1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs several transformations to transform natural loops into a
10// simpler form, which makes subsequent analyses and transformations simpler and
11// more effective.
12//
13// Loop pre-header insertion guarantees that there is a single, non-critical
14// entry edge from outside of the loop to the loop header.  This simplifies a
15// number of analyses and transformations, such as LICM.
16//
17// Loop exit-block insertion guarantees that all exit blocks from the loop
18// (blocks which are outside of the loop that have predecessors inside of the
19// loop) only have predecessors from inside of the loop (and are thus dominated
20// by the loop header).  This simplifies transformations such as store-sinking
21// that are built into LICM.
22//
23// This pass also guarantees that loops will have exactly one backedge.
24//
25// Indirectbr instructions introduce several complications. If the loop
26// contains or is entered by an indirectbr instruction, it may not be possible
27// to transform the loop and make these guarantees. Client code should check
28// that these conditions are true before relying on them.
29//
30// Similar complications arise from callbr instructions, particularly in
31// asm-goto where blockaddress expressions are used.
32//
33// Note that the simplifycfg pass will clean up blocks which are split out but
34// end up being unnecessary, so usage of this pass should not pessimize
35// generated code.
36//
37// This pass obviously modifies the CFG, but updates loop information and
38// dominator information.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Transforms/Utils/LoopSimplify.h"
43#include "llvm/ADT/DepthFirstIterator.h"
44#include "llvm/ADT/SetOperations.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/Analysis/AliasAnalysis.h"
49#include "llvm/Analysis/AssumptionCache.h"
50#include "llvm/Analysis/BasicAliasAnalysis.h"
51#include "llvm/Analysis/BranchProbabilityInfo.h"
52#include "llvm/Analysis/DependenceAnalysis.h"
53#include "llvm/Analysis/GlobalsModRef.h"
54#include "llvm/Analysis/InstructionSimplify.h"
55#include "llvm/Analysis/LoopInfo.h"
56#include "llvm/Analysis/MemorySSA.h"
57#include "llvm/Analysis/MemorySSAUpdater.h"
58#include "llvm/Analysis/ScalarEvolution.h"
59#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60#include "llvm/IR/CFG.h"
61#include "llvm/IR/Constants.h"
62#include "llvm/IR/DataLayout.h"
63#include "llvm/IR/Dominators.h"
64#include "llvm/IR/Function.h"
65#include "llvm/IR/Instructions.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Module.h"
69#include "llvm/IR/Type.h"
70#include "llvm/InitializePasses.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Transforms/Utils.h"
74#include "llvm/Transforms/Utils/BasicBlockUtils.h"
75#include "llvm/Transforms/Utils/Local.h"
76#include "llvm/Transforms/Utils/LoopUtils.h"
77using namespace llvm;
78
79#define DEBUG_TYPE "loop-simplify"
80
81STATISTIC(NumNested  , "Number of nested loops split out");
82
83// If the block isn't already, move the new block to right after some 'outside
84// block' block.  This prevents the preheader from being placed inside the loop
85// body, e.g. when the loop hasn't been rotated.
86static void placeSplitBlockCarefully(BasicBlock *NewBB,
87                                     SmallVectorImpl<BasicBlock *> &SplitPreds,
88                                     Loop *L) {
89  // Check to see if NewBB is already well placed.
90  Function::iterator BBI = --NewBB->getIterator();
91  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92    if (&*BBI == SplitPreds[i])
93      return;
94  }
95
96  // If it isn't already after an outside block, move it after one.  This is
97  // always good as it makes the uncond branch from the outside block into a
98  // fall-through.
99
100  // Figure out *which* outside block to put this after.  Prefer an outside
101  // block that neighbors a BB actually in the loop.
102  BasicBlock *FoundBB = nullptr;
103  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
104    Function::iterator BBI = SplitPreds[i]->getIterator();
105    if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
106      FoundBB = SplitPreds[i];
107      break;
108    }
109  }
110
111  // If our heuristic for a *good* bb to place this after doesn't find
112  // anything, just pick something.  It's likely better than leaving it within
113  // the loop.
