1//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------===//
8//
9// This file implements the PredicateInfo class.
10//
11//===----------------------------------------------------------------===//
12
13#include "llvm/Transforms/Utils/PredicateInfo.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/DepthFirstIterator.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Analysis/AssumptionCache.h"
21#include "llvm/Analysis/CFG.h"
22#include "llvm/IR/AssemblyAnnotationWriter.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/IRBuilder.h"
27#include "llvm/IR/InstIterator.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/PatternMatch.h"
33#include "llvm/InitializePasses.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/DebugCounter.h"
37#include "llvm/Support/FormattedStream.h"
38#include "llvm/Transforms/Utils.h"
39#include <algorithm>
40#define DEBUG_TYPE "predicateinfo"
41using namespace llvm;
42using namespace PatternMatch;
43
44INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
45                      "PredicateInfo Printer", false, false)
46INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
47INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
48INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
49                    "PredicateInfo Printer", false, false)
50static cl::opt<bool> VerifyPredicateInfo(
51    "verify-predicateinfo", cl::init(false), cl::Hidden,
52    cl::desc("Verify PredicateInfo in legacy printer pass."));
53DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
54              "Controls which variables are renamed with predicateinfo");
55
56namespace {
57// Given a predicate info that is a type of branching terminator, get the
58// branching block.
59const BasicBlock *getBranchBlock(const PredicateBase *PB) {
60  assert(isa<PredicateWithEdge>(PB) &&
61         "Only branches and switches should have PHIOnly defs that "
62         "require branch blocks.");
63  return cast<PredicateWithEdge>(PB)->From;
64}
65
66// Given a predicate info that is a type of branching terminator, get the
67// branching terminator.
68static Instruction *getBranchTerminator(const PredicateBase *PB) {
69  assert(isa<PredicateWithEdge>(PB) &&
70         "Not a predicate info type we know how to get a terminator from.");
71  return cast<PredicateWithEdge>(PB)->From->getTerminator();
72}
73
74// Given a predicate info that is a type of branching terminator, get the
75// edge this predicate info represents
76const std::pair<BasicBlock *, BasicBlock *>
77getBlockEdge(const PredicateBase *PB) {
78  assert(isa<PredicateWithEdge>(PB) &&
79         "Not a predicate info type we know how to get an edge from.");
80  const auto *PEdge = cast<PredicateWithEdge>(PB);
81  return std::make_pair(PEdge->From, PEdge->To);
82}
83}
84
85namespace llvm {
86enum LocalNum {
87  // Operations that must appear first in the block.
88  LN_First,
89  // Operations that are somewhere in the middle of the block, and are sorted on
90  // demand.
91  LN_Middle,
92  // Operations that must appear last in a block, like successor phi node uses.
93  LN_Last
94};
95
96// Associate global and local DFS info with defs and uses, so we can sort them
97// into a global domination ordering.
98struct ValueDFS {
99  int DFSIn = 0;
100  int DFSOut = 0;
101  unsigned int LocalNum = LN_Middle;
102  // Only one of Def or Use will be set.
103  Value *Def = nullptr;
104  Use *U = nullptr;
105  // Neither PInfo nor EdgeOnly participate in the ordering
106  PredicateBase *PInfo = nullptr;
107  bool EdgeOnly = false;
108};
109
110// Perform a strict weak ordering on instructions and arguments.
111static bool valueComesBefore(const Value *A, const Value *B) {
112  auto *ArgA = dyn_cast_or_null<Argument>(A);
113  auto *ArgB = dyn_cast_or_null<Argument>(B);
114  if (ArgA && !ArgB)
115    return true;
116  if (ArgB && !ArgA)
117    return false;
118  if (ArgA && ArgB)
119    return ArgA->getArgNo() < ArgB->getArgNo();
120  return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
121}
122
123// This compares ValueDFS structures. Doing so allows us to walk the minimum
124// number of instructions necessary to compute our def/use ordering.
125struct ValueDFS_Compare {
126  DominatorTree &DT;
127  ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
128
129  bool operator()(const ValueDFS &A, const ValueDFS &B) const {
130    if (&A == &B)
131      return false;
132    // The only case we can't directly compare them is when they in the same
133    // block, and both have localnum == middle.  In that case, we have to use
134    // comesbefore to see what the real ordering is, because they are in the
135    // same basic block.
