1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements inlining of a function into a call site, resolving
10// parameters and the return value as appropriate.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/None.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/AssumptionCache.h"
25#include "llvm/Analysis/BlockFrequencyInfo.h"
26#include "llvm/Analysis/CallGraph.h"
27#include "llvm/Analysis/CaptureTracking.h"
28#include "llvm/Analysis/EHPersonalities.h"
29#include "llvm/Analysis/InstructionSimplify.h"
30#include "llvm/Analysis/ProfileSummaryInfo.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/Analysis/VectorUtils.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/CFG.h"
37#include "llvm/IR/Constant.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DIBuilder.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DebugInfoMetadata.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/InstrTypes.h"
48#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/IntrinsicInst.h"
51#include "llvm/IR/Intrinsics.h"
52#include "llvm/IR/LLVMContext.h"
53#include "llvm/IR/MDBuilder.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/Type.h"
57#include "llvm/IR/User.h"
58#include "llvm/IR/Value.h"
59#include "llvm/Support/Casting.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
63#include "llvm/Transforms/Utils/Cloning.h"
64#include "llvm/Transforms/Utils/ValueMapper.h"
65#include <algorithm>
66#include <cassert>
67#include <cstdint>
68#include <iterator>
69#include <limits>
70#include <string>
71#include <utility>
72#include <vector>
73
74using namespace llvm;
75using ProfileCount = Function::ProfileCount;
76
77static cl::opt<bool>
78EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
79  cl::Hidden,
80  cl::desc("Convert noalias attributes to metadata during inlining."));
81
82// Disabled by default, because the added alignment assumptions may increase
83// compile-time and block optimizations. This option is not suitable for use
84// with frontends that emit comprehensive parameter alignment annotations.
85static cl::opt<bool>
86PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
87  cl::init(false), cl::Hidden,
88  cl::desc("Convert align attributes to assumptions during inlining."));
89
90static cl::opt<bool> UpdateReturnAttributes(
91        "update-return-attrs", cl::init(true), cl::Hidden,
92            cl::desc("Update return attributes on calls within inlined body"));
93
94static cl::opt<unsigned> InlinerAttributeWindow(
95    "max-inst-checked-for-throw-during-inlining", cl::Hidden,
96    cl::desc("the maximum number of instructions analyzed for may throw during "
97             "attribute inference in inlined body"),
98    cl::init(4));
99
100namespace {
101
102  /// A class for recording information about inlining a landing pad.
103  class LandingPadInliningInfo {
104    /// Destination of the invoke's unwind.
105    BasicBlock *OuterResumeDest;
106
107    /// Destination for the callee's resume.
108    BasicBlock *InnerResumeDest = nullptr;
109
110    /// LandingPadInst associated with the invoke.
111    LandingPadInst *CallerLPad = nullptr;
112
113    /// PHI for EH values from landingpad insts.
114    PHINode *InnerEHValuesPHI = nullptr;
115
116    SmallVector<Value*, 8> UnwindDestPHIValues;
117
118  public:
119    LandingPadInliningInfo(InvokeInst *II)
120        : OuterResumeDest(II->getUnwindDest()) {
121      // If there are PHI nodes in the unwind destination block, we need to keep
122      // track of which values came into them from the invoke before removing
123      // the edge from this block.
124      BasicBlock *InvokeBB = II->getParent();
125      BasicBlock::iterator I = OuterResumeDest->begin();
126      for (; isa<PHINode>(I); ++I) {
127        // Save the value to use for this edge.
128        PHINode *PHI = cast<PHINode>(I);
129        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
130      }
131
132      CallerLPad = cast<LandingPadInst>(I);
133    }
134
135    /// The outer unwind destination is the target of
136    /// unwind edges introduced for calls within the inlined function.
137    BasicBlock *getOuterResumeDest() const {
138      return OuterResumeDest;
139    }
140
141    BasicBlock *getInnerResumeDest();
142
143    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
144
145    /// Forward the 'resume' instruction to the caller's landing pad block.
146    /// When the landing pad block has only one predecessor, this is
147    /// a simple branch. When there is more than one predecessor, we need to
148    /// split the landing pad block after the landingpad instruction and jump
149    /// to there.
150    void forwardResume(ResumeInst *RI,
151                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
152
153    /// Add incoming-PHI values to the unwind destination block for the given
154    /// basic block, using the values for the original invoke's source block.
155    void addIncomingPHIValuesFor(BasicBlock *BB) const {
156      addIncomingPHIValuesForInto(BB, OuterResumeDest);
157    }
158
159    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
160      BasicBlock::iterator I = dest->begin();
161      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
162        PHINode *phi = cast<PHINode>(I);
163        phi->addIncoming(UnwindDestPHIValues[i], src);
164      }
165    }
166  };
167
168} // end anonymous namespace
169
170/// Get or create a target for the branch from ResumeInsts.
171BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
172  if (InnerResumeDest) return InnerResumeDest;
173
174  // Split the landing pad.
175  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
176  InnerResumeDest =
177    OuterResumeDest->splitBasicBlock(SplitPoint,
178                                     OuterResumeDest->getName() + ".body");
179
180  // The number of incoming edges we expect to the inner landing pad.
181  const unsigned PHICapacity = 2;
182
183  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
184  Instruction *InsertPoint = &InnerResumeDest->front();
185  BasicBlock::iterator I = OuterResumeDest->begin();
186  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
187    PHINode *OuterPHI = cast<PHINode>(I);
188    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
189                                        OuterPHI->getName() + ".lpad-body",
190                                        InsertPoint);
191    OuterPHI->replaceAllUsesWith(InnerPHI);
192    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
193  }
194
195  // Create a PHI for the exception values.
196  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
197                                     "eh.lpad-body", InsertPoint);
198  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
199  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
200
201  // All done.
202  return InnerResumeDest;
203}
204
205/// Forward the 'resume' instruction to the caller's landing pad block.
206/// When the landing pad block has only one predecessor, this is a simple
207/// branch. When there is more than one predecessor, we need to split the
208/// landing pad block after the landingpad instruction and jump to there.
209void LandingPadInliningInfo::forwardResume(
210    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
211  BasicBlock *Dest = getInnerResumeDest();
212  BasicBlock *Src = RI->getParent();
213
214  BranchInst::Create(Dest, Src);
215
216  // Update the PHIs in the destination. They were inserted in an order which
217  // makes this work.
218  addIncomingPHIValuesForInto(Src, Dest);
219
220  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
221  RI->eraseFromParent();
222}
223
224/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
225static Value *getParentPad(Value *EHPad) {
226  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
227    return FPI->getParentPad();
228  return cast<CatchSwitchInst>(EHPad)->getParentPad();
229}
230
231using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
232
233/// Helper for getUnwindDestToken that does the descendant-ward part of
234/// the search.
235static Value *getUnwindDestTokenHelper(Instruction *EHPad,
236                                       UnwindDestMemoTy &MemoMap) {
237  SmallVector<Instruction *, 8> Worklist(1, EHPad);
238
239  while (!Worklist.empty()) {
240    Instruction *CurrentPad = Worklist.pop_back_val();
241    // We only put pads on the worklist that aren't in the MemoMap.  When
242    // we find an unwind dest for a pad we may update its ancestors, but
243    // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
244    // so they should never get updated while queued on the worklist.
245    assert(!MemoMap.count(CurrentPad));
246    Value *UnwindDestToken = nullptr;
247    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
248      if (CatchSwitch->hasUnwindDest()) {
249        UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
250      } else {
251        // Catchswitch doesn't have a 'nounwind' variant, and one might be
252        // annotated as "unwinds to caller" when really it's nounwind (see
253        // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
254        // parent's unwind dest from this.  We can check its catchpads'
255        // descendants, since they might include a cleanuppad with an
256        // "unwinds to caller" cleanupret, which can be trusted.
257        for (auto HI = CatchSwitch->handler_begin(),
258                  HE = CatchSwitch->handler_end();
259             HI != HE && !UnwindDestToken; ++HI) {
260          BasicBlock *HandlerBlock = *HI;
261          auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
262          for (User *Child : CatchPad->users()) {
263            // Intentionally ignore invokes here -- since the catchswitch is
264            // marked "unwind to caller", it would be a verifier error if it
265            // contained an invoke which unwinds out of it, so any invoke we'd
266            // encounter must unwind to some child of the catch.
267            if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
268              continue;
269
270            Instruction *ChildPad = cast<Instruction>(Child);
271            auto Memo = MemoMap.find(ChildPad);
272            if (Memo == MemoMap.end()) {
273              // Haven't figured out this child pad yet; queue it.
274              Worklist.push_back(ChildPad);
275              continue;
276            }
277            // We've already checked this child, but might have found that
278            // it offers no proof either way.
279            Value *ChildUnwindDestToken = Memo->second;
280            if (!ChildUnwindDestToken)
281              continue;
282            // We already know the child's unwind dest, which can either
283            // be ConstantTokenNone to indicate unwind to caller, or can
284            // be another child of the catchpad.  Only the former indicates
285            // the unwind dest of the catchswitch.
286            if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
287              UnwindDestToken = ChildUnwindDestToken;
288              break;
289            }
290            assert(getParentPad(ChildUnwindDestToken) == CatchPad);
291          }
292        }
293      }
294    } else {
295      auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
296      for (User *U : CleanupPad->users()) {
297        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
298          if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
299            UnwindDestToken = RetUnwindDest->getFirstNonPHI();
300          else
301            UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
302          break;
303        }
304        Value *ChildUnwindDestToken;
305        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
306          ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
307        } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
308          Instruction *ChildPad = cast<Instruction>(U);
309          auto Memo = MemoMap.find(ChildPad);
310          if (Memo == MemoMap.end()) {
311            // Haven't resolved this child yet; queue it and keep searching.
312            Worklist.push_back(ChildPad);
313            continue;
314          }
315          // We've checked this child, but still need to ignore it if it
316          // had no proof either way.
317          ChildUnwindDestToken = Memo->second;
318          if (!ChildUnwindDestToken)
319            continue;
320        } else {
321          // Not a relevant user of the cleanuppad
322          continue;
323        }
324        // In a well-formed program, the child/invoke must either unwind to
325        // an(other) child of the cleanup, or exit the cleanup.  In the
326        // first case, continue searching.
327        if (isa<Instruction>(ChildUnwindDestToken) &&
328            getParentPad(ChildUnwindDestToken) == CleanupPad)
329          continue;
330        UnwindDestToken = ChildUnwindDestToken;
331        break;
332      }
333    }
334    // If we haven't found an unwind dest for CurrentPad, we may have queued its
335    // children, so move on to the next in the worklist.
336    if (!UnwindDestToken)
337      continue;
338
339    // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
340    // any ancestors of CurrentPad up to but not including UnwindDestToken's
341    // parent pad.  Record this in the memo map, and check to see if the
342    // original EHPad being queried is one of the ones exited.
343    Value *UnwindParent;
344    if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
345      UnwindParent = getParentPad(UnwindPad);
346    else
347      UnwindParent = nullptr;
348    bool ExitedOriginalPad = false;
349    for (Instruction *ExitedPad = CurrentPad;
350         ExitedPad && ExitedPad != UnwindParent;
351         ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
352      // Skip over catchpads since they just follow their catchswitches.
