1//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions perform manipulations on basic blocks, and
10// instructions contained within basic blocks.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/BasicBlockUtils.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Analysis/CFG.h"
20#include "llvm/Analysis/DomTreeUpdater.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/MemoryDependenceAnalysis.h"
23#include "llvm/Analysis/MemorySSAUpdater.h"
24#include "llvm/Analysis/PostDominators.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DebugInfoMetadata.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Type.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/IR/ValueHandle.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include <cassert>
45#include <cstdint>
46#include <string>
47#include <utility>
48#include <vector>
49
50using namespace llvm;
51
52#define DEBUG_TYPE "basicblock-utils"
53
54void llvm::DetatchDeadBlocks(
55    ArrayRef<BasicBlock *> BBs,
56    SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57    bool KeepOneInputPHIs) {
58  for (auto *BB : BBs) {
59    // Loop through all of our successors and make sure they know that one
60    // of their predecessors is going away.
61    SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62    for (BasicBlock *Succ : successors(BB)) {
63      Succ->removePredecessor(BB, KeepOneInputPHIs);
64      if (Updates && UniqueSuccessors.insert(Succ).second)
65        Updates->push_back({DominatorTree::Delete, BB, Succ});
66    }
67
68    // Zap all the instructions in the block.
69    while (!BB->empty()) {
70      Instruction &I = BB->back();
71      // If this instruction is used, replace uses with an arbitrary value.
72      // Because control flow can't get here, we don't care what we replace the
73      // value with.  Note that since this block is unreachable, and all values
74      // contained within it must dominate their uses, that all uses will
75      // eventually be removed (they are themselves dead).
76      if (!I.use_empty())
77        I.replaceAllUsesWith(UndefValue::get(I.getType()));
78      BB->getInstList().pop_back();
79    }
80    new UnreachableInst(BB->getContext(), BB);
81    assert(BB->getInstList().size() == 1 &&
82           isa<UnreachableInst>(BB->getTerminator()) &&
83           "The successor list of BB isn't empty before "
84           "applying corresponding DTU updates.");
85  }
86}
87
88void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                           bool KeepOneInputPHIs) {
90  DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91}
92
93void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                            bool KeepOneInputPHIs) {
95#ifndef NDEBUG
96  // Make sure that all predecessors of each dead block is also dead.
97  SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98  assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99  for (auto *BB : Dead)
100    for (BasicBlock *Pred : predecessors(BB))
101      assert(Dead.count(Pred) && "All predecessors must be dead!");
102#endif
103
104  SmallVector<DominatorTree::UpdateType, 4> Updates;
105  DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106
107  if (DTU)
108    DTU->applyUpdatesPermissive(Updates);
109
110  for (BasicBlock *BB : BBs)
111    if (DTU)
112      DTU->deleteBB(BB);
113    else
114      BB->eraseFromParent();
115}
116
117bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                      bool KeepOneInputPHIs) {
119  df_iterator_default_set<BasicBlock*> Reachable;
120
121  // Mark all reachable blocks.
122  for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123    (void)BB/* Mark all reachable blocks */;
124
125  // Collect all dead blocks.
126  std::vector<BasicBlock*> DeadBlocks;
127  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128    if (!Reachable.count(&*I)) {
129      BasicBlock *BB = &*I;
130      DeadBlocks.push_back(BB);
131    }
132
133  // Delete the dead blocks.
134  DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135
136  return !DeadBlocks.empty();
137}
138
139void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                   MemoryDependenceResults *MemDep) {
141  if (!isa<PHINode>(BB->begin())) return;
142
143  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144    if (PN->getIncomingValue(0) != PN)
145      PN->replaceAllUsesWith(PN->getIncomingValue(0));
146    else
147      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148
149    if (MemDep)
150      MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151
152    PN->eraseFromParent();
153  }
154}
155
156bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
157                          MemorySSAUpdater *MSSAU) {
158  // Recursively deleting a PHI may cause multiple PHIs to be deleted
159  // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
160  SmallVector<WeakTrackingVH, 8> PHIs;
161  for (PHINode &PN : BB->phis())
162    PHIs.push_back(&PN);
163
164  bool Changed = false;
165  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
166    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
167      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
168
169  return Changed;
170}
171
172bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
173                                     LoopInfo *LI, MemorySSAUpdater *MSSAU,
174                                     MemoryDependenceResults *MemDep,
175                                     bool PredecessorWithTwoSuccessors) {
176  if (BB->hasAddressTaken())
177    return false;
178
179  // Can't merge if there are multiple predecessors, or no predecessors.
