGenSchedModels::STIPredicates.
403  DenseMap<const Record *, unsigned> Decl2Index;
404
405  RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
406  for (const Record *R : RV) {
407    const Record *Decl = R->getValueAsDef("Declaration");
408
409    const auto It = Decl2Index.find(Decl);
410    if (It == Decl2Index.end()) {
411      Decl2Index[Decl] = STIPredicates.size();
412      STIPredicateFunction Predicate(Decl);
413      Predicate.addDefinition(R);
414      STIPredicates.emplace_back(std::move(Predicate));
415      continue;
416    }
417
418    STIPredicateFunction &PreviousDef = STIPredicates[It->second];
419    PreviousDef.addDefinition(R);
420  }
421
422  for (STIPredicateFunction &Fn : STIPredicates)
423    processSTIPredicate(Fn, ProcModelMap);
424}
425
426void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
427                                          const llvm::APInt &OperandMask,
428                                          const Record *Predicate) {
429  auto It = llvm::find_if(
430      Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
431        return P.Predicate == Predicate && P.OperandMask == OperandMask;
432      });
433  if (It == Predicates.end()) {
434    Predicates.emplace_back(CpuMask, OperandMask, Predicate);
435    return;
436  }
437  It->ProcModelMask |= CpuMask;
438}
439
440void CodeGenSchedModels::checkMCInstPredicates() const {
441  RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
442  if (MCPredicates.empty())
443    return;
444
445  // A target cannot have multiple TIIPredicate definitions with a same name.
446  llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
447  for (const Record *TIIPred : MCPredicates) {
448    StringRef Name = TIIPred->getValueAsString("FunctionName");
449    StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
450    if (It == TIIPredicates.end()) {
451      TIIPredicates[Name] = TIIPred;
452      continue;
453    }
454
455    PrintError(TIIPred->getLoc(),
456               "TIIPredicate " + Name + " is multiply defined.");
457    PrintNote(It->second->getLoc(),
458              " Previous definition of " + Name + " was here.");
459    PrintFatalError(TIIPred->getLoc(),
460                    "Found conflicting definitions of TIIPredicate.");
461  }
462}
463
464void CodeGenSchedModels::collectRetireControlUnits() {
465  RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
466
467  for (Record *RCU : Units) {
468    CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
469    if (PM.RetireControlUnit) {
470      PrintError(RCU->getLoc(),
471                 "Expected a single RetireControlUnit definition");
472      PrintNote(PM.RetireControlUnit->getLoc(),
473                "Previous definition of RetireControlUnit was here");
474    }
475    PM.RetireControlUnit = RCU;
476  }
477}
478
479void CodeGenSchedModels::collectLoadStoreQueueInfo() {
480  RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
481
482  for (Record *Queue : Queues) {
483    CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
484    if (Queue->isSubClassOf("LoadQueue")) {
485      if (PM.LoadQueue) {
486        PrintError(Queue->getLoc(),
487                   "Expected a single LoadQueue definition");
488        PrintNote(PM.LoadQueue->getLoc(),
489                  "Previous definition of LoadQueue was here");
490      }
491
492      PM.LoadQueue = Queue;
493    }
494
495    if (Queue->isSubClassOf("StoreQueue")) {
496      if (PM.StoreQueue) {
497        PrintError(Queue->getLoc(),
498                   "Expected a single StoreQueue definition");
499        PrintNote(PM.LoadQueue->getLoc(),
500                  "Previous definition of StoreQueue was here");
501      }
502
503      PM.StoreQueue = Queue;
504    }
505  }
506}
507
508/// Collect optional processor information.
509void CodeGenSchedModels::collectOptionalProcessorInfo() {
510  // Find register file definitions for each processor.
511  collectRegisterFiles();
512
513  // Collect processor RetireControlUnit descriptors if available.
514  collectRetireControlUnits();
515
516  // Collect information about load/store queues.
517  collectLoadStoreQueueInfo();
518
519  checkCompleteness();
520}
521
522/// Gather all processor models.
523void CodeGenSchedModels::collectProcModels() {
524  RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
525  llvm::sort(ProcRecords, LessRecordFieldName());
526
527  // Reserve space because we can. Reallocation would be ok.
528  ProcModels.reserve(ProcRecords.size()+1);
529
530  // Use idx=0 for NoModel/NoItineraries.
531  Record *NoModelDef = Records.getDef("NoSchedModel");
532  Record *NoItinsDef = Records.getDef("NoItineraries");
533  ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
534  ProcModelMap[NoModelDef] = 0;
535
536  // For each processor, find a unique machine model.
537  LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
538  for (Record *ProcRecord : ProcRecords)
539    addProcModel(ProcRecord);
540}
541
542/// Get a unique processor model based on the defined MachineModel and
543/// ProcessorItineraries.
544void CodeGenSchedModels::addProcModel(Record *ProcDef) {
545  Record *ModelKey = getModelOrItinDef(ProcDef);
546  if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
547    return;
548
549  std::string Name = std::string(ModelKey->getName());
550  if (ModelKey->isSubClassOf("SchedMachineModel")) {
551    Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
552    ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
553  }
554  else {
555    // An itinerary is defined without a machine model. Infer a new model.
556    if (!ModelKey->getValueAsListOfDefs("IID").empty())
557      Name = Name + "Model";
558    ProcModels.emplace_back(ProcModels.size(), Name,
559                            ProcDef->getValueAsDef("SchedModel"), ModelKey);
560  }
561  LLVM_DEBUG(ProcModels.back().dump());
562}
563
564// Recursively find all reachable SchedReadWrite records.
565static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
566                        SmallPtrSet<Record*, 16> &RWSet) {
567  if (!RWSet.insert(RWDef).second)
568    return;
569  RWDefs.push_back(RWDef);
570  // Reads don't currently have sequence records, but it can be added later.
571  if (RWDef->isSubClassOf("WriteSequence")) {
572    RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
573    for (Record *WSRec : Seq)
574      scanSchedRW(WSRec, RWDefs, RWSet);
575  }
576  else if (RWDef->isSubClassOf("SchedVariant")) {
577    // Visit each variant (guarded by a different predicate).
578    RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
579    for (Record *Variant : Vars) {
580      // Visit each RW in the sequence selected by the current variant.
581      RecVec Selected = Variant->getValueAsListOfDefs("Selected");
582      for (Record *SelDef : Selected)
583        scanSchedRW(SelDef, RWDefs, RWSet);
584    }
585  }
586}
587
588// Collect and sort all SchedReadWrites reachable via tablegen records.
589// More may be inferred later when inferring new SchedClasses from variants.
590void CodeGenSchedModels::collectSchedRW() {
591  // Reserve idx=0 for invalid writes/reads.
592  SchedWrites.resize(1);
593  SchedReads.resize(1);
594
595  SmallPtrSet<Record*, 16> RWSet;
596
597  // Find all SchedReadWrites referenced by instruction defs.
598  RecVec SWDefs, SRDefs;
599  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
600    Record *SchedDef = Inst->TheDef;
601    if (SchedDef->isValueUnset("SchedRW"))
602      continue;
603    RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
604    for (Record *RW : RWs) {
605      if (RW->isSubClassOf("SchedWrite"))
606        scanSchedRW(RW, SWDefs, RWSet);
607      else {
608        assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
609        scanSchedRW(RW, SRDefs, RWSet);
610      }
611    }
612  }
613  // Find all ReadWrites referenced by InstRW.
614  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
615  for (Record *InstRWDef : InstRWDefs) {
616    // For all OperandReadWrites.