353      if (isa<CatchPadInst>(ExitedPad))
354        continue;
355      MemoMap[ExitedPad] = UnwindDestToken;
356      ExitedOriginalPad |= (ExitedPad == EHPad);
357    }
358
359    if (ExitedOriginalPad)
360      return UnwindDestToken;
361
362    // Continue the search.
363  }
364
365  // No definitive information is contained within this funclet.
366  return nullptr;
367}
368
369/// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
370/// return that pad instruction.  If it unwinds to caller, return
371/// ConstantTokenNone.  If it does not have a definitive unwind destination,
372/// return nullptr.
373///
374/// This routine gets invoked for calls in funclets in inlinees when inlining
375/// an invoke.  Since many funclets don't have calls inside them, it's queried
376/// on-demand rather than building a map of pads to unwind dests up front.
377/// Determining a funclet's unwind dest may require recursively searching its
378/// descendants, and also ancestors and cousins if the descendants don't provide
379/// an answer.  Since most funclets will have their unwind dest immediately
380/// available as the unwind dest of a catchswitch or cleanupret, this routine
381/// searches top-down from the given pad and then up. To avoid worst-case
382/// quadratic run-time given that approach, it uses a memo map to avoid
383/// re-processing funclet trees.  The callers that rewrite the IR as they go
384/// take advantage of this, for correctness, by checking/forcing rewritten
385/// pads' entries to match the original callee view.
386static Value *getUnwindDestToken(Instruction *EHPad,
387                                 UnwindDestMemoTy &MemoMap) {
388  // Catchpads unwind to the same place as their catchswitch;
389  // redirct any queries on catchpads so the code below can
390  // deal with just catchswitches and cleanuppads.
391  if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
392    EHPad = CPI->getCatchSwitch();
393
394  // Check if we've already determined the unwind dest for this pad.
395  auto Memo = MemoMap.find(EHPad);
396  if (Memo != MemoMap.end())
397    return Memo->second;
398
399  // Search EHPad and, if necessary, its descendants.
400  Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
401  assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
402  if (UnwindDestToken)
403    return UnwindDestToken;
404
405  // No information is available for this EHPad from itself or any of its
406  // descendants.  An unwind all the way out to a pad in the caller would
407  // need also to agree with the unwind dest of the parent funclet, so
408  // search up the chain to try to find a funclet with information.  Put
409  // null entries in the memo map to avoid re-processing as we go up.
410  MemoMap[EHPad] = nullptr;
411#ifndef NDEBUG
412  SmallPtrSet<Instruction *, 4> TempMemos;
413  TempMemos.insert(EHPad);
414#endif
415  Instruction *LastUselessPad = EHPad;
416  Value *AncestorToken;
417  for (AncestorToken = getParentPad(EHPad);
418       auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
419       AncestorToken = getParentPad(AncestorToken)) {
420    // Skip over catchpads since they just follow their catchswitches.
421    if (isa<CatchPadInst>(AncestorPad))
422      continue;
423    // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
424    // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
425    // call to getUnwindDestToken, that would mean that AncestorPad had no
426    // information in itself, its descendants, or its ancestors.  If that
427    // were the case, then we should also have recorded the lack of information
428    // for the descendant that we're coming from.  So assert that we don't
429    // find a null entry in the MemoMap for AncestorPad.
430    assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
431    auto AncestorMemo = MemoMap.find(AncestorPad);
432    if (AncestorMemo == MemoMap.end()) {
433      UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
434    } else {
435      UnwindDestToken = AncestorMemo->second;
436    }
437    if (UnwindDestToken)
438      break;
439    LastUselessPad = AncestorPad;
440    MemoMap[LastUselessPad] = nullptr;
441#ifndef NDEBUG
442    TempMemos.insert(LastUselessPad);
443#endif
444  }
445
446  // We know that getUnwindDestTokenHelper was called on LastUselessPad and
447  // returned nullptr (and likewise for EHPad and any of its ancestors up to
448  // LastUselessPad), so LastUselessPad has no information from below.  Since
449  // getUnwindDestTokenHelper must investigate all downward paths through
450  // no-information nodes to prove that a node has no information like this,
451  // and since any time it finds information it records it in the MemoMap for
452  // not just the immediately-containing funclet but also any ancestors also
453  // exited, it must be the case that, walking downward from LastUselessPad,
454  // visiting just those nodes which have not been mapped to an unwind dest
455  // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
456  // they are just used to keep getUnwindDestTokenHelper from repeating work),
457  // any node visited must have been exhaustively searched with no information
458  // for it found.
459  SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
460  while (!Worklist.empty()) {
461    Instruction *UselessPad = Worklist.pop_back_val();
462    auto Memo = MemoMap.find(UselessPad);
463    if (Memo != MemoMap.end() && Memo->second) {
464      // Here the name 'UselessPad' is a bit of a misnomer, because we've found
465      // that it is a funclet that does have information about unwinding to
466      // a particular destination; its parent was a useless pad.
467      // Since its parent has no information, the unwind edge must not escape
468      // the parent, and must target a sibling of this pad.  This local unwind
469      // gives us no information about EHPad.  Leave it and the subtree rooted
470      // at it alone.
471      assert(getParentPad(Memo->second) == getParentPad(UselessPad));
472      continue;
473    }
474    // We know we don't have information for UselesPad.  If it has an entry in
475    // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
476    // added on this invocation of getUnwindDestToken; if a previous invocation
477    // recorded nullptr, it would have had to prove that the ancestors of
478    // UselessPad, which include LastUselessPad, had no information, and that
479    // in turn would have required proving that the descendants of
480    // LastUselesPad, which include EHPad, have no information about
481    // LastUselessPad, which would imply that EHPad was mapped to nullptr in
482    // the MemoMap on that invocation, which isn't the case if we got here.
483    assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
484    // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
485    // information that we'd be contradicting by making a map entry for it
486    // (which is something that getUnwindDestTokenHelper must have proved for
487    // us to get here).  Just assert on is direct users here; the checks in
488    // this downward walk at its descendants will verify that they don't have
489    // any unwind edges that exit 'UselessPad' either (i.e. they either have no
490    // unwind edges or unwind to a sibling).
491    MemoMap[UselessPad] = UnwindDestToken;
492    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
493      assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
494      for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
495        auto *CatchPad = HandlerBlock->getFirstNonPHI();
496        for (User *U : CatchPad->users()) {
497          assert(
498              (!isa<InvokeInst>(U) ||
499               (getParentPad(
500                    cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
501                CatchPad)) &&
502              "Expected useless pad");
503          if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
504            Worklist.push_back(cast<Instruction>(U));
505        }
506      }
507    } else {
508      assert(isa<CleanupPadInst>(UselessPad));
509      for (User *U : UselessPad->users()) {
510        assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
511        assert((!isa<InvokeInst>(U) ||
512                (getParentPad(
513                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
514                 UselessPad)) &&
515               "Expected useless pad");
516        if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
517          Worklist.push_back(cast<Instruction>(U));
518      }
519    }
520  }
521
522  return UnwindDestToken;
523}
524
525/// When we inline a basic block into an invoke,
526/// we have to turn all of the calls that can throw into invokes.
527/// This function analyze BB to see if there are any calls, and if so,
528/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
529/// nodes in that block with the values specified in InvokeDestPHIValues.
530static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
531    BasicBlock *BB, BasicBlock *UnwindEdge,
532    UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
533  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
534    Instruction *I = &*BBI++;
535
536    // We only need to check for function calls: inlined invoke
537    // instructions require no special handling.
538    CallInst *CI = dyn_cast<CallInst>(I);
539
540    if (!CI || CI->doesNotThrow() || CI->isInlineAsm())
541      continue;
542
543    // We do not need to (and in fact, cannot) convert possibly throwing calls
544    // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
545    // invokes.  The caller's "segment" of the deoptimization continuation
546    // attached to the newly inlined @llvm.experimental_deoptimize
547    // (resp. @llvm.experimental.guard) call should contain the exception
548    // handling logic, if any.
549    if (auto *F = CI->getCalledFunction())
550      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
551          F->getIntrinsicID() == Intrinsic::experimental_guard)
552        continue;
553
554    if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
555      // This call is nested inside a funclet.  If that funclet has an unwind
556      // destination within the inlinee, then unwinding out of this call would
557      // be UB.  Rewriting this call to an invoke which targets the inlined
558      // invoke's unwind dest would give the call's parent funclet multiple
559      // unwind destinations, which is something that subsequent EH table
560      // generation can't handle and that the veirifer rejects.  So when we
561      // see such a call, leave it as a call.
562      auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
563      Value *UnwindDestToken =
564          getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
565      if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
566        continue;
567#ifndef NDEBUG
568      Instruction *MemoKey;
569      if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
570        MemoKey = CatchPad->getCatchSwitch();
571      else
572        MemoKey = FuncletPad;
573      assert(FuncletUnwindMap->count(MemoKey) &&
574             (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
575             "must get memoized to avoid confusing later searches");
576#endif // NDEBUG
577    }
578
579    changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
580    return BB;
581  }
582  return nullptr;
583}
584
585/// If we inlined an invoke site, we need to convert calls
586/// in the body of the inlined function into invokes.
587///
588/// II is the invoke instruction being inlined.  FirstNewBlock is the first
589/// block of the inlined code (the last block is the end of the function),
590/// and InlineCodeInfo is information about the code that got inlined.
591static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
592                                    ClonedCodeInfo &InlinedCodeInfo) {
593  BasicBlock *InvokeDest = II->getUnwindDest();
594
595  Function *Caller = FirstNewBlock->getParent();
596
597  // The inlined code is currently at the end of the function, scan from the
598  // start of the inlined code to its end, checking for stuff we need to
599  // rewrite.
600  LandingPadInliningInfo Invoke(II);
601
602  // Get all of the inlined landing pad instructions.
603  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
604  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
605       I != E; ++I)
606    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
607      InlinedLPads.insert(II->getLandingPadInst());
608
609  // Append the clauses from the outer landing pad instruction into the inlined
610  // landing pad instructions.
611  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
612  for (LandingPadInst *InlinedLPad : InlinedLPads) {
613    unsigned OuterNum = OuterLPad->getNumClauses();
614    InlinedLPad->reserveClauses(OuterNum);
615    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
616      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
617    if (OuterLPad->isCleanup())
618      InlinedLPad->setCleanup(true);
619  }
620
621  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
622       BB != E; ++BB) {
623    if (InlinedCodeInfo.ContainsCalls)
624      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
625              &*BB, Invoke.getOuterResumeDest()))
626        // Update any PHI nodes in the exceptional block to indicate that there
627        // is now a new entry in them.
628        Invoke.addIncomingPHIValuesFor(NewBB);
629
630    // Forward any resumes that are remaining here.
631    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
632      Invoke.forwardResume(RI, InlinedLPads);
633  }
634
635  // Now that everything is happy, we have one final detail.  The PHI nodes in
636  // the exception destination block still have entries due to the original
637  // invoke instruction. Eliminate these entries (which might even delete the
638  // PHI node) now.
639  InvokeDest->removePredecessor(II->getParent());
640}
641
642/// If we inlined an invoke site, we need to convert calls
643/// in the body of the inlined function into invokes.