136
137    assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
138           "Equal DFS-in numbers imply equal out numbers");
139    bool SameBlock = A.DFSIn == B.DFSIn;
140
141    // We want to put the def that will get used for a given set of phi uses,
142    // before those phi uses.
143    // So we sort by edge, then by def.
144    // Note that only phi nodes uses and defs can come last.
145    if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
146      return comparePHIRelated(A, B);
147
148    bool isADef = A.Def;
149    bool isBDef = B.Def;
150    if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
151      return std::tie(A.DFSIn, A.LocalNum, isADef) <
152             std::tie(B.DFSIn, B.LocalNum, isBDef);
153    return localComesBefore(A, B);
154  }
155
156  // For a phi use, or a non-materialized def, return the edge it represents.
157  const std::pair<BasicBlock *, BasicBlock *>
158  getBlockEdge(const ValueDFS &VD) const {
159    if (!VD.Def && VD.U) {
160      auto *PHI = cast<PHINode>(VD.U->getUser());
161      return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
162    }
163    // This is really a non-materialized def.
164    return ::getBlockEdge(VD.PInfo);
165  }
166
167  // For two phi related values, return the ordering.
168  bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
169    BasicBlock *ASrc, *ADest, *BSrc, *BDest;
170    std::tie(ASrc, ADest) = getBlockEdge(A);
171    std::tie(BSrc, BDest) = getBlockEdge(B);
172
173#ifndef NDEBUG
174    // This function should only be used for values in the same BB, check that.
175    DomTreeNode *DomASrc = DT.getNode(ASrc);
176    DomTreeNode *DomBSrc = DT.getNode(BSrc);
177    assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
178           "DFS numbers for A should match the ones of the source block");
179    assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
180           "DFS numbers for B should match the ones of the source block");
181    assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
182#endif
183    (void)ASrc;
184    (void)BSrc;
185
186    // Use DFS numbers to compare destination blocks, to guarantee a
187    // deterministic order.
188    DomTreeNode *DomADest = DT.getNode(ADest);
189    DomTreeNode *DomBDest = DT.getNode(BDest);
190    unsigned AIn = DomADest->getDFSNumIn();
191    unsigned BIn = DomBDest->getDFSNumIn();
192    bool isADef = A.Def;
193    bool isBDef = B.Def;
194    assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
195           "Def and U cannot be set at the same time");
196    // Now sort by edge destination and then defs before uses.
197    return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
198  }
199
200  // Get the definition of an instruction that occurs in the middle of a block.
201  Value *getMiddleDef(const ValueDFS &VD) const {
202    if (VD.Def)
203      return VD.Def;
204    // It's possible for the defs and uses to be null.  For branches, the local
205    // numbering will say the placed predicaeinfos should go first (IE
206    // LN_beginning), so we won't be in this function. For assumes, we will end
207    // up here, beause we need to order the def we will place relative to the
208    // assume.  So for the purpose of ordering, we pretend the def is right
209    // after the assume, because that is where we will insert the info.
210    if (!VD.U) {
211      assert(VD.PInfo &&
212             "No def, no use, and no predicateinfo should not occur");
213      assert(isa<PredicateAssume>(VD.PInfo) &&
214             "Middle of block should only occur for assumes");
215      return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
216    }
217    return nullptr;
218  }
219
220  // Return either the Def, if it's not null, or the user of the Use, if the def
221  // is null.
222  const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
223    if (Def)
224      return cast<Instruction>(Def);
225    return cast<Instruction>(U->getUser());
226  }
227
228  // This performs the necessary local basic block ordering checks to tell
229  // whether A comes before B, where both are in the same basic block.
230  bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
231    auto *ADef = getMiddleDef(A);
232    auto *BDef = getMiddleDef(B);
233
234    // See if we have real values or uses. If we have real values, we are
235    // guaranteed they are instructions or arguments. No matter what, we are
236    // guaranteed they are in the same block if they are instructions.
237    auto *ArgA = dyn_cast_or_null<Argument>(ADef);
238    auto *ArgB = dyn_cast_or_null<Argument>(BDef);
239
240    if (ArgA || ArgB)
241      return valueComesBefore(ArgA, ArgB);
242
243    auto *AInst = getDefOrUser(ADef, A.U);
244    auto *BInst = getDefOrUser(BDef, B.U);
245    return valueComesBefore(AInst, BInst);
246  }
247};
248
249class PredicateInfoBuilder {
250  // Used to store information about each value we might rename.