617    RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
618    for (Record *RWDef : RWDefs) {
619      if (RWDef->isSubClassOf("SchedWrite"))
620        scanSchedRW(RWDef, SWDefs, RWSet);
621      else {
622        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
623        scanSchedRW(RWDef, SRDefs, RWSet);
624      }
625    }
626  }
627  // Find all ReadWrites referenced by ItinRW.
628  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
629  for (Record *ItinRWDef : ItinRWDefs) {
630    // For all OperandReadWrites.
631    RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
632    for (Record *RWDef : RWDefs) {
633      if (RWDef->isSubClassOf("SchedWrite"))
634        scanSchedRW(RWDef, SWDefs, RWSet);
635      else {
636        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
637        scanSchedRW(RWDef, SRDefs, RWSet);
638      }
639    }
640  }
641  // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
642  // for the loop below that initializes Alias vectors.
643  RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
644  llvm::sort(AliasDefs, LessRecord());
645  for (Record *ADef : AliasDefs) {
646    Record *MatchDef = ADef->getValueAsDef("MatchRW");
647    Record *AliasDef = ADef->getValueAsDef("AliasRW");
648    if (MatchDef->isSubClassOf("SchedWrite")) {
649      if (!AliasDef->isSubClassOf("SchedWrite"))
650        PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
651      scanSchedRW(AliasDef, SWDefs, RWSet);
652    }
653    else {
654      assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
655      if (!AliasDef->isSubClassOf("SchedRead"))
656        PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
657      scanSchedRW(AliasDef, SRDefs, RWSet);
658    }
659  }
660  // Sort and add the SchedReadWrites directly referenced by instructions or
661  // itinerary resources. Index reads and writes in separate domains.
662  llvm::sort(SWDefs, LessRecord());
663  for (Record *SWDef : SWDefs) {
664    assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
665    SchedWrites.emplace_back(SchedWrites.size(), SWDef);
666  }
667  llvm::sort(SRDefs, LessRecord());
668  for (Record *SRDef : SRDefs) {
669    assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
670    SchedReads.emplace_back(SchedReads.size(), SRDef);
671  }
672  // Initialize WriteSequence vectors.
673  for (CodeGenSchedRW &CGRW : SchedWrites) {
674    if (!CGRW.IsSequence)
675      continue;
676    findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
677            /*IsRead=*/false);
678  }
679  // Initialize Aliases vectors.
680  for (Record *ADef : AliasDefs) {
681    Record *AliasDef = ADef->getValueAsDef("AliasRW");
682    getSchedRW(AliasDef).IsAlias = true;
683    Record *MatchDef = ADef->getValueAsDef("MatchRW");
684    CodeGenSchedRW &RW = getSchedRW(MatchDef);
685    if (RW.IsAlias)
686      PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
687    RW.Aliases.push_back(ADef);
688  }
689  LLVM_DEBUG(
690      dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
691      for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
692        dbgs() << WIdx << ": ";
693        SchedWrites[WIdx].dump();
694        dbgs() << '\n';
695      } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
696             ++RIdx) {
697        dbgs() << RIdx << ": ";
698        SchedReads[RIdx].dump();
699        dbgs() << '\n';
700      } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
701      for (Record *RWDef
702           : RWDefs) {
703        if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
704          StringRef Name = RWDef->getName();
705          if (Name != "NoWrite" && Name != "ReadDefault")
706            dbgs() << "Unused SchedReadWrite " << Name << '\n';
707        }
708      });
709}
710
711/// Compute a SchedWrite name from a sequence of writes.
712std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
713  std::string Name("(");
714  for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
715    if (I != Seq.begin())
716      Name += '_';
717    Name += getSchedRW(*I, IsRead).Name;
718  }
719  Name += ')';
720  return Name;
721}
722
723unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
724                                           bool IsRead) const {
725  const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
726  const auto I = find_if(
727      RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
728  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
729}
730
731bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
732  for (const CodeGenSchedRW &Read : SchedReads) {
733    Record *ReadDef = Read.TheDef;
734    if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
735      continue;
736
737    RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
738    if (is_contained(ValidWrites, WriteDef)) {
739      return true;
740    }
741  }
742  return false;
743}
744
745static void splitSchedReadWrites(const RecVec &RWDefs,
746                                 RecVec &WriteDefs, RecVec &ReadDefs) {
747  for (Record *RWDef : RWDefs) {
748    if (RWDef->isSubClassOf("SchedWrite"))
749      WriteDefs.push_back(RWDef);
750    else {
751      assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
752      ReadDefs.push_back(RWDef);
753    }
754  }
755}
756
757// Split the SchedReadWrites defs and call findRWs for each list.
758void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
759                                 IdxVec &Writes, IdxVec &Reads) const {
760  RecVec WriteDefs;
761  RecVec ReadDefs;
762  splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
763  findRWs(WriteDefs, Writes, false);
764  findRWs(ReadDefs, Reads, true);
765}
766
767// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
768void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
769                                 bool IsRead) const {
770  for (Record *RWDef : RWDefs) {
771    unsigned Idx = getSchedRWIdx(RWDef, IsRead);
772    assert(Idx && "failed to collect SchedReadWrite");
773    RWs.push_back(Idx);
774  }
775}
776
777void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
778                                          bool IsRead) const {
779  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
780  if (!SchedRW.IsSequence) {
781    RWSeq.push_back(RWIdx);
782    return;
783  }
784  int Repeat =
785    SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
786  for (int i = 0; i < Repeat; ++i) {
787    for (unsigned I : SchedRW.Sequence) {
788      expandRWSequence(I, RWSeq, IsRead);
789    }
790  }
791}
792
793// Expand a SchedWrite as a sequence following any aliases that coincide with
794// the given processor model.
795void CodeGenSchedModels::expandRWSeqForProc(
796  unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
797  const CodeGenProcModel &ProcModel) const {
798
799  const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
800  Record *AliasDef = nullptr;
801  for (const Record *Rec : SchedWrite.Aliases) {
802    const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
803    if (Rec->getValueInit("SchedModel")->isComplete()) {
804      Record *ModelDef = Rec->getValueAsDef("SchedModel");
805      if (&getProcModel(ModelDef) != &ProcModel)
806        continue;
807    }
808    if (AliasDef)
809      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
810                      "defined for processor " + ProcModel.ModelName +
811                      " Ensure only one SchedAlias exists per RW.");
812    AliasDef = AliasRW.TheDef;
813  }
814  if (AliasDef) {
815    expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
816                       RWSeq, IsRead,ProcModel);
817    return;
818  }
819  if (!SchedWrite.IsSequence) {
820    RWSeq.push_back(RWIdx);
821    return;
822  }
823  int Repeat =
824    SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
825  for (int I = 0, E = Repeat; I < E; ++I) {
826    for (unsigned Idx : SchedWrite.Sequence) {
827      expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
828    }
829  }
830}
831
832// Find the existing SchedWrite that models this sequence of writes.
833unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
834                                               bool IsRead) {
835  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
836
837  auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
838    return makeArrayRef(RW.Sequence) == Seq;
839  });
840  // Index zero reserved for invalid RW.
841  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
842}
843
844/// Add this ReadWrite if it doesn't already exist.
845unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
846                                            bool IsRead) {
847  assert(!Seq.empty() && "cannot insert empty sequence");
848  if (Seq.size() == 1)
849    return Seq.back();
850
851  unsigned Idx = findRWForSequence(Seq, IsRead);
852  if (Idx)
853    return Idx;
854
855  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
856  unsigned RWIdx = RWVec.size();
857  CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
858  RWVec.push_back(SchedRW);
859  return RWIdx;
860}
861
862/// Visit all the instruction definitions for this target to gather and
863/// enumerate the itinerary classes. These are the explicitly specified
864/// SchedClasses. More SchedClasses may be inferred.
865void CodeGenSchedModels::collectSchedClasses() {
866
867  // NoItinerary is always the first class at Idx=0
868  assert(SchedClasses.empty() && "Expected empty sched class");
869  SchedClasses.emplace_back(0, "NoInstrModel",
870                            Records.getDef("NoItinerary"));
871  SchedClasses.back().ProcIndices.push_back(0);
872
873  // Create a SchedClass for each unique combination of itinerary class and
874  // SchedRW list.
875  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
876    Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
877    IdxVec Writes, Reads;
878    if (!Inst->TheDef->isValueUnset("SchedRW"))
879      findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
880
881    // ProcIdx == 0 indicates the class applies to all processors.
882    unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
883    InstrClassMap[Inst->TheDef] = SCIdx;
884  }
885  // Create classes for InstRW defs.
886  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
887  llvm::sort(InstRWDefs, LessRecord());
888  LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
889  for (Record *RWDef : InstRWDefs)
890    createInstRWClass(RWDef);
891
892  NumInstrSchedClasses = SchedClasses.size();
893
894  bool EnableDump = false;
895  LLVM_DEBUG(EnableDump = true);
896  if (!EnableDump)
897    return;
898
899  LLVM_DEBUG(
900      dbgs()
901      << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
902  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
903    StringRef InstName = Inst->TheDef->getName();
904    unsigned SCIdx = getSchedClassIdx(*Inst);
905    if (!SCIdx) {
906      LLVM_DEBUG({
907        if (!Inst->hasNoSchedulingInfo)
908          dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
909      });
910      continue;
911    }
912    CodeGenSchedClass &SC = getSchedClass(SCIdx);
913    if (SC.ProcIndices[0] != 0)
914      PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
915                      "must not be subtarget specific.");
916
917    IdxVec ProcIndices;
918    if (SC.ItinClassDef->getName() != "NoItinerary") {
919      ProcIndices.push_back(0);
920      dbgs() << "Itinerary for " << InstName << ": "
921             << SC.ItinClassDef->getName() << '\n';
922    }
923    if (!SC.Writes.empty()) {
924      ProcIndices.push_back(0);
925      LLVM_DEBUG({
926        dbgs() << "SchedRW machine model for " << InstName;
927        for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
928             ++WI)
929          dbgs() << " " << SchedWrites[*WI].Name;
930        for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
931          dbgs() << " " << SchedReads[*RI].Name;
932        dbgs() << '\n';
933      });
934    }
935    const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
936    for (Record *RWDef : RWDefs) {
937      const CodeGenProcModel &ProcModel =
938          getProcModel(RWDef->getValueAsDef("SchedModel"));
939      ProcIndices.push_back(ProcModel.Index);
940      LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
941                        << InstName);
942      IdxVec Writes;
943      IdxVec Reads;
944      findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
945              Writes, Reads);
946      LLVM_DEBUG({
947        for (unsigned WIdx : Writes)
948          dbgs() << " " << SchedWrites[WIdx].Name;
949        for (unsigned RIdx : Reads)
950          dbgs() << " " << SchedReads[RIdx].Name;
951        dbgs() << '\n';
952      });
953    }
954    // If ProcIndices contains zero, the class applies to all processors.
955    LLVM_DEBUG({
956      if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
957        for (const CodeGenProcModel &PM : ProcModels) {
958          if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
959            dbgs() << "No machine model for " << Inst->TheDef->getName()
960                   << " on processor " << PM.ModelName << '\n';
961        }
962      }
963    });
964  }
965}
966
967// Get the SchedClass index for an instruction.
968unsigned
969CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
970  return InstrClassMap.lookup(Inst.TheDef);
971}
972
973std::string
974CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
975                                         ArrayRef<unsigned> OperWrites,
976                                         ArrayRef<unsigned> OperReads) {
977
978  std::string Name;
979  if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
980    Name = std::string(ItinClassDef->getName());
981  for (unsigned Idx : OperWrites) {
982    if (!Name.empty())
983      Name += '_';
984    Name += SchedWrites[Idx].Name;
985  }
986  for (unsigned Idx : OperReads) {
987    Name += '_';
988    Name += SchedReads[Idx].Name;
989  }
990  return Name;
991}
992
993std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
994
995  std::string Name;
996  for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
997    if (I != InstDefs.begin())
998      Name += '_';
999    Name += (*I)->getName();
1000  }
1001  return Name;
1002}
1003
1004/// Add an inferred sched class from an itinerary class and per-operand list of
1005/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1006/// processors that may utilize this class.
1007unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1008                                           ArrayRef<unsigned> OperWrites,
1009                                           ArrayRef<unsigned> OperReads,
1010                                           ArrayRef<unsigned> ProcIndices) {
1011  assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1012
1013  auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1014                     return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1015                   };
1016
1017  auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1018  unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1019  if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1020    IdxVec PI;
1021    std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1022                   SchedClasses[Idx].ProcIndices.end(),
1023                   ProcIndices.begin(), ProcIndices.end(),
1024                   std::back_inserter(PI));
1025    SchedClasses[Idx].ProcIndices = std::move(PI);
1026    return Idx;
1027  }
1028  Idx = SchedClasses.size();
1029  SchedClasses.emplace_back(Idx,
1030                            createSchedClassName(ItinClassDef, OperWrites,
1031                                                 OperReads),
1032                            ItinClassDef);
1033  CodeGenSchedClass &SC = SchedClasses.back();
1034  SC.Writes = OperWrites;
1035  SC.Reads = OperReads;
1036  SC.ProcIndices = ProcIndices;
1037
1038  return Idx;
1039}
1040
1041// Create classes for each set of opcodes that are in the same InstReadWrite
1042// definition across all processors.
1043void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1044  // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1045  // intersects with an existing class via a previous InstRWDef. Instrs that do
1046  // not intersect with an existing class refer back to their former class as
1047  // determined from ItinDef or SchedRW.
1048  SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1049  // Sort Instrs into sets.
1050  const RecVec *InstDefs = Sets.expand(InstRWDef);
1051  if (InstDefs->empty())
1052    PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1053
1054  for (Record *InstDef : *InstDefs) {
1055    InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1056    if (Pos == InstrClassMap.end())
1057      PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1058    unsigned SCIdx = Pos->second;
1059    ClassInstrs[SCIdx].push_back(InstDef);
1060  }
1061  // For each set of Instrs, create a new class if necessary, and map or remap
1062  // the Instrs to it.
1063  for (auto &Entry : ClassInstrs) {
1064    unsigned OldSCIdx = Entry.first;
1065    ArrayRef<Record*> InstDefs = Entry.second;
1066    // If the all instrs in the current class are accounted for, then leave
1067    // them mapped to their old class.
1068    if (OldSCIdx) {
1069      const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1070      if (!RWDefs.empty()) {
1071        const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1072        unsigned OrigNumInstrs =
1073          count_if(*OrigInstDefs, [&](Record *OIDef) {
1074                     return InstrClassMap[OIDef] == OldSCIdx;
1075                   });
1076        if (OrigNumInstrs == InstDefs.size()) {
1077          assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1078                 "expected a generic SchedClass");
1079          Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1080          // Make sure we didn't already have a InstRW containing this
1081          // instruction on this model.