644///
645/// II is the invoke instruction being inlined.  FirstNewBlock is the first
646/// block of the inlined code (the last block is the end of the function),
647/// and InlineCodeInfo is information about the code that got inlined.
648static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
649                               ClonedCodeInfo &InlinedCodeInfo) {
650  BasicBlock *UnwindDest = II->getUnwindDest();
651  Function *Caller = FirstNewBlock->getParent();
652
653  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
654
655  // If there are PHI nodes in the unwind destination block, we need to keep
656  // track of which values came into them from the invoke before removing the
657  // edge from this block.
658  SmallVector<Value *, 8> UnwindDestPHIValues;
659  BasicBlock *InvokeBB = II->getParent();
660  for (Instruction &I : *UnwindDest) {
661    // Save the value to use for this edge.
662    PHINode *PHI = dyn_cast<PHINode>(&I);
663    if (!PHI)
664      break;
665    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
666  }
667
668  // Add incoming-PHI values to the unwind destination block for the given basic
669  // block, using the values for the original invoke's source block.
670  auto UpdatePHINodes = [&](BasicBlock *Src) {
671    BasicBlock::iterator I = UnwindDest->begin();
672    for (Value *V : UnwindDestPHIValues) {
673      PHINode *PHI = cast<PHINode>(I);
674      PHI->addIncoming(V, Src);
675      ++I;
676    }
677  };
678
679  // This connects all the instructions which 'unwind to caller' to the invoke
680  // destination.
681  UnwindDestMemoTy FuncletUnwindMap;
682  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
683       BB != E; ++BB) {
684    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
685      if (CRI->unwindsToCaller()) {
686        auto *CleanupPad = CRI->getCleanupPad();
687        CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
688        CRI->eraseFromParent();
689        UpdatePHINodes(&*BB);
690        // Finding a cleanupret with an unwind destination would confuse
691        // subsequent calls to getUnwindDestToken, so map the cleanuppad
692        // to short-circuit any such calls and recognize this as an "unwind
693        // to caller" cleanup.
694        assert(!FuncletUnwindMap.count(CleanupPad) ||
695               isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
696        FuncletUnwindMap[CleanupPad] =
697            ConstantTokenNone::get(Caller->getContext());
698      }
699    }
700
701    Instruction *I = BB->getFirstNonPHI();
702    if (!I->isEHPad())
703      continue;
704
705    Instruction *Replacement = nullptr;
706    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
707      if (CatchSwitch->unwindsToCaller()) {
708        Value *UnwindDestToken;
709        if (auto *ParentPad =
710                dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
711          // This catchswitch is nested inside another funclet.  If that
712          // funclet has an unwind destination within the inlinee, then
713          // unwinding out of this catchswitch would be UB.  Rewriting this
714          // catchswitch to unwind to the inlined invoke's unwind dest would
715          // give the parent funclet multiple unwind destinations, which is
716          // something that subsequent EH table generation can't handle and
717          // that the veirifer rejects.  So when we see such a call, leave it
718          // as "unwind to caller".
719          UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
720          if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
721            continue;
722        } else {
723          // This catchswitch has no parent to inherit constraints from, and
724          // none of its descendants can have an unwind edge that exits it and
725          // targets another funclet in the inlinee.  It may or may not have a
726          // descendant that definitively has an unwind to caller.  In either
727          // case, we'll have to assume that any unwinds out of it may need to
728          // be routed to the caller, so treat it as though it has a definitive
729          // unwind to caller.
730          UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
731        }
732        auto *NewCatchSwitch = CatchSwitchInst::Create(
733            CatchSwitch->getParentPad(), UnwindDest,
734            CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
735            CatchSwitch);
736        for (BasicBlock *PadBB : CatchSwitch->handlers())
737          NewCatchSwitch->addHandler(PadBB);
738        // Propagate info for the old catchswitch over to the new one in
739        // the unwind map.  This also serves to short-circuit any subsequent
740        // checks for the unwind dest of this catchswitch, which would get
741        // confused if they found the outer handler in the callee.
742        FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
743        Replacement = NewCatchSwitch;
744      }
745    } else if (!isa<FuncletPadInst>(I)) {
746      llvm_unreachable("unexpected EHPad!");
747    }
748
749    if (Replacement) {
750      Replacement->takeName(I);
751      I->replaceAllUsesWith(Replacement);
752      I->eraseFromParent();
753      UpdatePHINodes(&*BB);
754    }
755  }
756
757  if (InlinedCodeInfo.ContainsCalls)
758    for (Function::iterator BB = FirstNewBlock->getIterator(),
759                            E = Caller->end();
760         BB != E; ++BB)
761      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
762              &*BB, UnwindDest, &FuncletUnwindMap))
763        // Update any PHI nodes in the exceptional block to indicate that there
764        // is now a new entry in them.
765        UpdatePHINodes(NewBB);
766
767  // Now that everything is happy, we have one final detail.  The PHI nodes in
768  // the exception destination block still have entries due to the original
769  // invoke instruction. Eliminate these entries (which might even delete the
770  // PHI node) now.
771  UnwindDest->removePredecessor(InvokeBB);
772}
773
774/// When inlining a call site that has !llvm.mem.parallel_loop_access or
775/// llvm.access.group metadata, that metadata should be propagated to all
776/// memory-accessing cloned instructions.
777static void PropagateParallelLoopAccessMetadata(CallBase &CB,
778                                                ValueToValueMapTy &VMap) {
779  MDNode *M = CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
780  MDNode *CallAccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
781  if (!M && !CallAccessGroup)
782    return;
783
784  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
785       VMI != VMIE; ++VMI) {
786    if (!VMI->second)
787      continue;
788
789    Instruction *NI = dyn_cast<Instruction>(VMI->second);
790    if (!NI)
791      continue;
792
793    if (M) {
794      if (MDNode *PM =
795              NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
796        M = MDNode::concatenate(PM, M);
797      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
798      } else if (NI->mayReadOrWriteMemory()) {
799        NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
800      }
801    }
802
803    if (NI->mayReadOrWriteMemory()) {
804      MDNode *UnitedAccGroups = uniteAccessGroups(
805          NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
806      NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
807    }
808  }
809}
810
811/// When inlining a function that contains noalias scope metadata,
812/// this metadata needs to be cloned so that the inlined blocks
813/// have different "unique scopes" at every call site. Were this not done, then
814/// aliasing scopes from a function inlined into a caller multiple times could
815/// not be differentiated (and this would lead to miscompiles because the
816/// non-aliasing property communicated by the metadata could have
817/// call-site-specific control dependencies).
818static void CloneAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap) {
819  const Function *CalledFunc = CB.getCalledFunction();
820  SetVector<const MDNode *> MD;
821
822  // Note: We could only clone the metadata if it is already used in the
823  // caller. I'm omitting that check here because it might confuse
824  // inter-procedural alias analysis passes. We can revisit this if it becomes
825  // an efficiency or overhead problem.
826
827  for (const BasicBlock &I : *CalledFunc)
828    for (const Instruction &J : I) {
829      if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
830        MD.insert(M);
831      if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
832        MD.insert(M);
833    }
834
835  if (MD.empty())
836    return;
837
838  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
839  // the set.
840  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
841  while (!Queue.empty()) {
842    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
843    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
844      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
845        if (MD.insert(M1))
846          Queue.push_back(M1);
847  }
848
849  // Now we have a complete set of all metadata in the chains used to specify
850  // the noalias scopes and the lists of those scopes.
851  SmallVector<TempMDTuple, 16> DummyNodes;
852  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
853  for (const MDNode *I : MD) {
854    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
855    MDMap[I].reset(DummyNodes.back().get());
856  }
857
858  // Create new metadata nodes to replace the dummy nodes, replacing old
859  // metadata references with either a dummy node or an already-created new
860  // node.
861  for (const MDNode *I : MD) {
862    SmallVector<Metadata *, 4> NewOps;
863    for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
864      const Metadata *V = I->getOperand(i);
865      if (const MDNode *M = dyn_cast<MDNode>(V))
866        NewOps.push_back(MDMap[M]);
867      else
868        NewOps.push_back(const_cast<Metadata *>(V));
869    }
870
871    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
872    MDTuple *TempM = cast<MDTuple>(MDMap[I]);
873    assert(TempM->isTemporary() && "Expected temporary node");
874
875    TempM->replaceAllUsesWith(NewM);
876  }
877
878  // Now replace the metadata in the new inlined instructions with the
879  // repacements from the map.
880  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
881       VMI != VMIE; ++VMI) {
882    if (!VMI->second)
883      continue;
884
885    Instruction *NI = dyn_cast<Instruction>(VMI->second);
886    if (!NI)
887      continue;
888
889    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
890      MDNode *NewMD = MDMap[M];
891      // If the call site also had alias scope metadata (a list of scopes to
892      // which instructions inside it might belong), propagate those scopes to
893      // the inlined instructions.
894      if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_alias_scope))
895        NewMD = MDNode::concatenate(NewMD, CSM);
896      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
897    } else if (NI->mayReadOrWriteMemory()) {
898      if (MDNode *M = CB.getMetadata(LLVMContext::MD_alias_scope))
899        NI->setMetadata(LLVMContext::MD_alias_scope, M);
900    }
901
902    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
903      MDNode *NewMD = MDMap[M];
904      // If the call site also had noalias metadata (a list of scopes with
905      // which instructions inside it don't alias), propagate those scopes to
906      // the inlined instructions.
907      if (MDNode *CSM = CB.getMetadata(LLVMContext::MD_noalias))
908        NewMD = MDNode::concatenate(NewMD, CSM);
909      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
910    } else if (NI->mayReadOrWriteMemory()) {
911      if (MDNode *M = CB.getMetadata(LLVMContext::MD_noalias))
912        NI->setMetadata(LLVMContext::MD_noalias, M);
913    }
914  }
915}
916
917/// If the inlined function has noalias arguments,
918/// then add new alias scopes for each noalias argument, tag the mapped noalias
919/// parameters with noalias metadata specifying the new scope, and tag all
920/// non-derived loads, stores and memory intrinsics with the new alias scopes.
921static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
922                                  const DataLayout &DL, AAResults *CalleeAAR) {
923  if (!EnableNoAliasConversion)
924    return;
925
926  const Function *CalledFunc = CB.getCalledFunction();
927  SmallVector<const Argument *, 4> NoAliasArgs;
928
929  for (const Argument &Arg : CalledFunc->args())
930    if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
931      NoAliasArgs.push_back(&Arg);
932
933  if (NoAliasArgs.empty())
934    return;
935
936  // To do a good job, if a noalias variable is captured, we need to know if
937  // the capture point dominates the particular use we're considering.
938  DominatorTree DT;
939  DT.recalculate(const_cast<Function&>(*CalledFunc));
940
941  // noalias indicates that pointer values based on the argument do not alias
942  // pointer values which are not based on it. So we add a new "scope" for each
943  // noalias function argument. Accesses using pointers based on that argument
944  // become part of that alias scope, accesses using pointers not based on that
945  // argument are tagged as noalias with that scope.
946
947  DenseMap<const Argument *, MDNode *> NewScopes;
948  MDBuilder MDB(CalledFunc->getContext());
949
950  // Create a new scope domain for this function.