114  if (!FoundBB)
115    FoundBB = SplitPreds[0];
116  NewBB->moveAfter(FoundBB);
117}
118
119/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120/// preheader, this method is called to insert one.  This method has two phases:
121/// preheader insertion and analysis updating.
122///
123BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
124                                         LoopInfo *LI, MemorySSAUpdater *MSSAU,
125                                         bool PreserveLCSSA) {
126  BasicBlock *Header = L->getHeader();
127
128  // Compute the set of predecessors of the loop that are not in the loop.
129  SmallVector<BasicBlock*, 8> OutsideBlocks;
130  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
131       PI != PE; ++PI) {
132    BasicBlock *P = *PI;
133    if (!L->contains(P)) {         // Coming in from outside the loop?
134      // If the loop is branched to from an indirect terminator, we won't
135      // be able to fully transform the loop, because it prohibits
136      // edge splitting.
137      if (P->getTerminator()->isIndirectTerminator())
138        return nullptr;
139
140      // Keep track of it.
141      OutsideBlocks.push_back(P);
142    }
143  }
144
145  // Split out the loop pre-header.
146  BasicBlock *PreheaderBB;
147  PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
148                                       LI, MSSAU, PreserveLCSSA);
149  if (!PreheaderBB)
150    return nullptr;
151
152  LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
153                    << PreheaderBB->getName() << "\n");
154
155  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
156  // code layout too horribly.
157  placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
158
159  return PreheaderBB;
160}
161
162/// Add the specified block, and all of its predecessors, to the specified set,
163/// if it's not already in there.  Stop predecessor traversal when we reach
164/// StopBlock.
165static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
166                                  std::set<BasicBlock*> &Blocks) {
167  SmallVector<BasicBlock *, 8> Worklist;
168  Worklist.push_back(InputBB);
169  do {
170    BasicBlock *BB = Worklist.pop_back_val();
171    if (Blocks.insert(BB).second && BB != StopBlock)
172      // If BB is not already processed and it is not a stop block then
173      // insert its predecessor in the work list
174      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
175        BasicBlock *WBB = *I;
176        Worklist.push_back(WBB);
177      }
178  } while (!Worklist.empty());
179}
180
181/// The first part of loop-nestification is to find a PHI node that tells
182/// us how to partition the loops.
183static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
184                                        AssumptionCache *AC) {
185  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
186  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
187    PHINode *PN = cast<PHINode>(I);
188    ++I;
189    if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
190      // This is a degenerate PHI already, don't modify it!
191      PN->replaceAllUsesWith(V);
192      PN->eraseFromParent();
193      continue;
194    }
195
196    // Scan this PHI node looking for a use of the PHI node by itself.
197    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
198      if (PN->getIncomingValue(i) == PN &&
199          L->contains(PN->getIncomingBlock(i)))
200        // We found something tasty to remove.
201        return PN;
202  }
203  return nullptr;
204}
205
206/// If this loop has multiple backedges, try to pull one of them out into
207/// a nested loop.
208///
209/// This is important for code that looks like
210/// this:
211///
212///  Loop:
213///     ...
214///     br cond, Loop, Next
215///     ...
216///     br cond2, Loop, Out
217///
218/// To identify this common case, we look at the PHI nodes in the header of the
219/// loop.  PHI nodes with unchanging values on one backedge correspond to values
220/// that change in the "outer" loop, but not in the "inner" loop.
221///
222/// If we are able to separate out a loop, return the new outer loop that was
223/// created.
224///
225static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
226                                DominatorTree *DT, LoopInfo *LI,
227                                ScalarEvolution *SE, bool PreserveLCSSA,
228                                AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
229  // Don't try to separate loops without a preheader.
230  if (!Preheader)
231    return nullptr;
232
233  // Treat the presence of convergent functions conservatively. The
234  // transformation is invalid if calls to certain convergent
235  // functions (like an AMDGPU barrier) get included in the resulting
236  // inner loop. But blocks meant for the inner loop will be
237  // identified later at a point where it's too late to abort the
238  // transformation. Also, the convergent attribute is not really
239  // sufficient to express the semantics of functions that are
240  // affected by this transformation. So we choose to back off if such
241  // a function call is present until a better alternative becomes
242  // available. This is similar to the conservative treatment of
243  // convergent function calls in GVNHoist and JumpThreading.
