1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CloneFunctionInto interface, which is used as the
10// low-level function cloner.  This is used by the CloneFunction and function
11// inliner to do the dirty work of copying the body of a function around.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/DomTreeUpdater.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DebugInfo.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Module.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Transforms/Utils/Cloning.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Transforms/Utils/ValueMapper.h"
36#include <map>
37using namespace llvm;
38
39/// See comments in Cloning.h.
40BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
41                                  const Twine &NameSuffix, Function *F,
42                                  ClonedCodeInfo *CodeInfo,
43                                  DebugInfoFinder *DIFinder) {
44  DenseMap<const MDNode *, MDNode *> Cache;
45  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46  if (BB->hasName())
47    NewBB->setName(BB->getName() + NameSuffix);
48
49  bool hasCalls = false, hasDynamicAllocas = false;
50  Module *TheModule = F ? F->getParent() : nullptr;
51
52  // Loop over all instructions, and copy them over.
53  for (const Instruction &I : *BB) {
54    if (DIFinder && TheModule)
55      DIFinder->processInstruction(*TheModule, I);
56
57    Instruction *NewInst = I.clone();
58    if (I.hasName())
59      NewInst->setName(I.getName() + NameSuffix);
60    NewBB->getInstList().push_back(NewInst);
61    VMap[&I] = NewInst; // Add instruction map to value.
62
63    hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64    if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65      if (!AI->isStaticAlloca()) {
66        hasDynamicAllocas = true;
67      }
68    }
69  }
70
71  if (CodeInfo) {
72    CodeInfo->ContainsCalls          |= hasCalls;
73    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
74  }
75  return NewBB;
76}
77
78// Clone OldFunc into NewFunc, transforming the old arguments into references to
79// VMap values.
80//
81void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
82                             ValueToValueMapTy &VMap,
83                             bool ModuleLevelChanges,
84                             SmallVectorImpl<ReturnInst*> &Returns,
85                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
86                             ValueMapTypeRemapper *TypeMapper,
87                             ValueMaterializer *Materializer) {
88  assert(NameSuffix && "NameSuffix cannot be null!");
89
90#ifndef NDEBUG
91  for (const Argument &I : OldFunc->args())
92    assert(VMap.count(&I) && "No mapping from source argument specified!");
93#endif
94
95  // Copy all attributes other than those stored in the AttributeList.  We need
96  // to remap the parameter indices of the AttributeList.
97  AttributeList NewAttrs = NewFunc->getAttributes();
98  NewFunc->copyAttributesFrom(OldFunc);
99  NewFunc->setAttributes(NewAttrs);
100
101  // Fix up the personality function that got copied over.
102  if (OldFunc->hasPersonalityFn())
103    NewFunc->setPersonalityFn(
104        MapValue(OldFunc->getPersonalityFn(), VMap,
105                 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
106                 TypeMapper, Materializer));
107
108  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
109  AttributeList OldAttrs = OldFunc->getAttributes();
110
111  // Clone any argument attributes that are present in the VMap.
112  for (const Argument &OldArg : OldFunc->args()) {
113    if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
114      NewArgAttrs[NewArg->getArgNo()] =
115          OldAttrs.getParamAttributes(OldArg.getArgNo());
116    }
117  }
118
119  NewFunc->setAttributes(
120      AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
121                         OldAttrs.getRetAttributes(), NewArgAttrs));
122
123  bool MustCloneSP =
124      OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
125  DISubprogram *SP = OldFunc->getSubprogram();
126  if (SP) {
127    assert(!MustCloneSP || ModuleLevelChanges);
128    // Add mappings for some DebugInfo nodes that we don't want duplicated
129    // even if they're distinct.
130    auto &MD = VMap.MD();
131    MD[SP->getUnit()].reset(SP->getUnit());
132    MD[SP->getType()].reset(SP->getType());
133    MD[SP->getFile()].reset(SP->getFile());
134    // If we're not cloning into the same module, no need to clone the
135    // subprogram
136    if (!MustCloneSP)
137      MD[SP].reset(SP);
138  }
139
140  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
141  OldFunc->getAllMetadata(MDs);
142  for (auto MD : MDs) {
143    NewFunc->addMetadata(
144        MD.first,
145        *MapMetadata(MD.second, VMap,
146                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
147                     TypeMapper, Materializer));
148  }
149
150  // When we remap instructions, we want to avoid duplicating inlined
151  // DISubprograms, so record all subprograms we find as we duplicate
152  // instructions and then freeze them in the MD map.