951  MDNode *NewDomain =
952    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
953  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
954    const Argument *A = NoAliasArgs[i];
955
956    std::string Name = std::string(CalledFunc->getName());
957    if (A->hasName()) {
958      Name += ": %";
959      Name += A->getName();
960    } else {
961      Name += ": argument ";
962      Name += utostr(i);
963    }
964
965    // Note: We always create a new anonymous root here. This is true regardless
966    // of the linkage of the callee because the aliasing "scope" is not just a
967    // property of the callee, but also all control dependencies in the caller.
968    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
969    NewScopes.insert(std::make_pair(A, NewScope));
970  }
971
972  // Iterate over all new instructions in the map; for all memory-access
973  // instructions, add the alias scope metadata.
974  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
975       VMI != VMIE; ++VMI) {
976    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
977      if (!VMI->second)
978        continue;
979
980      Instruction *NI = dyn_cast<Instruction>(VMI->second);
981      if (!NI)
982        continue;
983
984      bool IsArgMemOnlyCall = false, IsFuncCall = false;
985      SmallVector<const Value *, 2> PtrArgs;
986
987      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
988        PtrArgs.push_back(LI->getPointerOperand());
989      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
990        PtrArgs.push_back(SI->getPointerOperand());
991      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
992        PtrArgs.push_back(VAAI->getPointerOperand());
993      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
994        PtrArgs.push_back(CXI->getPointerOperand());
995      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
996        PtrArgs.push_back(RMWI->getPointerOperand());
997      else if (const auto *Call = dyn_cast<CallBase>(I)) {
998        // If we know that the call does not access memory, then we'll still
999        // know that about the inlined clone of this call site, and we don't
1000        // need to add metadata.
1001        if (Call->doesNotAccessMemory())
1002          continue;
1003
1004        IsFuncCall = true;
1005        if (CalleeAAR) {
1006          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1007          if (AAResults::onlyAccessesArgPointees(MRB))
1008            IsArgMemOnlyCall = true;
1009        }
1010
1011        for (Value *Arg : Call->args()) {
1012          // We need to check the underlying objects of all arguments, not just
1013          // the pointer arguments, because we might be passing pointers as
1014          // integers, etc.
1015          // However, if we know that the call only accesses pointer arguments,
1016          // then we only need to check the pointer arguments.
1017          if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1018            continue;
1019
1020          PtrArgs.push_back(Arg);
1021        }
1022      }
1023
1024      // If we found no pointers, then this instruction is not suitable for
1025      // pairing with an instruction to receive aliasing metadata.
1026      // However, if this is a call, this we might just alias with none of the
1027      // noalias arguments.
1028      if (PtrArgs.empty() && !IsFuncCall)
1029        continue;
1030
1031      // It is possible that there is only one underlying object, but you
1032      // need to go through several PHIs to see it, and thus could be
1033      // repeated in the Objects list.
1034      SmallPtrSet<const Value *, 4> ObjSet;
1035      SmallVector<Metadata *, 4> Scopes, NoAliases;
1036
1037      SmallSetVector<const Argument *, 4> NAPtrArgs;
1038      for (const Value *V : PtrArgs) {
1039        SmallVector<const Value *, 4> Objects;
1040        GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);
1041
1042        for (const Value *O : Objects)
1043          ObjSet.insert(O);
1044      }
1045
1046      // Figure out if we're derived from anything that is not a noalias
1047      // argument.
1048      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1049      for (const Value *V : ObjSet) {
1050        // Is this value a constant that cannot be derived from any pointer
1051        // value (we need to exclude constant expressions, for example, that
1052        // are formed from arithmetic on global symbols).
1053        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1054                             isa<ConstantPointerNull>(V) ||
1055                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1056        if (IsNonPtrConst)
1057          continue;
1058
1059        // If this is anything other than a noalias argument, then we cannot
1060        // completely describe the aliasing properties using alias.scope
1061        // metadata (and, thus, won't add any).
1062        if (const Argument *A = dyn_cast<Argument>(V)) {
1063          if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1064            UsesAliasingPtr = true;
1065        } else {
1066          UsesAliasingPtr = true;
1067        }
1068
1069        // If this is not some identified function-local object (which cannot
1070        // directly alias a noalias argument), or some other argument (which,
1071        // by definition, also cannot alias a noalias argument), then we could
1072        // alias a noalias argument that has been captured).
1073        if (!isa<Argument>(V) &&
1074            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1075          CanDeriveViaCapture = true;
1076      }
1077
1078      // A function call can always get captured noalias pointers (via other
1079      // parameters, globals, etc.).
1080      if (IsFuncCall && !IsArgMemOnlyCall)
1081        CanDeriveViaCapture = true;
1082
1083      // First, we want to figure out all of the sets with which we definitely
1084      // don't alias. Iterate over all noalias set, and add those for which:
1085      //   1. The noalias argument is not in the set of objects from which we
1086      //      definitely derive.
1087      //   2. The noalias argument has not yet been captured.
1088      // An arbitrary function that might load pointers could see captured
1089      // noalias arguments via other noalias arguments or globals, and so we
1090      // must always check for prior capture.
1091      for (const Argument *A : NoAliasArgs) {
1092        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1093                                 // It might be tempting to skip the
1094                                 // PointerMayBeCapturedBefore check if
1095                                 // A->hasNoCaptureAttr() is true, but this is
1096                                 // incorrect because nocapture only guarantees
1097                                 // that no copies outlive the function, not
1098                                 // that the value cannot be locally captured.
1099                                 !PointerMayBeCapturedBefore(A,
1100                                   /* ReturnCaptures */ false,
1101                                   /* StoreCaptures */ false, I, &DT)))
1102          NoAliases.push_back(NewScopes[A]);
1103      }
1104
1105      if (!NoAliases.empty())
1106        NI->setMetadata(LLVMContext::MD_noalias,
1107                        MDNode::concatenate(
1108                            NI->getMetadata(LLVMContext::MD_noalias),
1109                            MDNode::get(CalledFunc->getContext(), NoAliases)));
1110
1111      // Next, we want to figure out all of the sets to which we might belong.
1112      // We might belong to a set if the noalias argument is in the set of
1113      // underlying objects. If there is some non-noalias argument in our list
1114      // of underlying objects, then we cannot add a scope because the fact
1115      // that some access does not alias with any set of our noalias arguments
1116      // cannot itself guarantee that it does not alias with this access
1117      // (because there is some pointer of unknown origin involved and the
1118      // other access might also depend on this pointer). We also cannot add
1119      // scopes to arbitrary functions unless we know they don't access any
1120      // non-parameter pointer-values.
1121      bool CanAddScopes = !UsesAliasingPtr;
1122      if (CanAddScopes && IsFuncCall)
1123        CanAddScopes = IsArgMemOnlyCall;
1124
1125      if (CanAddScopes)
1126        for (const Argument *A : NoAliasArgs) {
1127          if (ObjSet.count(A))
1128            Scopes.push_back(NewScopes[A]);
1129        }
1130
1131      if (!Scopes.empty())
1132        NI->setMetadata(
1133            LLVMContext::MD_alias_scope,
1134            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1135                                MDNode::get(CalledFunc->getContext(), Scopes)));
1136    }
1137  }
1138}
1139
1140static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1141                                            Instruction *End) {
1142
1143  assert(Begin->getParent() == End->getParent() &&
1144         "Expected to be in same basic block!");
1145  unsigned NumInstChecked = 0;
1146  // Check that all instructions in the range [Begin, End) are guaranteed to
1147  // transfer execution to successor.
1148  for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1149    if (NumInstChecked++ > InlinerAttributeWindow ||
1150        !isGuaranteedToTransferExecutionToSuccessor(&I))
1151      return true;
1152  return false;
1153}
1154
1155static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1156
1157  AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1158  if (AB.empty())
1159    return AB;
1160  AttrBuilder Valid;
1161  // Only allow these white listed attributes to be propagated back to the
1162  // callee. This is because other attributes may only be valid on the call
1163  // itself, i.e. attributes such as signext and zeroext.
1164  if (auto DerefBytes = AB.getDereferenceableBytes())
1165    Valid.addDereferenceableAttr(DerefBytes);
1166  if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1167    Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1168  if (AB.contains(Attribute::NoAlias))
1169    Valid.addAttribute(Attribute::NoAlias);
1170  if (AB.contains(Attribute::NonNull))
1171    Valid.addAttribute(Attribute::NonNull);
1172  return Valid;
1173}
1174
1175static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1176  if (!UpdateReturnAttributes)
1177    return;
1178
1179  AttrBuilder Valid = IdentifyValidAttributes(CB);
1180  if (Valid.empty())
1181    return;
1182  auto *CalledFunction = CB.getCalledFunction();
1183  auto &Context = CalledFunction->getContext();
1184
1185  for (auto &BB : *CalledFunction) {
1186    auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1187    if (!RI || !isa<CallBase>(RI->getOperand(0)))
1188      continue;
1189    auto *RetVal = cast<CallBase>(RI->getOperand(0));
1190    // Sanity check that the cloned RetVal exists and is a call, otherwise we
1191    // cannot add the attributes on the cloned RetVal.
1192    // Simplification during inlining could have transformed the cloned
1193    // instruction.
1194    auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1195    if (!NewRetVal)
1196      continue;
1197    // Backward propagation of attributes to the returned value may be incorrect
1198    // if it is control flow dependent.
1199    // Consider:
1200    // @callee {
1201    //  %rv = call @foo()
1202    //  %rv2 = call @bar()
1203    //  if (%rv2 != null)
1204    //    return %rv2
1205    //  if (%rv == null)
1206    //    exit()
1207    //  return %rv
1208    // }
1209    // caller() {
1210    //   %val = call nonnull @callee()
1211    // }
1212    // Here we cannot add the nonnull attribute on either foo or bar. So, we
1213    // limit the check to both RetVal and RI are in the same basic block and
1214    // there are no throwing/exiting instructions between these instructions.
1215    if (RI->getParent() != RetVal->getParent() ||
1216        MayContainThrowingOrExitingCall(RetVal, RI))
1217      continue;
1218    // Add to the existing attributes of NewRetVal, i.e. the cloned call
1219    // instruction.
1220    // NB! When we have the same attribute already existing on NewRetVal, but
1221    // with a differing value, the AttributeList's merge API honours the already
1222    // existing attribute value (i.e. attributes such as dereferenceable,
1223    // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1224    AttributeList AL = NewRetVal->getAttributes();
1225    AttributeList NewAL =
1226        AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1227    NewRetVal->setAttributes(NewAL);
1228  }
1229}
1230
1231/// If the inlined function has non-byval align arguments, then
1232/// add @llvm.assume-based alignment assumptions to preserve this information.
1233static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1234  if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1235    return;
1236
1237  AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1238  auto &DL = CB.getCaller()->getParent()->getDataLayout();
1239
1240  // To avoid inserting redundant assumptions, we should check for assumptions
1241  // already in the caller. To do this, we might need a DT of the caller.
1242  DominatorTree DT;
1243  bool DTCalculated = false;
1244
1245  Function *CalledFunc = CB.getCalledFunction();
1246  for (Argument &Arg : CalledFunc->args()) {
1247    unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1248    if (Align && !Arg.hasPassPointeeByValueAttr() && !Arg.hasNUses(0)) {
1249      if (!DTCalculated) {
1250        DT.recalculate(*CB.getCaller());
1251        DTCalculated = true;
1252      }
1253
1254      // If we can already prove the asserted alignment in the context of the
1255      // caller, then don't bother inserting the assumption.