244  for (auto BB : L->blocks()) {
245    for (auto &II : *BB) {
246      if (auto CI = dyn_cast<CallBase>(&II)) {
247        if (CI->isConvergent()) {
248          return nullptr;
249        }
250      }
251    }
252  }
253
254  // The header is not a landing pad; preheader insertion should ensure this.
255  BasicBlock *Header = L->getHeader();
256  assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
257
258  PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
259  if (!PN) return nullptr;  // No known way to partition.
260
261  // Pull out all predecessors that have varying values in the loop.  This
262  // handles the case when a PHI node has multiple instances of itself as
263  // arguments.
264  SmallVector<BasicBlock*, 8> OuterLoopPreds;
265  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
266    if (PN->getIncomingValue(i) != PN ||
267        !L->contains(PN->getIncomingBlock(i))) {
268      // We can't split indirect control flow edges.
269      if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
270        return nullptr;
271      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
272    }
273  }
274  LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
275
276  // If ScalarEvolution is around and knows anything about values in
277  // this loop, tell it to forget them, because we're about to
278  // substantially change it.
279  if (SE)
280    SE->forgetLoop(L);
281
282  BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
283                                             DT, LI, MSSAU, PreserveLCSSA);
284
285  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
286  // code layout too horribly.
287  placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
288
289  // Create the new outer loop.
290  Loop *NewOuter = LI->AllocateLoop();
291
292  // Change the parent loop to use the outer loop as its child now.
293  if (Loop *Parent = L->getParentLoop())
294    Parent->replaceChildLoopWith(L, NewOuter);
295  else
296    LI->changeTopLevelLoop(L, NewOuter);
297
298  // L is now a subloop of our outer loop.
299  NewOuter->addChildLoop(L);
300
301  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
302       I != E; ++I)
303    NewOuter->addBlockEntry(*I);
304
305  // Now reset the header in L, which had been moved by
306  // SplitBlockPredecessors for the outer loop.
307  L->moveToHeader(Header);
308
309  // Determine which blocks should stay in L and which should be moved out to
310  // the Outer loop now.
311  std::set<BasicBlock*> BlocksInL;
312  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
313    BasicBlock *P = *PI;
314    if (DT->dominates(Header, P))
315      addBlockAndPredsToSet(P, Header, BlocksInL);
316  }
317
318  // Scan all of the loop children of L, moving them to OuterLoop if they are
319  // not part of the inner loop.
320  const std::vector<Loop*> &SubLoops = L->getSubLoops();
321  for (size_t I = 0; I != SubLoops.size(); )
322    if (BlocksInL.count(SubLoops[I]->getHeader()))
323      ++I;   // Loop remains in L
324    else
325      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
326
327  SmallVector<BasicBlock *, 8> OuterLoopBlocks;
328  OuterLoopBlocks.push_back(NewBB);
329  // Now that we know which blocks are in L and which need to be moved to
330  // OuterLoop, move any blocks that need it.
331  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
332    BasicBlock *BB = L->getBlocks()[i];
333    if (!BlocksInL.count(BB)) {
334      // Move this block to the parent, updating the exit blocks sets
335      L->removeBlockFromLoop(BB);
336      if ((*LI)[BB] == L) {
337        LI->changeLoopFor(BB, NewOuter);
338        OuterLoopBlocks.push_back(BB);
339      }
340      --i;
341    }
342  }
343
344  // Split edges to exit blocks from the inner loop, if they emerged in the
345  // process of separating the outer one.
346  formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
347
348  if (PreserveLCSSA) {
349    // Fix LCSSA form for L. Some values, which previously were only used inside
350    // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
351    // in corresponding exit blocks.
