1//===- Local.cpp - Functions to perform local transformations -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions perform various local transformations to the
10// program.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/Local.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/TinyPtrVector.h"
28#include "llvm/Analysis/AssumeBundleQueries.h"
29#include "llvm/Analysis/ConstantFolding.h"
30#include "llvm/Analysis/DomTreeUpdater.h"
31#include "llvm/Analysis/EHPersonalities.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Analysis/LazyValueInfo.h"
34#include "llvm/Analysis/MemoryBuiltins.h"
35#include "llvm/Analysis/MemorySSAUpdater.h"
36#include "llvm/Analysis/TargetLibraryInfo.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Analysis/VectorUtils.h"
39#include "llvm/BinaryFormat/Dwarf.h"
40#include "llvm/IR/Argument.h"
41#include "llvm/IR/Attributes.h"
42#include "llvm/IR/BasicBlock.h"
43#include "llvm/IR/CFG.h"
44#include "llvm/IR/Constant.h"
45#include "llvm/IR/ConstantRange.h"
46#include "llvm/IR/Constants.h"
47#include "llvm/IR/DIBuilder.h"
48#include "llvm/IR/DataLayout.h"
49#include "llvm/IR/DebugInfoMetadata.h"
50#include "llvm/IR/DebugLoc.h"
51#include "llvm/IR/DerivedTypes.h"
52#include "llvm/IR/Dominators.h"
53#include "llvm/IR/Function.h"
54#include "llvm/IR/GetElementPtrTypeIterator.h"
55#include "llvm/IR/GlobalObject.h"
56#include "llvm/IR/IRBuilder.h"
57#include "llvm/IR/InstrTypes.h"
58#include "llvm/IR/Instruction.h"
59#include "llvm/IR/Instructions.h"
60#include "llvm/IR/IntrinsicInst.h"
61#include "llvm/IR/Intrinsics.h"
62#include "llvm/IR/LLVMContext.h"
63#include "llvm/IR/MDBuilder.h"
64#include "llvm/IR/Metadata.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/Operator.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/Type.h"
69#include "llvm/IR/Use.h"
70#include "llvm/IR/User.h"
71#include "llvm/IR/Value.h"
72#include "llvm/IR/ValueHandle.h"
73#include "llvm/Support/Casting.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/ErrorHandling.h"
76#include "llvm/Support/KnownBits.h"
77#include "llvm/Support/raw_ostream.h"
78#include "llvm/Transforms/Utils/BasicBlockUtils.h"
79#include "llvm/Transforms/Utils/ValueMapper.h"
80#include <algorithm>
81#include <cassert>
82#include <climits>
83#include <cstdint>
84#include <iterator>
85#include <map>
86#include <utility>
87
88using namespace llvm;
89using namespace llvm::PatternMatch;
90
91#define DEBUG_TYPE "local"
92
93STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94
95// Max recursion depth for collectBitParts used when detecting bswap and
96// bitreverse idioms
97static const unsigned BitPartRecursionMaxDepth = 64;
98
99//===----------------------------------------------------------------------===//
100//  Local constant propagation.
101//
102
103/// ConstantFoldTerminator - If a terminator instruction is predicated on a
104/// constant value, convert it into an unconditional branch to the constant
105/// destination.  This is a nontrivial operation because the successors of this
106/// basic block must have their PHI nodes updated.
107/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
108/// conditions and indirectbr addresses this might make dead if
109/// DeleteDeadConditions is true.
110bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
111                                  const TargetLibraryInfo *TLI,
112                                  DomTreeUpdater *DTU) {
113  Instruction *T = BB->getTerminator();
114  IRBuilder<> Builder(T);
115
116  // Branch - See if we are conditional jumping on constant
117  if (auto *BI = dyn_cast<BranchInst>(T)) {
118    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
119    BasicBlock *Dest1 = BI->getSuccessor(0);
120    BasicBlock *Dest2 = BI->getSuccessor(1);
121
122    if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
123      // Are we branching on constant?
124      // YES.  Change to unconditional branch...
125      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
126      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
127
128      // Let the basic block know that we are letting go of it.  Based on this,
129      // it will adjust it's PHI nodes.
130      OldDest->removePredecessor(BB);
131
132      // Replace the conditional branch with an unconditional one.
133      Builder.CreateBr(Destination);
134      BI->eraseFromParent();
135      if (DTU)
136        DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
137      return true;
138    }
139
140    if (Dest2 == Dest1) {       // Conditional branch to same location?
141      // This branch matches something like this:
142      //     br bool %cond, label %Dest, label %Dest
143      // and changes it into:  br label %Dest
144
145      // Let the basic block know that we are letting go of one copy of it.
146      assert(BI->getParent() && "Terminator not inserted in block!");
147      Dest1->removePredecessor(BI->getParent());
148
149      // Replace the conditional branch with an unconditional one.
150      Builder.CreateBr(Dest1);
151      Value *Cond = BI->getCondition();
152      BI->eraseFromParent();
153      if (DeleteDeadConditions)
154        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
155      return true;
156    }
157    return false;
158  }
159
160  if (auto *SI = dyn_cast<SwitchInst>(T)) {
161    // If we are switching on a constant, we can convert the switch to an
162    // unconditional branch.
163    auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
164    BasicBlock *DefaultDest = SI->getDefaultDest();
165    BasicBlock *TheOnlyDest = DefaultDest;
166
167    // If the default is unreachable, ignore it when searching for TheOnlyDest.
168    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
169        SI->getNumCases() > 0) {
170      TheOnlyDest = SI->case_begin()->getCaseSuccessor();
171    }
172
173    // Figure out which case it goes to.
174    for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
175      // Found case matching a constant operand?
176      if (i->getCaseValue() == CI) {
177        TheOnlyDest = i->getCaseSuccessor();
178        break;
179      }
180
181      // Check to see if this branch is going to the same place as the default
182      // dest.  If so, eliminate it as an explicit compare.
183      if (i->getCaseSuccessor() == DefaultDest) {
184        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
185        unsigned NCases = SI->getNumCases();
186        // Fold the case metadata into the default if there will be any branches
187        // left, unless the metadata doesn't match the switch.
188        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
189          // Collect branch weights into a vector.
190          SmallVector<uint32_t, 8> Weights;
191          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
192               ++MD_i) {
193            auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
194            Weights.push_back(CI->getValue().getZExtValue());
195          }
196          // Merge weight of this case to the default weight.
197          unsigned idx = i->getCaseIndex();
198          Weights[0] += Weights[idx+1];
199          // Remove weight for this case.
200          std::swap(Weights[idx+1], Weights.back());
201          Weights.pop_back();
202          SI->setMetadata(LLVMContext::MD_prof,
203                          MDBuilder(BB->getContext()).
204                          createBranchWeights(Weights));
205        }
206        // Remove this entry.
207        BasicBlock *ParentBB = SI->getParent();
208        DefaultDest->removePredecessor(ParentBB);
209        i = SI->removeCase(i);
210        e = SI->case_end();
211        if (DTU)
212          DTU->applyUpdatesPermissive(
213              {{DominatorTree::Delete, ParentBB, DefaultDest}});
214        continue;
215      }
216
217      // Otherwise, check to see if the switch only branches to one destination.
218      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
219      // destinations.
220      if (i->getCaseSuccessor() != TheOnlyDest)
221        TheOnlyDest = nullptr;
222
223      // Increment this iterator as we haven't removed the case.
224      ++i;
225    }
226
227    if (CI && !TheOnlyDest) {
228      // Branching on a constant, but not any of the cases, go to the default
229      // successor.
230      TheOnlyDest = SI->getDefaultDest();
231    }
232
233    // If we found a single destination that we can fold the switch into, do so
234    // now.
235    if (TheOnlyDest) {
236      // Insert the new branch.
237      Builder.CreateBr(TheOnlyDest);
238      BasicBlock *BB = SI->getParent();
239      std::vector <DominatorTree::UpdateType> Updates;
240      if (DTU)
241        Updates.reserve(SI->getNumSuccessors() - 1);
242
243      // Remove entries from PHI nodes which we no longer branch to...
244      for (BasicBlock *Succ : successors(SI)) {
245        // Found case matching a constant operand?
246        if (Succ == TheOnlyDest) {
247          TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
248        } else {
249          Succ->removePredecessor(BB);
250          if (DTU)
251            Updates.push_back({DominatorTree::Delete, BB, Succ});
252        }
253      }
254
255      // Delete the old switch.
256      Value *Cond = SI->getCondition();
257      SI->eraseFromParent();
258      if (DeleteDeadConditions)
259        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
260      if (DTU)
261        DTU->applyUpdatesPermissive(Updates);
262      return true;
263    }
264
265    if (SI->getNumCases() == 1) {
266      // Otherwise, we can fold this switch into a conditional branch
267      // instruction if it has only one non-default destination.
268      auto FirstCase = *SI->case_begin();
269      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
270          FirstCase.getCaseValue(), "cond");
271
272      // Insert the new branch.
273      BranchInst *NewBr = Builder.CreateCondBr(Cond,
274                                               FirstCase.getCaseSuccessor(),
275                                               SI->getDefaultDest());
276      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
277      if (MD && MD->getNumOperands() == 3) {
278        ConstantInt *SICase =
279            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
280        ConstantInt *SIDef =
281            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
282        assert(SICase && SIDef);
283        // The TrueWeight should be the weight for the single case of SI.
284        NewBr->setMetadata(LLVMContext::MD_prof,
285                        MDBuilder(BB->getContext()).
286                        createBranchWeights(SICase->getValue().getZExtValue(),
287                                            SIDef->getValue().getZExtValue()));
288      }
289
290      // Update make.implicit metadata to the newly-created conditional branch.
291      MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
292      if (MakeImplicitMD)
293        NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
294
295      // Delete the old switch.
296      SI->eraseFromParent();
297      return true;
298    }
299    return false;
300  }
301
302  if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
303    // indirectbr blockaddress(@F, @BB) -> br label @BB
304    if (auto *BA =
305          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
306      BasicBlock *TheOnlyDest = BA->getBasicBlock();
307      std::vector <DominatorTree::UpdateType> Updates;
308      if (DTU)
309        Updates.reserve(IBI->getNumDestinations() - 1);
310
311      // Insert the new branch.
312      Builder.CreateBr(TheOnlyDest);
313
314      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
315        if (IBI->getDestination(i) == TheOnlyDest) {
316          TheOnlyDest = nullptr;
317        } else {
318          BasicBlock *ParentBB = IBI->getParent();
319          BasicBlock *DestBB = IBI->getDestination(i);
320          DestBB->removePredecessor(ParentBB);
321          if (DTU)
322            Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
323        }
324      }
325      Value *Address = IBI->getAddress();
326      IBI->eraseFromParent();
327      if (DeleteDeadConditions)
328        // Delete pointer cast instructions.
329        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
330
331      // Also zap the blockaddress constant if there are no users remaining,
332      // otherwise the destination is still marked as having its address taken.
333      if (BA->use_empty())
334        BA->destroyConstant();
335
336      // If we didn't find our destination in the IBI successor list, then we
337      // have undefined behavior.  Replace the unconditional branch with an
338      // 'unreachable' instruction.
339      if (TheOnlyDest) {
340        BB->getTerminator()->eraseFromParent();
341        new UnreachableInst(BB->getContext(), BB);
342      }
343
344      if (DTU)
345        DTU->applyUpdatesPermissive(Updates);
346      return true;
347    }
348  }
349
350  return false;
351}
352
353//===----------------------------------------------------------------------===//
354//  Local dead code elimination.
355//
356
357/// isInstructionTriviallyDead - Return true if the result produced by the
358/// instruction is not used, and the instruction has no side effects.
359///
360bool llvm::isInstructionTriviallyDead(Instruction *I,
361                                      const TargetLibraryInfo *TLI) {
362  if (!I->use_empty())
363    return false;
364  return wouldInstructionBeTriviallyDead(I, TLI);
365}
366
367bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
368                                           const TargetLibraryInfo *TLI) {
369  if (I->isTerminator())
370    return false;
371
372  // We don't want the landingpad-like instructions removed by anything this
373  // general.
374  if (I->isEHPad())
375    return false;
376
377  // We don't want debug info removed by anything this general, unless
378  // debug info is empty.
379  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
380    if (DDI->getAddress())
381      return false;
382    return true;
383  }
384  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
385    if (DVI->getValue())
386      return false;
387    return true;
388  }
389  if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
390    if (DLI->getLabel())
391      return false;
392    return true;
393  }
394
395  if (!I->mayHaveSideEffects())
396    return true;
397
398  // Special case intrinsics that "may have side effects" but can be deleted
399  // when dead.
400  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
401    // Safe to delete llvm.stacksave and launder.invariant.group if dead.
402    if (II->getIntrinsicID() == Intrinsic::stacksave ||
403        II->getIntrinsicID() == Intrinsic::launder_invariant_group)
404      return true;
405
406    if (II->isLifetimeStartOrEnd()) {
407      auto *Arg = II->getArgOperand(1);
408      // Lifetime intrinsics are dead when their right-hand is undef.