251  struct ValueInfo {
252    SmallVector<PredicateBase *, 4> Infos;
253  };
254
255  PredicateInfo &PI;
256  Function &F;
257  DominatorTree &DT;
258  AssumptionCache &AC;
259
260  // This stores info about each operand or comparison result we make copies
261  // of. The real ValueInfos start at index 1, index 0 is unused so that we
262  // can more easily detect invalid indexing.
263  SmallVector<ValueInfo, 32> ValueInfos;
264
265  // This gives the index into the ValueInfos array for a given Value. Because
266  // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
267  // whether it returned a valid result.
268  DenseMap<Value *, unsigned int> ValueInfoNums;
269
270  // The set of edges along which we can only handle phi uses, due to critical
271  // edges.
272  DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
273
274  ValueInfo &getOrCreateValueInfo(Value *);
275  const ValueInfo &getValueInfo(Value *) const;
276
277  void processAssume(IntrinsicInst *, BasicBlock *,
278                     SmallVectorImpl<Value *> &OpsToRename);
279  void processBranch(BranchInst *, BasicBlock *,
280                     SmallVectorImpl<Value *> &OpsToRename);
281  void processSwitch(SwitchInst *, BasicBlock *,
282                     SmallVectorImpl<Value *> &OpsToRename);
283  void renameUses(SmallVectorImpl<Value *> &OpsToRename);
284  void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
285                  PredicateBase *PB);
286
287  typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
288  void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
289  Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
290  bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
291  void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
292
293public:
294  PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
295                       AssumptionCache &AC)
296      : PI(PI), F(F), DT(DT), AC(AC) {
297    // Push an empty operand info so that we can detect 0 as not finding one
298    ValueInfos.resize(1);
299  }
300
301  void buildPredicateInfo();
302};
303
304bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
305                                          const ValueDFS &VDUse) const {
306  if (Stack.empty())
307    return false;
308  // If it's a phi only use, make sure it's for this phi node edge, and that the
309  // use is in a phi node.  If it's anything else, and the top of the stack is
310  // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
311  // the defs they must go with so that we can know it's time to pop the stack
312  // when we hit the end of the phi uses for a given def.
313  if (Stack.back().EdgeOnly) {
314    if (!VDUse.U)
315      return false;
316    auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
317    if (!PHI)
318      return false;
319    // Check edge
320    BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
321    if (EdgePred != getBranchBlock(Stack.back().PInfo))
322      return false;
323
324    // Use dominates, which knows how to handle edge dominance.
325    return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
326  }
327
328  return (VDUse.DFSIn >= Stack.back().DFSIn &&
329          VDUse.DFSOut <= Stack.back().DFSOut);
330}
331
332void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
333                                                 const ValueDFS &VD) {
334  while (!Stack.empty() && !stackIsInScope(Stack, VD))
335    Stack.pop_back();
336}
337
338// Convert the uses of Op into a vector of uses, associating global and local
339// DFS info with each one.
340void PredicateInfoBuilder::convertUsesToDFSOrdered(
341    Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
342  for (auto &U : Op->uses()) {
343    if (auto *I = dyn_cast<Instruction>(U.getUser())) {
344      ValueDFS VD;
345      // Put the phi node uses in the incoming block.
346      BasicBlock *IBlock;
347      if (auto *PN = dyn_cast<PHINode>(I)) {
348        IBlock = PN->getIncomingBlock(U);
349        // Make phi node users appear last in the incoming block
350        // they are from.
351        VD.LocalNum = LN_Last;
352      } else {
353        // If it's not a phi node use, it is somewhere in the middle of the
354        // block.
355        IBlock = I->getParent();
356        VD.LocalNum = LN_Middle;
357      }
358      DomTreeNode *DomNode = DT.getNode(IBlock);
359      // It's possible our use is in an unreachable block. Skip it if so.
360      if (!DomNode)
361        continue;
362      VD.DFSIn = DomNode->getDFSNumIn();
363      VD.DFSOut = DomNode->getDFSNumOut();
364      VD.U = &U;
365      DFSOrderedSet.push_back(VD);
366    }
367  }
368}
369
370// Collect relevant operations from Comparison that we may want to insert copies
371// for.