153  // We also record information about dbg.value and dbg.declare to avoid
154  // duplicating the types.
155  DebugInfoFinder DIFinder;
156
157  // Loop over all of the basic blocks in the function, cloning them as
158  // appropriate.  Note that we save BE this way in order to handle cloning of
159  // recursive functions into themselves.
160  //
161  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
162       BI != BE; ++BI) {
163    const BasicBlock &BB = *BI;
164
165    // Create a new basic block and copy instructions into it!
166    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
167                                      ModuleLevelChanges ? &DIFinder : nullptr);
168
169    // Add basic block mapping.
170    VMap[&BB] = CBB;
171
172    // It is only legal to clone a function if a block address within that
173    // function is never referenced outside of the function.  Given that, we
174    // want to map block addresses from the old function to block addresses in
175    // the clone. (This is different from the generic ValueMapper
176    // implementation, which generates an invalid blockaddress when
177    // cloning a function.)
178    if (BB.hasAddressTaken()) {
179      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
180                                              const_cast<BasicBlock*>(&BB));
181      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
182    }
183
184    // Note return instructions for the caller.
185    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
186      Returns.push_back(RI);
187  }
188
189  for (DISubprogram *ISP : DIFinder.subprograms())
190    if (ISP != SP)
191      VMap.MD()[ISP].reset(ISP);
192
193  for (DICompileUnit *CU : DIFinder.compile_units())
194    VMap.MD()[CU].reset(CU);
195
196  for (DIType *Type : DIFinder.types())
197    VMap.MD()[Type].reset(Type);
198
199  // Loop over all of the instructions in the function, fixing up operand
200  // references as we go.  This uses VMap to do all the hard work.
201  for (Function::iterator BB =
202           cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
203                          BE = NewFunc->end();
204       BB != BE; ++BB)
205    // Loop over all instructions, fixing each one as we find it...
206    for (Instruction &II : *BB)
207      RemapInstruction(&II, VMap,
208                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
209                       TypeMapper, Materializer);
210
211  // Register all DICompileUnits of the old parent module in the new parent module
212  auto* OldModule = OldFunc->getParent();
213  auto* NewModule = NewFunc->getParent();
214  if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
215    auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
216    // Avoid multiple insertions of the same DICompileUnit to NMD.
217    SmallPtrSet<const void*, 8> Visited;
218    for (auto* Operand : NMD->operands())
219      Visited.insert(Operand);
220    for (auto* Unit : DIFinder.compile_units())
221      // VMap.MD()[Unit] == Unit
222      if (Visited.insert(Unit).second)
223        NMD->addOperand(Unit);
224  }
225}
226
227/// Return a copy of the specified function and add it to that function's
228/// module.  Also, any references specified in the VMap are changed to refer to
229/// their mapped value instead of the original one.  If any of the arguments to
230/// the function are in the VMap, the arguments are deleted from the resultant
231/// function.  The VMap is updated to include mappings from all of the
232/// instructions and basicblocks in the function from their old to new values.
233///
234Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
235                              ClonedCodeInfo *CodeInfo) {
236  std::vector<Type*> ArgTypes;
237
238  // The user might be deleting arguments to the function by specifying them in
239  // the VMap.  If so, we need to not add the arguments to the arg ty vector
240  //
241  for (const Argument &I : F->args())
242    if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
243      ArgTypes.push_back(I.getType());
244
245  // Create a new function type...
246  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
247                                    ArgTypes, F->getFunctionType()->isVarArg());
248
249  // Create the new function...
250  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
251                                    F->getName(), F->getParent());
252
253  // Loop over the arguments, copying the names of the mapped arguments over...
254  Function::arg_iterator DestI = NewF->arg_begin();
255  for (const Argument & I : F->args())
256    if (VMap.count(&I) == 0) {     // Is this argument preserved?
257      DestI->setName(I.getName()); // Copy the name over...
258      VMap[&I] = &*DestI++;        // Add mapping to VMap
259    }
260
261  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
262  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
263                    CodeInfo);
264
265  return NewF;
266}
267
268
269
270namespace {
271  /// This is a private class used to implement CloneAndPruneFunctionInto.