1256      Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1257      if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1258        continue;
1259
1260      CallInst *NewAsmp =
1261          IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1262      AC->registerAssumption(NewAsmp);
1263    }
1264  }
1265}
1266
1267/// Once we have cloned code over from a callee into the caller,
1268/// update the specified callgraph to reflect the changes we made.
1269/// Note that it's possible that not all code was copied over, so only
1270/// some edges of the callgraph may remain.
1271static void UpdateCallGraphAfterInlining(CallBase &CB,
1272                                         Function::iterator FirstNewBlock,
1273                                         ValueToValueMapTy &VMap,
1274                                         InlineFunctionInfo &IFI) {
1275  CallGraph &CG = *IFI.CG;
1276  const Function *Caller = CB.getCaller();
1277  const Function *Callee = CB.getCalledFunction();
1278  CallGraphNode *CalleeNode = CG[Callee];
1279  CallGraphNode *CallerNode = CG[Caller];
1280
1281  // Since we inlined some uninlined call sites in the callee into the caller,
1282  // add edges from the caller to all of the callees of the callee.
1283  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1284
1285  // Consider the case where CalleeNode == CallerNode.
1286  CallGraphNode::CalledFunctionsVector CallCache;
1287  if (CalleeNode == CallerNode) {
1288    CallCache.assign(I, E);
1289    I = CallCache.begin();
1290    E = CallCache.end();
1291  }
1292
1293  for (; I != E; ++I) {
1294    // Skip 'refererence' call records.
1295    if (!I->first)
1296      continue;
1297
1298    const Value *OrigCall = *I->first;
1299
1300    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1301    // Only copy the edge if the call was inlined!
1302    if (VMI == VMap.end() || VMI->second == nullptr)
1303      continue;
1304
1305    // If the call was inlined, but then constant folded, there is no edge to
1306    // add.  Check for this case.
1307    auto *NewCall = dyn_cast<CallBase>(VMI->second);
1308    if (!NewCall)
1309      continue;
1310
1311    // We do not treat intrinsic calls like real function calls because we
1312    // expect them to become inline code; do not add an edge for an intrinsic.
1313    if (NewCall->getCalledFunction() &&
1314        NewCall->getCalledFunction()->isIntrinsic())
1315      continue;
1316
1317    // Remember that this call site got inlined for the client of
1318    // InlineFunction.
1319    IFI.InlinedCalls.push_back(NewCall);
1320
1321    // It's possible that inlining the callsite will cause it to go from an
1322    // indirect to a direct call by resolving a function pointer.  If this
1323    // happens, set the callee of the new call site to a more precise
1324    // destination.  This can also happen if the call graph node of the caller
1325    // was just unnecessarily imprecise.
1326    if (!I->second->getFunction())
1327      if (Function *F = NewCall->getCalledFunction()) {
1328        // Indirect call site resolved to direct call.
1329        CallerNode->addCalledFunction(NewCall, CG[F]);
1330
1331        continue;
1332      }
1333
1334    CallerNode->addCalledFunction(NewCall, I->second);
1335  }
1336
1337  // Update the call graph by deleting the edge from Callee to Caller.  We must
1338  // do this after the loop above in case Caller and Callee are the same.
1339  CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1340}
1341
1342static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1343                                    BasicBlock *InsertBlock,
1344                                    InlineFunctionInfo &IFI) {
1345  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1346  IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1347
1348  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1349
1350  // Always generate a memcpy of alignment 1 here because we don't know
1351  // the alignment of the src pointer.  Other optimizations can infer
1352  // better alignment.
1353  Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1354                       /*SrcAlign*/ Align(1), Size);
1355}
1356
1357/// When inlining a call site that has a byval argument,
1358/// we have to make the implicit memcpy explicit by adding it.
1359static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1360                                  const Function *CalledFunc,
1361                                  InlineFunctionInfo &IFI,
1362                                  unsigned ByValAlignment) {
1363  PointerType *ArgTy = cast<PointerType>(Arg->getType());
1364  Type *AggTy = ArgTy->getElementType();
1365
1366  Function *Caller = TheCall->getFunction();
1367  const DataLayout &DL = Caller->getParent()->getDataLayout();
1368
1369  // If the called function is readonly, then it could not mutate the caller's
1370  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1371  // temporary.
1372  if (CalledFunc->onlyReadsMemory()) {
1373    // If the byval argument has a specified alignment that is greater than the
1374    // passed in pointer, then we either have to round up the input pointer or
1375    // give up on this transformation.
1376    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1377      return Arg;
1378
1379    AssumptionCache *AC =
1380        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1381
1382    // If the pointer is already known to be sufficiently aligned, or if we can
1383    // round it up to a larger alignment, then we don't need a temporary.
1384    if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1385                                   AC) >= ByValAlignment)
1386      return Arg;
1387
1388    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1389    // for code quality, but rarely happens and is required for correctness.
1390  }
1391
1392  // Create the alloca.  If we have DataLayout, use nice alignment.
1393  Align Alignment(DL.getPrefTypeAlignment(AggTy));
1394
1395  // If the byval had an alignment specified, we *must* use at least that
1396  // alignment, as it is required by the byval argument (and uses of the
1397  // pointer inside the callee).
1398  Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1399
1400  Value *NewAlloca =
1401      new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1402                     Arg->getName(), &*Caller->begin()->begin());
1403  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1404
1405  // Uses of the argument in the function should use our new alloca
1406  // instead.
1407  return NewAlloca;
1408}
1409
1410// Check whether this Value is used by a lifetime intrinsic.
1411static bool isUsedByLifetimeMarker(Value *V) {
1412  for (User *U : V->users())
1413    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1414      if (II->isLifetimeStartOrEnd())
1415        return true;
1416  return false;
1417}
1418
1419// Check whether the given alloca already has
1420// lifetime.start or lifetime.end intrinsics.
1421static bool hasLifetimeMarkers(AllocaInst *AI) {
1422  Type *Ty = AI->getType();
1423  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1424                                       Ty->getPointerAddressSpace());
1425  if (Ty == Int8PtrTy)
1426    return isUsedByLifetimeMarker(AI);
1427
1428  // Do a scan to find all the casts to i8*.
1429  for (User *U : AI->users()) {
1430    if (U->getType() != Int8PtrTy) continue;
1431    if (U->stripPointerCasts() != AI) continue;
1432    if (isUsedByLifetimeMarker(U))
1433      return true;
1434  }
1435  return false;
1436}
1437
1438/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1439/// block. Allocas used in inalloca calls and allocas of dynamic array size
1440/// cannot be static.
1441static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1442  return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1443}
1444
1445/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1446/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1447static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1448                               LLVMContext &Ctx,
1449                               DenseMap<const MDNode *, MDNode *> &IANodes) {
1450  auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1451  return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(),
1452                       IA);
1453}
1454
1455/// Update inlined instructions' line numbers to
1456/// to encode location where these instructions are inlined.
1457static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1458                             Instruction *TheCall, bool CalleeHasDebugInfo) {
1459  const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1460  if (!TheCallDL)
1461    return;
1462
1463  auto &Ctx = Fn->getContext();
1464  DILocation *InlinedAtNode = TheCallDL;
1465
1466  // Create a unique call site, not to be confused with any other call from the
1467  // same location.
1468  InlinedAtNode = DILocation::getDistinct(
1469      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1470      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1471
1472  // Cache the inlined-at nodes as they're built so they are reused, without
1473  // this every instruction's inlined-at chain would become distinct from each
1474  // other.
1475  DenseMap<const MDNode *, MDNode *> IANodes;
1476
1477  // Check if we are not generating inline line tables and want to use
1478  // the call site location instead.
1479  bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1480
1481  for (; FI != Fn->end(); ++FI) {
1482    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1483         BI != BE; ++BI) {
1484      // Loop metadata needs to be updated so that the start and end locs
1485      // reference inlined-at locations.
1486      auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
1487                                   const DILocation &Loc) -> DILocation * {
1488        return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
1489      };
1490      updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1491
1492      if (!NoInlineLineTables)
1493        if (DebugLoc DL = BI->getDebugLoc()) {
1494          DebugLoc IDL =
1495              inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1496          BI->setDebugLoc(IDL);
1497          continue;
1498        }
1499
1500      if (CalleeHasDebugInfo && !NoInlineLineTables)
1501        continue;
1502
1503      // If the inlined instruction has no line number, or if inline info
1504      // is not being generated, make it look as if it originates from the call
1505      // location. This is important for ((__always_inline, __nodebug__))
1506      // functions which must use caller location for all instructions in their
1507      // function body.
1508
1509      // Don't update static allocas, as they may get moved later.
1510      if (auto *AI = dyn_cast<AllocaInst>(BI))
1511        if (allocaWouldBeStaticInEntry(AI))
1512          continue;
1513
1514      BI->setDebugLoc(TheCallDL);
1515    }
1516
1517    // Remove debug info intrinsics if we're not keeping inline info.
1518    if (NoInlineLineTables) {
1519      BasicBlock::iterator BI = FI->begin();
1520      while (BI != FI->end()) {
1521        if (isa<DbgInfoIntrinsic>(BI)) {
1522          BI = BI->eraseFromParent();
1523          continue;
1524        }
1525        ++BI;
1526      }
1527    }
1528
1529  }
1530}
1531
1532/// Update the block frequencies of the caller after a callee has been inlined.
1533///
1534/// Each block cloned into the caller has its block frequency scaled by the
1535/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1536/// callee's entry block gets the same frequency as the callsite block and the
1537/// relative frequencies of all cloned blocks remain the same after cloning.
1538static void updateCallerBFI(BasicBlock *CallSiteBlock,
1539                            const ValueToValueMapTy &VMap,
1540                            BlockFrequencyInfo *CallerBFI,
1541                            BlockFrequencyInfo *CalleeBFI,
1542                            const BasicBlock &CalleeEntryBlock) {
1543  SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1544  for (auto Entry : VMap) {
1545    if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1546      continue;
1547    auto *OrigBB = cast<BasicBlock>(Entry.first);
1548    auto *ClonedBB = cast<BasicBlock>(Entry.second);
1549    uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1550    if (!ClonedBBs.insert(ClonedBB).second) {
1551      // Multiple blocks in the callee might get mapped to one cloned block in
1552      // the caller since we prune the callee as we clone it. When that happens,
1553      // we want to use the maximum among the original blocks' frequencies.
1554      uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1555      if (NewFreq > Freq)
1556        Freq = NewFreq;
1557    }
1558    CallerBFI->setBlockFreq(ClonedBB, Freq);
1559  }
1560  BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1561  CallerBFI->setBlockFreqAndScale(
1562      EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1563      ClonedBBs);
1564}
1565
1566/// Update the branch metadata for cloned call instructions.