409      if (isa<UndefValue>(Arg))
410        return true;
411      // If the right-hand is an alloc, global, or argument and the only uses
412      // are lifetime intrinsics then the intrinsics are dead.
413      if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
414        return llvm::all_of(Arg->uses(), [](Use &Use) {
415          if (IntrinsicInst *IntrinsicUse =
416                  dyn_cast<IntrinsicInst>(Use.getUser()))
417            return IntrinsicUse->isLifetimeStartOrEnd();
418          return false;
419        });
420      return false;
421    }
422
423    // Assumptions are dead if their condition is trivially true.  Guards on
424    // true are operationally no-ops.  In the future we can consider more
425    // sophisticated tradeoffs for guards considering potential for check
426    // widening, but for now we keep things simple.
427    if ((II->getIntrinsicID() == Intrinsic::assume &&
428         isAssumeWithEmptyBundle(*II)) ||
429        II->getIntrinsicID() == Intrinsic::experimental_guard) {
430      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
431        return !Cond->isZero();
432
433      return false;
434    }
435  }
436
437  if (isAllocLikeFn(I, TLI))
438    return true;
439
440  if (CallInst *CI = isFreeCall(I, TLI))
441    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
442      return C->isNullValue() || isa<UndefValue>(C);
443
444  if (auto *Call = dyn_cast<CallBase>(I))
445    if (isMathLibCallNoop(Call, TLI))
446      return true;
447
448  return false;
449}
450
451/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
452/// trivially dead instruction, delete it.  If that makes any of its operands
453/// trivially dead, delete them too, recursively.  Return true if any
454/// instructions were deleted.
455bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
456    Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
457  Instruction *I = dyn_cast<Instruction>(V);
458  if (!I || !isInstructionTriviallyDead(I, TLI))
459    return false;
460
461  SmallVector<WeakTrackingVH, 16> DeadInsts;
462  DeadInsts.push_back(I);
463  RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
464
465  return true;
466}
467
468bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
469    SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
470    MemorySSAUpdater *MSSAU) {
471  unsigned S = 0, E = DeadInsts.size(), Alive = 0;
472  for (; S != E; ++S) {
473    auto *I = cast<Instruction>(DeadInsts[S]);
474    if (!isInstructionTriviallyDead(I)) {
475      DeadInsts[S] = nullptr;
476      ++Alive;
477    }
478  }
479  if (Alive == E)
480    return false;
481  RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
482  return true;
483}
484
485void llvm::RecursivelyDeleteTriviallyDeadInstructions(
486    SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
487    MemorySSAUpdater *MSSAU) {
488  // Process the dead instruction list until empty.
489  while (!DeadInsts.empty()) {
490    Value *V = DeadInsts.pop_back_val();
491    Instruction *I = cast_or_null<Instruction>(V);
492    if (!I)
493      continue;
494    assert(isInstructionTriviallyDead(I, TLI) &&
495           "Live instruction found in dead worklist!");
496    assert(I->use_empty() && "Instructions with uses are not dead.");
497
498    // Don't lose the debug info while deleting the instructions.
499    salvageDebugInfo(*I);
500
501    // Null out all of the instruction's operands to see if any operand becomes
502    // dead as we go.
503    for (Use &OpU : I->operands()) {
504      Value *OpV = OpU.get();
505      OpU.set(nullptr);
506
507      if (!OpV->use_empty())
508        continue;
509
510      // If the operand is an instruction that became dead as we nulled out the
511      // operand, and if it is 'trivially' dead, delete it in a future loop
512      // iteration.
513      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
514        if (isInstructionTriviallyDead(OpI, TLI))
515          DeadInsts.push_back(OpI);
516    }
517    if (MSSAU)
518      MSSAU->removeMemoryAccess(I);
519
520    I->eraseFromParent();
521  }
522}
523
524bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
525  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
526  findDbgUsers(DbgUsers, I);
527  for (auto *DII : DbgUsers) {
528    Value *Undef = UndefValue::get(I->getType());
529    DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
530                                            ValueAsMetadata::get(Undef)));
531  }
532  return !DbgUsers.empty();
533}
534
535/// areAllUsesEqual - Check whether the uses of a value are all the same.
536/// This is similar to Instruction::hasOneUse() except this will also return
537/// true when there are no uses or multiple uses that all refer to the same
538/// value.
539static bool areAllUsesEqual(Instruction *I) {
540  Value::user_iterator UI = I->user_begin();
541  Value::user_iterator UE = I->user_end();
542  if (UI == UE)
543    return true;
544
545  User *TheUse = *UI;
546  for (++UI; UI != UE; ++UI) {
547    if (*UI != TheUse)
548      return false;
549  }
550  return true;
551}
552
553/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
554/// dead PHI node, due to being a def-use chain of single-use nodes that
555/// either forms a cycle or is terminated by a trivially dead instruction,
556/// delete it.  If that makes any of its operands trivially dead, delete them
557/// too, recursively.  Return true if a change was made.
558bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
559                                        const TargetLibraryInfo *TLI,
560                                        llvm::MemorySSAUpdater *MSSAU) {
561  SmallPtrSet<Instruction*, 4> Visited;
562  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
563       I = cast<Instruction>(*I->user_begin())) {
564    if (I->use_empty())
565      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
566
567    // If we find an instruction more than once, we're on a cycle that
568    // won't prove fruitful.
569    if (!Visited.insert(I).second) {
570      // Break the cycle and delete the instruction and its operands.
571      I->replaceAllUsesWith(UndefValue::get(I->getType()));
572      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
573      return true;
574    }
575  }
576  return false;
577}
578
579static bool
580simplifyAndDCEInstruction(Instruction *I,
581                          SmallSetVector<Instruction *, 16> &WorkList,
582                          const DataLayout &DL,
583                          const TargetLibraryInfo *TLI) {
584  if (isInstructionTriviallyDead(I, TLI)) {
585    salvageDebugInfo(*I);
586
587    // Null out all of the instruction's operands to see if any operand becomes
588    // dead as we go.
589    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
590      Value *OpV = I->getOperand(i);
591      I->setOperand(i, nullptr);
592
593      if (!OpV->use_empty() || I == OpV)
594        continue;
595
596      // If the operand is an instruction that became dead as we nulled out the
597      // operand, and if it is 'trivially' dead, delete it in a future loop
598      // iteration.
599      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
600        if (isInstructionTriviallyDead(OpI, TLI))
601          WorkList.insert(OpI);
602    }
603
604    I->eraseFromParent();
605
606    return true;
607  }
608
609  if (Value *SimpleV = SimplifyInstruction(I, DL)) {
610    // Add the users to the worklist. CAREFUL: an instruction can use itself,
611    // in the case of a phi node.
612    for (User *U : I->users()) {
613      if (U != I) {
614        WorkList.insert(cast<Instruction>(U));
615      }
616    }
617
618    // Replace the instruction with its simplified value.
619    bool Changed = false;
620    if (!I->use_empty()) {
621      I->replaceAllUsesWith(SimpleV);
622      Changed = true;
623    }
624    if (isInstructionTriviallyDead(I, TLI)) {
625      I->eraseFromParent();
626      Changed = true;
627    }
628    return Changed;
629  }
630  return false;
631}
632
633/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
634/// simplify any instructions in it and recursively delete dead instructions.
635///
636/// This returns true if it changed the code, note that it can delete
637/// instructions in other blocks as well in this block.
638bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
639                                       const TargetLibraryInfo *TLI) {
640  bool MadeChange = false;
641  const DataLayout &DL = BB->getModule()->getDataLayout();
642
643#ifndef NDEBUG
644  // In debug builds, ensure that the terminator of the block is never replaced
645  // or deleted by these simplifications. The idea of simplification is that it
646  // cannot introduce new instructions, and there is no way to replace the
647  // terminator of a block without introducing a new instruction.
648  AssertingVH<Instruction> TerminatorVH(&BB->back());
649#endif
650
651  SmallSetVector<Instruction *, 16> WorkList;
652  // Iterate over the original function, only adding insts to the worklist
653  // if they actually need to be revisited. This avoids having to pre-init
654  // the worklist with the entire function's worth of instructions.
655  for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
656       BI != E;) {
657    assert(!BI->isTerminator());
658    Instruction *I = &*BI;
659    ++BI;
660
661    // We're visiting this instruction now, so make sure it's not in the
662    // worklist from an earlier visit.
663    if (!WorkList.count(I))
664      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
665  }
666
667  while (!WorkList.empty()) {
668    Instruction *I = WorkList.pop_back_val();
669    MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
670  }
671  return MadeChange;
672}
673
674//===----------------------------------------------------------------------===//
675//  Control Flow Graph Restructuring.
676//
677
678void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
679                                        DomTreeUpdater *DTU) {
680  // This only adjusts blocks with PHI nodes.
681  if (!isa<PHINode>(BB->begin()))
682    return;
683
684  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
685  // them down.  This will leave us with single entry phi nodes and other phis
686  // that can be removed.
687  BB->removePredecessor(Pred, true);
688
689  WeakTrackingVH PhiIt = &BB->front();
690  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
691    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
692    Value *OldPhiIt = PhiIt;
693
694    if (!recursivelySimplifyInstruction(PN))
695      continue;
696
697    // If recursive simplification ended up deleting the next PHI node we would
698    // iterate to, then our iterator is invalid, restart scanning from the top
699    // of the block.
700    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
701  }
702  if (DTU)
703    DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
704}
705
706void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
707                                       DomTreeUpdater *DTU) {
708
709  // If BB has single-entry PHI nodes, fold them.
710  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
711    Value *NewVal = PN->getIncomingValue(0);
712    // Replace self referencing PHI with undef, it must be dead.
713    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
714    PN->replaceAllUsesWith(NewVal);
715    PN->eraseFromParent();
716  }
717
718  BasicBlock *PredBB = DestBB->getSinglePredecessor();
719  assert(PredBB && "Block doesn't have a single predecessor!");
720
721  bool ReplaceEntryBB = false;
722  if (PredBB == &DestBB->getParent()->getEntryBlock())
723    ReplaceEntryBB = true;
724
725  // DTU updates: Collect all the edges that enter
726  // PredBB. These dominator edges will be redirected to DestBB.
727  SmallVector<DominatorTree::UpdateType, 32> Updates;
728
729  if (DTU) {
730    Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
731    for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
732      Updates.push_back({DominatorTree::Delete, *I, PredBB});
733      // This predecessor of PredBB may already have DestBB as a successor.
734      if (llvm::find(successors(*I), DestBB) == succ_end(*I))
735        Updates.push_back({DominatorTree::Insert, *I, DestBB});
736    }
737  }
738
739  // Zap anything that took the address of DestBB.  Not doing this will give the
740  // address an invalid value.
741  if (DestBB->hasAddressTaken()) {
742    BlockAddress *BA = BlockAddress::get(DestBB);
743    Constant *Replacement =
744      ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
745    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
746                                                     BA->getType()));
747    BA->destroyConstant();
748  }
749
750  // Anything that branched to PredBB now branches to DestBB.
751  PredBB->replaceAllUsesWith(DestBB);
752
753  // Splice all the instructions from PredBB to DestBB.
754  PredBB->getTerminator()->eraseFromParent();
755  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
756  new UnreachableInst(PredBB->getContext(), PredBB);
757
758  // If the PredBB is the entry block of the function, move DestBB up to
759  // become the entry block after we erase PredBB.
760  if (ReplaceEntryBB)
761    DestBB->moveAfter(PredBB);
762
763  if (DTU) {
764    assert(PredBB->getInstList().size() == 1 &&
765           isa<UnreachableInst>(PredBB->getTerminator()) &&
766           "The successor list of PredBB isn't empty before "
767           "applying corresponding DTU updates.");
768    DTU->applyUpdatesPermissive(Updates);
769    DTU->deleteBB(PredBB);
770    // Recalculation of DomTree is needed when updating a forward DomTree and
771    // the Entry BB is replaced.
772    if (ReplaceEntryBB && DTU->hasDomTree()) {
773      // The entry block was removed and there is no external interface for
774      // the dominator tree to be notified of this change. In this corner-case
775      // we recalculate the entire tree.
776      DTU->recalculate(*(DestBB->getParent()));
777    }
778  }
779
780  else {
781    PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
782  }
783}
784
785/// Return true if we can choose one of these values to use in place of the
786/// other. Note that we will always choose the non-undef value to keep.
787static bool CanMergeValues(Value *First, Value *Second) {
788  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
789}
790
791/// Return true if we can fold BB, an almost-empty BB ending in an unconditional
792/// branch to Succ, into Succ.
793///
794/// Assumption: Succ is the single successor for BB.