272  struct PruningFunctionCloner {
273    Function *NewFunc;
274    const Function *OldFunc;
275    ValueToValueMapTy &VMap;
276    bool ModuleLevelChanges;
277    const char *NameSuffix;
278    ClonedCodeInfo *CodeInfo;
279
280  public:
281    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
282                          ValueToValueMapTy &valueMap, bool moduleLevelChanges,
283                          const char *nameSuffix, ClonedCodeInfo *codeInfo)
284        : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
285          ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
286          CodeInfo(codeInfo) {}
287
288    /// The specified block is found to be reachable, clone it and
289    /// anything that it can reach.
290    void CloneBlock(const BasicBlock *BB,
291                    BasicBlock::const_iterator StartingInst,
292                    std::vector<const BasicBlock*> &ToClone);
293  };
294}
295
296/// The specified block is found to be reachable, clone it and
297/// anything that it can reach.
298void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
299                                       BasicBlock::const_iterator StartingInst,
300                                       std::vector<const BasicBlock*> &ToClone){
301  WeakTrackingVH &BBEntry = VMap[BB];
302
303  // Have we already cloned this block?
304  if (BBEntry) return;
305
306  // Nope, clone it now.
307  BasicBlock *NewBB;
308  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
309  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
310
311  // It is only legal to clone a function if a block address within that
312  // function is never referenced outside of the function.  Given that, we
313  // want to map block addresses from the old function to block addresses in
314  // the clone. (This is different from the generic ValueMapper
315  // implementation, which generates an invalid blockaddress when
316  // cloning a function.)
317  //
318  // Note that we don't need to fix the mapping for unreachable blocks;
319  // the default mapping there is safe.
320  if (BB->hasAddressTaken()) {
321    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
322                                            const_cast<BasicBlock*>(BB));
323    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
324  }
325
326  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
327
328  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
329  // loop doesn't include the terminator.
330  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
331       II != IE; ++II) {
332
333    Instruction *NewInst = II->clone();
334
335    // Eagerly remap operands to the newly cloned instruction, except for PHI
336    // nodes for which we defer processing until we update the CFG.
337    if (!isa<PHINode>(NewInst)) {
338      RemapInstruction(NewInst, VMap,
339                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
340
341      // If we can simplify this instruction to some other value, simply add
342      // a mapping to that value rather than inserting a new instruction into
343      // the basic block.
344      if (Value *V =
345              SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
346        // On the off-chance that this simplifies to an instruction in the old
347        // function, map it back into the new function.
348        if (NewFunc != OldFunc)
349          if (Value *MappedV = VMap.lookup(V))
350            V = MappedV;
351
352        if (!NewInst->mayHaveSideEffects()) {
353          VMap[&*II] = V;
354          NewInst->deleteValue();
355          continue;
356        }
357      }
358    }
359
360    if (II->hasName())
361      NewInst->setName(II->getName()+NameSuffix);
362    VMap[&*II] = NewInst; // Add instruction map to value.
363    NewBB->getInstList().push_back(NewInst);
364    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
365
366    if (CodeInfo)
367      if (auto *CB = dyn_cast<CallBase>(&*II))
368        if (CB->hasOperandBundles())
369          CodeInfo->OperandBundleCallSites.push_back(NewInst);
370
371    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
372      if (isa<ConstantInt>(AI->getArraySize()))
373        hasStaticAllocas = true;
374      else
375        hasDynamicAllocas = true;
376    }
377  }
378
379  // Finally, clone over the terminator.
380  const Instruction *OldTI = BB->getTerminator();
381  bool TerminatorDone = false;
382  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
383    if (BI->isConditional()) {
384      // If the condition was a known constant in the callee...
385      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
386      // Or is a known constant in the caller...
387      if (!Cond) {
388        Value *V = VMap.lookup(BI->getCondition());
389        Cond = dyn_cast_or_null<ConstantInt>(V);
390      }
391
392      // Constant fold to uncond branch!
393      if (Cond) {
394        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
395        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
396        ToClone.push_back(Dest);
397        TerminatorDone = true;
398      }
399    }
400  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
401    // If switching on a value known constant in the caller.
402    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
403    if (!Cond) { // Or known constant after constant prop in the callee...