352    // We don't need to form LCSSA recursively, because there cannot be uses
353    // inside a newly created loop of defs from inner loops as those would
354    // already be a use of an LCSSA phi node.
355    formLCSSA(*L, *DT, LI, SE);
356
357    assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
358           "LCSSA is broken after separating nested loops!");
359  }
360
361  return NewOuter;
362}
363
364/// This method is called when the specified loop has more than one
365/// backedge in it.
366///
367/// If this occurs, revector all of these backedges to target a new basic block
368/// and have that block branch to the loop header.  This ensures that loops
369/// have exactly one backedge.
370static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
371                                             DominatorTree *DT, LoopInfo *LI,
372                                             MemorySSAUpdater *MSSAU) {
373  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
374
375  // Get information about the loop
376  BasicBlock *Header = L->getHeader();
377  Function *F = Header->getParent();
378
379  // Unique backedge insertion currently depends on having a preheader.
380  if (!Preheader)
381    return nullptr;
382
383  // The header is not an EH pad; preheader insertion should ensure this.
384  assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
385
386  // Figure out which basic blocks contain back-edges to the loop header.
387  std::vector<BasicBlock*> BackedgeBlocks;
388  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
389    BasicBlock *P = *I;
390
391    // Indirect edges cannot be split, so we must fail if we find one.
392    if (P->getTerminator()->isIndirectTerminator())
393      return nullptr;
394
395    if (P != Preheader) BackedgeBlocks.push_back(P);
396  }
397
398  // Create and insert the new backedge block...
399  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
400                                           Header->getName() + ".backedge", F);
401  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
402  BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
403
404  LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
405                    << BEBlock->getName() << "\n");
406
407  // Move the new backedge block to right after the last backedge block.
408  Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
409  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
410
411  // Now that the block has been inserted into the function, create PHI nodes in
412  // the backedge block which correspond to any PHI nodes in the header block.
413  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
414    PHINode *PN = cast<PHINode>(I);
415    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
416                                     PN->getName()+".be", BETerminator);
417
418    // Loop over the PHI node, moving all entries except the one for the
419    // preheader over to the new PHI node.
420    unsigned PreheaderIdx = ~0U;
421    bool HasUniqueIncomingValue = true;
422    Value *UniqueValue = nullptr;
423    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
424      BasicBlock *IBB = PN->getIncomingBlock(i);
425      Value *IV = PN->getIncomingValue(i);
426      if (IBB == Preheader) {
427        PreheaderIdx = i;
428      } else {
429        NewPN->addIncoming(IV, IBB);
430        if (HasUniqueIncomingValue) {
431          if (!UniqueValue)
432            UniqueValue = IV;
433          else if (UniqueValue != IV)
434            HasUniqueIncomingValue = false;
435        }
436      }
437    }
438
439    // Delete all of the incoming values from the old PN except the preheader's
440    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
441    if (PreheaderIdx != 0) {
442      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
443      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
444    }
445    // Nuke all entries except the zero'th.
446    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
447      PN->removeIncomingValue(e-i, false);
448
449    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
450    PN->addIncoming(NewPN, BEBlock);
451
452    // As an optimization, if all incoming values in the new PhiNode (which is a
453    // subset of the incoming values of the old PHI node) have the same value,
454    // eliminate the PHI Node.
455    if (HasUniqueIncomingValue) {
456      NewPN->replaceAllUsesWith(UniqueValue);
457      BEBlock->getInstList().erase(NewPN);
458    }
459  }
460
461  // Now that all of the PHI nodes have been inserted and adjusted, modify the
462  // backedge blocks to jump to the BEBlock instead of the header.
463  // If one of the backedges has llvm.loop metadata attached, we remove
464  // it from the backedge and add it to BEBlock.
465  unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
466  MDNode *LoopMD = nullptr;
467  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
468    Instruction *TI = BackedgeBlocks[i]->getTerminator();
469    if (!LoopMD)
470      LoopMD = TI->getMetadata(LoopMDKind);
471    TI->setMetadata(LoopMDKind, nullptr);
472    TI->replaceSuccessorWith(Header, BEBlock);
473  }
474  BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
475
476  //===--- Update all analyses which we must preserve now -----------------===//
477
478  // Update Loop Information - we know that this block is now in the current
479  // loop and all parent loops.