372void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
373  auto *Op0 = Comparison->getOperand(0);
374  auto *Op1 = Comparison->getOperand(1);
375  if (Op0 == Op1)
376    return;
377  CmpOperands.push_back(Comparison);
378  // Only want real values, not constants.  Additionally, operands with one use
379  // are only being used in the comparison, which means they will not be useful
380  // for us to consider for predicateinfo.
381  //
382  if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
383    CmpOperands.push_back(Op0);
384  if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
385    CmpOperands.push_back(Op1);
386}
387
388// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
389void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
390                                      Value *Op, PredicateBase *PB) {
391  auto &OperandInfo = getOrCreateValueInfo(Op);
392  if (OperandInfo.Infos.empty())
393    OpsToRename.push_back(Op);
394  PI.AllInfos.push_back(PB);
395  OperandInfo.Infos.push_back(PB);
396}
397
398// Process an assume instruction and place relevant operations we want to rename
399// into OpsToRename.
400void PredicateInfoBuilder::processAssume(
401    IntrinsicInst *II, BasicBlock *AssumeBB,
402    SmallVectorImpl<Value *> &OpsToRename) {
403  // See if we have a comparison we support
404  SmallVector<Value *, 8> CmpOperands;
405  SmallVector<Value *, 2> ConditionsToProcess;
406  CmpInst::Predicate Pred;
407  Value *Operand = II->getOperand(0);
408  if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
409              m_Cmp(Pred, m_Value(), m_Value()))
410          .match(II->getOperand(0))) {
411    ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
412    ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
413    ConditionsToProcess.push_back(Operand);
414  } else if (isa<CmpInst>(Operand)) {
415
416    ConditionsToProcess.push_back(Operand);
417  }
418  for (auto Cond : ConditionsToProcess) {
419    if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
420      collectCmpOps(Cmp, CmpOperands);
421      // Now add our copy infos for our operands
422      for (auto *Op : CmpOperands) {
423        auto *PA = new PredicateAssume(Op, II, Cmp);
424        addInfoFor(OpsToRename, Op, PA);
425      }
426      CmpOperands.clear();
427    } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
428      // Otherwise, it should be an AND.
429      assert(BinOp->getOpcode() == Instruction::And &&
430             "Should have been an AND");
431      auto *PA = new PredicateAssume(BinOp, II, BinOp);
432      addInfoFor(OpsToRename, BinOp, PA);
433    } else {
434      llvm_unreachable("Unknown type of condition");
435    }
436  }
437}
438
439// Process a block terminating branch, and place relevant operations to be
440// renamed into OpsToRename.
441void PredicateInfoBuilder::processBranch(
442    BranchInst *BI, BasicBlock *BranchBB,
443    SmallVectorImpl<Value *> &OpsToRename) {
444  BasicBlock *FirstBB = BI->getSuccessor(0);
445  BasicBlock *SecondBB = BI->getSuccessor(1);
446  SmallVector<BasicBlock *, 2> SuccsToProcess;
447  SuccsToProcess.push_back(FirstBB);
448  SuccsToProcess.push_back(SecondBB);
449  SmallVector<Value *, 2> ConditionsToProcess;
450
451  auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
452    for (auto *Succ : SuccsToProcess) {
453      // Don't try to insert on a self-edge. This is mainly because we will
454      // eliminate during renaming anyway.
455      if (Succ == BranchBB)
456        continue;
457      bool TakenEdge = (Succ == FirstBB);
458      // For and, only insert on the true edge
459      // For or, only insert on the false edge
460      if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
461        continue;
462      PredicateBase *PB =
463          new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
464      addInfoFor(OpsToRename, Op, PB);
465      if (!Succ->getSinglePredecessor())
466        EdgeUsesOnly.insert({BranchBB, Succ});
467    }
468  };
469
470  // Match combinations of conditions.