795static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
796  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
797
798  LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
799                    << Succ->getName() << "\n");
800  // Shortcut, if there is only a single predecessor it must be BB and merging
801  // is always safe
802  if (Succ->getSinglePredecessor()) return true;
803
804  // Make a list of the predecessors of BB
805  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
806
807  // Look at all the phi nodes in Succ, to see if they present a conflict when
808  // merging these blocks
809  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
810    PHINode *PN = cast<PHINode>(I);
811
812    // If the incoming value from BB is again a PHINode in
813    // BB which has the same incoming value for *PI as PN does, we can
814    // merge the phi nodes and then the blocks can still be merged
815    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
816    if (BBPN && BBPN->getParent() == BB) {
817      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
818        BasicBlock *IBB = PN->getIncomingBlock(PI);
819        if (BBPreds.count(IBB) &&
820            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
821                            PN->getIncomingValue(PI))) {
822          LLVM_DEBUG(dbgs()
823                     << "Can't fold, phi node " << PN->getName() << " in "
824                     << Succ->getName() << " is conflicting with "
825                     << BBPN->getName() << " with regard to common predecessor "
826                     << IBB->getName() << "\n");
827          return false;
828        }
829      }
830    } else {
831      Value* Val = PN->getIncomingValueForBlock(BB);
832      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
833        // See if the incoming value for the common predecessor is equal to the
834        // one for BB, in which case this phi node will not prevent the merging
835        // of the block.
836        BasicBlock *IBB = PN->getIncomingBlock(PI);
837        if (BBPreds.count(IBB) &&
838            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
839          LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
840                            << " in " << Succ->getName()
841                            << " is conflicting with regard to common "
842                            << "predecessor " << IBB->getName() << "\n");
843          return false;
844        }
845      }
846    }
847  }
848
849  return true;
850}
851
852using PredBlockVector = SmallVector<BasicBlock *, 16>;
853using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
854
855/// Determines the value to use as the phi node input for a block.
856///
857/// Select between \p OldVal any value that we know flows from \p BB
858/// to a particular phi on the basis of which one (if either) is not
859/// undef. Update IncomingValues based on the selected value.
860///
861/// \param OldVal The value we are considering selecting.
862/// \param BB The block that the value flows in from.
863/// \param IncomingValues A map from block-to-value for other phi inputs
864/// that we have examined.
865///
866/// \returns the selected value.
867static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
868                                          IncomingValueMap &IncomingValues) {
869  if (!isa<UndefValue>(OldVal)) {
870    assert((!IncomingValues.count(BB) ||
871            IncomingValues.find(BB)->second == OldVal) &&
872           "Expected OldVal to match incoming value from BB!");
873
874    IncomingValues.insert(std::make_pair(BB, OldVal));
875    return OldVal;
876  }
877
878  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
879  if (It != IncomingValues.end()) return It->second;
880
881  return OldVal;
882}
883
884/// Create a map from block to value for the operands of a
885/// given phi.
886///
887/// Create a map from block to value for each non-undef value flowing
888/// into \p PN.
889///
890/// \param PN The phi we are collecting the map for.
891/// \param IncomingValues [out] The map from block to value for this phi.
892static void gatherIncomingValuesToPhi(PHINode *PN,
893                                      IncomingValueMap &IncomingValues) {
894  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
895    BasicBlock *BB = PN->getIncomingBlock(i);
896    Value *V = PN->getIncomingValue(i);
897
898    if (!isa<UndefValue>(V))
899      IncomingValues.insert(std::make_pair(BB, V));
900  }
901}
902
903/// Replace the incoming undef values to a phi with the values
904/// from a block-to-value map.
905///
906/// \param PN The phi we are replacing the undefs in.
907/// \param IncomingValues A map from block to value.
908static void replaceUndefValuesInPhi(PHINode *PN,
909                                    const IncomingValueMap &IncomingValues) {
910  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
911    Value *V = PN->getIncomingValue(i);
912
913    if (!isa<UndefValue>(V)) continue;
914
915    BasicBlock *BB = PN->getIncomingBlock(i);
916    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
917    if (It == IncomingValues.end()) continue;
918
919    PN->setIncomingValue(i, It->second);
920  }
921}
922
923/// Replace a value flowing from a block to a phi with
924/// potentially multiple instances of that value flowing from the
925/// block's predecessors to the phi.
926///
927/// \param BB The block with the value flowing into the phi.
928/// \param BBPreds The predecessors of BB.
929/// \param PN The phi that we are updating.
930static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
931                                                const PredBlockVector &BBPreds,
932                                                PHINode *PN) {
933  Value *OldVal = PN->removeIncomingValue(BB, false);
934  assert(OldVal && "No entry in PHI for Pred BB!");
935
936  IncomingValueMap IncomingValues;
937
938  // We are merging two blocks - BB, and the block containing PN - and
939  // as a result we need to redirect edges from the predecessors of BB
940  // to go to the block containing PN, and update PN
941  // accordingly. Since we allow merging blocks in the case where the
942  // predecessor and successor blocks both share some predecessors,
943  // and where some of those common predecessors might have undef
944  // values flowing into PN, we want to rewrite those values to be
945  // consistent with the non-undef values.
946
947  gatherIncomingValuesToPhi(PN, IncomingValues);
948
949  // If this incoming value is one of the PHI nodes in BB, the new entries
950  // in the PHI node are the entries from the old PHI.
951  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
952    PHINode *OldValPN = cast<PHINode>(OldVal);
953    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
954      // Note that, since we are merging phi nodes and BB and Succ might
955      // have common predecessors, we could end up with a phi node with
956      // identical incoming branches. This will be cleaned up later (and
957      // will trigger asserts if we try to clean it up now, without also
958      // simplifying the corresponding conditional branch).
959      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
960      Value *PredVal = OldValPN->getIncomingValue(i);
961      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
962                                                    IncomingValues);
963
964      // And add a new incoming value for this predecessor for the
965      // newly retargeted branch.
966      PN->addIncoming(Selected, PredBB);
967    }
968  } else {
969    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
970      // Update existing incoming values in PN for this
971      // predecessor of BB.
972      BasicBlock *PredBB = BBPreds[i];
973      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
974                                                    IncomingValues);
975
976      // And add a new incoming value for this predecessor for the
977      // newly retargeted branch.
978      PN->addIncoming(Selected, PredBB);
979    }
980  }
981
982  replaceUndefValuesInPhi(PN, IncomingValues);
983}
984
985bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
986                                                   DomTreeUpdater *DTU) {
987  assert(BB != &BB->getParent()->getEntryBlock() &&
988         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
989
990  // We can't eliminate infinite loops.
991  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
992  if (BB == Succ) return false;
993
994  // Check to see if merging these blocks would cause conflicts for any of the
995  // phi nodes in BB or Succ. If not, we can safely merge.
996  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
997
998  // Check for cases where Succ has multiple predecessors and a PHI node in BB
999  // has uses which will not disappear when the PHI nodes are merged.  It is
1000  // possible to handle such cases, but difficult: it requires checking whether
1001  // BB dominates Succ, which is non-trivial to calculate in the case where
1002  // Succ has multiple predecessors.  Also, it requires checking whether
1003  // constructing the necessary self-referential PHI node doesn't introduce any
1004  // conflicts; this isn't too difficult, but the previous code for doing this
1005  // was incorrect.
1006  //
1007  // Note that if this check finds a live use, BB dominates Succ, so BB is
1008  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1009  // folding the branch isn't profitable in that case anyway.
1010  if (!Succ->getSinglePredecessor()) {
1011    BasicBlock::iterator BBI = BB->begin();
1012    while (isa<PHINode>(*BBI)) {
1013      for (Use &U : BBI->uses()) {
1014        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1015          if (PN->getIncomingBlock(U) != BB)
1016            return false;
1017        } else {
1018          return false;
1019        }
1020      }
1021      ++BBI;
1022    }
1023  }
1024
1025  // We cannot fold the block if it's a branch to an already present callbr
1026  // successor because that creates duplicate successors.
1027  for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1028    if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1029      if (Succ == CBI->getDefaultDest())
1030        return false;
1031      for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1032        if (Succ == CBI->getIndirectDest(i))
1033          return false;
1034    }
1035  }
1036
1037  LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1038
1039  SmallVector<DominatorTree::UpdateType, 32> Updates;
1040  if (DTU) {
1041    Updates.push_back({DominatorTree::Delete, BB, Succ});
1042    // All predecessors of BB will be moved to Succ.
1043    for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1044      Updates.push_back({DominatorTree::Delete, *I, BB});
1045      // This predecessor of BB may already have Succ as a successor.
1046      if (llvm::find(successors(*I), Succ) == succ_end(*I))
1047        Updates.push_back({DominatorTree::Insert, *I, Succ});
1048    }
1049  }
1050
1051  if (isa<PHINode>(Succ->begin())) {
1052    // If there is more than one pred of succ, and there are PHI nodes in
1053    // the successor, then we need to add incoming edges for the PHI nodes
1054    //
1055    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1056
1057    // Loop over all of the PHI nodes in the successor of BB.
1058    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1059      PHINode *PN = cast<PHINode>(I);
1060
1061      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1062    }
1063  }
1064
1065  if (Succ->getSinglePredecessor()) {
1066    // BB is the only predecessor of Succ, so Succ will end up with exactly
1067    // the same predecessors BB had.
1068
1069    // Copy over any phi, debug or lifetime instruction.
1070    BB->getTerminator()->eraseFromParent();
1071    Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1072                               BB->getInstList());
1073  } else {
1074    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1075      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1076      assert(PN->use_empty() && "There shouldn't be any uses here!");
1077      PN->eraseFromParent();
1078    }
1079  }
1080
1081  // If the unconditional branch we replaced contains llvm.loop metadata, we
1082  // add the metadata to the branch instructions in the predecessors.
1083  unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1084  Instruction *TI = BB->getTerminator();
1085  if (TI)
1086    if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1087      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1088        BasicBlock *Pred = *PI;
1089        Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1090      }
1091
1092  // Everything that jumped to BB now goes to Succ.
1093  BB->replaceAllUsesWith(Succ);
1094  if (!Succ->hasName()) Succ->takeName(BB);
1095
1096  // Clear the successor list of BB to match updates applying to DTU later.
1097  if (BB->getTerminator())
1098    BB->getInstList().pop_back();
1099  new UnreachableInst(BB->getContext(), BB);
1100  assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1101                           "applying corresponding DTU updates.");
1102
1103  if (DTU) {
1104    DTU->applyUpdatesPermissive(Updates);
1105    DTU->deleteBB(BB);
1106  } else {
1107    BB->eraseFromParent(); // Delete the old basic block.
1108  }
1109  return true;
1110}
1111
1112bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1113  // This implementation doesn't currently consider undef operands
1114  // specially. Theoretically, two phis which are identical except for
1115  // one having an undef where the other doesn't could be collapsed.
1116
1117  struct PHIDenseMapInfo {
1118    static PHINode *getEmptyKey() {
1119      return DenseMapInfo<PHINode *>::getEmptyKey();
1120    }
1121
1122    static PHINode *getTombstoneKey() {
1123      return DenseMapInfo<PHINode *>::getTombstoneKey();
1124    }
1125
1126    static unsigned getHashValue(PHINode *PN) {
1127      // Compute a hash value on the operands. Instcombine will likely have
1128      // sorted them, which helps expose duplicates, but we have to check all
1129      // the operands to be safe in case instcombine hasn't run.
1130      return static_cast<unsigned>(hash_combine(
1131          hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1132          hash_combine_range(PN->block_begin(), PN->block_end())));
1133    }
1134
1135    static bool isEqual(PHINode *LHS, PHINode *RHS) {
1136      if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1137          RHS == getEmptyKey() || RHS == getTombstoneKey())
1138        return LHS == RHS;
1139      return LHS->isIdenticalTo(RHS);
1140    }
1141  };
1142
1143  // Set of unique PHINodes.
1144  DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1145
1146  // Examine each PHI.
1147  bool Changed = false;
1148  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1149    auto Inserted = PHISet.insert(PN);
1150    if (!Inserted.second) {
1151      // A duplicate. Replace this PHI with its duplicate.
1152      PN->replaceAllUsesWith(*Inserted.first);
1153      PN->eraseFromParent();
1154      Changed = true;
1155
1156      // The RAUW can change PHIs that we already visited. Start over from the
1157      // beginning.
1158      PHISet.clear();
1159      I = BB->begin();
1160    }
1161  }
1162
1163  return Changed;
1164}
1165
1166/// enforceKnownAlignment - If the specified pointer points to an object that
1167/// we control, modify the object's alignment to PrefAlign. This isn't
1168/// often possible though. If alignment is important, a more reliable approach
1169/// is to simply align all global variables and allocation instructions to
1170/// their preferred alignment from the beginning.
1171static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign,
1172                                   const DataLayout &DL) {
1173  assert(PrefAlign > Alignment);
1174
1175  V = V->stripPointerCasts();
1176
1177  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1178    // TODO: ideally, computeKnownBits ought to have used
1179    // AllocaInst::getAlignment() in its computation already, making
1180    // the below max redundant. But, as it turns out,
1181    // stripPointerCasts recurses through infinite layers of bitcasts,
1182    // while computeKnownBits is not allowed to traverse more than 6
1183    // levels.