404      Value *V = VMap.lookup(SI->getCondition());
405      Cond = dyn_cast_or_null<ConstantInt>(V);
406    }
407    if (Cond) {     // Constant fold to uncond branch!
408      SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
409      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
410      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
411      ToClone.push_back(Dest);
412      TerminatorDone = true;
413    }
414  }
415
416  if (!TerminatorDone) {
417    Instruction *NewInst = OldTI->clone();
418    if (OldTI->hasName())
419      NewInst->setName(OldTI->getName()+NameSuffix);
420    NewBB->getInstList().push_back(NewInst);
421    VMap[OldTI] = NewInst;             // Add instruction map to value.
422
423    if (CodeInfo)
424      if (auto *CB = dyn_cast<CallBase>(OldTI))
425        if (CB->hasOperandBundles())
426          CodeInfo->OperandBundleCallSites.push_back(NewInst);
427
428    // Recursively clone any reachable successor blocks.
429    const Instruction *TI = BB->getTerminator();
430    for (const BasicBlock *Succ : successors(TI))
431      ToClone.push_back(Succ);
432  }
433
434  if (CodeInfo) {
435    CodeInfo->ContainsCalls          |= hasCalls;
436    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
437    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
438      BB != &BB->getParent()->front();
439  }
440}
441
442/// This works like CloneAndPruneFunctionInto, except that it does not clone the
443/// entire function. Instead it starts at an instruction provided by the caller
444/// and copies (and prunes) only the code reachable from that instruction.
445void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
446                                     const Instruction *StartingInst,
447                                     ValueToValueMapTy &VMap,
448                                     bool ModuleLevelChanges,
449                                     SmallVectorImpl<ReturnInst *> &Returns,
450                                     const char *NameSuffix,
451                                     ClonedCodeInfo *CodeInfo) {
452  assert(NameSuffix && "NameSuffix cannot be null!");
453
454  ValueMapTypeRemapper *TypeMapper = nullptr;
455  ValueMaterializer *Materializer = nullptr;
456
457#ifndef NDEBUG
458  // If the cloning starts at the beginning of the function, verify that
459  // the function arguments are mapped.
460  if (!StartingInst)
461    for (const Argument &II : OldFunc->args())
462      assert(VMap.count(&II) && "No mapping from source argument specified!");
463#endif
464
465  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
466                            NameSuffix, CodeInfo);
467  const BasicBlock *StartingBB;
468  if (StartingInst)
469    StartingBB = StartingInst->getParent();
470  else {
471    StartingBB = &OldFunc->getEntryBlock();
472    StartingInst = &StartingBB->front();
473  }
474
475  // Clone the entry block, and anything recursively reachable from it.
476  std::vector<const BasicBlock*> CloneWorklist;
477  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
478  while (!CloneWorklist.empty()) {
479    const BasicBlock *BB = CloneWorklist.back();
480    CloneWorklist.pop_back();
481    PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
482  }
483
484  // Loop over all of the basic blocks in the old function.  If the block was
485  // reachable, we have cloned it and the old block is now in the value map:
486  // insert it into the new function in the right order.  If not, ignore it.
487  //
488  // Defer PHI resolution until rest of function is resolved.
489  SmallVector<const PHINode*, 16> PHIToResolve;
490  for (const BasicBlock &BI : *OldFunc) {
491    Value *V = VMap.lookup(&BI);
492    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
493    if (!NewBB) continue;  // Dead block.
494
495    // Add the new block to the new function.
496    NewFunc->getBasicBlockList().push_back(NewBB);
497
498    // Handle PHI nodes specially, as we have to remove references to dead
499    // blocks.
500    for (const PHINode &PN : BI.phis()) {
501      // PHI nodes may have been remapped to non-PHI nodes by the caller or
502      // during the cloning process.
503      if (isa<PHINode>(VMap[&PN]))
504        PHIToResolve.push_back(&PN);
505      else
506        break;
507    }
508
509    // Finally, remap the terminator instructions, as those can't be remapped
510    // until all BBs are mapped.
511    RemapInstruction(NewBB->getTerminator(), VMap,
512                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
513                     TypeMapper, Materializer);
514  }
515
516  // Defer PHI resolution until rest of function is resolved, PHI resolution
517  // requires the CFG to be up-to-date.