1082          for (Record *RWD : RWDefs) {
1083            if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1084                RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1085              assert(!InstDefs.empty()); // Checked at function start.
1086              PrintFatalError
1087                  (InstRWDef->getLoc(),
1088                   "Overlapping InstRW definition for \"" +
1089                   InstDefs.front()->getName() +
1090                   "\" also matches previous \"" +
1091                   RWD->getValue("Instrs")->getValue()->getAsString() +
1092                   "\".");
1093            }
1094          }
1095          LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1096                            << SchedClasses[OldSCIdx].Name << " on "
1097                            << RWModelDef->getName() << "\n");
1098          SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1099          continue;
1100        }
1101      }
1102    }
1103    unsigned SCIdx = SchedClasses.size();
1104    SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1105    CodeGenSchedClass &SC = SchedClasses.back();
1106    LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1107                      << InstRWDef->getValueAsDef("SchedModel")->getName()
1108                      << "\n");
1109
1110    // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1111    SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1112    SC.Writes = SchedClasses[OldSCIdx].Writes;
1113    SC.Reads = SchedClasses[OldSCIdx].Reads;
1114    SC.ProcIndices.push_back(0);
1115    // If we had an old class, copy it's InstRWs to this new class.
1116    if (OldSCIdx) {
1117      Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1118      for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1119        if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1120          assert(!InstDefs.empty()); // Checked at function start.
1121          PrintFatalError
1122              (InstRWDef->getLoc(),
1123               "Overlapping InstRW definition for \"" +
1124               InstDefs.front()->getName() +
1125               "\" also matches previous \"" +
1126               OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1127               "\".");
1128        }
1129        assert(OldRWDef != InstRWDef &&
1130               "SchedClass has duplicate InstRW def");
1131        SC.InstRWs.push_back(OldRWDef);
1132      }
1133    }
1134    // Map each Instr to this new class.
1135    for (Record *InstDef : InstDefs)
1136      InstrClassMap[InstDef] = SCIdx;
1137    SC.InstRWs.push_back(InstRWDef);
1138  }
1139}
1140
1141// True if collectProcItins found anything.
1142bool CodeGenSchedModels::hasItineraries() const {
1143  for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1144    if (PM.hasItineraries())
1145      return true;
1146  return false;
1147}
1148
1149// Gather the processor itineraries.
1150void CodeGenSchedModels::collectProcItins() {
1151  LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1152  for (CodeGenProcModel &ProcModel : ProcModels) {
1153    if (!ProcModel.hasItineraries())
1154      continue;
1155
1156    RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1157    assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1158
1159    // Populate ItinDefList with Itinerary records.
1160    ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1161
1162    // Insert each itinerary data record in the correct position within
1163    // the processor model's ItinDefList.
1164    for (Record *ItinData : ItinRecords) {
1165      const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1166      bool FoundClass = false;
1167
1168      for (const CodeGenSchedClass &SC :
1169           make_range(schedClassBegin(), schedClassEnd())) {
1170        // Multiple SchedClasses may share an itinerary. Update all of them.
1171        if (SC.ItinClassDef == ItinDef) {
1172          ProcModel.ItinDefList[SC.Index] = ItinData;
1173          FoundClass = true;
1174        }
1175      }
1176      if (!FoundClass) {
1177        LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1178                          << " missing class for itinerary "
1179                          << ItinDef->getName() << '\n');
1180      }
1181    }
1182    // Check for missing itinerary entries.
1183    assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1184    LLVM_DEBUG(
1185        for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1186          if (!ProcModel.ItinDefList[i])
1187            dbgs() << ProcModel.ItinsDef->getName()
1188                   << " missing itinerary for class " << SchedClasses[i].Name
1189                   << '\n';
1190        });
1191  }
1192}
1193
1194// Gather the read/write types for each itinerary class.
1195void CodeGenSchedModels::collectProcItinRW() {
1196  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1197  llvm::sort(ItinRWDefs, LessRecord());
1198  for (Record *RWDef  : ItinRWDefs) {
1199    if (!RWDef->getValueInit("SchedModel")->isComplete())
1200      PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1201    Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1202    ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1203    if (I == ProcModelMap.end()) {
1204      PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1205                    + ModelDef->getName());
1206    }
1207    ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1208  }
1209}
1210
1211// Gather the unsupported features for processor models.
1212void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1213  for (CodeGenProcModel &ProcModel : ProcModels) {
1214    for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1215       ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1216    }
1217  }
1218}
1219
1220/// Infer new classes from existing classes. In the process, this may create new
1221/// SchedWrites from sequences of existing SchedWrites.
1222void CodeGenSchedModels::inferSchedClasses() {
1223  LLVM_DEBUG(
1224      dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1225  LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1226
1227  // Visit all existing classes and newly created classes.
1228  for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1229    assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1230
1231    if (SchedClasses[Idx].ItinClassDef)
1232      inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1233    if (!SchedClasses[Idx].InstRWs.empty())
1234      inferFromInstRWs(Idx);
1235    if (!SchedClasses[Idx].Writes.empty()) {
1236      inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1237                  Idx, SchedClasses[Idx].ProcIndices);
1238    }
1239    assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1240           "too many SchedVariants");
1241  }
1242}
1243
1244/// Infer classes from per-processor itinerary resources.
1245void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1246                                            unsigned FromClassIdx) {
1247  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1248    const CodeGenProcModel &PM = ProcModels[PIdx];
1249    // For all ItinRW entries.
1250    bool HasMatch = false;
1251    for (const Record *Rec : PM.ItinRWDefs) {
1252      RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1253      if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1254        continue;
1255      if (HasMatch)
1256        PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1257                      + ItinClassDef->getName()
1258                      + " in ItinResources for " + PM.ModelName);
1259      HasMatch = true;
1260      IdxVec Writes, Reads;
1261      findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1262      inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1263    }
1264  }
1265}
1266
1267/// Infer classes from per-processor InstReadWrite definitions.
1268void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1269  for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1270    assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1271    Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1272    const RecVec *InstDefs = Sets.expand(Rec);
1273    RecIter II = InstDefs->begin(), IE = InstDefs->end();
1274    for (; II != IE; ++II) {
1275      if (InstrClassMap[*II] == SCIdx)
1276        break;
1277    }
1278    // If this class no longer has any instructions mapped to it, it has become
1279    // irrelevant.
1280    if (II == IE)
1281      continue;
1282    IdxVec Writes, Reads;
1283    findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1284    unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1285    inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1286  }
1287}
1288
1289namespace {
1290
1291// Helper for substituteVariantOperand.
1292struct TransVariant {
1293  Record *VarOrSeqDef;  // Variant or sequence.
1294  unsigned RWIdx;       // Index of this variant or sequence's matched type.
1295  unsigned ProcIdx;     // Processor model index or zero for any.
1296  unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1297
1298  TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1299    VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1300};
1301
1302// Associate a predicate with the SchedReadWrite that it guards.
1303// RWIdx is the index of the read/write variant.
1304struct PredCheck {
1305  bool IsRead;
1306  unsigned RWIdx;
1307  Record *Predicate;
1308
1309  PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1310};
1311
1312// A Predicate transition is a list of RW sequences guarded by a PredTerm.
1313struct PredTransition {
1314  // A predicate term is a conjunction of PredChecks.
1315  SmallVector<PredCheck, 4> PredTerm;
1316  SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1317  SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1318  SmallVector<unsigned, 4> ProcIndices;
1319};
1320
1321// Encapsulate a set of partially constructed transitions.