471  CmpInst::Predicate Pred;
472  bool isAnd = false;
473  bool isOr = false;
474  SmallVector<Value *, 8> CmpOperands;
475  if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
476                                      m_Cmp(Pred, m_Value(), m_Value()))) ||
477      match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
478                                     m_Cmp(Pred, m_Value(), m_Value())))) {
479    auto *BinOp = cast<BinaryOperator>(BI->getCondition());
480    if (BinOp->getOpcode() == Instruction::And)
481      isAnd = true;
482    else if (BinOp->getOpcode() == Instruction::Or)
483      isOr = true;
484    ConditionsToProcess.push_back(BinOp->getOperand(0));
485    ConditionsToProcess.push_back(BinOp->getOperand(1));
486    ConditionsToProcess.push_back(BI->getCondition());
487  } else if (isa<CmpInst>(BI->getCondition())) {
488    ConditionsToProcess.push_back(BI->getCondition());
489  }
490  for (auto Cond : ConditionsToProcess) {
491    if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
492      collectCmpOps(Cmp, CmpOperands);
493      // Now add our copy infos for our operands
494      for (auto *Op : CmpOperands)
495        InsertHelper(Op, isAnd, isOr, Cmp);
496    } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
497      // This must be an AND or an OR.
498      assert((BinOp->getOpcode() == Instruction::And ||
499              BinOp->getOpcode() == Instruction::Or) &&
500             "Should have been an AND or an OR");
501      // The actual value of the binop is not subject to the same restrictions
502      // as the comparison. It's either true or false on the true/false branch.
503      InsertHelper(BinOp, false, false, BinOp);
504    } else {
505      llvm_unreachable("Unknown type of condition");
506    }
507    CmpOperands.clear();
508  }
509}
510// Process a block terminating switch, and place relevant operations to be
511// renamed into OpsToRename.
512void PredicateInfoBuilder::processSwitch(
513    SwitchInst *SI, BasicBlock *BranchBB,
514    SmallVectorImpl<Value *> &OpsToRename) {
515  Value *Op = SI->getCondition();
516  if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
517    return;
518
519  // Remember how many outgoing edges there are to every successor.
520  SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
521  for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
522    BasicBlock *TargetBlock = SI->getSuccessor(i);
523    ++SwitchEdges[TargetBlock];
524  }
525
526  // Now propagate info for each case value
527  for (auto C : SI->cases()) {
528    BasicBlock *TargetBlock = C.getCaseSuccessor();
529    if (SwitchEdges.lookup(TargetBlock) == 1) {
530      PredicateSwitch *PS = new PredicateSwitch(
531          Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
532      addInfoFor(OpsToRename, Op, PS);
533      if (!TargetBlock->getSinglePredecessor())
534        EdgeUsesOnly.insert({BranchBB, TargetBlock});
535    }
536  }
537}
538
539// Build predicate info for our function
540void PredicateInfoBuilder::buildPredicateInfo() {
541  DT.updateDFSNumbers();
542  // Collect operands to rename from all conditional branch terminators, as well
543  // as assume statements.
544  SmallVector<Value *, 8> OpsToRename;
545  for (auto DTN : depth_first(DT.getRootNode())) {
546    BasicBlock *BranchBB = DTN->getBlock();
547    if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
548      if (!BI->isConditional())
549        continue;
550      // Can't insert conditional information if they all go to the same place.
551      if (BI->getSuccessor(0) == BI->getSuccessor(1))
552        continue;
553      processBranch(BI, BranchBB, OpsToRename);
554    } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
555      processSwitch(SI, BranchBB, OpsToRename);
556    }
557  }
558  for (auto &Assume : AC.assumptions()) {
559    if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
560      if (DT.isReachableFromEntry(II->getParent()))
561        processAssume(II, II->getParent(), OpsToRename);
562  }
563  // Now rename all our operations.
564  renameUses(OpsToRename);
565}
566
567// Create a ssa_copy declaration with custom mangling, because
568// Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
569// all unnamed types get mangled to the same string. We use the pointer
570// to the type as name here, as it guarantees unique names for different
571// types and we remove the declarations when destroying PredicateInfo.
572// It is a workaround for PR38117, because solving it in a fully general way is
573// tricky (FIXME).
574static Function *getCopyDeclaration(Module *M, Type *Ty) {
575  std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
576  return cast<Function>(
577      M->getOrInsertFunction(Name,
578                             getType(M->getContext(), Intrinsic::ssa_copy, Ty))
579          .getCallee());
580}
581
582// Given the renaming stack, make all the operands currently on the stack real
583// by inserting them into the IR.  Return the last operation's value.
584Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
585                                             ValueDFSStack &RenameStack,
586                                             Value *OrigOp) {
587  // Find the first thing we have to materialize
588  auto RevIter = RenameStack.rbegin();
589  for (; RevIter != RenameStack.rend(); ++RevIter)
590    if (RevIter->Def)
591      break;
592
593  size_t Start = RevIter - RenameStack.rbegin();
594  // The maximum number of things we should be trying to materialize at once
595  // right now is 4, depending on if we had an assume, a branch, and both used
596  // and of conditions.