518  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
519    const PHINode *OPN = PHIToResolve[phino];
520    unsigned NumPreds = OPN->getNumIncomingValues();
521    const BasicBlock *OldBB = OPN->getParent();
522    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
523
524    // Map operands for blocks that are live and remove operands for blocks
525    // that are dead.
526    for (; phino != PHIToResolve.size() &&
527         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
528      OPN = PHIToResolve[phino];
529      PHINode *PN = cast<PHINode>(VMap[OPN]);
530      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
531        Value *V = VMap.lookup(PN->getIncomingBlock(pred));
532        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
533          Value *InVal = MapValue(PN->getIncomingValue(pred),
534                                  VMap,
535                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
536          assert(InVal && "Unknown input value?");
537          PN->setIncomingValue(pred, InVal);
538          PN->setIncomingBlock(pred, MappedBlock);
539        } else {
540          PN->removeIncomingValue(pred, false);
541          --pred;  // Revisit the next entry.
542          --e;
543        }
544      }
545    }
546
547    // The loop above has removed PHI entries for those blocks that are dead
548    // and has updated others.  However, if a block is live (i.e. copied over)
549    // but its terminator has been changed to not go to this block, then our
550    // phi nodes will have invalid entries.  Update the PHI nodes in this
551    // case.
552    PHINode *PN = cast<PHINode>(NewBB->begin());
553    NumPreds = pred_size(NewBB);
554    if (NumPreds != PN->getNumIncomingValues()) {
555      assert(NumPreds < PN->getNumIncomingValues());
556      // Count how many times each predecessor comes to this block.
557      std::map<BasicBlock*, unsigned> PredCount;
558      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
559           PI != E; ++PI)
560        --PredCount[*PI];
561
562      // Figure out how many entries to remove from each PHI.
563      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
564        ++PredCount[PN->getIncomingBlock(i)];
565
566      // At this point, the excess predecessor entries are positive in the
567      // map.  Loop over all of the PHIs and remove excess predecessor
568      // entries.
569      BasicBlock::iterator I = NewBB->begin();
570      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
571        for (const auto &PCI : PredCount) {
572          BasicBlock *Pred = PCI.first;
573          for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
574            PN->removeIncomingValue(Pred, false);
575        }
576      }
577    }
578
579    // If the loops above have made these phi nodes have 0 or 1 operand,
580    // replace them with undef or the input value.  We must do this for
581    // correctness, because 0-operand phis are not valid.
582    PN = cast<PHINode>(NewBB->begin());
583    if (PN->getNumIncomingValues() == 0) {
584      BasicBlock::iterator I = NewBB->begin();
585      BasicBlock::const_iterator OldI = OldBB->begin();
586      while ((PN = dyn_cast<PHINode>(I++))) {
587        Value *NV = UndefValue::get(PN->getType());
588        PN->replaceAllUsesWith(NV);
589        assert(VMap[&*OldI] == PN && "VMap mismatch");
590        VMap[&*OldI] = NV;
591        PN->eraseFromParent();
592        ++OldI;
593      }
594    }
595  }
596
597  // Make a second pass over the PHINodes now that all of them have been
598  // remapped into the new function, simplifying the PHINode and performing any
599  // recursive simplifications exposed. This will transparently update the
600  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
601  // two PHINodes, the iteration over the old PHIs remains valid, and the
602  // mapping will just map us to the new node (which may not even be a PHI
603  // node).
604  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
605  SmallSetVector<const Value *, 8> Worklist;
606  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
607    if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
608      Worklist.insert(PHIToResolve[Idx]);
609
610  // Note that we must test the size on each iteration, the worklist can grow.
611  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
612    const Value *OrigV = Worklist[Idx];
613    auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
614    if (!I)
615      continue;
616
617    // Skip over non-intrinsic callsites, we don't want to remove any nodes from
618    // the CGSCC.
619    CallBase *CB = dyn_cast<CallBase>(I);
620    if (CB && CB->getCalledFunction() &&
621        !CB->getCalledFunction()->isIntrinsic())
622      continue;
623
624    // See if this instruction simplifies.
625    Value *SimpleV = SimplifyInstruction(I, DL);
626    if (!SimpleV)
627      continue;
628
629    // Stash away all the uses of the old instruction so we can check them for
630    // recursive simplifications after a RAUW. This is cheaper than checking all
631    // uses of To on the recursive step in most cases.