1567static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1568                              const ProfileCount &CalleeEntryCount,
1569                              const CallBase &TheCall, ProfileSummaryInfo *PSI,
1570                              BlockFrequencyInfo *CallerBFI) {
1571  if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1572      CalleeEntryCount.getCount() < 1)
1573    return;
1574  auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1575  int64_t CallCount =
1576      std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1577               CalleeEntryCount.getCount());
1578  updateProfileCallee(Callee, -CallCount, &VMap);
1579}
1580
1581void llvm::updateProfileCallee(
1582    Function *Callee, int64_t entryDelta,
1583    const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1584  auto CalleeCount = Callee->getEntryCount();
1585  if (!CalleeCount.hasValue())
1586    return;
1587
1588  uint64_t priorEntryCount = CalleeCount.getCount();
1589  uint64_t newEntryCount;
1590
1591  // Since CallSiteCount is an estimate, it could exceed the original callee
1592  // count and has to be set to 0 so guard against underflow.
1593  if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1594    newEntryCount = 0;
1595  else
1596    newEntryCount = priorEntryCount + entryDelta;
1597
1598  // During inlining ?
1599  if (VMap) {
1600    uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1601    for (auto Entry : *VMap)
1602      if (isa<CallInst>(Entry.first))
1603        if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1604          CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1605  }
1606
1607  if (entryDelta) {
1608    Callee->setEntryCount(newEntryCount);
1609
1610    for (BasicBlock &BB : *Callee)
1611      // No need to update the callsite if it is pruned during inlining.
1612      if (!VMap || VMap->count(&BB))
1613        for (Instruction &I : BB)
1614          if (CallInst *CI = dyn_cast<CallInst>(&I))
1615            CI->updateProfWeight(newEntryCount, priorEntryCount);
1616  }
1617}
1618
1619/// This function inlines the called function into the basic block of the
1620/// caller. This returns false if it is not possible to inline this call.
1621/// The program is still in a well defined state if this occurs though.
1622///
1623/// Note that this only does one level of inlining.  For example, if the
1624/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1625/// exists in the instruction stream.  Similarly this will inline a recursive
1626/// function by one level.
1627llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1628                                        AAResults *CalleeAAR,
1629                                        bool InsertLifetime,
1630                                        Function *ForwardVarArgsTo) {
1631  assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1632
1633  // FIXME: we don't inline callbr yet.
1634  if (isa<CallBrInst>(CB))
1635    return InlineResult::failure("We don't inline callbr yet.");
1636
1637  // If IFI has any state in it, zap it before we fill it in.
1638  IFI.reset();
1639
1640  Function *CalledFunc = CB.getCalledFunction();
1641  if (!CalledFunc ||               // Can't inline external function or indirect
1642      CalledFunc->isDeclaration()) // call!
1643    return InlineResult::failure("external or indirect");
1644
1645  // The inliner does not know how to inline through calls with operand bundles
1646  // in general ...
1647  if (CB.hasOperandBundles()) {
1648    for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1649      uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1650      // ... but it knows how to inline through "deopt" operand bundles ...
1651      if (Tag == LLVMContext::OB_deopt)
1652        continue;
1653      // ... and "funclet" operand bundles.
1654      if (Tag == LLVMContext::OB_funclet)
1655        continue;
1656
1657      return InlineResult::failure("unsupported operand bundle");
1658    }
1659  }
1660
1661  // If the call to the callee cannot throw, set the 'nounwind' flag on any
1662  // calls that we inline.
1663  bool MarkNoUnwind = CB.doesNotThrow();
1664
1665  BasicBlock *OrigBB = CB.getParent();
1666  Function *Caller = OrigBB->getParent();
1667
1668  // GC poses two hazards to inlining, which only occur when the callee has GC:
1669  //  1. If the caller has no GC, then the callee's GC must be propagated to the
1670  //     caller.
1671  //  2. If the caller has a differing GC, it is invalid to inline.
1672  if (CalledFunc->hasGC()) {
1673    if (!Caller->hasGC())
1674      Caller->setGC(CalledFunc->getGC());
1675    else if (CalledFunc->getGC() != Caller->getGC())
1676      return InlineResult::failure("incompatible GC");
1677  }
1678
1679  // Get the personality function from the callee if it contains a landing pad.
1680  Constant *CalledPersonality =
1681      CalledFunc->hasPersonalityFn()
1682          ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1683          : nullptr;
1684
1685  // Find the personality function used by the landing pads of the caller. If it
1686  // exists, then check to see that it matches the personality function used in
1687  // the callee.
1688  Constant *CallerPersonality =
1689      Caller->hasPersonalityFn()
1690          ? Caller->getPersonalityFn()->stripPointerCasts()
1691          : nullptr;
1692  if (CalledPersonality) {
1693    if (!CallerPersonality)
1694      Caller->setPersonalityFn(CalledPersonality);
1695    // If the personality functions match, then we can perform the
1696    // inlining. Otherwise, we can't inline.
1697    // TODO: This isn't 100% true. Some personality functions are proper
1698    //       supersets of others and can be used in place of the other.
1699    else if (CalledPersonality != CallerPersonality)
1700      return InlineResult::failure("incompatible personality");
1701  }
1702
1703  // We need to figure out which funclet the callsite was in so that we may
1704  // properly nest the callee.
1705  Instruction *CallSiteEHPad = nullptr;
1706  if (CallerPersonality) {
1707    EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1708    if (isScopedEHPersonality(Personality)) {
1709      Optional<OperandBundleUse> ParentFunclet =
1710          CB.getOperandBundle(LLVMContext::OB_funclet);
1711      if (ParentFunclet)
1712        CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1713
1714      // OK, the inlining site is legal.  What about the target function?
1715
1716      if (CallSiteEHPad) {
1717        if (Personality == EHPersonality::MSVC_CXX) {
1718          // The MSVC personality cannot tolerate catches getting inlined into
1719          // cleanup funclets.
1720          if (isa<CleanupPadInst>(CallSiteEHPad)) {
1721            // Ok, the call site is within a cleanuppad.  Let's check the callee
1722            // for catchpads.
1723            for (const BasicBlock &CalledBB : *CalledFunc) {
1724              if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1725                return InlineResult::failure("catch in cleanup funclet");
1726            }
1727          }
1728        } else if (isAsynchronousEHPersonality(Personality)) {
1729          // SEH is even less tolerant, there may not be any sort of exceptional
1730          // funclet in the callee.
1731          for (const BasicBlock &CalledBB : *CalledFunc) {
1732            if (CalledBB.isEHPad())
1733              return InlineResult::failure("SEH in cleanup funclet");
1734          }
1735        }
1736      }
1737    }
1738  }
1739
1740  // Determine if we are dealing with a call in an EHPad which does not unwind
1741  // to caller.
1742  bool EHPadForCallUnwindsLocally = false;
1743  if (CallSiteEHPad && isa<CallInst>(CB)) {
1744    UnwindDestMemoTy FuncletUnwindMap;
1745    Value *CallSiteUnwindDestToken =
1746        getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1747
1748    EHPadForCallUnwindsLocally =
1749        CallSiteUnwindDestToken &&
1750        !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1751  }
1752
1753  // Get an iterator to the last basic block in the function, which will have
1754  // the new function inlined after it.
1755  Function::iterator LastBlock = --Caller->end();
1756
1757  // Make sure to capture all of the return instructions from the cloned
1758  // function.
1759  SmallVector<ReturnInst*, 8> Returns;
1760  ClonedCodeInfo InlinedFunctionInfo;
1761  Function::iterator FirstNewBlock;
1762
1763  { // Scope to destroy VMap after cloning.
1764    ValueToValueMapTy VMap;
1765    // Keep a list of pair (dst, src) to emit byval initializations.
1766    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1767
1768    auto &DL = Caller->getParent()->getDataLayout();
1769
1770    // Calculate the vector of arguments to pass into the function cloner, which
1771    // matches up the formal to the actual argument values.
1772    auto AI = CB.arg_begin();
1773    unsigned ArgNo = 0;
1774    for (Function::arg_iterator I = CalledFunc->arg_begin(),
1775         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1776      Value *ActualArg = *AI;
1777
1778      // When byval arguments actually inlined, we need to make the copy implied
1779      // by them explicit.  However, we don't do this if the callee is readonly
1780      // or readnone, because the copy would be unneeded: the callee doesn't
1781      // modify the struct.
1782      if (CB.isByValArgument(ArgNo)) {
1783        ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
1784                                        CalledFunc->getParamAlignment(ArgNo));
1785        if (ActualArg != *AI)
1786          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1787      }
1788
1789      VMap[&*I] = ActualArg;
1790    }
1791
1792    // TODO: Remove this when users have been updated to the assume bundles.
1793    // Add alignment assumptions if necessary. We do this before the inlined
1794    // instructions are actually cloned into the caller so that we can easily
1795    // check what will be known at the start of the inlined code.
1796    AddAlignmentAssumptions(CB, IFI);
1797
1798    AssumptionCache *AC =
1799        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1800
1801    /// Preserve all attributes on of the call and its parameters.
1802    salvageKnowledge(&CB, AC);
1803
1804    // We want the inliner to prune the code as it copies.  We would LOVE to
1805    // have no dead or constant instructions leftover after inlining occurs
1806    // (which can happen, e.g., because an argument was constant), but we'll be
1807    // happy with whatever the cloner can do.
1808    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1809                              /*ModuleLevelChanges=*/false, Returns, ".i",
1810                              &InlinedFunctionInfo, &CB);
1811    // Remember the first block that is newly cloned over.
1812    FirstNewBlock = LastBlock; ++FirstNewBlock;
1813
1814    if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1815      // Update the BFI of blocks cloned into the caller.
1816      updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1817                      CalledFunc->front());
1818
1819    updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1820                      IFI.PSI, IFI.CallerBFI);
1821
1822    // Inject byval arguments initialization.
1823    for (std::pair<Value*, Value*> &Init : ByValInit)
1824      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1825                              &*FirstNewBlock, IFI);
1826
1827    Optional<OperandBundleUse> ParentDeopt =
1828        CB.getOperandBundle(LLVMContext::OB_deopt);
1829    if (ParentDeopt) {
1830      SmallVector<OperandBundleDef, 2> OpDefs;
1831
1832      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1833        CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1834        if (!ICS)
1835          continue; // instruction was DCE'd or RAUW'ed to undef
1836
1837        OpDefs.clear();
1838
1839        OpDefs.reserve(ICS->getNumOperandBundles());
1840
1841        for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1842             ++COBi) {
1843          auto ChildOB = ICS->getOperandBundleAt(COBi);
1844          if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1845            // If the inlined call has other operand bundles, let them be
1846            OpDefs.emplace_back(ChildOB);
1847            continue;
1848          }
1849
1850          // It may be useful to separate this logic (of handling operand
1851          // bundles) out to a separate "policy" component if this gets crowded.
1852          // Prepend the parent's deoptimization continuation to the newly
1853          // inlined call's deoptimization continuation.
1854          std::vector<Value *> MergedDeoptArgs;
1855          MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1856                                  ChildOB.Inputs.size());
1857
1858          MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1859                                 ParentDeopt->Inputs.begin(),
1860                                 ParentDeopt->Inputs.end());
1861          MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1862                                 ChildOB.Inputs.end());
1863
1864          OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1865        }
1866
1867        Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
1868
1869        // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1870        // this even if the call returns void.
1871        ICS->replaceAllUsesWith(NewI);
1872
1873        VH = nullptr;
1874        ICS->eraseFromParent();
1875      }
1876    }
1877
1878    // Update the callgraph if requested.
1879    if (IFI.CG)
1880      UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
1881
1882    // For 'nodebug' functions, the associated DISubprogram is always null.