480  L->addBasicBlockToLoop(BEBlock, *LI);
481
482  // Update dominator information
483  DT->splitBlock(BEBlock);
484
485  if (MSSAU)
486    MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
487                                                      BEBlock);
488
489  return BEBlock;
490}
491
492/// Simplify one loop and queue further loops for simplification.
493static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
494                            DominatorTree *DT, LoopInfo *LI,
495                            ScalarEvolution *SE, AssumptionCache *AC,
496                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
497  bool Changed = false;
498  if (MSSAU && VerifyMemorySSA)
499    MSSAU->getMemorySSA()->verifyMemorySSA();
500
501ReprocessLoop:
502
503  // Check to see that no blocks (other than the header) in this loop have
504  // predecessors that are not in the loop.  This is not valid for natural
505  // loops, but can occur if the blocks are unreachable.  Since they are
506  // unreachable we can just shamelessly delete those CFG edges!
507  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
508       BB != E; ++BB) {
509    if (*BB == L->getHeader()) continue;
510
511    SmallPtrSet<BasicBlock*, 4> BadPreds;
512    for (pred_iterator PI = pred_begin(*BB),
513         PE = pred_end(*BB); PI != PE; ++PI) {
514      BasicBlock *P = *PI;
515      if (!L->contains(P))
516        BadPreds.insert(P);
517    }
518
519    // Delete each unique out-of-loop (and thus dead) predecessor.
520    for (BasicBlock *P : BadPreds) {
521
522      LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
523                        << P->getName() << "\n");
524
525      // Zap the dead pred's terminator and replace it with unreachable.
526      Instruction *TI = P->getTerminator();
527      changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
528                          /*DTU=*/nullptr, MSSAU);
529      Changed = true;
530    }
531  }
532
533  if (MSSAU && VerifyMemorySSA)
534    MSSAU->getMemorySSA()->verifyMemorySSA();
535
536  // If there are exiting blocks with branches on undef, resolve the undef in
537  // the direction which will exit the loop. This will help simplify loop
538  // trip count computations.
539  SmallVector<BasicBlock*, 8> ExitingBlocks;
540  L->getExitingBlocks(ExitingBlocks);
541  for (BasicBlock *ExitingBlock : ExitingBlocks)
542    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
543      if (BI->isConditional()) {
544        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
545
546          LLVM_DEBUG(dbgs()
547                     << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
548                     << ExitingBlock->getName() << "\n");
549
550          BI->setCondition(ConstantInt::get(Cond->getType(),
551                                            !L->contains(BI->getSuccessor(0))));
552
553          Changed = true;
554        }
555      }
556
557  // Does the loop already have a preheader?  If so, don't insert one.
558  BasicBlock *Preheader = L->getLoopPreheader();
559  if (!Preheader) {
560    Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
561    if (Preheader)
562      Changed = true;
563  }
564
565  // Next, check to make sure that all exit nodes of the loop only have
566  // predecessors that are inside of the loop.  This check guarantees that the
567  // loop preheader/header will dominate the exit blocks.  If the exit block has
568  // predecessors from outside of the loop, split the edge now.
569  if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
570    Changed = true;
571
572  if (MSSAU && VerifyMemorySSA)
573    MSSAU->getMemorySSA()->verifyMemorySSA();
574
575  // If the header has more than two predecessors at this point (from the
576  // preheader and from multiple backedges), we must adjust the loop.
577  BasicBlock *LoopLatch = L->getLoopLatch();
578  if (!LoopLatch) {
579    // If this is really a nested loop, rip it out into a child loop.  Don't do
580    // this for loops with a giant number of backedges, just factor them into a
581    // common backedge instead.
582    if (L->getNumBackEdges() < 8) {
583      if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
584                                            PreserveLCSSA, AC, MSSAU)) {
585        ++NumNested;
586        // Enqueue the outer loop as it should be processed next in our
587        // depth-first nest walk.