632    for (const User *U : OrigV->users())
633      Worklist.insert(cast<Instruction>(U));
634
635    // Replace the instruction with its simplified value.
636    I->replaceAllUsesWith(SimpleV);
637
638    // If the original instruction had no side effects, remove it.
639    if (isInstructionTriviallyDead(I))
640      I->eraseFromParent();
641    else
642      VMap[OrigV] = I;
643  }
644
645  // Now that the inlined function body has been fully constructed, go through
646  // and zap unconditional fall-through branches. This happens all the time when
647  // specializing code: code specialization turns conditional branches into
648  // uncond branches, and this code folds them.
649  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
650  Function::iterator I = Begin;
651  while (I != NewFunc->end()) {
652    // We need to simplify conditional branches and switches with a constant
653    // operand. We try to prune these out when cloning, but if the
654    // simplification required looking through PHI nodes, those are only
655    // available after forming the full basic block. That may leave some here,
656    // and we still want to prune the dead code as early as possible.
657    //
658    // Do the folding before we check if the block is dead since we want code
659    // like
660    //  bb:
661    //    br i1 undef, label %bb, label %bb
662    // to be simplified to
663    //  bb:
664    //    br label %bb
665    // before we call I->getSinglePredecessor().
666    ConstantFoldTerminator(&*I);
667
668    // Check if this block has become dead during inlining or other
669    // simplifications. Note that the first block will appear dead, as it has
670    // not yet been wired up properly.
671    if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
672                       I->getSinglePredecessor() == &*I)) {
673      BasicBlock *DeadBB = &*I++;
674      DeleteDeadBlock(DeadBB);
675      continue;
676    }
677
678    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
679    if (!BI || BI->isConditional()) { ++I; continue; }
680
681    BasicBlock *Dest = BI->getSuccessor(0);
682    if (!Dest->getSinglePredecessor()) {
683      ++I; continue;
684    }
685
686    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
687    // above should have zapped all of them..
688    assert(!isa<PHINode>(Dest->begin()));
689
690    // We know all single-entry PHI nodes in the inlined function have been
691    // removed, so we just need to splice the blocks.
692    BI->eraseFromParent();
693
694    // Make all PHI nodes that referred to Dest now refer to I as their source.
695    Dest->replaceAllUsesWith(&*I);
696
697    // Move all the instructions in the succ to the pred.
698    I->getInstList().splice(I->end(), Dest->getInstList());
699
700    // Remove the dest block.
701    Dest->eraseFromParent();
702
703    // Do not increment I, iteratively merge all things this block branches to.
704  }
705
706  // Make a final pass over the basic blocks from the old function to gather
707  // any return instructions which survived folding. We have to do this here
708  // because we can iteratively remove and merge returns above.
709  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
710                          E = NewFunc->end();
711       I != E; ++I)
712    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
713      Returns.push_back(RI);
714}
715
716
717/// This works exactly like CloneFunctionInto,
718/// except that it does some simple constant prop and DCE on the fly.  The
719/// effect of this is to copy significantly less code in cases where (for
720/// example) a function call with constant arguments is inlined, and those
721/// constant arguments cause a significant amount of code in the callee to be
722/// dead.  Since this doesn't produce an exact copy of the input, it can't be
723/// used for things like CloneFunction or CloneModule.
724void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
725                                     ValueToValueMapTy &VMap,
726                                     bool ModuleLevelChanges,
727                                     SmallVectorImpl<ReturnInst*> &Returns,
728                                     const char *NameSuffix,
729                                     ClonedCodeInfo *CodeInfo,
730                                     Instruction *TheCall) {
731  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
732                            ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
733}
734
735/// Remaps instructions in \p Blocks using the mapping in \p VMap.
736void llvm::remapInstructionsInBlocks(
737    const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
738  // Rewrite the code to refer to itself.
739  for (auto *BB : Blocks)
740    for (auto &Inst : *BB)
741      RemapInstruction(&Inst, VMap,
742                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
743}
744
745/// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
746/// Blocks.