1883    // Conservatively avoid propagating the callsite debug location to
1884    // instructions inlined from a function whose DISubprogram is not null.
1885    fixupLineNumbers(Caller, FirstNewBlock, &CB,
1886                     CalledFunc->getSubprogram() != nullptr);
1887
1888    // Clone existing noalias metadata if necessary.
1889    CloneAliasScopeMetadata(CB, VMap);
1890
1891    // Add noalias metadata if necessary.
1892    AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);
1893
1894    // Clone return attributes on the callsite into the calls within the inlined
1895    // function which feed into its return value.
1896    AddReturnAttributes(CB, VMap);
1897
1898    // Propagate llvm.mem.parallel_loop_access if necessary.
1899    PropagateParallelLoopAccessMetadata(CB, VMap);
1900
1901    // Register any cloned assumptions.
1902    if (IFI.GetAssumptionCache)
1903      for (BasicBlock &NewBlock :
1904           make_range(FirstNewBlock->getIterator(), Caller->end()))
1905        for (Instruction &I : NewBlock)
1906          if (auto *II = dyn_cast<IntrinsicInst>(&I))
1907            if (II->getIntrinsicID() == Intrinsic::assume)
1908              IFI.GetAssumptionCache(*Caller).registerAssumption(II);
1909  }
1910
1911  // If there are any alloca instructions in the block that used to be the entry
1912  // block for the callee, move them to the entry block of the caller.  First
1913  // calculate which instruction they should be inserted before.  We insert the
1914  // instructions at the end of the current alloca list.
1915  {
1916    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1917    for (BasicBlock::iterator I = FirstNewBlock->begin(),
1918         E = FirstNewBlock->end(); I != E; ) {
1919      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1920      if (!AI) continue;
1921
1922      // If the alloca is now dead, remove it.  This often occurs due to code
1923      // specialization.
1924      if (AI->use_empty()) {
1925        AI->eraseFromParent();
1926        continue;
1927      }
1928
1929      if (!allocaWouldBeStaticInEntry(AI))
1930        continue;
1931
1932      // Keep track of the static allocas that we inline into the caller.
1933      IFI.StaticAllocas.push_back(AI);
1934
1935      // Scan for the block of allocas that we can move over, and move them
1936      // all at once.
1937      while (isa<AllocaInst>(I) &&
1938             !cast<AllocaInst>(I)->use_empty() &&
1939             allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1940        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1941        ++I;
1942      }
1943
1944      // Transfer all of the allocas over in a block.  Using splice means
1945      // that the instructions aren't removed from the symbol table, then
1946      // reinserted.
1947      Caller->getEntryBlock().getInstList().splice(
1948          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1949    }
1950  }
1951
1952  SmallVector<Value*,4> VarArgsToForward;
1953  SmallVector<AttributeSet, 4> VarArgsAttrs;
1954  for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
1955       i < CB.getNumArgOperands(); i++) {
1956    VarArgsToForward.push_back(CB.getArgOperand(i));
1957    VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
1958  }
1959
1960  bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1961  if (InlinedFunctionInfo.ContainsCalls) {
1962    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1963    if (CallInst *CI = dyn_cast<CallInst>(&CB))
1964      CallSiteTailKind = CI->getTailCallKind();
1965
1966    // For inlining purposes, the "notail" marker is the same as no marker.
1967    if (CallSiteTailKind == CallInst::TCK_NoTail)
1968      CallSiteTailKind = CallInst::TCK_None;
1969
1970    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1971         ++BB) {
1972      for (auto II = BB->begin(); II != BB->end();) {
1973        Instruction &I = *II++;
1974        CallInst *CI = dyn_cast<CallInst>(&I);
1975        if (!CI)
1976          continue;
1977
1978        // Forward varargs from inlined call site to calls to the
1979        // ForwardVarArgsTo function, if requested, and to musttail calls.
1980        if (!VarArgsToForward.empty() &&
1981            ((ForwardVarArgsTo &&
1982              CI->getCalledFunction() == ForwardVarArgsTo) ||
1983             CI->isMustTailCall())) {
1984          // Collect attributes for non-vararg parameters.
1985          AttributeList Attrs = CI->getAttributes();
1986          SmallVector<AttributeSet, 8> ArgAttrs;
1987          if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
1988            for (unsigned ArgNo = 0;
1989                 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
1990              ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
1991          }
1992
1993          // Add VarArg attributes.
1994          ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
1995          Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
1996                                     Attrs.getRetAttributes(), ArgAttrs);
1997          // Add VarArgs to existing parameters.
1998          SmallVector<Value *, 6> Params(CI->arg_operands());
1999          Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2000          CallInst *NewCI = CallInst::Create(
2001              CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2002          NewCI->setDebugLoc(CI->getDebugLoc());
2003          NewCI->setAttributes(Attrs);
2004          NewCI->setCallingConv(CI->getCallingConv());
2005          CI->replaceAllUsesWith(NewCI);
2006          CI->eraseFromParent();
2007          CI = NewCI;
2008        }
2009
2010        if (Function *F = CI->getCalledFunction())
2011          InlinedDeoptimizeCalls |=
2012              F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2013
2014        // We need to reduce the strength of any inlined tail calls.  For
2015        // musttail, we have to avoid introducing potential unbounded stack
2016        // growth.  For example, if functions 'f' and 'g' are mutually recursive
2017        // with musttail, we can inline 'g' into 'f' so long as we preserve
2018        // musttail on the cloned call to 'f'.  If either the inlined call site
2019        // or the cloned call site is *not* musttail, the program already has
2020        // one frame of stack growth, so it's safe to remove musttail.  Here is
2021        // a table of example transformations:
2022        //
2023        //    f -> musttail g -> musttail f  ==>  f -> musttail f
2024        //    f -> musttail g ->     tail f  ==>  f ->     tail f
2025        //    f ->          g -> musttail f  ==>  f ->          f
2026        //    f ->          g ->     tail f  ==>  f ->          f
2027        //
2028        // Inlined notail calls should remain notail calls.
2029        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2030        if (ChildTCK != CallInst::TCK_NoTail)
2031          ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2032        CI->setTailCallKind(ChildTCK);
2033        InlinedMustTailCalls |= CI->isMustTailCall();
2034
2035        // Calls inlined through a 'nounwind' call site should be marked
2036        // 'nounwind'.
2037        if (MarkNoUnwind)
2038          CI->setDoesNotThrow();
2039      }
2040    }
2041  }
2042
2043  // Leave lifetime markers for the static alloca's, scoping them to the
2044  // function we just inlined.
2045  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
2046    IRBuilder<> builder(&FirstNewBlock->front());
2047    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2048      AllocaInst *AI = IFI.StaticAllocas[ai];
2049      // Don't mark swifterror allocas. They can't have bitcast uses.
2050      if (AI->isSwiftError())
2051        continue;
2052
2053      // If the alloca is already scoped to something smaller than the whole
2054      // function then there's no need to add redundant, less accurate markers.
2055      if (hasLifetimeMarkers(AI))
2056        continue;
2057
2058      // Try to determine the size of the allocation.
2059      ConstantInt *AllocaSize = nullptr;
2060      if (ConstantInt *AIArraySize =
2061          dyn_cast<ConstantInt>(AI->getArraySize())) {
2062        auto &DL = Caller->getParent()->getDataLayout();
2063        Type *AllocaType = AI->getAllocatedType();
2064        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2065        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2066
2067        // Don't add markers for zero-sized allocas.
2068        if (AllocaArraySize == 0)
2069          continue;
2070
2071        // Check that array size doesn't saturate uint64_t and doesn't
2072        // overflow when it's multiplied by type size.
2073        if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2074            std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2075                AllocaTypeSize) {
2076          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2077                                        AllocaArraySize * AllocaTypeSize);
2078        }
2079      }
2080
2081      builder.CreateLifetimeStart(AI, AllocaSize);
2082      for (ReturnInst *RI : Returns) {
2083        // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2084        // call and a return.  The return kills all local allocas.
2085        if (InlinedMustTailCalls &&
2086            RI->getParent()->getTerminatingMustTailCall())
2087          continue;
2088        if (InlinedDeoptimizeCalls &&
2089            RI->getParent()->getTerminatingDeoptimizeCall())
2090          continue;
2091        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2092      }
2093    }
2094  }
2095
2096  // If the inlined code contained dynamic alloca instructions, wrap the inlined
2097  // code with llvm.stacksave/llvm.stackrestore intrinsics.
2098  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2099    Module *M = Caller->getParent();
2100    // Get the two intrinsics we care about.
2101    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2102    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2103
2104    // Insert the llvm.stacksave.
2105    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2106                             .CreateCall(StackSave, {}, "savedstack");
2107
2108    // Insert a call to llvm.stackrestore before any return instructions in the
2109    // inlined function.
2110    for (ReturnInst *RI : Returns) {
2111      // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2112      // call and a return.  The return will restore the stack pointer.
2113      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2114        continue;
2115      if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2116        continue;
2117      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2118    }
2119  }
2120
2121  // If we are inlining for an invoke instruction, we must make sure to rewrite
2122  // any call instructions into invoke instructions.  This is sensitive to which
2123  // funclet pads were top-level in the inlinee, so must be done before
2124  // rewriting the "parent pad" links.
2125  if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2126    BasicBlock *UnwindDest = II->getUnwindDest();
2127    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2128    if (isa<LandingPadInst>(FirstNonPHI)) {
2129      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2130    } else {
2131      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2132    }
2133  }
2134
2135  // Update the lexical scopes of the new funclets and callsites.
2136  // Anything that had 'none' as its parent is now nested inside the callsite's
2137  // EHPad.
2138
2139  if (CallSiteEHPad) {
2140    for (Function::iterator BB = FirstNewBlock->getIterator(),
2141                            E = Caller->end();
2142         BB != E; ++BB) {
2143      // Add bundle operands to any top-level call sites.
2144      SmallVector<OperandBundleDef, 1> OpBundles;
2145      for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2146        CallBase *I = dyn_cast<CallBase>(&*BBI++);
2147        if (!I)
2148          continue;
2149
2150        // Skip call sites which are nounwind intrinsics.
2151        auto *CalledFn =
2152            dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2153        if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2154          continue;
2155
2156        // Skip call sites which already have a "funclet" bundle.
2157        if (I->getOperandBundle(LLVMContext::OB_funclet))
2158          continue;
2159
2160        I->getOperandBundlesAsDefs(OpBundles);
2161        OpBundles.emplace_back("funclet", CallSiteEHPad);
2162
2163        Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2164        NewInst->takeName(I);
2165        I->replaceAllUsesWith(NewInst);
2166        I->eraseFromParent();
2167
2168        OpBundles.clear();
2169      }
2170
2171      // It is problematic if the inlinee has a cleanupret which unwinds to
2172      // caller and we inline it into a call site which doesn't unwind but into
2173      // an EH pad that does.  Such an edge must be dynamically unreachable.
2174      // As such, we replace the cleanupret with unreachable.