597  for (auto RenameIter = RenameStack.end() - Start;
598       RenameIter != RenameStack.end(); ++RenameIter) {
599    auto *Op =
600        RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
601    ValueDFS &Result = *RenameIter;
602    auto *ValInfo = Result.PInfo;
603    ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
604                             ? OrigOp
605                             : (RenameStack.end() - Start - 1)->Def;
606    // For edge predicates, we can just place the operand in the block before
607    // the terminator.  For assume, we have to place it right before the assume
608    // to ensure we dominate all of our uses.  Always insert right before the
609    // relevant instruction (terminator, assume), so that we insert in proper
610    // order in the case of multiple predicateinfo in the same block.
611    if (isa<PredicateWithEdge>(ValInfo)) {
612      IRBuilder<> B(getBranchTerminator(ValInfo));
613      Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
614      if (IF->users().empty())
615        PI.CreatedDeclarations.insert(IF);
616      CallInst *PIC =
617          B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
618      PI.PredicateMap.insert({PIC, ValInfo});
619      Result.Def = PIC;
620    } else {
621      auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
622      assert(PAssume &&
623             "Should not have gotten here without it being an assume");
624      // Insert the predicate directly after the assume. While it also holds
625      // directly before it, assume(i1 true) is not a useful fact.
626      IRBuilder<> B(PAssume->AssumeInst->getNextNode());
627      Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
628      if (IF->users().empty())
629        PI.CreatedDeclarations.insert(IF);
630      CallInst *PIC = B.CreateCall(IF, Op);
631      PI.PredicateMap.insert({PIC, ValInfo});
632      Result.Def = PIC;
633    }
634  }
635  return RenameStack.back().Def;
636}
637
638// Instead of the standard SSA renaming algorithm, which is O(Number of
639// instructions), and walks the entire dominator tree, we walk only the defs +
640// uses.  The standard SSA renaming algorithm does not really rely on the
641// dominator tree except to order the stack push/pops of the renaming stacks, so
642// that defs end up getting pushed before hitting the correct uses.  This does
643// not require the dominator tree, only the *order* of the dominator tree. The
644// complete and correct ordering of the defs and uses, in dominator tree is
645// contained in the DFS numbering of the dominator tree. So we sort the defs and
646// uses into the DFS ordering, and then just use the renaming stack as per
647// normal, pushing when we hit a def (which is a predicateinfo instruction),
648// popping when we are out of the dfs scope for that def, and replacing any uses
649// with top of stack if it exists.  In order to handle liveness without
650// propagating liveness info, we don't actually insert the predicateinfo
651// instruction def until we see a use that it would dominate.  Once we see such
652// a use, we materialize the predicateinfo instruction in the right place and
653// use it.
654//
655// TODO: Use this algorithm to perform fast single-variable renaming in
656// promotememtoreg and memoryssa.
657void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
658  ValueDFS_Compare Compare(DT);
659  // Compute liveness, and rename in O(uses) per Op.
660  for (auto *Op : OpsToRename) {
661    LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
662    unsigned Counter = 0;
663    SmallVector<ValueDFS, 16> OrderedUses;
664    const auto &ValueInfo = getValueInfo(Op);
665    // Insert the possible copies into the def/use list.
666    // They will become real copies if we find a real use for them, and never
667    // created otherwise.
668    for (auto &PossibleCopy : ValueInfo.Infos) {
669      ValueDFS VD;
670      // Determine where we are going to place the copy by the copy type.
671      // The predicate info for branches always come first, they will get
672      // materialized in the split block at the top of the block.
673      // The predicate info for assumes will be somewhere in the middle,
674      // it will get materialized in front of the assume.
675      if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
676        VD.LocalNum = LN_Middle;
677        DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
678        if (!DomNode)
679          continue;
680        VD.DFSIn = DomNode->getDFSNumIn();
681        VD.DFSOut = DomNode->getDFSNumOut();
682        VD.PInfo = PossibleCopy;
683        OrderedUses.push_back(VD);
684      } else if (isa<PredicateWithEdge>(PossibleCopy)) {
685        // If we can only do phi uses, we treat it like it's in the branch
686        // block, and handle it specially. We know that it goes last, and only
687        // dominate phi uses.