1322// The results are built by repeated calls to substituteVariants.
1323class PredTransitions {
1324  CodeGenSchedModels &SchedModels;
1325
1326public:
1327  std::vector<PredTransition> TransVec;
1328
1329  PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1330
1331  void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1332                                bool IsRead, unsigned StartIdx);
1333
1334  void substituteVariants(const PredTransition &Trans);
1335
1336#ifndef NDEBUG
1337  void dump() const;
1338#endif
1339
1340private:
1341  bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1342  void getIntersectingVariants(
1343    const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1344    std::vector<TransVariant> &IntersectingVariants);
1345  void pushVariant(const TransVariant &VInfo, bool IsRead);
1346};
1347
1348} // end anonymous namespace
1349
1350// Return true if this predicate is mutually exclusive with a PredTerm. This
1351// degenerates into checking if the predicate is mutually exclusive with any
1352// predicate in the Term's conjunction.
1353//
1354// All predicates associated with a given SchedRW are considered mutually
1355// exclusive. This should work even if the conditions expressed by the
1356// predicates are not exclusive because the predicates for a given SchedWrite
1357// are always checked in the order they are defined in the .td file. Later
1358// conditions implicitly negate any prior condition.
1359bool PredTransitions::mutuallyExclusive(Record *PredDef,
1360                                        ArrayRef<PredCheck> Term) {
1361  for (const PredCheck &PC: Term) {
1362    if (PC.Predicate == PredDef)
1363      return false;
1364
1365    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1366    assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1367    RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1368    if (any_of(Variants, [PredDef](const Record *R) {
1369          return R->getValueAsDef("Predicate") == PredDef;
1370        }))
1371      return true;
1372  }
1373  return false;
1374}
1375
1376static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1377                               CodeGenSchedModels &SchedModels) {
1378  if (RW.HasVariants)
1379    return true;
1380
1381  for (Record *Alias : RW.Aliases) {
1382    const CodeGenSchedRW &AliasRW =
1383      SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1384    if (AliasRW.HasVariants)
1385      return true;
1386    if (AliasRW.IsSequence) {
1387      IdxVec ExpandedRWs;
1388      SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1389      for (unsigned SI : ExpandedRWs) {
1390        if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1391                               SchedModels))
1392          return true;
1393      }
1394    }
1395  }
1396  return false;
1397}
1398
1399static bool hasVariant(ArrayRef<PredTransition> Transitions,
1400                       CodeGenSchedModels &SchedModels) {
1401  for (const PredTransition &PTI : Transitions) {
1402    for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1403      for (unsigned WI : WSI)
1404        if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1405          return true;
1406
1407    for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1408      for (unsigned RI : RSI)
1409        if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1410          return true;
1411  }
1412  return false;
1413}
1414
1415// Populate IntersectingVariants with any variants or aliased sequences of the
1416// given SchedRW whose processor indices and predicates are not mutually
1417// exclusive with the given transition.
1418void PredTransitions::getIntersectingVariants(
1419  const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1420  std::vector<TransVariant> &IntersectingVariants) {
1421
1422  bool GenericRW = false;
1423
1424  std::vector<TransVariant> Variants;
1425  if (SchedRW.HasVariants) {
1426    unsigned VarProcIdx = 0;
1427    if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1428      Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1429      VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1430    }
1431    // Push each variant. Assign TransVecIdx later.
1432    const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1433    for (Record *VarDef : VarDefs)
1434      Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1435    if (VarProcIdx == 0)
1436      GenericRW = true;
1437  }
1438  for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1439       AI != AE; ++AI) {
1440    // If either the SchedAlias itself or the SchedReadWrite that it aliases
1441    // to is defined within a processor model, constrain all variants to
1442    // that processor.
1443    unsigned AliasProcIdx = 0;
1444    if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1445      Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1446      AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1447    }
1448    const CodeGenSchedRW &AliasRW =
1449      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1450
1451    if (AliasRW.HasVariants) {
1452      const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1453      for (Record *VD : VarDefs)
1454        Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1455    }
1456    if (AliasRW.IsSequence)
1457      Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1458    if (AliasProcIdx == 0)
1459      GenericRW = true;
1460  }
1461  for (TransVariant &Variant : Variants) {
1462    // Don't expand variants if the processor models don't intersect.
1463    // A zero processor index means any processor.
1464    SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1465    if (ProcIndices[0] && Variant.ProcIdx) {
1466      unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1467                                Variant.ProcIdx);
1468      if (!Cnt)
1469        continue;
1470      if (Cnt > 1) {
1471        const CodeGenProcModel &PM =
1472          *(SchedModels.procModelBegin() + Variant.ProcIdx);
1473        PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1474                        "Multiple variants defined for processor " +
1475                        PM.ModelName +
1476                        " Ensure only one SchedAlias exists per RW.");
1477      }
1478    }
1479    if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1480      Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1481      if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1482        continue;
1483    }
1484    if (IntersectingVariants.empty()) {
1485      // The first variant builds on the existing transition.
1486      Variant.TransVecIdx = TransIdx;
1487      IntersectingVariants.push_back(Variant);
1488    }
1489    else {
1490      // Push another copy of the current transition for more variants.
1491      Variant.TransVecIdx = TransVec.size();
1492      IntersectingVariants.push_back(Variant);
1493      TransVec.push_back(TransVec[TransIdx]);
1494    }
1495  }
1496  if (GenericRW && IntersectingVariants.empty()) {
1497    PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1498                    "a matching predicate on any processor");
1499  }
1500}
1501
1502// Push the Reads/Writes selected by this variant onto the PredTransition
1503// specified by VInfo.
1504void PredTransitions::
1505pushVariant(const TransVariant &VInfo, bool IsRead) {
1506  PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1507
1508  // If this operand transition is reached through a processor-specific alias,
1509  // then the whole transition is specific to this processor.
1510  if (VInfo.ProcIdx != 0)
1511    Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1512
1513  IdxVec SelectedRWs;
1514  if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1515    Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1516    Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1517    RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1518    SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1519  }
1520  else {
1521    assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1522           "variant must be a SchedVariant or aliased WriteSequence");
1523    SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1524  }
1525
1526  const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1527
1528  SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1529    ? Trans.ReadSequences : Trans.WriteSequences;
1530  if (SchedRW.IsVariadic) {
1531    unsigned OperIdx = RWSequences.size()-1;
1532    // Make N-1 copies of this transition's last sequence.
1533    RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1534                       RWSequences[OperIdx]);
1535    // Push each of the N elements of the SelectedRWs onto a copy of the last
1536    // sequence (split the current operand into N operands).
1537    // Note that write sequences should be expanded within this loop--the entire
1538    // sequence belongs to a single operand.
1539    for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1540         RWI != RWE; ++RWI, ++OperIdx) {
1541      IdxVec ExpandedRWs;
1542      if (IsRead)
1543        ExpandedRWs.push_back(*RWI);
1544      else
1545        SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1546      RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1547                                  ExpandedRWs.begin(), ExpandedRWs.end());
1548    }
1549    assert(OperIdx == RWSequences.size() && "missed a sequence");
1550  }
1551  else {
1552    // Push this transition's expanded sequence onto this transition's last
1553    // sequence (add to the current operand's sequence).