2175      if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2176        if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2177          changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2178
2179      Instruction *I = BB->getFirstNonPHI();
2180      if (!I->isEHPad())
2181        continue;
2182
2183      if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2184        if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2185          CatchSwitch->setParentPad(CallSiteEHPad);
2186      } else {
2187        auto *FPI = cast<FuncletPadInst>(I);
2188        if (isa<ConstantTokenNone>(FPI->getParentPad()))
2189          FPI->setParentPad(CallSiteEHPad);
2190      }
2191    }
2192  }
2193
2194  if (InlinedDeoptimizeCalls) {
2195    // We need to at least remove the deoptimizing returns from the Return set,
2196    // so that the control flow from those returns does not get merged into the
2197    // caller (but terminate it instead).  If the caller's return type does not
2198    // match the callee's return type, we also need to change the return type of
2199    // the intrinsic.
2200    if (Caller->getReturnType() == CB.getType()) {
2201      auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
2202        return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2203      });
2204      Returns.erase(NewEnd, Returns.end());
2205    } else {
2206      SmallVector<ReturnInst *, 8> NormalReturns;
2207      Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2208          Caller->getParent(), Intrinsic::experimental_deoptimize,
2209          {Caller->getReturnType()});
2210
2211      for (ReturnInst *RI : Returns) {
2212        CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2213        if (!DeoptCall) {
2214          NormalReturns.push_back(RI);
2215          continue;
2216        }
2217
2218        // The calling convention on the deoptimize call itself may be bogus,
2219        // since the code we're inlining may have undefined behavior (and may
2220        // never actually execute at runtime); but all
2221        // @llvm.experimental.deoptimize declarations have to have the same
2222        // calling convention in a well-formed module.
2223        auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2224        NewDeoptIntrinsic->setCallingConv(CallingConv);
2225        auto *CurBB = RI->getParent();
2226        RI->eraseFromParent();
2227
2228        SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2229                                         DeoptCall->arg_end());
2230
2231        SmallVector<OperandBundleDef, 1> OpBundles;
2232        DeoptCall->getOperandBundlesAsDefs(OpBundles);
2233        DeoptCall->eraseFromParent();
2234        assert(!OpBundles.empty() &&
2235               "Expected at least the deopt operand bundle");
2236
2237        IRBuilder<> Builder(CurBB);
2238        CallInst *NewDeoptCall =
2239            Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2240        NewDeoptCall->setCallingConv(CallingConv);
2241        if (NewDeoptCall->getType()->isVoidTy())
2242          Builder.CreateRetVoid();
2243        else
2244          Builder.CreateRet(NewDeoptCall);
2245      }
2246
2247      // Leave behind the normal returns so we can merge control flow.
2248      std::swap(Returns, NormalReturns);
2249    }
2250  }
2251
2252  // Handle any inlined musttail call sites.  In order for a new call site to be
2253  // musttail, the source of the clone and the inlined call site must have been
2254  // musttail.  Therefore it's safe to return without merging control into the
2255  // phi below.
2256  if (InlinedMustTailCalls) {
2257    // Check if we need to bitcast the result of any musttail calls.
2258    Type *NewRetTy = Caller->getReturnType();
2259    bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2260
2261    // Handle the returns preceded by musttail calls separately.
2262    SmallVector<ReturnInst *, 8> NormalReturns;
2263    for (ReturnInst *RI : Returns) {
2264      CallInst *ReturnedMustTail =
2265          RI->getParent()->getTerminatingMustTailCall();
2266      if (!ReturnedMustTail) {
2267        NormalReturns.push_back(RI);
2268        continue;
2269      }
2270      if (!NeedBitCast)
2271        continue;
2272
2273      // Delete the old return and any preceding bitcast.
2274      BasicBlock *CurBB = RI->getParent();
2275      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2276      RI->eraseFromParent();
2277      if (OldCast)
2278        OldCast->eraseFromParent();
2279
2280      // Insert a new bitcast and return with the right type.
2281      IRBuilder<> Builder(CurBB);
2282      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2283    }
2284
2285    // Leave behind the normal returns so we can merge control flow.
2286    std::swap(Returns, NormalReturns);
2287  }
2288
2289  // Now that all of the transforms on the inlined code have taken place but
2290  // before we splice the inlined code into the CFG and lose track of which
2291  // blocks were actually inlined, collect the call sites. We only do this if
2292  // call graph updates weren't requested, as those provide value handle based
2293  // tracking of inlined call sites instead.
2294  if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2295    // Otherwise just collect the raw call sites that were inlined.
2296    for (BasicBlock &NewBB :
2297         make_range(FirstNewBlock->getIterator(), Caller->end()))
2298      for (Instruction &I : NewBB)
2299        if (auto *CB = dyn_cast<CallBase>(&I))
2300          IFI.InlinedCallSites.push_back(CB);
2301  }
2302
2303  // If we cloned in _exactly one_ basic block, and if that block ends in a
2304  // return instruction, we splice the body of the inlined callee directly into
2305  // the calling basic block.
2306  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2307    // Move all of the instructions right before the call.
2308    OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2309                                 FirstNewBlock->begin(), FirstNewBlock->end());
2310    // Remove the cloned basic block.
2311    Caller->getBasicBlockList().pop_back();
2312
2313    // If the call site was an invoke instruction, add a branch to the normal
2314    // destination.
2315    if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2316      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2317      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2318    }
2319
2320    // If the return instruction returned a value, replace uses of the call with
2321    // uses of the returned value.
2322    if (!CB.use_empty()) {
2323      ReturnInst *R = Returns[0];
2324      if (&CB == R->getReturnValue())
2325        CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2326      else
2327        CB.replaceAllUsesWith(R->getReturnValue());
2328    }
2329    // Since we are now done with the Call/Invoke, we can delete it.
2330    CB.eraseFromParent();
2331
2332    // Since we are now done with the return instruction, delete it also.
2333    Returns[0]->eraseFromParent();
2334
2335    // We are now done with the inlining.
2336    return InlineResult::success();
2337  }
2338
2339  // Otherwise, we have the normal case, of more than one block to inline or
2340  // multiple return sites.
2341
2342  // We want to clone the entire callee function into the hole between the
2343  // "starter" and "ender" blocks.  How we accomplish this depends on whether
2344  // this is an invoke instruction or a call instruction.
2345  BasicBlock *AfterCallBB;
2346  BranchInst *CreatedBranchToNormalDest = nullptr;
2347  if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2348
2349    // Add an unconditional branch to make this look like the CallInst case...
2350    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2351
2352    // Split the basic block.  This guarantees that no PHI nodes will have to be
2353    // updated due to new incoming edges, and make the invoke case more
2354    // symmetric to the call case.
2355    AfterCallBB =
2356        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2357                                CalledFunc->getName() + ".exit");
2358
2359  } else { // It's a call
2360    // If this is a call instruction, we need to split the basic block that
2361    // the call lives in.
2362    //
2363    AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2364                                          CalledFunc->getName() + ".exit");
2365  }
2366
2367  if (IFI.CallerBFI) {
2368    // Copy original BB's block frequency to AfterCallBB
2369    IFI.CallerBFI->setBlockFreq(
2370        AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2371  }
2372
2373  // Change the branch that used to go to AfterCallBB to branch to the first
2374  // basic block of the inlined function.
2375  //
2376  Instruction *Br = OrigBB->getTerminator();
2377  assert(Br && Br->getOpcode() == Instruction::Br &&
2378         "splitBasicBlock broken!");
2379  Br->setOperand(0, &*FirstNewBlock);
2380
2381  // Now that the function is correct, make it a little bit nicer.  In
2382  // particular, move the basic blocks inserted from the end of the function
2383  // into the space made by splitting the source basic block.
2384  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2385                                     Caller->getBasicBlockList(), FirstNewBlock,
2386                                     Caller->end());
2387
2388  // Handle all of the return instructions that we just cloned in, and eliminate
2389  // any users of the original call/invoke instruction.
2390  Type *RTy = CalledFunc->getReturnType();
2391
2392  PHINode *PHI = nullptr;
2393  if (Returns.size() > 1) {
2394    // The PHI node should go at the front of the new basic block to merge all
2395    // possible incoming values.
2396    if (!CB.use_empty()) {
2397      PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2398                            &AfterCallBB->front());
2399      // Anything that used the result of the function call should now use the
2400      // PHI node as their operand.
2401      CB.replaceAllUsesWith(PHI);
2402    }
2403
2404    // Loop over all of the return instructions adding entries to the PHI node
2405    // as appropriate.
2406    if (PHI) {
2407      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2408        ReturnInst *RI = Returns[i];
2409        assert(RI->getReturnValue()->getType() == PHI->getType() &&
2410               "Ret value not consistent in function!");
2411        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2412      }
2413    }
2414
2415    // Add a branch to the merge points and remove return instructions.
2416    DebugLoc Loc;
2417    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2418      ReturnInst *RI = Returns[i];
2419      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2420      Loc = RI->getDebugLoc();
2421      BI->setDebugLoc(Loc);
2422      RI->eraseFromParent();
2423    }
2424    // We need to set the debug location to *somewhere* inside the
2425    // inlined function. The line number may be nonsensical, but the
2426    // instruction will at least be associated with the right
2427    // function.
2428    if (CreatedBranchToNormalDest)
2429      CreatedBranchToNormalDest->setDebugLoc(Loc);
2430  } else if (!Returns.empty()) {
2431    // Otherwise, if there is exactly one return value, just replace anything
2432    // using the return value of the call with the computed value.
2433    if (!CB.use_empty()) {
2434      if (&CB == Returns[0]->getReturnValue())
2435        CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2436      else
2437        CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2438    }
2439
2440    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2441    BasicBlock *ReturnBB = Returns[0]->getParent();
2442    ReturnBB->replaceAllUsesWith(AfterCallBB);
2443
2444    // Splice the code from the return block into the block that it will return
2445    // to, which contains the code that was after the call.
2446    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2447                                      ReturnBB->getInstList());
2448
2449    if (CreatedBranchToNormalDest)
2450      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2451
2452    // Delete the return instruction now and empty ReturnBB now.
2453    Returns[0]->eraseFromParent();
2454    ReturnBB->eraseFromParent();
2455  } else if (!CB.use_empty()) {
2456    // No returns, but something is using the return value of the call.  Just
2457    // nuke the result.
2458    CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2459  }
2460
2461  // Since we are now done with the Call/Invoke, we can delete it.
2462  CB.eraseFromParent();
2463
2464  // If we inlined any musttail calls and the original return is now
2465  // unreachable, delete it.  It can only contain a bitcast and ret.
2466  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2467    AfterCallBB->eraseFromParent();
2468
2469  // We should always be able to fold the entry block of the function into the
2470  // single predecessor of the block...
2471  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2472  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2473
2474  // Splice the code entry block into calling block, right before the
2475  // unconditional branch.
2476  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2477  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2478
2479  // Remove the unconditional branch.
2480  OrigBB->getInstList().erase(Br);
2481
2482  // Now we can remove the CalleeEntry block, which is now empty.
2483  Caller->getBasicBlockList().erase(CalleeEntry);
2484
2485  // If we inserted a phi node, check to see if it has a single value (e.g. all
2486  // the entries are the same or undef).  If so, remove the PHI so it doesn't
2487  // block other optimizations.
2488  if (PHI) {
2489    AssumptionCache *AC =
2490        IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2491    auto &DL = Caller->getParent()->getDataLayout();
2492    if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2493      PHI->replaceAllUsesWith(V);
2494      PHI->eraseFromParent();
2495    }
2496  }
2497
2498  return InlineResult::success();
2499}
2500