1184    Alignment = std::max(AI->getAlign(), Alignment);
1185    if (PrefAlign <= Alignment)
1186      return Alignment;
1187
1188    // If the preferred alignment is greater than the natural stack alignment
1189    // then don't round up. This avoids dynamic stack realignment.
1190    if (DL.exceedsNaturalStackAlignment(PrefAlign))
1191      return Alignment;
1192    AI->setAlignment(PrefAlign);
1193    return PrefAlign;
1194  }
1195
1196  if (auto *GO = dyn_cast<GlobalObject>(V)) {
1197    // TODO: as above, this shouldn't be necessary.
1198    Alignment = max(GO->getAlign(), Alignment);
1199    if (PrefAlign <= Alignment)
1200      return Alignment;
1201
1202    // If there is a large requested alignment and we can, bump up the alignment
1203    // of the global.  If the memory we set aside for the global may not be the
1204    // memory used by the final program then it is impossible for us to reliably
1205    // enforce the preferred alignment.
1206    if (!GO->canIncreaseAlignment())
1207      return Alignment;
1208
1209    GO->setAlignment(PrefAlign);
1210    return PrefAlign;
1211  }
1212
1213  return Alignment;
1214}
1215
1216Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1217                                       const DataLayout &DL,
1218                                       const Instruction *CxtI,
1219                                       AssumptionCache *AC,
1220                                       const DominatorTree *DT) {
1221  assert(V->getType()->isPointerTy() &&
1222         "getOrEnforceKnownAlignment expects a pointer!");
1223
1224  KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1225  unsigned TrailZ = Known.countMinTrailingZeros();
1226
1227  // Avoid trouble with ridiculously large TrailZ values, such as
1228  // those computed from a null pointer.
1229  // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1230  TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1231
1232  Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1233
1234  if (PrefAlign && *PrefAlign > Alignment)
1235    Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL);
1236
1237  // We don't need to make any adjustment.
1238  return Alignment;
1239}
1240
1241///===---------------------------------------------------------------------===//
1242///  Dbg Intrinsic utilities
1243///
1244
1245/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1246static bool PhiHasDebugValue(DILocalVariable *DIVar,
1247                             DIExpression *DIExpr,
1248                             PHINode *APN) {
1249  // Since we can't guarantee that the original dbg.declare instrinsic
1250  // is removed by LowerDbgDeclare(), we need to make sure that we are
1251  // not inserting the same dbg.value intrinsic over and over.
1252  SmallVector<DbgValueInst *, 1> DbgValues;
1253  findDbgValues(DbgValues, APN);
1254  for (auto *DVI : DbgValues) {
1255    assert(DVI->getValue() == APN);
1256    if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262/// Check if the alloc size of \p ValTy is large enough to cover the variable
1263/// (or fragment of the variable) described by \p DII.
1264///
1265/// This is primarily intended as a helper for the different
1266/// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1267/// converted describes an alloca'd variable, so we need to use the
1268/// alloc size of the value when doing the comparison. E.g. an i1 value will be
1269/// identified as covering an n-bit fragment, if the store size of i1 is at
1270/// least n bits.
1271static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1272  const DataLayout &DL = DII->getModule()->getDataLayout();
1273  uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1274  if (auto FragmentSize = DII->getFragmentSizeInBits())
1275    return ValueSize >= *FragmentSize;
1276  // We can't always calculate the size of the DI variable (e.g. if it is a
1277  // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1278  // intead.
1279  if (DII->isAddressOfVariable())
1280    if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1281      if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1282        return ValueSize >= *FragmentSize;
1283  // Could not determine size of variable. Conservatively return false.
1284  return false;
1285}
1286
1287/// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1288/// to a dbg.value. Because no machine insts can come from debug intrinsics,
1289/// only the scope and inlinedAt is significant. Zero line numbers are used in
1290/// case this DebugLoc leaks into any adjacent instructions.
1291static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1292  // Original dbg.declare must have a location.
1293  DebugLoc DeclareLoc = DII->getDebugLoc();
1294  MDNode *Scope = DeclareLoc.getScope();
1295  DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1296  // Produce an unknown location with the correct scope / inlinedAt fields.
1297  return DebugLoc::get(0, 0, Scope, InlinedAt);
1298}
1299
1300/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1301/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1302void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1303                                           StoreInst *SI, DIBuilder &Builder) {
1304  assert(DII->isAddressOfVariable());
1305  auto *DIVar = DII->getVariable();
1306  assert(DIVar && "Missing variable");
1307  auto *DIExpr = DII->getExpression();
1308  Value *DV = SI->getValueOperand();
1309
1310  DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1311
1312  if (!valueCoversEntireFragment(DV->getType(), DII)) {
1313    // FIXME: If storing to a part of the variable described by the dbg.declare,
1314    // then we want to insert a dbg.value for the corresponding fragment.
1315    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1316                      << *DII << '\n');
1317    // For now, when there is a store to parts of the variable (but we do not
1318    // know which part) we insert an dbg.value instrinsic to indicate that we
1319    // know nothing about the variable's content.
1320    DV = UndefValue::get(DV->getType());
1321    Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1322    return;
1323  }
1324
1325  Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1326}
1327
1328/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1329/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1330void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1331                                           LoadInst *LI, DIBuilder &Builder) {
1332  auto *DIVar = DII->getVariable();
1333  auto *DIExpr = DII->getExpression();
1334  assert(DIVar && "Missing variable");
1335
1336  if (!valueCoversEntireFragment(LI->getType(), DII)) {
1337    // FIXME: If only referring to a part of the variable described by the
1338    // dbg.declare, then we want to insert a dbg.value for the corresponding
1339    // fragment.
1340    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1341                      << *DII << '\n');
1342    return;
1343  }
1344
1345  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1346
1347  // We are now tracking the loaded value instead of the address. In the
1348  // future if multi-location support is added to the IR, it might be
1349  // preferable to keep tracking both the loaded value and the original
1350  // address in case the alloca can not be elided.
1351  Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1352      LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1353  DbgValue->insertAfter(LI);
1354}
1355
1356/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1357/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1358void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1359                                           PHINode *APN, DIBuilder &Builder) {
1360  auto *DIVar = DII->getVariable();
1361  auto *DIExpr = DII->getExpression();
1362  assert(DIVar && "Missing variable");
1363
1364  if (PhiHasDebugValue(DIVar, DIExpr, APN))
1365    return;
1366
1367  if (!valueCoversEntireFragment(APN->getType(), DII)) {
1368    // FIXME: If only referring to a part of the variable described by the
1369    // dbg.declare, then we want to insert a dbg.value for the corresponding
1370    // fragment.
1371    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1372                      << *DII << '\n');
1373    return;
1374  }
1375
1376  BasicBlock *BB = APN->getParent();
1377  auto InsertionPt = BB->getFirstInsertionPt();
1378
1379  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1380
1381  // The block may be a catchswitch block, which does not have a valid
1382  // insertion point.
1383  // FIXME: Insert dbg.value markers in the successors when appropriate.
1384  if (InsertionPt != BB->end())
1385    Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1386}
1387
1388/// Determine whether this alloca is either a VLA or an array.
1389static bool isArray(AllocaInst *AI) {
1390  return AI->isArrayAllocation() ||
1391         (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1392}
1393
1394/// Determine whether this alloca is a structure.
1395static bool isStructure(AllocaInst *AI) {
1396  return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1397}
1398
1399/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1400/// of llvm.dbg.value intrinsics.
1401bool llvm::LowerDbgDeclare(Function &F) {
1402  bool Changed = false;
1403  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1404  SmallVector<DbgDeclareInst *, 4> Dbgs;
1405  for (auto &FI : F)
1406    for (Instruction &BI : FI)
1407      if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1408        Dbgs.push_back(DDI);
1409
1410  if (Dbgs.empty())
1411    return Changed;
1412
1413  for (auto &I : Dbgs) {
1414    DbgDeclareInst *DDI = I;
1415    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1416    // If this is an alloca for a scalar variable, insert a dbg.value
1417    // at each load and store to the alloca and erase the dbg.declare.
1418    // The dbg.values allow tracking a variable even if it is not
1419    // stored on the stack, while the dbg.declare can only describe
1420    // the stack slot (and at a lexical-scope granularity). Later
1421    // passes will attempt to elide the stack slot.
1422    if (!AI || isArray(AI) || isStructure(AI))
1423      continue;
1424
1425    // A volatile load/store means that the alloca can't be elided anyway.
1426    if (llvm::any_of(AI->users(), [](User *U) -> bool {
1427          if (LoadInst *LI = dyn_cast<LoadInst>(U))
1428            return LI->isVolatile();
1429          if (StoreInst *SI = dyn_cast<StoreInst>(U))
1430            return SI->isVolatile();
1431          return false;
1432        }))
1433      continue;
1434
1435    SmallVector<const Value *, 8> WorkList;
1436    WorkList.push_back(AI);
1437    while (!WorkList.empty()) {
1438      const Value *V = WorkList.pop_back_val();
1439      for (auto &AIUse : V->uses()) {
1440        User *U = AIUse.getUser();
1441        if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1442          if (AIUse.getOperandNo() == 1)
1443            ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1444        } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1445          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1446        } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1447          // This is a call by-value or some other instruction that takes a
1448          // pointer to the variable. Insert a *value* intrinsic that describes
1449          // the variable by dereferencing the alloca.
1450          if (!CI->isLifetimeStartOrEnd()) {
1451            DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1452            auto *DerefExpr =
1453                DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1454            DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1455                                        NewLoc, CI);
1456          }
1457        } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1458          if (BI->getType()->isPointerTy())
1459            WorkList.push_back(BI);
1460        }
1461      }
1462    }
1463    DDI->eraseFromParent();
1464    Changed = true;
1465  }
1466
1467  if (Changed)
1468  for (BasicBlock &BB : F)
1469    RemoveRedundantDbgInstrs(&BB);
1470
1471  return Changed;
1472}
1473
1474/// Propagate dbg.value intrinsics through the newly inserted PHIs.
1475void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1476                                    SmallVectorImpl<PHINode *> &InsertedPHIs) {
1477  assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1478  if (InsertedPHIs.size() == 0)
1479    return;
1480
1481  // Map existing PHI nodes to their dbg.values.
1482  ValueToValueMapTy DbgValueMap;
1483  for (auto &I : *BB) {
1484    if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1485      if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1486        DbgValueMap.insert({Loc, DbgII});
1487    }
1488  }
1489  if (DbgValueMap.size() == 0)
1490    return;
1491
1492  // Then iterate through the new PHIs and look to see if they use one of the
1493  // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1494  // propagate the info through the new PHI.
1495  LLVMContext &C = BB->getContext();
1496  for (auto PHI : InsertedPHIs) {
1497    BasicBlock *Parent = PHI->getParent();
1498    // Avoid inserting an intrinsic into an EH block.
1499    if (Parent->getFirstNonPHI()->isEHPad())
1500      continue;
1501    auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1502    for (auto VI : PHI->operand_values()) {
1503      auto V = DbgValueMap.find(VI);
1504      if (V != DbgValueMap.end()) {
1505        auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1506        Instruction *NewDbgII = DbgII->clone();
1507        NewDbgII->setOperand(0, PhiMAV);
1508        auto InsertionPt = Parent->getFirstInsertionPt();
1509        assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1510        NewDbgII->insertBefore(&*InsertionPt);
1511      }
1512    }
1513  }
1514}
1515
1516/// Finds all intrinsics declaring local variables as living in the memory that
1517/// 'V' points to. This may include a mix of dbg.declare and
1518/// dbg.addr intrinsics.
1519TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1520  // This function is hot. Check whether the value has any metadata to avoid a
1521  // DenseMap lookup.
1522  if (!V->isUsedByMetadata())
1523    return {};
1524  auto *L = LocalAsMetadata::getIfExists(V);
1525  if (!L)
1526    return {};
1527  auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1528  if (!MDV)
1529    return {};
1530
1531  TinyPtrVector<DbgVariableIntrinsic *> Declares;
1532  for (User *U : MDV->users()) {
1533    if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1534      if (DII->isAddressOfVariable())
1535        Declares.push_back(DII);
1536  }
1537
1538  return Declares;
1539}
1540
1541TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1542  TinyPtrVector<DbgDeclareInst *> DDIs;
1543  for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1544    if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1545      DDIs.push_back(DDI);
1546  return DDIs;
1547}
1548
1549void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1550  // This function is hot. Check whether the value has any metadata to avoid a
1551  // DenseMap lookup.
1552  if (!V->isUsedByMetadata())
1553    return;
1554  if (auto *L = LocalAsMetadata::getIfExists(V))
1555    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1556      for (User *U : MDV->users())
1557        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1558          DbgValues.push_back(DVI);
1559}
1560
1561void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1562                        Value *V) {
1563  // This function is hot. Check whether the value has any metadata to avoid a
1564  // DenseMap lookup.