588        Worklist.push_back(OuterL);
589
590        // This is a big restructuring change, reprocess the whole loop.
591        Changed = true;
592        // GCC doesn't tail recursion eliminate this.
593        // FIXME: It isn't clear we can't rely on LLVM to TRE this.
594        goto ReprocessLoop;
595      }
596    }
597
598    // If we either couldn't, or didn't want to, identify nesting of the loops,
599    // insert a new block that all backedges target, then make it jump to the
600    // loop header.
601    LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
602    if (LoopLatch)
603      Changed = true;
604  }
605
606  if (MSSAU && VerifyMemorySSA)
607    MSSAU->getMemorySSA()->verifyMemorySSA();
608
609  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
610
611  // Scan over the PHI nodes in the loop header.  Since they now have only two
612  // incoming values (the loop is canonicalized), we may have simplified the PHI
613  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
614  PHINode *PN;
615  for (BasicBlock::iterator I = L->getHeader()->begin();
616       (PN = dyn_cast<PHINode>(I++)); )
617    if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
618      if (SE) SE->forgetValue(PN);
619      if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
620        PN->replaceAllUsesWith(V);
621        PN->eraseFromParent();
622        Changed = true;
623      }
624    }
625
626  // If this loop has multiple exits and the exits all go to the same
627  // block, attempt to merge the exits. This helps several passes, such
628  // as LoopRotation, which do not support loops with multiple exits.
629  // SimplifyCFG also does this (and this code uses the same utility
630  // function), however this code is loop-aware, where SimplifyCFG is
631  // not. That gives it the advantage of being able to hoist
632  // loop-invariant instructions out of the way to open up more
633  // opportunities, and the disadvantage of having the responsibility
634  // to preserve dominator information.
635  auto HasUniqueExitBlock = [&]() {
636    BasicBlock *UniqueExit = nullptr;
637    for (auto *ExitingBB : ExitingBlocks)
638      for (auto *SuccBB : successors(ExitingBB)) {
639        if (L->contains(SuccBB))
640          continue;
641
642        if (!UniqueExit)
643          UniqueExit = SuccBB;
644        else if (UniqueExit != SuccBB)
645          return false;
646      }
647
648    return true;
649  };
650  if (HasUniqueExitBlock()) {
651    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
652      BasicBlock *ExitingBlock = ExitingBlocks[i];
653      if (!ExitingBlock->getSinglePredecessor()) continue;
654      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
655      if (!BI || !BI->isConditional()) continue;
656      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
657      if (!CI || CI->getParent() != ExitingBlock) continue;
658
659      // Attempt to hoist out all instructions except for the
660      // comparison and the branch.
661      bool AllInvariant = true;
662      bool AnyInvariant = false;
663      for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
664        Instruction *Inst = &*I++;
665        if (Inst == CI)
666          continue;
667        if (!L->makeLoopInvariant(
668                Inst, AnyInvariant,
669                Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
670          AllInvariant = false;
671          break;
672        }
673      }
674      if (AnyInvariant) {
675        Changed = true;
676        // The loop disposition of all SCEV expressions that depend on any
677        // hoisted values have also changed.
678        if (SE)
679          SE->forgetLoopDispositions(L);
680      }
681      if (!AllInvariant) continue;
682
683      // The block has now been cleared of all instructions except for
684      // a comparison and a conditional branch. SimplifyCFG may be able
685      // to fold it now.
686      if (!FoldBranchToCommonDest(BI, MSSAU))
687        continue;
688
689      // Success. The block is now dead, so remove it from the loop,
690      // update the dominator tree and delete it.