747///
748/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
749/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
750Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
751                                   Loop *OrigLoop, ValueToValueMapTy &VMap,
752                                   const Twine &NameSuffix, LoopInfo *LI,
753                                   DominatorTree *DT,
754                                   SmallVectorImpl<BasicBlock *> &Blocks) {
755  Function *F = OrigLoop->getHeader()->getParent();
756  Loop *ParentLoop = OrigLoop->getParentLoop();
757  DenseMap<Loop *, Loop *> LMap;
758
759  Loop *NewLoop = LI->AllocateLoop();
760  LMap[OrigLoop] = NewLoop;
761  if (ParentLoop)
762    ParentLoop->addChildLoop(NewLoop);
763  else
764    LI->addTopLevelLoop(NewLoop);
765
766  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
767  assert(OrigPH && "No preheader");
768  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
769  // To rename the loop PHIs.
770  VMap[OrigPH] = NewPH;
771  Blocks.push_back(NewPH);
772
773  // Update LoopInfo.
774  if (ParentLoop)
775    ParentLoop->addBasicBlockToLoop(NewPH, *LI);
776
777  // Update DominatorTree.
778  DT->addNewBlock(NewPH, LoopDomBB);
779
780  for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
781    Loop *&NewLoop = LMap[CurLoop];
782    if (!NewLoop) {
783      NewLoop = LI->AllocateLoop();
784
785      // Establish the parent/child relationship.
786      Loop *OrigParent = CurLoop->getParentLoop();
787      assert(OrigParent && "Could not find the original parent loop");
788      Loop *NewParentLoop = LMap[OrigParent];
789      assert(NewParentLoop && "Could not find the new parent loop");
790
791      NewParentLoop->addChildLoop(NewLoop);
792    }
793  }
794
795  for (BasicBlock *BB : OrigLoop->getBlocks()) {
796    Loop *CurLoop = LI->getLoopFor(BB);
797    Loop *&NewLoop = LMap[CurLoop];
798    assert(NewLoop && "Expecting new loop to be allocated");
799
800    BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
801    VMap[BB] = NewBB;
802
803    // Update LoopInfo.
804    NewLoop->addBasicBlockToLoop(NewBB, *LI);
805
806    // Add DominatorTree node. After seeing all blocks, update to correct
807    // IDom.
808    DT->addNewBlock(NewBB, NewPH);
809
810    Blocks.push_back(NewBB);
811  }
812
813  for (BasicBlock *BB : OrigLoop->getBlocks()) {
814    // Update loop headers.
815    Loop *CurLoop = LI->getLoopFor(BB);
816    if (BB == CurLoop->getHeader())
817      LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
818
819    // Update DominatorTree.
820    BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
821    DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
822                                 cast<BasicBlock>(VMap[IDomBB]));
823  }
824
825  // Move them physically from the end of the block list.
826  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
827                                NewPH);
828  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
829                                NewLoop->getHeader()->getIterator(), F->end());
830
831  return NewLoop;
832}
833
834/// Duplicate non-Phi instructions from the beginning of block up to
835/// StopAt instruction into a split block between BB and its predecessor.
836BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
837    BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
838    ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
839
840  assert(count(successors(PredBB), BB) == 1 &&
841         "There must be a single edge between PredBB and BB!");
842  // We are going to have to map operands from the original BB block to the new
843  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
844  // account for entry from PredBB.
845  BasicBlock::iterator BI = BB->begin();
846  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
847    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
848
849  BasicBlock *NewBB = SplitEdge(PredBB, BB);
850  NewBB->setName(PredBB->getName() + ".split");
851  Instruction *NewTerm = NewBB->getTerminator();
852
853  // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
854  //        in the update set here.
855  DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
856                    {DominatorTree::Insert, PredBB, NewBB},
857                    {DominatorTree::Insert, NewBB, BB}});
858
859  // Clone the non-phi instructions of BB into NewBB, keeping track of the
860  // mapping and using it to remap operands in the cloned instructions.
861  // Stop once we see the terminator too. This covers the case where BB's
862  // terminator gets replaced and StopAt == BB's terminator.
863  for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
864    Instruction *New = BI->clone();
865    New->setName(BI->getName());
866    New->insertBefore(NewTerm);
867    ValueMapping[&*BI] = New;
868
869    // Remap operands to patch up intra-block references.
870    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
871      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
872        auto I = ValueMapping.find(Inst);
873        if (I != ValueMapping.end())
874          New->setOperand(i, I->second);
875      }
876  }
877
878  return NewBB;
879}
880