1565  if (!V->isUsedByMetadata())
1566    return;
1567  if (auto *L = LocalAsMetadata::getIfExists(V))
1568    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1569      for (User *U : MDV->users())
1570        if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1571          DbgUsers.push_back(DII);
1572}
1573
1574bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1575                             DIBuilder &Builder, uint8_t DIExprFlags,
1576                             int Offset) {
1577  auto DbgAddrs = FindDbgAddrUses(Address);
1578  for (DbgVariableIntrinsic *DII : DbgAddrs) {
1579    DebugLoc Loc = DII->getDebugLoc();
1580    auto *DIVar = DII->getVariable();
1581    auto *DIExpr = DII->getExpression();
1582    assert(DIVar && "Missing variable");
1583    DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1584    // Insert llvm.dbg.declare immediately before DII, and remove old
1585    // llvm.dbg.declare.
1586    Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1587    DII->eraseFromParent();
1588  }
1589  return !DbgAddrs.empty();
1590}
1591
1592static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1593                                        DIBuilder &Builder, int Offset) {
1594  DebugLoc Loc = DVI->getDebugLoc();
1595  auto *DIVar = DVI->getVariable();
1596  auto *DIExpr = DVI->getExpression();
1597  assert(DIVar && "Missing variable");
1598
1599  // This is an alloca-based llvm.dbg.value. The first thing it should do with
1600  // the alloca pointer is dereference it. Otherwise we don't know how to handle
1601  // it and give up.
1602  if (!DIExpr || DIExpr->getNumElements() < 1 ||
1603      DIExpr->getElement(0) != dwarf::DW_OP_deref)
1604    return;
1605
1606  // Insert the offset before the first deref.
1607  // We could just change the offset argument of dbg.value, but it's unsigned...
1608  if (Offset)
1609    DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1610
1611  Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1612  DVI->eraseFromParent();
1613}
1614
1615void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1616                                    DIBuilder &Builder, int Offset) {
1617  if (auto *L = LocalAsMetadata::getIfExists(AI))
1618    if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1619      for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1620        Use &U = *UI++;
1621        if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1622          replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1623      }
1624}
1625
1626/// Wrap \p V in a ValueAsMetadata instance.
1627static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1628  return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1629}
1630
1631/// Where possible to salvage debug information for \p I do so
1632/// and return True. If not possible mark undef and return False.
1633void llvm::salvageDebugInfo(Instruction &I) {
1634  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1635  findDbgUsers(DbgUsers, &I);
1636  salvageDebugInfoForDbgValues(I, DbgUsers);
1637}
1638
1639void llvm::salvageDebugInfoForDbgValues(
1640    Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1641  auto &Ctx = I.getContext();
1642  bool Salvaged = false;
1643  auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1644
1645  for (auto *DII : DbgUsers) {
1646    // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1647    // are implicitly pointing out the value as a DWARF memory location
1648    // description.
1649    bool StackValue = isa<DbgValueInst>(DII);
1650
1651    DIExpression *DIExpr =
1652        salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1653
1654    // salvageDebugInfoImpl should fail on examining the first element of
1655    // DbgUsers, or none of them.
1656    if (!DIExpr)
1657      break;
1658
1659    DII->setOperand(0, wrapMD(I.getOperand(0)));
1660    DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1661    LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1662    Salvaged = true;
1663  }
1664
1665  if (Salvaged)
1666    return;
1667
1668  for (auto *DII : DbgUsers) {
1669    Value *Undef = UndefValue::get(I.getType());
1670    DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1671                                            ValueAsMetadata::get(Undef)));
1672  }
1673}
1674
1675DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1676                                         DIExpression *SrcDIExpr,
1677                                         bool WithStackValue) {
1678  auto &M = *I.getModule();
1679  auto &DL = M.getDataLayout();
1680
1681  // Apply a vector of opcodes to the source DIExpression.
1682  auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1683    DIExpression *DIExpr = SrcDIExpr;
1684    if (!Ops.empty()) {
1685      DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1686    }
1687    return DIExpr;
1688  };
1689
1690  // Apply the given offset to the source DIExpression.
1691  auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1692    SmallVector<uint64_t, 8> Ops;
1693    DIExpression::appendOffset(Ops, Offset);
1694    return doSalvage(Ops);
1695  };
1696
1697  // initializer-list helper for applying operators to the source DIExpression.
1698  auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1699    SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1700    return doSalvage(Ops);
1701  };
1702
1703  if (auto *CI = dyn_cast<CastInst>(&I)) {
1704    // No-op casts are irrelevant for debug info.
1705    if (CI->isNoopCast(DL))
1706      return SrcDIExpr;
1707
1708    Type *Type = CI->getType();
1709    // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1710    if (Type->isVectorTy() ||
1711        !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1712      return nullptr;
1713
1714    Value *FromValue = CI->getOperand(0);
1715    unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1716    unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1717
1718    return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1719                                            isa<SExtInst>(&I)));
1720  }
1721
1722  if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1723    unsigned BitWidth =
1724        M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1725    // Rewrite a constant GEP into a DIExpression.
1726    APInt Offset(BitWidth, 0);
1727    if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1728      return applyOffset(Offset.getSExtValue());
1729    } else {
1730      return nullptr;
1731    }
1732  } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1733    // Rewrite binary operations with constant integer operands.
1734    auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1735    if (!ConstInt || ConstInt->getBitWidth() > 64)
1736      return nullptr;
1737
1738    uint64_t Val = ConstInt->getSExtValue();
1739    switch (BI->getOpcode()) {
1740    case Instruction::Add:
1741      return applyOffset(Val);
1742    case Instruction::Sub:
1743      return applyOffset(-int64_t(Val));
1744    case Instruction::Mul:
1745      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1746    case Instruction::SDiv:
1747      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1748    case Instruction::SRem:
1749      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1750    case Instruction::Or:
1751      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1752    case Instruction::And:
1753      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1754    case Instruction::Xor:
1755      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1756    case Instruction::Shl:
1757      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1758    case Instruction::LShr:
1759      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1760    case Instruction::AShr:
1761      return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1762    default:
1763      // TODO: Salvage constants from each kind of binop we know about.
1764      return nullptr;
1765    }
1766    // *Not* to do: we should not attempt to salvage load instructions,
1767    // because the validity and lifetime of a dbg.value containing
1768    // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1769  }
1770  return nullptr;
1771}
1772
1773/// A replacement for a dbg.value expression.
1774using DbgValReplacement = Optional<DIExpression *>;
1775
1776/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1777/// possibly moving/undefing users to prevent use-before-def. Returns true if
1778/// changes are made.
1779static bool rewriteDebugUsers(
1780    Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1781    function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1782  // Find debug users of From.
1783  SmallVector<DbgVariableIntrinsic *, 1> Users;
1784  findDbgUsers(Users, &From);
1785  if (Users.empty())
1786    return false;
1787
1788  // Prevent use-before-def of To.
1789  bool Changed = false;
1790  SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1791  if (isa<Instruction>(&To)) {
1792    bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1793
1794    for (auto *DII : Users) {
1795      // It's common to see a debug user between From and DomPoint. Move it
1796      // after DomPoint to preserve the variable update without any reordering.
1797      if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1798        LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1799        DII->moveAfter(&DomPoint);
1800        Changed = true;
1801
1802      // Users which otherwise aren't dominated by the replacement value must
1803      // be salvaged or deleted.
1804      } else if (!DT.dominates(&DomPoint, DII)) {
1805        UndefOrSalvage.insert(DII);
1806      }
1807    }
1808  }
1809
1810  // Update debug users without use-before-def risk.
1811  for (auto *DII : Users) {
1812    if (UndefOrSalvage.count(DII))
1813      continue;
1814
1815    LLVMContext &Ctx = DII->getContext();
1816    DbgValReplacement DVR = RewriteExpr(*DII);
1817    if (!DVR)
1818      continue;
1819
1820    DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1821    DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1822    LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1823    Changed = true;
1824  }
1825
1826  if (!UndefOrSalvage.empty()) {
1827    // Try to salvage the remaining debug users.
1828    salvageDebugInfo(From);
1829    Changed = true;
1830  }
1831
1832  return Changed;
1833}
1834
1835/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1836/// losslessly preserve the bits and semantics of the value. This predicate is
1837/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1838///
1839/// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1840/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1841/// and also does not allow lossless pointer <-> integer conversions.
1842static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1843                                         Type *ToTy) {
1844  // Trivially compatible types.
1845  if (FromTy == ToTy)
1846    return true;
1847
1848  // Handle compatible pointer <-> integer conversions.
1849  if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1850    bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1851    bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1852                              !DL.isNonIntegralPointerType(ToTy);
1853    return SameSize && LosslessConversion;
1854  }
1855
1856  // TODO: This is not exhaustive.
1857  return false;
1858}
1859
1860bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1861                                 Instruction &DomPoint, DominatorTree &DT) {
1862  // Exit early if From has no debug users.
1863  if (!From.isUsedByMetadata())
1864    return false;
1865
1866  assert(&From != &To && "Can't replace something with itself");
1867
1868  Type *FromTy = From.getType();
1869  Type *ToTy = To.getType();
1870
1871  auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1872    return DII.getExpression();
1873  };
1874
1875  // Handle no-op conversions.
1876  Module &M = *From.getModule();
1877  const DataLayout &DL = M.getDataLayout();
1878  if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1879    return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1880
1881  // Handle integer-to-integer widening and narrowing.
1882  // FIXME: Use DW_OP_convert when it's available everywhere.
1883  if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1884    uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1885    uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1886    assert(FromBits != ToBits && "Unexpected no-op conversion");
1887
1888    // When the width of the result grows, assume that a debugger will only
1889    // access the low `FromBits` bits when inspecting the source variable.
1890    if (FromBits < ToBits)
1891      return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1892
1893    // The width of the result has shrunk. Use sign/zero extension to describe
1894    // the source variable's high bits.
1895    auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1896      DILocalVariable *Var = DII.getVariable();
1897
1898      // Without knowing signedness, sign/zero extension isn't possible.
1899      auto Signedness = Var->getSignedness();
1900      if (!Signedness)
1901        return None;
1902
1903      bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1904      return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1905                                     Signed);
1906    };
1907    return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1908  }
1909
1910  // TODO: Floating-point conversions, vectors.
1911  return false;
1912}
1913
1914unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1915  unsigned NumDeadInst = 0;
1916  // Delete the instructions backwards, as it has a reduced likelihood of
1917  // having to update as many def-use and use-def chains.
1918  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1919  while (EndInst != &BB->front()) {
1920    // Delete the next to last instruction.
1921    Instruction *Inst = &*--EndInst->getIterator();
1922    if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1923      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1924    if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1925      EndInst = Inst;
1926      continue;
1927    }
1928    if (!isa<DbgInfoIntrinsic>(Inst))
1929      ++NumDeadInst;
1930    Inst->eraseFromParent();
1931  }
1932  return NumDeadInst;
1933}
1934
1935unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1936                                   bool PreserveLCSSA, DomTreeUpdater *DTU,
1937                                   MemorySSAUpdater *MSSAU) {
1938  BasicBlock *BB = I->getParent();
1939  std::vector <DominatorTree::UpdateType> Updates;
1940
1941  if (MSSAU)
1942    MSSAU->changeToUnreachable(I);
1943
1944  // Loop over all of the successors, removing BB's entry from any PHI
1945  // nodes.
1946  if (DTU)
1947    Updates.reserve(BB->getTerminator()->getNumSuccessors());
1948  for (BasicBlock *Successor : successors(BB)) {
1949    Successor->removePredecessor(BB, PreserveLCSSA);
1950    if (DTU)
1951      Updates.push_back({DominatorTree::Delete, BB, Successor});
1952  }
1953  // Insert a call to llvm.trap right before this.  This turns the undefined
1954  // behavior into a hard fail instead of falling through into random code.
1955  if (UseLLVMTrap) {
1956    Function *TrapFn =
1957      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1958    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1959    CallTrap->setDebugLoc(I->getDebugLoc());
1960  }
1961  auto *UI = new UnreachableInst(I->getContext(), I);
1962  UI->setDebugLoc(I->getDebugLoc());
1963
1964  // All instructions after this are dead.
1965  unsigned NumInstrsRemoved = 0;
1966  BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1967  while (BBI != BBE) {
1968    if (!BBI->use_empty())
1969      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1970    BB->getInstList().erase(BBI++);
1971    ++NumInstrsRemoved;
1972  }
1973  if (DTU)
1974    DTU->applyUpdatesPermissive(Updates);
1975  return NumInstrsRemoved;
1976}
1977
1978CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1979  SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1980  SmallVector<OperandBundleDef, 1> OpBundles;
1981  II->getOperandBundlesAsDefs(OpBundles);
1982  CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1983                                       II->getCalledOperand(), Args, OpBundles);
1984  NewCall->setCallingConv(II->getCallingConv());
1985  NewCall->setAttributes(II->getAttributes());
1986  NewCall->setDebugLoc(II->getDebugLoc());
1987  NewCall->copyMetadata(*II);
1988
1989  // If the invoke had profile metadata, try converting them for CallInst.