1554    SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1555    IdxVec ExpandedRWs;
1556    for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1557         RWI != RWE; ++RWI) {
1558      if (IsRead)
1559        ExpandedRWs.push_back(*RWI);
1560      else
1561        SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1562    }
1563    Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1564  }
1565}
1566
1567// RWSeq is a sequence of all Reads or all Writes for the next read or write
1568// operand. StartIdx is an index into TransVec where partial results
1569// starts. RWSeq must be applied to all transitions between StartIdx and the end
1570// of TransVec.
1571void PredTransitions::substituteVariantOperand(
1572  const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1573
1574  // Visit each original RW within the current sequence.
1575  for (SmallVectorImpl<unsigned>::const_iterator
1576         RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1577    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1578    // Push this RW on all partial PredTransitions or distribute variants.
1579    // New PredTransitions may be pushed within this loop which should not be
1580    // revisited (TransEnd must be loop invariant).
1581    for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1582         TransIdx != TransEnd; ++TransIdx) {
1583      // In the common case, push RW onto the current operand's sequence.
1584      if (!hasAliasedVariants(SchedRW, SchedModels)) {
1585        if (IsRead)
1586          TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1587        else
1588          TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1589        continue;
1590      }
1591      // Distribute this partial PredTransition across intersecting variants.
1592      // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1593      std::vector<TransVariant> IntersectingVariants;
1594      getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1595      // Now expand each variant on top of its copy of the transition.
1596      for (std::vector<TransVariant>::const_iterator
1597             IVI = IntersectingVariants.begin(),
1598             IVE = IntersectingVariants.end();
1599           IVI != IVE; ++IVI) {
1600        pushVariant(*IVI, IsRead);
1601      }
1602    }
1603  }
1604}
1605
1606// For each variant of a Read/Write in Trans, substitute the sequence of
1607// Read/Writes guarded by the variant. This is exponential in the number of
1608// variant Read/Writes, but in practice detection of mutually exclusive
1609// predicates should result in linear growth in the total number variants.
1610//
1611// This is one step in a breadth-first search of nested variants.
1612void PredTransitions::substituteVariants(const PredTransition &Trans) {
1613  // Build up a set of partial results starting at the back of
1614  // PredTransitions. Remember the first new transition.
1615  unsigned StartIdx = TransVec.size();
1616  TransVec.emplace_back();
1617  TransVec.back().PredTerm = Trans.PredTerm;
1618  TransVec.back().ProcIndices = Trans.ProcIndices;
1619
1620  // Visit each original write sequence.
1621  for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1622         WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1623       WSI != WSE; ++WSI) {
1624    // Push a new (empty) write sequence onto all partial Transitions.
1625    for (std::vector<PredTransition>::iterator I =
1626           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1627      I->WriteSequences.emplace_back();
1628    }
1629    substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1630  }
1631  // Visit each original read sequence.
1632  for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1633         RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1634       RSI != RSE; ++RSI) {
1635    // Push a new (empty) read sequence onto all partial Transitions.
1636    for (std::vector<PredTransition>::iterator I =
1637           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1638      I->ReadSequences.emplace_back();
1639    }
1640    substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1641  }
1642}
1643
1644// Create a new SchedClass for each variant found by inferFromRW. Pass
1645static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1646                                 unsigned FromClassIdx,
1647                                 CodeGenSchedModels &SchedModels) {
1648  // For each PredTransition, create a new CodeGenSchedTransition, which usually
1649  // requires creating a new SchedClass.
1650  for (ArrayRef<PredTransition>::iterator
1651         I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1652    IdxVec OperWritesVariant;
1653    transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1654              [&SchedModels](ArrayRef<unsigned> WS) {
1655                return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1656              });
1657    IdxVec OperReadsVariant;
1658    transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1659              [&SchedModels](ArrayRef<unsigned> RS) {
1660                return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1661              });
1662    CodeGenSchedTransition SCTrans;
1663    SCTrans.ToClassIdx =
1664      SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1665                                OperReadsVariant, I->ProcIndices);
1666    SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1667    // The final PredTerm is unique set of predicates guarding the transition.
1668    RecVec Preds;
1669    transform(I->PredTerm, std::back_inserter(Preds),
1670              [](const PredCheck &P) {
1671                return P.Predicate;
1672              });
1673    Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1674    SCTrans.PredTerm = std::move(Preds);
1675    SchedModels.getSchedClass(FromClassIdx)
1676        .Transitions.push_back(std::move(SCTrans));
1677  }
1678}
1679
1680// Create new SchedClasses for the given ReadWrite list. If any of the
1681// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1682// of the ReadWrite list, following Aliases if necessary.
1683void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1684                                     ArrayRef<unsigned> OperReads,
1685                                     unsigned FromClassIdx,
1686                                     ArrayRef<unsigned> ProcIndices) {
1687  LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1688             dbgs() << ") ");
1689
1690  // Create a seed transition with an empty PredTerm and the expanded sequences
1691  // of SchedWrites for the current SchedClass.
1692  std::vector<PredTransition> LastTransitions;
1693  LastTransitions.emplace_back();
1694  LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1695                                            ProcIndices.end());
1696
1697  for (unsigned WriteIdx : OperWrites) {
1698    IdxVec WriteSeq;
1699    expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1700    LastTransitions[0].WriteSequences.emplace_back();
1701    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1702    Seq.append(WriteSeq.begin(), WriteSeq.end());
1703    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1704  }
1705  LLVM_DEBUG(dbgs() << " Reads: ");
1706  for (unsigned ReadIdx : OperReads) {
1707    IdxVec ReadSeq;
1708    expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1709    LastTransitions[0].ReadSequences.emplace_back();
1710    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1711    Seq.append(ReadSeq.begin(), ReadSeq.end());
1712    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1713  }
1714  LLVM_DEBUG(dbgs() << '\n');
1715
1716  // Collect all PredTransitions for individual operands.
1717  // Iterate until no variant writes remain.
1718  while (hasVariant(LastTransitions, *this)) {
1719    PredTransitions Transitions(*this);
1720    for (const PredTransition &Trans : LastTransitions)
1721      Transitions.substituteVariants(Trans);
1722    LLVM_DEBUG(Transitions.dump());
1723    LastTransitions.swap(Transitions.TransVec);
1724  }
1725  // If the first transition has no variants, nothing to do.
1726  if (LastTransitions[0].PredTerm.empty())
1727    return;
1728
1729  // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1730  // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1731  inferFromTransitions(LastTransitions, FromClassIdx, *this);
1732}
1733
1734// Check if any processor resource group contains all resource records in
1735// SubUnits.
1736bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1737  for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1738    if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1739      continue;
1740    RecVec SuperUnits =
1741      PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1742    RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1743    for ( ; RI != RE; ++RI) {
1744      if (!is_contained(SuperUnits, *RI)) {
1745        break;
1746      }
1747    }
1748    if (RI == RE)
1749      return true;
1750  }
1751  return false;
1752}
1753
1754// Verify that overlapping groups have a common supergroup.
1755void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1756  for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1757    if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1758      continue;
1759    RecVec CheckUnits =
1760      PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1761    for (unsigned j = i+1; j < e; ++j) {
1762      if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1763        continue;
1764      RecVec OtherUnits =
1765        PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1766      if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1767                             OtherUnits.begin(), OtherUnits.end())
1768          != CheckUnits.end()) {
1769        // CheckUnits and OtherUnits overlap
1770        OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1771                          CheckUnits.end());
1772        if (!hasSuperGroup(OtherUnits, PM)) {
1773          PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1774                          "proc resource group overlaps with "
1775                          + PM.ProcResourceDefs[j]->getName()
1776                          + " but no supergroup contains both.");
1777        }
1778      }
1779    }
1780  }
1781}
1782
1783// Collect all the RegisterFile definitions available in this target.