688        auto BlockEdge = getBlockEdge(PossibleCopy);
689        if (EdgeUsesOnly.count(BlockEdge)) {
690          VD.LocalNum = LN_Last;
691          auto *DomNode = DT.getNode(BlockEdge.first);
692          if (DomNode) {
693            VD.DFSIn = DomNode->getDFSNumIn();
694            VD.DFSOut = DomNode->getDFSNumOut();
695            VD.PInfo = PossibleCopy;
696            VD.EdgeOnly = true;
697            OrderedUses.push_back(VD);
698          }
699        } else {
700          // Otherwise, we are in the split block (even though we perform
701          // insertion in the branch block).
702          // Insert a possible copy at the split block and before the branch.
703          VD.LocalNum = LN_First;
704          auto *DomNode = DT.getNode(BlockEdge.second);
705          if (DomNode) {
706            VD.DFSIn = DomNode->getDFSNumIn();
707            VD.DFSOut = DomNode->getDFSNumOut();
708            VD.PInfo = PossibleCopy;
709            OrderedUses.push_back(VD);
710          }
711        }
712      }
713    }
714
715    convertUsesToDFSOrdered(Op, OrderedUses);
716    // Here we require a stable sort because we do not bother to try to
717    // assign an order to the operands the uses represent. Thus, two
718    // uses in the same instruction do not have a strict sort order
719    // currently and will be considered equal. We could get rid of the
720    // stable sort by creating one if we wanted.
721    llvm::stable_sort(OrderedUses, Compare);
722    SmallVector<ValueDFS, 8> RenameStack;
723    // For each use, sorted into dfs order, push values and replaces uses with
724    // top of stack, which will represent the reaching def.
725    for (auto &VD : OrderedUses) {
726      // We currently do not materialize copy over copy, but we should decide if
727      // we want to.
728      bool PossibleCopy = VD.PInfo != nullptr;
729      if (RenameStack.empty()) {
730        LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
731      } else {
732        LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
733                          << RenameStack.back().DFSIn << ","
734                          << RenameStack.back().DFSOut << ")\n");
735      }
736
737      LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
738                        << VD.DFSOut << ")\n");
739
740      bool ShouldPush = (VD.Def || PossibleCopy);
741      bool OutOfScope = !stackIsInScope(RenameStack, VD);
742      if (OutOfScope || ShouldPush) {
743        // Sync to our current scope.
744        popStackUntilDFSScope(RenameStack, VD);
745        if (ShouldPush) {
746          RenameStack.push_back(VD);
747        }
748      }
749      // If we get to this point, and the stack is empty we must have a use
750      // with no renaming needed, just skip it.
751      if (RenameStack.empty())
752        continue;
753      // Skip values, only want to rename the uses
754      if (VD.Def || PossibleCopy)
755        continue;
756      if (!DebugCounter::shouldExecute(RenameCounter)) {
757        LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
758        continue;
759      }
760      ValueDFS &Result = RenameStack.back();
761
762      // If the possible copy dominates something, materialize our stack up to
763      // this point. This ensures every comparison that affects our operation
764      // ends up with predicateinfo.
765      if (!Result.Def)
766        Result.Def = materializeStack(Counter, RenameStack, Op);
767
768      LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
769                        << *VD.U->get() << " in " << *(VD.U->getUser())
770                        << "\n");
771      assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
772             "Predicateinfo def should have dominated this use");
773      VD.U->set(Result.Def);
774    }
775  }
776}
777
778PredicateInfoBuilder::ValueInfo &
779PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
780  auto OIN = ValueInfoNums.find(Operand);
781  if (OIN == ValueInfoNums.end()) {
782    // This will grow it
783    ValueInfos.resize(ValueInfos.size() + 1);
784    // This will use the new size and give us a 0 based number of the info
785    auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
786    assert(InsertResult.second && "Value info number already existed?");
787    return ValueInfos[InsertResult.first->second];
788  }
789  return ValueInfos[OIN->second];
790}
791
792const PredicateInfoBuilder::ValueInfo &
793PredicateInfoBuilder::getValueInfo(Value *Operand) const {
794  auto OINI = ValueInfoNums.lookup(Operand);
795  assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
796  assert(OINI < ValueInfos.size() &&
797         "Value Info Number greater than size of Value Info Table");
798  return ValueInfos[OINI];
799}
800
801PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
802                             AssumptionCache &AC)
803    : F(F) {
804  PredicateInfoBuilder Builder(*this, F, DT, AC);
805  Builder.buildPredicateInfo();
806}
807
808// Remove all declarations we created . The PredicateInfo consumers are
809// responsible for remove the ssa_copy calls created.