1990  uint64_t TotalWeight;
1991  if (NewCall->extractProfTotalWeight(TotalWeight)) {
1992    // Set the total weight if it fits into i32, otherwise reset.
1993    MDBuilder MDB(NewCall->getContext());
1994    auto NewWeights = uint32_t(TotalWeight) != TotalWeight
1995                          ? nullptr
1996                          : MDB.createBranchWeights({uint32_t(TotalWeight)});
1997    NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
1998  }
1999
2000  return NewCall;
2001}
2002
2003/// changeToCall - Convert the specified invoke into a normal call.
2004void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2005  CallInst *NewCall = createCallMatchingInvoke(II);
2006  NewCall->takeName(II);
2007  NewCall->insertBefore(II);
2008  II->replaceAllUsesWith(NewCall);
2009
2010  // Follow the call by a branch to the normal destination.
2011  BasicBlock *NormalDestBB = II->getNormalDest();
2012  BranchInst::Create(NormalDestBB, II);
2013
2014  // Update PHI nodes in the unwind destination
2015  BasicBlock *BB = II->getParent();
2016  BasicBlock *UnwindDestBB = II->getUnwindDest();
2017  UnwindDestBB->removePredecessor(BB);
2018  II->eraseFromParent();
2019  if (DTU)
2020    DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
2021}
2022
2023BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2024                                                   BasicBlock *UnwindEdge) {
2025  BasicBlock *BB = CI->getParent();
2026
2027  // Convert this function call into an invoke instruction.  First, split the
2028  // basic block.
2029  BasicBlock *Split =
2030      BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2031
2032  // Delete the unconditional branch inserted by splitBasicBlock
2033  BB->getInstList().pop_back();
2034
2035  // Create the new invoke instruction.
2036  SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2037  SmallVector<OperandBundleDef, 1> OpBundles;
2038
2039  CI->getOperandBundlesAsDefs(OpBundles);
2040
2041  // Note: we're round tripping operand bundles through memory here, and that
2042  // can potentially be avoided with a cleverer API design that we do not have
2043  // as of this time.
2044
2045  InvokeInst *II =
2046      InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2047                         UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2048  II->setDebugLoc(CI->getDebugLoc());
2049  II->setCallingConv(CI->getCallingConv());
2050  II->setAttributes(CI->getAttributes());
2051
2052  // Make sure that anything using the call now uses the invoke!  This also
2053  // updates the CallGraph if present, because it uses a WeakTrackingVH.
2054  CI->replaceAllUsesWith(II);
2055
2056  // Delete the original call
2057  Split->getInstList().pop_front();
2058  return Split;
2059}
2060
2061static bool markAliveBlocks(Function &F,
2062                            SmallPtrSetImpl<BasicBlock *> &Reachable,
2063                            DomTreeUpdater *DTU = nullptr) {
2064  SmallVector<BasicBlock*, 128> Worklist;
2065  BasicBlock *BB = &F.front();
2066  Worklist.push_back(BB);
2067  Reachable.insert(BB);
2068  bool Changed = false;
2069  do {
2070    BB = Worklist.pop_back_val();
2071
2072    // Do a quick scan of the basic block, turning any obviously unreachable
2073    // instructions into LLVM unreachable insts.  The instruction combining pass
2074    // canonicalizes unreachable insts into stores to null or undef.
2075    for (Instruction &I : *BB) {
2076      if (auto *CI = dyn_cast<CallInst>(&I)) {
2077        Value *Callee = CI->getCalledOperand();
2078        // Handle intrinsic calls.
2079        if (Function *F = dyn_cast<Function>(Callee)) {
2080          auto IntrinsicID = F->getIntrinsicID();
2081          // Assumptions that are known to be false are equivalent to
2082          // unreachable. Also, if the condition is undefined, then we make the
2083          // choice most beneficial to the optimizer, and choose that to also be
2084          // unreachable.
2085          if (IntrinsicID == Intrinsic::assume) {
2086            if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2087              // Don't insert a call to llvm.trap right before the unreachable.
2088              changeToUnreachable(CI, false, false, DTU);
2089              Changed = true;
2090              break;
2091            }
2092          } else if (IntrinsicID == Intrinsic::experimental_guard) {
2093            // A call to the guard intrinsic bails out of the current
2094            // compilation unit if the predicate passed to it is false. If the
2095            // predicate is a constant false, then we know the guard will bail
2096            // out of the current compile unconditionally, so all code following
2097            // it is dead.
2098            //
2099            // Note: unlike in llvm.assume, it is not "obviously profitable" for
2100            // guards to treat `undef` as `false` since a guard on `undef` can
2101            // still be useful for widening.
2102            if (match(CI->getArgOperand(0), m_Zero()))
2103              if (!isa<UnreachableInst>(CI->getNextNode())) {
2104                changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2105                                    false, DTU);
2106                Changed = true;
2107                break;
2108              }
2109          }
2110        } else if ((isa<ConstantPointerNull>(Callee) &&
2111                    !NullPointerIsDefined(CI->getFunction())) ||
2112                   isa<UndefValue>(Callee)) {
2113          changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2114          Changed = true;
2115          break;
2116        }
2117        if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2118          // If we found a call to a no-return function, insert an unreachable
2119          // instruction after it.  Make sure there isn't *already* one there
2120          // though.
2121          if (!isa<UnreachableInst>(CI->getNextNode())) {
2122            // Don't insert a call to llvm.trap right before the unreachable.
2123            changeToUnreachable(CI->getNextNode(), false, false, DTU);
2124            Changed = true;
2125          }
2126          break;
2127        }
2128      } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2129        // Store to undef and store to null are undefined and used to signal
2130        // that they should be changed to unreachable by passes that can't
2131        // modify the CFG.
2132
2133        // Don't touch volatile stores.
2134        if (SI->isVolatile()) continue;
2135
2136        Value *Ptr = SI->getOperand(1);
2137
2138        if (isa<UndefValue>(Ptr) ||
2139            (isa<ConstantPointerNull>(Ptr) &&
2140             !NullPointerIsDefined(SI->getFunction(),
2141                                   SI->getPointerAddressSpace()))) {
2142          changeToUnreachable(SI, true, false, DTU);
2143          Changed = true;
2144          break;
2145        }
2146      }
2147    }
2148
2149    Instruction *Terminator = BB->getTerminator();
2150    if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2151      // Turn invokes that call 'nounwind' functions into ordinary calls.
2152      Value *Callee = II->getCalledOperand();
2153      if ((isa<ConstantPointerNull>(Callee) &&
2154           !NullPointerIsDefined(BB->getParent())) ||
2155          isa<UndefValue>(Callee)) {
2156        changeToUnreachable(II, true, false, DTU);
2157        Changed = true;
2158      } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2159        if (II->use_empty() && II->onlyReadsMemory()) {
2160          // jump to the normal destination branch.
2161          BasicBlock *NormalDestBB = II->getNormalDest();
2162          BasicBlock *UnwindDestBB = II->getUnwindDest();
2163          BranchInst::Create(NormalDestBB, II);
2164          UnwindDestBB->removePredecessor(II->getParent());
2165          II->eraseFromParent();
2166          if (DTU)
2167            DTU->applyUpdatesPermissive(
2168                {{DominatorTree::Delete, BB, UnwindDestBB}});
2169        } else
2170          changeToCall(II, DTU);
2171        Changed = true;
2172      }
2173    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2174      // Remove catchpads which cannot be reached.
2175      struct CatchPadDenseMapInfo {
2176        static CatchPadInst *getEmptyKey() {
2177          return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2178        }
2179
2180        static CatchPadInst *getTombstoneKey() {
2181          return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2182        }
2183
2184        static unsigned getHashValue(CatchPadInst *CatchPad) {
2185          return static_cast<unsigned>(hash_combine_range(
2186              CatchPad->value_op_begin(), CatchPad->value_op_end()));
2187        }
2188
2189        static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2190          if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2191              RHS == getEmptyKey() || RHS == getTombstoneKey())
2192            return LHS == RHS;
2193          return LHS->isIdenticalTo(RHS);
2194        }
2195      };
2196
2197      // Set of unique CatchPads.
2198      SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2199                    CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2200          HandlerSet;
2201      detail::DenseSetEmpty Empty;
2202      for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2203                                             E = CatchSwitch->handler_end();
2204           I != E; ++I) {
2205        BasicBlock *HandlerBB = *I;
2206        auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2207        if (!HandlerSet.insert({CatchPad, Empty}).second) {
2208          CatchSwitch->removeHandler(I);
2209          --I;
2210          --E;
2211          Changed = true;
2212        }
2213      }
2214    }
2215
2216    Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2217    for (BasicBlock *Successor : successors(BB))
2218      if (Reachable.insert(Successor).second)
2219        Worklist.push_back(Successor);
2220  } while (!Worklist.empty());
2221  return Changed;
2222}
2223
2224void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2225  Instruction *TI = BB->getTerminator();
2226
2227  if (auto *II = dyn_cast<InvokeInst>(TI)) {
2228    changeToCall(II, DTU);
2229    return;
2230  }
2231
2232  Instruction *NewTI;
2233  BasicBlock *UnwindDest;
2234
2235  if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2236    NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2237    UnwindDest = CRI->getUnwindDest();
2238  } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2239    auto *NewCatchSwitch = CatchSwitchInst::Create(
2240        CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2241        CatchSwitch->getName(), CatchSwitch);
2242    for (BasicBlock *PadBB : CatchSwitch->handlers())
2243      NewCatchSwitch->addHandler(PadBB);
2244
2245    NewTI = NewCatchSwitch;
2246    UnwindDest = CatchSwitch->getUnwindDest();
2247  } else {
2248    llvm_unreachable("Could not find unwind successor");
2249  }
2250
2251  NewTI->takeName(TI);
2252  NewTI->setDebugLoc(TI->getDebugLoc());
2253  UnwindDest->removePredecessor(BB);
2254  TI->replaceAllUsesWith(NewTI);
2255  TI->eraseFromParent();
2256  if (DTU)
2257    DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2258}
2259
2260/// removeUnreachableBlocks - Remove blocks that are not reachable, even
2261/// if they are in a dead cycle.  Return true if a change was made, false
2262/// otherwise.
2263bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2264                                   MemorySSAUpdater *MSSAU) {
2265  SmallPtrSet<BasicBlock *, 16> Reachable;
2266  bool Changed = markAliveBlocks(F, Reachable, DTU);
2267
2268  // If there are unreachable blocks in the CFG...
2269  if (Reachable.size() == F.size())
2270    return Changed;
2271
2272  assert(Reachable.size() < F.size());
2273  NumRemoved += F.size() - Reachable.size();
2274
2275  SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2276  for (BasicBlock &BB : F) {
2277    // Skip reachable basic blocks
2278    if (Reachable.count(&BB))
2279      continue;
2280    DeadBlockSet.insert(&BB);
2281  }
2282
2283  if (MSSAU)
2284    MSSAU->removeBlocks(DeadBlockSet);
2285
2286  // Loop over all of the basic blocks that are not reachable, dropping all of
2287  // their internal references. Update DTU if available.
2288  std::vector<DominatorTree::UpdateType> Updates;
2289  for (auto *BB : DeadBlockSet) {
2290    for (BasicBlock *Successor : successors(BB)) {
2291      if (!DeadBlockSet.count(Successor))
2292        Successor->removePredecessor(BB);
2293      if (DTU)
2294        Updates.push_back({DominatorTree::Delete, BB, Successor});
2295    }
2296    BB->dropAllReferences();
2297    if (DTU) {
2298      Instruction *TI = BB->getTerminator();
2299      assert(TI && "Basic block should have a terminator");
2300      // Terminators like invoke can have users. We have to replace their users,
2301      // before removing them.
2302      if (!TI->use_empty())
2303        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2304      TI->eraseFromParent();
2305      new UnreachableInst(BB->getContext(), BB);
2306      assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2307                               "applying corresponding DTU updates.");
2308    }
2309  }
2310
2311  if (DTU) {
2312    DTU->applyUpdatesPermissive(Updates);
2313    bool Deleted = false;
2314    for (auto *BB : DeadBlockSet) {
2315      if (DTU->isBBPendingDeletion(BB))
2316        --NumRemoved;
2317      else
2318        Deleted = true;
2319      DTU->deleteBB(BB);
2320    }
2321    if (!Deleted)
2322      return false;
2323  } else {
2324    for (auto *BB : DeadBlockSet)
2325      BB->eraseFromParent();
2326  }
2327
2328  return true;
2329}
2330
2331void llvm::combineMetadata(Instruction *K, const Instruction *J,
2332                           ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2333  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2334  K->dropUnknownNonDebugMetadata(KnownIDs);
2335  K->getAllMetadataOtherThanDebugLoc(Metadata);
2336  for (const auto &MD : Metadata) {
2337    unsigned Kind = MD.first;
2338    MDNode *JMD = J->getMetadata(Kind);
2339    MDNode *KMD = MD.second;
2340
2341    switch (Kind) {
2342      default:
2343        K->setMetadata(Kind, nullptr); // Remove unknown metadata
2344        break;
2345      case LLVMContext::MD_dbg:
2346        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2347      case LLVMContext::MD_tbaa:
2348        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2349        break;
2350      case LLVMContext::MD_alias_scope:
2351        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2352        break;
2353      case LLVMContext::MD_noalias:
2354      case LLVMContext::MD_mem_parallel_loop_access:
2355        K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2356        break;
2357      case LLVMContext::MD_access_group:
2358        K->setMetadata(LLVMContext::MD_access_group,
2359                       intersectAccessGroups(K, J));
2360        break;
2361      case LLVMContext::MD_range:
2362
2363        // If K does move, use most generic range. Otherwise keep the range of
2364        // K.