1784void CodeGenSchedModels::collectRegisterFiles() {
1785  RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1786
1787  // RegisterFiles is the vector of CodeGenRegisterFile.
1788  for (Record *RF : RegisterFileDefs) {
1789    // For each register file definition, construct a CodeGenRegisterFile object
1790    // and add it to the appropriate scheduling model.
1791    CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1792    PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1793    CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1794    CGRF.MaxMovesEliminatedPerCycle =
1795        RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1796    CGRF.AllowZeroMoveEliminationOnly =
1797        RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1798
1799    // Now set the number of physical registers as well as the cost of registers
1800    // in each register class.
1801    CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1802    if (!CGRF.NumPhysRegs) {
1803      PrintFatalError(RF->getLoc(),
1804                      "Invalid RegisterFile with zero physical registers");
1805    }
1806
1807    RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1808    std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1809    ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1810    for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1811      int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1812
1813      bool AllowMoveElim = false;
1814      if (MoveElimInfo->size() > I) {
1815        BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1816        AllowMoveElim = Val->getValue();
1817      }
1818
1819      CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1820    }
1821  }
1822}
1823
1824// Collect and sort WriteRes, ReadAdvance, and ProcResources.
1825void CodeGenSchedModels::collectProcResources() {
1826  ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1827  ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1828
1829  // Add any subtarget-specific SchedReadWrites that are directly associated
1830  // with processor resources. Refer to the parent SchedClass's ProcIndices to
1831  // determine which processors they apply to.
1832  for (const CodeGenSchedClass &SC :
1833       make_range(schedClassBegin(), schedClassEnd())) {
1834    if (SC.ItinClassDef) {
1835      collectItinProcResources(SC.ItinClassDef);
1836      continue;
1837    }
1838
1839    // This class may have a default ReadWrite list which can be overriden by
1840    // InstRW definitions.
1841    for (Record *RW : SC.InstRWs) {
1842      Record *RWModelDef = RW->getValueAsDef("SchedModel");
1843      unsigned PIdx = getProcModel(RWModelDef).Index;
1844      IdxVec Writes, Reads;
1845      findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1846      collectRWResources(Writes, Reads, PIdx);
1847    }
1848
1849    collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1850  }
1851  // Add resources separately defined by each subtarget.
1852  RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1853  for (Record *WR : WRDefs) {
1854    Record *ModelDef = WR->getValueAsDef("SchedModel");
1855    addWriteRes(WR, getProcModel(ModelDef).Index);
1856  }
1857  RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1858  for (Record *SWR : SWRDefs) {
1859    Record *ModelDef = SWR->getValueAsDef("SchedModel");
1860    addWriteRes(SWR, getProcModel(ModelDef).Index);
1861  }
1862  RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1863  for (Record *RA : RADefs) {
1864    Record *ModelDef = RA->getValueAsDef("SchedModel");
1865    addReadAdvance(RA, getProcModel(ModelDef).Index);
1866  }
1867  RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1868  for (Record *SRA : SRADefs) {
1869    if (SRA->getValueInit("SchedModel")->isComplete()) {
1870      Record *ModelDef = SRA->getValueAsDef("SchedModel");
1871      addReadAdvance(SRA, getProcModel(ModelDef).Index);
1872    }
1873  }
1874  // Add ProcResGroups that are defined within this processor model, which may
1875  // not be directly referenced but may directly specify a buffer size.
1876  RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1877  for (Record *PRG : ProcResGroups) {
1878    if (!PRG->getValueInit("SchedModel")->isComplete())
1879      continue;
1880    CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1881    if (!is_contained(PM.ProcResourceDefs, PRG))
1882      PM.ProcResourceDefs.push_back(PRG);
1883  }
1884  // Add ProcResourceUnits unconditionally.
1885  for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1886    if (!PRU->getValueInit("SchedModel")->isComplete())
1887      continue;
1888    CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1889    if (!is_contained(PM.ProcResourceDefs, PRU))
1890      PM.ProcResourceDefs.push_back(PRU);
1891  }
1892  // Finalize each ProcModel by sorting the record arrays.
1893  for (CodeGenProcModel &PM : ProcModels) {
1894    llvm::sort(PM.WriteResDefs, LessRecord());
1895    llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1896    llvm::sort(PM.ProcResourceDefs, LessRecord());
1897    LLVM_DEBUG(
1898        PM.dump();
1899        dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1900                                         RE = PM.WriteResDefs.end();
1901                                         RI != RE; ++RI) {
1902          if ((*RI)->isSubClassOf("WriteRes"))
1903            dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1904          else
1905            dbgs() << (*RI)->getName() << " ";
1906        } dbgs() << "\nReadAdvanceDefs: ";
1907        for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1908             RE = PM.ReadAdvanceDefs.end();
1909             RI != RE; ++RI) {
1910          if ((*RI)->isSubClassOf("ReadAdvance"))
1911            dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1912          else
1913            dbgs() << (*RI)->getName() << " ";
1914        } dbgs()
1915        << "\nProcResourceDefs: ";
1916        for (RecIter RI = PM.ProcResourceDefs.begin(),
1917             RE = PM.ProcResourceDefs.end();
1918             RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1919        << '\n');
1920    verifyProcResourceGroups(PM);
1921  }
1922
1923  ProcResourceDefs.clear();
1924  ProcResGroups.clear();
1925}
1926
1927void CodeGenSchedModels::checkCompleteness() {
1928  bool Complete = true;
1929  bool HadCompleteModel = false;
1930  for (const CodeGenProcModel &ProcModel : procModels()) {
1931    const bool HasItineraries = ProcModel.hasItineraries();
1932    if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1933      continue;
1934    for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1935      if (Inst->hasNoSchedulingInfo)
1936        continue;
1937      if (ProcModel.isUnsupported(*Inst))
1938        continue;
1939      unsigned SCIdx = getSchedClassIdx(*Inst);
1940      if (!SCIdx) {
1941        if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1942          PrintError(Inst->TheDef->getLoc(),
1943                     "No schedule information for instruction '" +
1944                         Inst->TheDef->getName() + "' in SchedMachineModel '" +
1945                     ProcModel.ModelDef->getName() + "'");
1946          Complete = false;
1947        }
1948        continue;
1949      }
1950
1951      const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1952      if (!SC.Writes.empty())
1953        continue;
1954      if (HasItineraries && SC.ItinClassDef != nullptr &&
1955          SC.ItinClassDef->getName() != "NoItinerary")
1956        continue;
1957
1958      const RecVec &InstRWs = SC.InstRWs;
1959      auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1960        return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1961      });
1962      if (I == InstRWs.end()) {
1963        PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
1964                                               "' lacks information for '" +
1965                                               Inst->TheDef->getName() + "'");
1966        Complete = false;
1967      }
1968    }
1969    HadCompleteModel = true;
1970  }
1971  if (!Complete) {
1972    errs() << "\n\nIncomplete schedule models found.\n"
1973      << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1974      << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1975      << "- Instructions should usually have Sched<[...]> as a superclass, "
1976         "you may temporarily use an empty list.\n"
1977      << "- Instructions related to unsupported features can be excluded with "
1978         "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1979         "processor model.\n\n";
1980    PrintFatalError("Incomplete schedule model");
1981  }
1982}
1983
1984// Collect itinerary class resources for each processor.
1985void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1986  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1987    const CodeGenProcModel &PM = ProcModels[PIdx];
1988    // For all ItinRW entries.