810PredicateInfo::~PredicateInfo() {
811  // Collect function pointers in set first, as SmallSet uses a SmallVector
812  // internally and we have to remove the asserting value handles first.
813  SmallPtrSet<Function *, 20> FunctionPtrs;
814  for (auto &F : CreatedDeclarations)
815    FunctionPtrs.insert(&*F);
816  CreatedDeclarations.clear();
817
818  for (Function *F : FunctionPtrs) {
819    assert(F->user_begin() == F->user_end() &&
820           "PredicateInfo consumer did not remove all SSA copies.");
821    F->eraseFromParent();
822  }
823}
824
825void PredicateInfo::verifyPredicateInfo() const {}
826
827char PredicateInfoPrinterLegacyPass::ID = 0;
828
829PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
830    : FunctionPass(ID) {
831  initializePredicateInfoPrinterLegacyPassPass(
832      *PassRegistry::getPassRegistry());
833}
834
835void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
836  AU.setPreservesAll();
837  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
838  AU.addRequired<AssumptionCacheTracker>();
839}
840
841// Replace ssa_copy calls created by PredicateInfo with their operand.
842static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
843  for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
844    Instruction *Inst = &*I++;
845    const auto *PI = PredInfo.getPredicateInfoFor(Inst);
846    auto *II = dyn_cast<IntrinsicInst>(Inst);
847    if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
848      continue;
849
850    Inst->replaceAllUsesWith(II->getOperand(0));
851    Inst->eraseFromParent();
852  }
853}
854
855bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
856  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
857  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
858  auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
859  PredInfo->print(dbgs());
860  if (VerifyPredicateInfo)
861    PredInfo->verifyPredicateInfo();
862
863  replaceCreatedSSACopys(*PredInfo, F);
864  return false;
865}
866
867PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
868                                                FunctionAnalysisManager &AM) {
869  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
870  auto &AC = AM.getResult<AssumptionAnalysis>(F);
871  OS << "PredicateInfo for function: " << F.getName() << "\n";
872  auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
873  PredInfo->print(OS);
874
875  replaceCreatedSSACopys(*PredInfo, F);
876  return PreservedAnalyses::all();
877}
878
879/// An assembly annotator class to print PredicateInfo information in
880/// comments.
881class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
882  friend class PredicateInfo;
883  const PredicateInfo *PredInfo;
884
885public:
886  PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
887
888  void emitBasicBlockStartAnnot(const BasicBlock *BB,
889                                formatted_raw_ostream &OS) override {}
890
891  void emitInstructionAnnot(const Instruction *I,
892                            formatted_raw_ostream &OS) override {
893    if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
894      OS << "; Has predicate info\n";
895      if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
896        OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
897           << " Comparison:" << *PB->Condition << " Edge: [";
898        PB->From->printAsOperand(OS);
899        OS << ",";
900        PB->To->printAsOperand(OS);
901        OS << "]";
902      } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
903        OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
904           << " Switch:" << *PS->Switch << " Edge: [";
905        PS->From->printAsOperand(OS);
906        OS << ",";
907        PS->To->printAsOperand(OS);
908        OS << "]";
909      } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
910        OS << "; assume predicate info {"
911           << " Comparison:" << *PA->Condition;
912      }
913      OS << ", RenamedOp: ";
914      PI->RenamedOp->printAsOperand(OS, false);
915      OS << " }\n";
916    }
917  }
918};
919
920void PredicateInfo::print(raw_ostream &OS) const {
921  PredicateInfoAnnotatedWriter Writer(this);
922  F.print(OS, &Writer);
923}
924
925void PredicateInfo::dump() const {
926  PredicateInfoAnnotatedWriter Writer(this);
927  F.print(dbgs(), &Writer);
928}
929
930PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
931                                                 FunctionAnalysisManager &AM) {
932  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
933  auto &AC = AM.getResult<AssumptionAnalysis>(F);
934  std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
935
936  return PreservedAnalyses::all();
937}
938}
939