2365        if (DoesKMove)
2366          // FIXME: If K does move, we should drop the range info and nonnull.
2367          //        Currently this function is used with DoesKMove in passes
2368          //        doing hoisting/sinking and the current behavior of using the
2369          //        most generic range is correct in those cases.
2370          K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2371        break;
2372      case LLVMContext::MD_fpmath:
2373        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2374        break;
2375      case LLVMContext::MD_invariant_load:
2376        // Only set the !invariant.load if it is present in both instructions.
2377        K->setMetadata(Kind, JMD);
2378        break;
2379      case LLVMContext::MD_nonnull:
2380        // If K does move, keep nonull if it is present in both instructions.
2381        if (DoesKMove)
2382          K->setMetadata(Kind, JMD);
2383        break;
2384      case LLVMContext::MD_invariant_group:
2385        // Preserve !invariant.group in K.
2386        break;
2387      case LLVMContext::MD_align:
2388        K->setMetadata(Kind,
2389          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2390        break;
2391      case LLVMContext::MD_dereferenceable:
2392      case LLVMContext::MD_dereferenceable_or_null:
2393        K->setMetadata(Kind,
2394          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2395        break;
2396      case LLVMContext::MD_preserve_access_index:
2397        // Preserve !preserve.access.index in K.
2398        break;
2399    }
2400  }
2401  // Set !invariant.group from J if J has it. If both instructions have it
2402  // then we will just pick it from J - even when they are different.
2403  // Also make sure that K is load or store - f.e. combining bitcast with load
2404  // could produce bitcast with invariant.group metadata, which is invalid.
2405  // FIXME: we should try to preserve both invariant.group md if they are
2406  // different, but right now instruction can only have one invariant.group.
2407  if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2408    if (isa<LoadInst>(K) || isa<StoreInst>(K))
2409      K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2410}
2411
2412void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2413                                 bool KDominatesJ) {
2414  unsigned KnownIDs[] = {
2415      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2416      LLVMContext::MD_noalias,         LLVMContext::MD_range,
2417      LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2418      LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2419      LLVMContext::MD_dereferenceable,
2420      LLVMContext::MD_dereferenceable_or_null,
2421      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2422  combineMetadata(K, J, KnownIDs, KDominatesJ);
2423}
2424
2425void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2426  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2427  Source.getAllMetadata(MD);
2428  MDBuilder MDB(Dest.getContext());
2429  Type *NewType = Dest.getType();
2430  const DataLayout &DL = Source.getModule()->getDataLayout();
2431  for (const auto &MDPair : MD) {
2432    unsigned ID = MDPair.first;
2433    MDNode *N = MDPair.second;
2434    // Note, essentially every kind of metadata should be preserved here! This
2435    // routine is supposed to clone a load instruction changing *only its type*.
2436    // The only metadata it makes sense to drop is metadata which is invalidated
2437    // when the pointer type changes. This should essentially never be the case
2438    // in LLVM, but we explicitly switch over only known metadata to be
2439    // conservatively correct. If you are adding metadata to LLVM which pertains
2440    // to loads, you almost certainly want to add it here.
2441    switch (ID) {
2442    case LLVMContext::MD_dbg:
2443    case LLVMContext::MD_tbaa:
2444    case LLVMContext::MD_prof:
2445    case LLVMContext::MD_fpmath:
2446    case LLVMContext::MD_tbaa_struct:
2447    case LLVMContext::MD_invariant_load:
2448    case LLVMContext::MD_alias_scope:
2449    case LLVMContext::MD_noalias:
2450    case LLVMContext::MD_nontemporal:
2451    case LLVMContext::MD_mem_parallel_loop_access:
2452    case LLVMContext::MD_access_group:
2453      // All of these directly apply.
2454      Dest.setMetadata(ID, N);
2455      break;
2456
2457    case LLVMContext::MD_nonnull:
2458      copyNonnullMetadata(Source, N, Dest);
2459      break;
2460
2461    case LLVMContext::MD_align:
2462    case LLVMContext::MD_dereferenceable:
2463    case LLVMContext::MD_dereferenceable_or_null:
2464      // These only directly apply if the new type is also a pointer.
2465      if (NewType->isPointerTy())
2466        Dest.setMetadata(ID, N);
2467      break;
2468
2469    case LLVMContext::MD_range:
2470      copyRangeMetadata(DL, Source, N, Dest);
2471      break;
2472    }
2473  }
2474}
2475
2476void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2477  auto *ReplInst = dyn_cast<Instruction>(Repl);
2478  if (!ReplInst)
2479    return;
2480
2481  // Patch the replacement so that it is not more restrictive than the value
2482  // being replaced.
2483  // Note that if 'I' is a load being replaced by some operation,
2484  // for example, by an arithmetic operation, then andIRFlags()
2485  // would just erase all math flags from the original arithmetic
2486  // operation, which is clearly not wanted and not needed.
2487  if (!isa<LoadInst>(I))
2488    ReplInst->andIRFlags(I);
2489
2490  // FIXME: If both the original and replacement value are part of the
2491  // same control-flow region (meaning that the execution of one
2492  // guarantees the execution of the other), then we can combine the
2493  // noalias scopes here and do better than the general conservative
2494  // answer used in combineMetadata().
2495
2496  // In general, GVN unifies expressions over different control-flow
2497  // regions, and so we need a conservative combination of the noalias
2498  // scopes.
2499  static const unsigned KnownIDs[] = {
2500      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2501      LLVMContext::MD_noalias,         LLVMContext::MD_range,
2502      LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2503      LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2504      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2505  combineMetadata(ReplInst, I, KnownIDs, false);
2506}
2507
2508template <typename RootType, typename DominatesFn>
2509static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2510                                         const RootType &Root,
2511                                         const DominatesFn &Dominates) {
2512  assert(From->getType() == To->getType());
2513
2514  unsigned Count = 0;
2515  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2516       UI != UE;) {
2517    Use &U = *UI++;
2518    if (!Dominates(Root, U))
2519      continue;
2520    U.set(To);
2521    LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2522                      << "' as " << *To << " in " << *U << "\n");
2523    ++Count;
2524  }
2525  return Count;
2526}
2527
2528unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2529   assert(From->getType() == To->getType());
2530   auto *BB = From->getParent();
2531   unsigned Count = 0;
2532
2533  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2534       UI != UE;) {
2535    Use &U = *UI++;
2536    auto *I = cast<Instruction>(U.getUser());
2537    if (I->getParent() == BB)
2538      continue;
2539    U.set(To);
2540    ++Count;
2541  }
2542  return Count;
2543}
2544
2545unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2546                                        DominatorTree &DT,
2547                                        const BasicBlockEdge &Root) {
2548  auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2549    return DT.dominates(Root, U);
2550  };
2551  return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2552}
2553
2554unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2555                                        DominatorTree &DT,
2556                                        const BasicBlock *BB) {
2557  auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2558    auto *I = cast<Instruction>(U.getUser())->getParent();
2559    return DT.properlyDominates(BB, I);
2560  };
2561  return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2562}
2563
2564bool llvm::callsGCLeafFunction(const CallBase *Call,
2565                               const TargetLibraryInfo &TLI) {
2566  // Check if the function is specifically marked as a gc leaf function.
2567  if (Call->hasFnAttr("gc-leaf-function"))
2568    return true;
2569  if (const Function *F = Call->getCalledFunction()) {
2570    if (F->hasFnAttribute("gc-leaf-function"))
2571      return true;
2572
2573    if (auto IID = F->getIntrinsicID())
2574      // Most LLVM intrinsics do not take safepoints.
2575      return IID != Intrinsic::experimental_gc_statepoint &&
2576             IID != Intrinsic::experimental_deoptimize;
2577  }
2578
2579  // Lib calls can be materialized by some passes, and won't be
2580  // marked as 'gc-leaf-function.' All available Libcalls are
2581  // GC-leaf.
2582  LibFunc LF;
2583  if (TLI.getLibFunc(*Call, LF)) {
2584    return TLI.has(LF);
2585  }
2586
2587  return false;
2588}
2589
2590void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2591                               LoadInst &NewLI) {
2592  auto *NewTy = NewLI.getType();
2593
2594  // This only directly applies if the new type is also a pointer.
2595  if (NewTy->isPointerTy()) {
2596    NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2597    return;
2598  }
2599
2600  // The only other translation we can do is to integral loads with !range
2601  // metadata.
2602  if (!NewTy->isIntegerTy())
2603    return;
2604
2605  MDBuilder MDB(NewLI.getContext());
2606  const Value *Ptr = OldLI.getPointerOperand();
2607  auto *ITy = cast<IntegerType>(NewTy);
2608  auto *NullInt = ConstantExpr::getPtrToInt(
2609      ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2610  auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2611  NewLI.setMetadata(LLVMContext::MD_range,
2612                    MDB.createRange(NonNullInt, NullInt));
2613}
2614
2615void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2616                             MDNode *N, LoadInst &NewLI) {
2617  auto *NewTy = NewLI.getType();
2618
2619  // Give up unless it is converted to a pointer where there is a single very
2620  // valuable mapping we can do reliably.
2621  // FIXME: It would be nice to propagate this in more ways, but the type
2622  // conversions make it hard.
2623  if (!NewTy->isPointerTy())
2624    return;
2625
2626  unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2627  if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2628    MDNode *NN = MDNode::get(OldLI.getContext(), None);
2629    NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2630  }
2631}
2632
2633void llvm::dropDebugUsers(Instruction &I) {
2634  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2635  findDbgUsers(DbgUsers, &I);
2636  for (auto *DII : DbgUsers)
2637    DII->eraseFromParent();
2638}
2639
2640void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2641                                    BasicBlock *BB) {
2642  // Since we are moving the instructions out of its basic block, we do not
2643  // retain their original debug locations (DILocations) and debug intrinsic
2644  // instructions.
2645  //
2646  // Doing so would degrade the debugging experience and adversely affect the
2647  // accuracy of profiling information.
2648  //
2649  // Currently, when hoisting the instructions, we take the following actions:
2650  // - Remove their debug intrinsic instructions.
2651  // - Set their debug locations to the values from the insertion point.
2652  //
2653  // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2654  // need to be deleted, is because there will not be any instructions with a
2655  // DILocation in either branch left after performing the transformation. We
2656  // can only insert a dbg.value after the two branches are joined again.
2657  //
2658  // See PR38762, PR39243 for more details.
2659  //
2660  // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2661  // encode predicated DIExpressions that yield different results on different
2662  // code paths.
2663  for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2664    Instruction *I = &*II;
2665    I->dropUnknownNonDebugMetadata();
2666    if (I->isUsedByMetadata())
2667      dropDebugUsers(*I);
2668    if (isa<DbgInfoIntrinsic>(I)) {
2669      // Remove DbgInfo Intrinsics.
2670      II = I->eraseFromParent();
2671      continue;
2672    }
2673    I->setDebugLoc(InsertPt->getDebugLoc());
2674    ++II;
2675  }
2676  DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2677                                 BB->begin(),
2678                                 BB->getTerminator()->getIterator());
2679}
2680
2681namespace {
2682
2683/// A potential constituent of a bitreverse or bswap expression. See
2684/// collectBitParts for a fuller explanation.
2685struct BitPart {
2686  BitPart(Value *P, unsigned BW) : Provider(P) {
2687    Provenance.resize(BW);
2688  }
2689
2690  /// The Value that this is a bitreverse/bswap of.
2691  Value *Provider;
2692
2693  /// The "provenance" of each bit. Provenance[A] = B means that bit A
2694  /// in Provider becomes bit B in the result of this expression.
2695  SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2696
2697  enum { Unset = -1 };
2698};
2699
2700} // end anonymous namespace
2701
2702/// Analyze the specified subexpression and see if it is capable of providing
2703/// pieces of a bswap or bitreverse. The subexpression provides a potential
2704/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2705/// the output of the expression came from a corresponding bit in some other
2706/// value. This function is recursive, and the end result is a mapping of
2707/// bitnumber to bitnumber. It is the caller's responsibility to validate that
2708/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2709///
2710/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2711/// that the expression deposits the low byte of %X into the high byte of the
2712/// result and that all other bits are zero. This expression is accepted and a
2713/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2714/// [0-7].