1989    bool HasMatch = false;
1990    for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1991         II != IE; ++II) {
1992      RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1993      if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1994        continue;
1995      if (HasMatch)
1996        PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1997                        + ItinClassDef->getName()
1998                        + " in ItinResources for " + PM.ModelName);
1999      HasMatch = true;
2000      IdxVec Writes, Reads;
2001      findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2002      collectRWResources(Writes, Reads, PIdx);
2003    }
2004  }
2005}
2006
2007void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2008                                            ArrayRef<unsigned> ProcIndices) {
2009  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2010  if (SchedRW.TheDef) {
2011    if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2012      for (unsigned Idx : ProcIndices)
2013        addWriteRes(SchedRW.TheDef, Idx);
2014    }
2015    else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2016      for (unsigned Idx : ProcIndices)
2017        addReadAdvance(SchedRW.TheDef, Idx);
2018    }
2019  }
2020  for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2021       AI != AE; ++AI) {
2022    IdxVec AliasProcIndices;
2023    if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2024      AliasProcIndices.push_back(
2025        getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2026    }
2027    else
2028      AliasProcIndices = ProcIndices;
2029    const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2030    assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2031
2032    IdxVec ExpandedRWs;
2033    expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2034    for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2035         SI != SE; ++SI) {
2036      collectRWResources(*SI, IsRead, AliasProcIndices);
2037    }
2038  }
2039}
2040
2041// Collect resources for a set of read/write types and processor indices.
2042void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2043                                            ArrayRef<unsigned> Reads,
2044                                            ArrayRef<unsigned> ProcIndices) {
2045  for (unsigned Idx : Writes)
2046    collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2047
2048  for (unsigned Idx : Reads)
2049    collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2050}
2051
2052// Find the processor's resource units for this kind of resource.
2053Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2054                                             const CodeGenProcModel &PM,
2055                                             ArrayRef<SMLoc> Loc) const {
2056  if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2057    return ProcResKind;
2058
2059  Record *ProcUnitDef = nullptr;
2060  assert(!ProcResourceDefs.empty());
2061  assert(!ProcResGroups.empty());
2062
2063  for (Record *ProcResDef : ProcResourceDefs) {
2064    if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2065        && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2066      if (ProcUnitDef) {
2067        PrintFatalError(Loc,
2068                        "Multiple ProcessorResourceUnits associated with "
2069                        + ProcResKind->getName());
2070      }
2071      ProcUnitDef = ProcResDef;
2072    }
2073  }
2074  for (Record *ProcResGroup : ProcResGroups) {
2075    if (ProcResGroup == ProcResKind
2076        && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2077      if (ProcUnitDef) {
2078        PrintFatalError(Loc,
2079                        "Multiple ProcessorResourceUnits associated with "
2080                        + ProcResKind->getName());
2081      }
2082      ProcUnitDef = ProcResGroup;
2083    }
2084  }
2085  if (!ProcUnitDef) {
2086    PrintFatalError(Loc,
2087                    "No ProcessorResources associated with "
2088                    + ProcResKind->getName());
2089  }
2090  return ProcUnitDef;
2091}
2092
2093// Iteratively add a resource and its super resources.
2094void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2095                                         CodeGenProcModel &PM,
2096                                         ArrayRef<SMLoc> Loc) {
2097  while (true) {
2098    Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2099
2100    // See if this ProcResource is already associated with this processor.
2101    if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2102      return;
2103
2104    PM.ProcResourceDefs.push_back(ProcResUnits);
2105    if (ProcResUnits->isSubClassOf("ProcResGroup"))
2106      return;
2107
2108    if (!ProcResUnits->getValueInit("Super")->isComplete())
2109      return;
2110
2111    ProcResKind = ProcResUnits->getValueAsDef("Super");
2112  }
2113}
2114
2115// Add resources for a SchedWrite to this processor if they don't exist.
2116void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2117  assert(PIdx && "don't add resources to an invalid Processor model");
2118
2119  RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2120  if (is_contained(WRDefs, ProcWriteResDef))
2121    return;
2122  WRDefs.push_back(ProcWriteResDef);
2123
2124  // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2125  RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2126  for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2127       WritePRI != WritePRE; ++WritePRI) {
2128    addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2129  }
2130}
2131
2132// Add resources for a ReadAdvance to this processor if they don't exist.
2133void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2134                                        unsigned PIdx) {
2135  RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2136  if (is_contained(RADefs, ProcReadAdvanceDef))
2137    return;
2138  RADefs.push_back(ProcReadAdvanceDef);
2139}
2140
2141unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2142  RecIter PRPos = find(ProcResourceDefs, PRDef);
2143  if (PRPos == ProcResourceDefs.end())
2144    PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2145                    "the ProcResources list for " + ModelName);
2146  // Idx=0 is reserved for invalid.
2147  return 1 + (PRPos - ProcResourceDefs.begin());
2148}
2149
2150bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2151  for (const Record *TheDef : UnsupportedFeaturesDefs) {
2152    for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2153      if (TheDef->getName() == PredDef->getName())
2154        return true;
2155    }
2156  }
2157  return false;
2158}
2159
2160#ifndef NDEBUG
2161void CodeGenProcModel::dump() const {
2162  dbgs() << Index << ": " << ModelName << " "
2163         << (ModelDef ? ModelDef->getName() : "inferred") << " "
2164         << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2165}
2166
2167void CodeGenSchedRW::dump() const {
2168  dbgs() << Name << (IsVariadic ? " (V) " : " ");
2169  if (IsSequence) {
2170    dbgs() << "(";
2171    dumpIdxVec(Sequence);
2172    dbgs() << ")";
2173  }
2174}
2175
2176void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2177  dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2178         << "  Writes: ";
2179  for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2180    SchedModels->getSchedWrite(Writes[i]).dump();
2181    if (i < N-1) {
2182      dbgs() << '\n';
2183      dbgs().indent(10);
2184    }
2185  }
2186  dbgs() << "\n  Reads: ";
2187  for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2188    SchedModels->getSchedRead(Reads[i]).dump();
2189    if (i < N-1) {
2190      dbgs() << '\n';
2191      dbgs().indent(10);
2192    }
2193  }
2194  dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2195  if (!Transitions.empty()) {
2196    dbgs() << "\n Transitions for Proc ";
2197    for (const CodeGenSchedTransition &Transition : Transitions) {
2198      dumpIdxVec(Transition.ProcIndices);
2199    }
2200  }
2201}
2202
2203void PredTransitions::dump() const {
2204  dbgs() << "Expanded Variants:\n";
2205  for (std::vector<PredTransition>::const_iterator
2206         TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2207    dbgs() << "{";
2208    for (SmallVectorImpl<PredCheck>::const_iterator
2209           PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2210         PCI != PCE; ++PCI) {
2211      if (PCI != TI->PredTerm.begin())
2212        dbgs() << ", ";
2213      dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2214             << ":" << PCI->Predicate->getName();
2215    }
2216    dbgs() << "},\n  => {";
2217    for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2218           WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2219         WSI != WSE; ++WSI) {
2220      dbgs() << "(";
2221      for (SmallVectorImpl<unsigned>::const_iterator
2222             WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2223        if (WI != WSI->begin())
2224          dbgs() << ", ";
2225        dbgs() << SchedModels.getSchedWrite(*WI).Name;
2226      }
2227      dbgs() << "),";
2228    }
2229    dbgs() << "}\n";
2230  }
2231}
2232#endif // NDEBUG
2233