691      LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
692                        << ExitingBlock->getName() << "\n");
693
694      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
695      Changed = true;
696      LI->removeBlock(ExitingBlock);
697
698      DomTreeNode *Node = DT->getNode(ExitingBlock);
699      while (!Node->isLeaf()) {
700        DomTreeNode *Child = Node->back();
701        DT->changeImmediateDominator(Child, Node->getIDom());
702      }
703      DT->eraseNode(ExitingBlock);
704      if (MSSAU) {
705        SmallSetVector<BasicBlock *, 8> ExitBlockSet;
706        ExitBlockSet.insert(ExitingBlock);
707        MSSAU->removeBlocks(ExitBlockSet);
708      }
709
710      BI->getSuccessor(0)->removePredecessor(
711          ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
712      BI->getSuccessor(1)->removePredecessor(
713          ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
714      ExitingBlock->eraseFromParent();
715    }
716  }
717
718  // Changing exit conditions for blocks may affect exit counts of this loop and
719  // any of its paretns, so we must invalidate the entire subtree if we've made
720  // any changes.
721  if (Changed && SE)
722    SE->forgetTopmostLoop(L);
723
724  if (MSSAU && VerifyMemorySSA)
725    MSSAU->getMemorySSA()->verifyMemorySSA();
726
727  return Changed;
728}
729
730bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
731                        ScalarEvolution *SE, AssumptionCache *AC,
732                        MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
733  bool Changed = false;
734
735#ifndef NDEBUG
736  // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
737  // form.
738  if (PreserveLCSSA) {
739    assert(DT && "DT not available.");
740    assert(LI && "LI not available.");
741    assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
742           "Requested to preserve LCSSA, but it's already broken.");
743  }
744#endif
745
746  // Worklist maintains our depth-first queue of loops in this nest to process.
747  SmallVector<Loop *, 4> Worklist;
748  Worklist.push_back(L);
749
750  // Walk the worklist from front to back, pushing newly found sub loops onto
751  // the back. This will let us process loops from back to front in depth-first
752  // order. We can use this simple process because loops form a tree.
753  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
754    Loop *L2 = Worklist[Idx];
755    Worklist.append(L2->begin(), L2->end());
756  }
757
758  while (!Worklist.empty())
759    Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
760                               AC, MSSAU, PreserveLCSSA);
761
762  return Changed;
763}
764
765namespace {
766  struct LoopSimplify : public FunctionPass {
767    static char ID; // Pass identification, replacement for typeid
768    LoopSimplify() : FunctionPass(ID) {
769      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
770    }
771
772    bool runOnFunction(Function &F) override;
773
774    void getAnalysisUsage(AnalysisUsage &AU) const override {
775      AU.addRequired<AssumptionCacheTracker>();
776
777      // We need loop information to identify the loops...
778      AU.addRequired<DominatorTreeWrapperPass>();
779      AU.addPreserved<DominatorTreeWrapperPass>();
780
781      AU.addRequired<LoopInfoWrapperPass>();
782      AU.addPreserved<LoopInfoWrapperPass>();
783
784      AU.addPreserved<BasicAAWrapperPass>();
785      AU.addPreserved<AAResultsWrapperPass>();
786      AU.addPreserved<GlobalsAAWrapperPass>();
787      AU.addPreserved<ScalarEvolutionWrapperPass>();
788      AU.addPreserved<SCEVAAWrapperPass>();
789      AU.addPreservedID(LCSSAID);
790      AU.addPreserved<DependenceAnalysisWrapperPass>();
791      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
792      AU.addPreserved<BranchProbabilityInfoWrapperPass>();
793      if (EnableMSSALoopDependency)
794        AU.addPreserved<MemorySSAWrapperPass>();
795    }
796
797    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
798    void verifyAnalysis() const override;
799  };
800}
801
802char LoopSimplify::ID = 0;
803INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
804                "Canonicalize natural loops", false, false)
805INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
806INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
807INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
808INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
809                "Canonicalize natural loops", false, false)
810
811// Publicly exposed interface to pass...
812char &llvm::LoopSimplifyID = LoopSimplify::ID;
813Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
814
815/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
816/// it in any convenient order) inserting preheaders...