2715///
2716/// To avoid revisiting values, the BitPart results are memoized into the
2717/// provided map. To avoid unnecessary copying of BitParts, BitParts are
2718/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2719/// store BitParts objects, not pointers. As we need the concept of a nullptr
2720/// BitParts (Value has been analyzed and the analysis failed), we an Optional
2721/// type instead to provide the same functionality.
2722///
2723/// Because we pass around references into \c BPS, we must use a container that
2724/// does not invalidate internal references (std::map instead of DenseMap).
2725static const Optional<BitPart> &
2726collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2727                std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2728  auto I = BPS.find(V);
2729  if (I != BPS.end())
2730    return I->second;
2731
2732  auto &Result = BPS[V] = None;
2733  auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2734
2735  // Prevent stack overflow by limiting the recursion depth
2736  if (Depth == BitPartRecursionMaxDepth) {
2737    LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2738    return Result;
2739  }
2740
2741  if (Instruction *I = dyn_cast<Instruction>(V)) {
2742    // If this is an or instruction, it may be an inner node of the bswap.
2743    if (I->getOpcode() == Instruction::Or) {
2744      auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2745                                MatchBitReversals, BPS, Depth + 1);
2746      auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2747                                MatchBitReversals, BPS, Depth + 1);
2748      if (!A || !B)
2749        return Result;
2750
2751      // Try and merge the two together.
2752      if (!A->Provider || A->Provider != B->Provider)
2753        return Result;
2754
2755      Result = BitPart(A->Provider, BitWidth);
2756      for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2757        if (A->Provenance[i] != BitPart::Unset &&
2758            B->Provenance[i] != BitPart::Unset &&
2759            A->Provenance[i] != B->Provenance[i])
2760          return Result = None;
2761
2762        if (A->Provenance[i] == BitPart::Unset)
2763          Result->Provenance[i] = B->Provenance[i];
2764        else
2765          Result->Provenance[i] = A->Provenance[i];
2766      }
2767
2768      return Result;
2769    }
2770
2771    // If this is a logical shift by a constant, recurse then shift the result.
2772    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2773      unsigned BitShift =
2774          cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2775      // Ensure the shift amount is defined.
2776      if (BitShift > BitWidth)
2777        return Result;
2778
2779      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2780                                  MatchBitReversals, BPS, Depth + 1);
2781      if (!Res)
2782        return Result;
2783      Result = Res;
2784
2785      // Perform the "shift" on BitProvenance.
2786      auto &P = Result->Provenance;
2787      if (I->getOpcode() == Instruction::Shl) {
2788        P.erase(std::prev(P.end(), BitShift), P.end());
2789        P.insert(P.begin(), BitShift, BitPart::Unset);
2790      } else {
2791        P.erase(P.begin(), std::next(P.begin(), BitShift));
2792        P.insert(P.end(), BitShift, BitPart::Unset);
2793      }
2794
2795      return Result;
2796    }
2797
2798    // If this is a logical 'and' with a mask that clears bits, recurse then
2799    // unset the appropriate bits.
2800    if (I->getOpcode() == Instruction::And &&
2801        isa<ConstantInt>(I->getOperand(1))) {
2802      APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2803      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2804
2805      // Check that the mask allows a multiple of 8 bits for a bswap, for an
2806      // early exit.
2807      unsigned NumMaskedBits = AndMask.countPopulation();
2808      if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2809        return Result;
2810
2811      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2812                                  MatchBitReversals, BPS, Depth + 1);
2813      if (!Res)
2814        return Result;
2815      Result = Res;
2816
2817      for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2818        // If the AndMask is zero for this bit, clear the bit.
2819        if ((AndMask & Bit) == 0)
2820          Result->Provenance[i] = BitPart::Unset;
2821      return Result;
2822    }
2823
2824    // If this is a zext instruction zero extend the result.
2825    if (I->getOpcode() == Instruction::ZExt) {
2826      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2827                                  MatchBitReversals, BPS, Depth + 1);
2828      if (!Res)
2829        return Result;
2830
2831      Result = BitPart(Res->Provider, BitWidth);
2832      auto NarrowBitWidth =
2833          cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2834      for (unsigned i = 0; i < NarrowBitWidth; ++i)
2835        Result->Provenance[i] = Res->Provenance[i];
2836      for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2837        Result->Provenance[i] = BitPart::Unset;
2838      return Result;
2839    }
2840  }
2841
2842  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2843  // the input value to the bswap/bitreverse.
2844  Result = BitPart(V, BitWidth);
2845  for (unsigned i = 0; i < BitWidth; ++i)
2846    Result->Provenance[i] = i;
2847  return Result;
2848}
2849
2850static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2851                                          unsigned BitWidth) {
2852  if (From % 8 != To % 8)
2853    return false;
2854  // Convert from bit indices to byte indices and check for a byte reversal.
2855  From >>= 3;
2856  To >>= 3;
2857  BitWidth >>= 3;
2858  return From == BitWidth - To - 1;
2859}
2860
2861static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2862                                               unsigned BitWidth) {
2863  return From == BitWidth - To - 1;
2864}
2865
2866bool llvm::recognizeBSwapOrBitReverseIdiom(
2867    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2868    SmallVectorImpl<Instruction *> &InsertedInsts) {
2869  if (Operator::getOpcode(I) != Instruction::Or)
2870    return false;
2871  if (!MatchBSwaps && !MatchBitReversals)
2872    return false;
2873  IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2874  if (!ITy || ITy->getBitWidth() > 128)
2875    return false;   // Can't do vectors or integers > 128 bits.
2876  unsigned BW = ITy->getBitWidth();
2877
2878  unsigned DemandedBW = BW;
2879  IntegerType *DemandedTy = ITy;
2880  if (I->hasOneUse()) {
2881    if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2882      DemandedTy = cast<IntegerType>(Trunc->getType());
2883      DemandedBW = DemandedTy->getBitWidth();
2884    }
2885  }
2886
2887  // Try to find all the pieces corresponding to the bswap.
2888  std::map<Value *, Optional<BitPart>> BPS;
2889  auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2890  if (!Res)
2891    return false;
2892  auto &BitProvenance = Res->Provenance;
2893
2894  // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2895  // only byteswap values with an even number of bytes.
2896  bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2897  for (unsigned i = 0; i < DemandedBW; ++i) {
2898    OKForBSwap &=
2899        bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2900    OKForBitReverse &=
2901        bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2902  }
2903
2904  Intrinsic::ID Intrin;
2905  if (OKForBSwap && MatchBSwaps)
2906    Intrin = Intrinsic::bswap;
2907  else if (OKForBitReverse && MatchBitReversals)
2908    Intrin = Intrinsic::bitreverse;
2909  else
2910    return false;
2911
2912  if (ITy != DemandedTy) {
2913    Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2914    Value *Provider = Res->Provider;
2915    IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2916    // We may need to truncate the provider.
2917    if (DemandedTy != ProviderTy) {
2918      auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2919                                     "trunc", I);
2920      InsertedInsts.push_back(Trunc);
2921      Provider = Trunc;
2922    }
2923    auto *CI = CallInst::Create(F, Provider, "rev", I);
2924    InsertedInsts.push_back(CI);
2925    auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2926    InsertedInsts.push_back(ExtInst);
2927    return true;
2928  }
2929
2930  Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2931  InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2932  return true;
2933}
2934
2935// CodeGen has special handling for some string functions that may replace
2936// them with target-specific intrinsics.  Since that'd skip our interceptors
2937// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2938// we mark affected calls as NoBuiltin, which will disable optimization
2939// in CodeGen.
2940void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2941    CallInst *CI, const TargetLibraryInfo *TLI) {
2942  Function *F = CI->getCalledFunction();
2943  LibFunc Func;
2944  if (F && !F->hasLocalLinkage() && F->hasName() &&
2945      TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2946      !F->doesNotAccessMemory())
2947    CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2948}
2949
2950bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2951  // We can't have a PHI with a metadata type.
2952  if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2953    return false;
2954
2955  // Early exit.
2956  if (!isa<Constant>(I->getOperand(OpIdx)))
2957    return true;
2958
2959  switch (I->getOpcode()) {
2960  default:
2961    return true;
2962  case Instruction::Call:
2963  case Instruction::Invoke: {
2964    const auto &CB = cast<CallBase>(*I);
2965
2966    // Can't handle inline asm. Skip it.
2967    if (CB.isInlineAsm())
2968      return false;
2969
2970    // Constant bundle operands may need to retain their constant-ness for
2971    // correctness.
2972    if (CB.isBundleOperand(OpIdx))
2973      return false;
2974
2975    if (OpIdx < CB.getNumArgOperands()) {
2976      // Some variadic intrinsics require constants in the variadic arguments,
2977      // which currently aren't markable as immarg.
2978      if (isa<IntrinsicInst>(CB) &&
2979          OpIdx >= CB.getFunctionType()->getNumParams()) {
2980        // This is known to be OK for stackmap.
2981        return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
2982      }
2983
2984      // gcroot is a special case, since it requires a constant argument which
2985      // isn't also required to be a simple ConstantInt.
2986      if (CB.getIntrinsicID() == Intrinsic::gcroot)
2987        return false;
2988
2989      // Some intrinsic operands are required to be immediates.
2990      return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
2991    }
2992
2993    // It is never allowed to replace the call argument to an intrinsic, but it
2994    // may be possible for a call.
2995    return !isa<IntrinsicInst>(CB);
2996  }
2997  case Instruction::ShuffleVector:
2998    // Shufflevector masks are constant.
2999    return OpIdx != 2;
3000  case Instruction::Switch:
3001  case Instruction::ExtractValue:
3002    // All operands apart from the first are constant.
3003    return OpIdx == 0;
3004  case Instruction::InsertValue:
3005    // All operands apart from the first and the second are constant.
3006    return OpIdx < 2;
3007  case Instruction::Alloca:
3008    // Static allocas (constant size in the entry block) are handled by
3009    // prologue/epilogue insertion so they're free anyway. We definitely don't
3010    // want to make them non-constant.
3011    return !cast<AllocaInst>(I)->isStaticAlloca();
3012  case Instruction::GetElementPtr:
3013    if (OpIdx == 0)
3014      return true;
3015    gep_type_iterator It = gep_type_begin(I);
3016    for (auto E = std::next(It, OpIdx); It != E; ++It)
3017      if (It.isStruct())
3018        return false;
3019    return true;
3020  }
3021}
3022
3023using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
3024AllocaInst *llvm::findAllocaForValue(Value *V,
3025                                     AllocaForValueMapTy &AllocaForValue) {
3026  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
3027    return AI;
3028  // See if we've already calculated (or started to calculate) alloca for a
3029  // given value.
3030  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3031  if (I != AllocaForValue.end())
3032    return I->second;
3033  // Store 0 while we're calculating alloca for value V to avoid
3034  // infinite recursion if the value references itself.
3035  AllocaForValue[V] = nullptr;
3036  AllocaInst *Res = nullptr;
3037  if (CastInst *CI = dyn_cast<CastInst>(V))
3038    Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
3039  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3040    for (Value *IncValue : PN->incoming_values()) {
3041      // Allow self-referencing phi-nodes.
3042      if (IncValue == PN)
3043        continue;
3044      AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
3045      // AI for incoming values should exist and should all be equal.
3046      if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3047        return nullptr;
3048      Res = IncValueAI;
3049    }
3050  } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3051    Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3052  } else {
3053    LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3054                      << *V << "\n");
3055  }
3056  if (Res)
3057    AllocaForValue[V] = Res;
3058  return Res;
3059}
3060
3061Value *llvm::invertCondition(Value *Condition) {
3062  // First: Check if it's a constant
3063  if (Constant *C = dyn_cast<Constant>(Condition))
3064    return ConstantExpr::getNot(C);
3065
3066  // Second: If the condition is already inverted, return the original value
3067  Value *NotCondition;
3068  if (match(Condition, m_Not(m_Value(NotCondition))))
3069    return NotCondition;
3070
3071  BasicBlock *Parent = nullptr;
3072  Instruction *Inst = dyn_cast<Instruction>(Condition);
3073  if (Inst)
3074    Parent = Inst->getParent();
3075  else if (Argument *Arg = dyn_cast<Argument>(Condition))
3076    Parent = &Arg->getParent()->getEntryBlock();
3077  assert(Parent && "Unsupported condition to invert");
3078
3079  // Third: Check all the users for an invert
3080  for (User *U : Condition->users())
3081    if (Instruction *I = dyn_cast<Instruction>(U))
3082      if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3083        return I;
3084
3085  // Last option: Create a new instruction
3086  auto *Inverted =
3087      BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3088  if (Inst && !isa<PHINode>(Inst))
3089    Inverted->insertAfter(Inst);
3090  else
3091    Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3092  return Inverted;
3093}
3094