817///
818bool LoopSimplify::runOnFunction(Function &F) {
819  bool Changed = false;
820  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
821  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
822  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
823  ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
824  AssumptionCache *AC =
825      &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
826  MemorySSA *MSSA = nullptr;
827  std::unique_ptr<MemorySSAUpdater> MSSAU;
828  if (EnableMSSALoopDependency) {
829    auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
830    if (MSSAAnalysis) {
831      MSSA = &MSSAAnalysis->getMSSA();
832      MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
833    }
834  }
835
836  bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
837
838  // Simplify each loop nest in the function.
839  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
840    Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
841
842#ifndef NDEBUG
843  if (PreserveLCSSA) {
844    bool InLCSSA = all_of(
845        *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
846    assert(InLCSSA && "LCSSA is broken after loop-simplify.");
847  }
848#endif
849  return Changed;
850}
851
852PreservedAnalyses LoopSimplifyPass::run(Function &F,
853                                        FunctionAnalysisManager &AM) {
854  bool Changed = false;
855  LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
856  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
857  ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
858  AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
859  auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
860  std::unique_ptr<MemorySSAUpdater> MSSAU;
861  if (MSSAAnalysis) {
862    auto *MSSA = &MSSAAnalysis->getMSSA();
863    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
864  }
865
866
867  // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
868  // after simplifying the loops. MemorySSA is preserved if it exists.
869  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
870    Changed |=
871        simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
872
873  if (!Changed)
874    return PreservedAnalyses::all();
875
876  PreservedAnalyses PA;
877  PA.preserve<DominatorTreeAnalysis>();
878  PA.preserve<LoopAnalysis>();
879  PA.preserve<BasicAA>();
880  PA.preserve<GlobalsAA>();
881  PA.preserve<SCEVAA>();
882  PA.preserve<ScalarEvolutionAnalysis>();
883  PA.preserve<DependenceAnalysis>();
884  if (MSSAAnalysis)
885    PA.preserve<MemorySSAAnalysis>();
886  // BPI maps conditional terminators to probabilities, LoopSimplify can insert
887  // blocks, but it does so only by splitting existing blocks and edges. This
888  // results in the interesting property that all new terminators inserted are
889  // unconditional branches which do not appear in BPI. All deletions are
890  // handled via ValueHandle callbacks w/in BPI.
891  PA.preserve<BranchProbabilityAnalysis>();
892  return PA;
893}
894
895// FIXME: Restore this code when we re-enable verification in verifyAnalysis
896// below.
897#if 0
898static void verifyLoop(Loop *L) {
899  // Verify subloops.
900  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
901    verifyLoop(*I);
902
903  // It used to be possible to just assert L->isLoopSimplifyForm(), however
904  // with the introduction of indirectbr, there are now cases where it's
905  // not possible to transform a loop as necessary. We can at least check
906  // that there is an indirectbr near any time there's trouble.
907
908  // Indirectbr can interfere with preheader and unique backedge insertion.
909  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
910    bool HasIndBrPred = false;
911    for (pred_iterator PI = pred_begin(L->getHeader()),
912         PE = pred_end(L->getHeader()); PI != PE; ++PI)
913      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
914        HasIndBrPred = true;
915        break;
916      }
917    assert(HasIndBrPred &&
918           "LoopSimplify has no excuse for missing loop header info!");
919    (void)HasIndBrPred;
920  }
921
922  // Indirectbr can interfere with exit block canonicalization.
923  if (!L->hasDedicatedExits()) {
924    bool HasIndBrExiting = false;
925    SmallVector<BasicBlock*, 8> ExitingBlocks;
926    L->getExitingBlocks(ExitingBlocks);
927    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
928      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
929        HasIndBrExiting = true;
930        break;
931      }
932    }
933
934    assert(HasIndBrExiting &&
935           "LoopSimplify has no excuse for missing exit block info!");
936    (void)HasIndBrExiting;
937  }
938}
939#endif
940
941void LoopSimplify::verifyAnalysis() const {
942  // FIXME: This routine is being called mid-way through the loop pass manager
943  // as loop passes destroy this analysis. That's actually fine, but we have no
944  // way of expressing that here. Once all of the passes that destroy this are
945  // hoisted out of the loop pass manager we can add back verification here.
946#if 0
947  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
948    verifyLoop(*I);
949#endif
950}
951