180  BasicBlock *PredBB = BB->getUniquePredecessor();
181  if (!PredBB) return false;
182
183  // Don't break self-loops.
184  if (PredBB == BB) return false;
185  // Don't break unwinding instructions.
186  if (PredBB->getTerminator()->isExceptionalTerminator())
187    return false;
188
189  // Can't merge if there are multiple distinct successors.
190  if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
191    return false;
192
193  // Currently only allow PredBB to have two predecessors, one being BB.
194  // Update BI to branch to BB's only successor instead of BB.
195  BranchInst *PredBB_BI;
196  BasicBlock *NewSucc = nullptr;
197  unsigned FallThruPath;
198  if (PredecessorWithTwoSuccessors) {
199    if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
200      return false;
201    BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
202    if (!BB_JmpI || !BB_JmpI->isUnconditional())
203      return false;
204    NewSucc = BB_JmpI->getSuccessor(0);
205    FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
206  }
207
208  // Can't merge if there is PHI loop.
209  for (PHINode &PN : BB->phis())
210    for (Value *IncValue : PN.incoming_values())
211      if (IncValue == &PN)
212        return false;
213
214  LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215                    << PredBB->getName() << "\n");
216
217  // Begin by getting rid of unneeded PHIs.
218  SmallVector<AssertingVH<Value>, 4> IncomingValues;
219  if (isa<PHINode>(BB->front())) {
220    for (PHINode &PN : BB->phis())
221      if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222          cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223        IncomingValues.push_back(PN.getIncomingValue(0));
224    FoldSingleEntryPHINodes(BB, MemDep);
225  }
226
227  // DTU update: Collect all the edges that exit BB.
228  // These dominator edges will be redirected from Pred.
229  std::vector<DominatorTree::UpdateType> Updates;
230  if (DTU) {
231    Updates.reserve(1 + (2 * succ_size(BB)));
232    // Add insert edges first. Experimentally, for the particular case of two
233    // blocks that can be merged, with a single successor and single predecessor
234    // respectively, it is beneficial to have all insert updates first. Deleting
235    // edges first may lead to unreachable blocks, followed by inserting edges
236    // making the blocks reachable again. Such DT updates lead to high compile
237    // times. We add inserts before deletes here to reduce compile time.
238    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
239      // This successor of BB may already have PredBB as a predecessor.
240      if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
241        Updates.push_back({DominatorTree::Insert, PredBB, *I});
242    for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
243      Updates.push_back({DominatorTree::Delete, BB, *I});
244    Updates.push_back({DominatorTree::Delete, PredBB, BB});
245  }
246
247  Instruction *PTI = PredBB->getTerminator();
248  Instruction *STI = BB->getTerminator();
249  Instruction *Start = &*BB->begin();
250  // If there's nothing to move, mark the starting instruction as the last
251  // instruction in the block. Terminator instruction is handled separately.
252  if (Start == STI)
253    Start = PTI;
254
255  // Move all definitions in the successor to the predecessor...
256  PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
257                               BB->begin(), STI->getIterator());
258
259  if (MSSAU)
260    MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
261
262  // Make all PHI nodes that referred to BB now refer to Pred as their
263  // source...
264  BB->replaceAllUsesWith(PredBB);
265
266  if (PredecessorWithTwoSuccessors) {
267    // Delete the unconditional branch from BB.
268    BB->getInstList().pop_back();
269
270    // Update branch in the predecessor.
271    PredBB_BI->setSuccessor(FallThruPath, NewSucc);
272  } else {
273    // Delete the unconditional branch from the predecessor.
274    PredBB->getInstList().pop_back();
275
276    // Move terminator instruction.
277    PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
278
279    // Terminator may be a memory accessing instruction too.
280    if (MSSAU)
281      if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
282              MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
283        MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
284  }
285  // Add unreachable to now empty BB.
286  new UnreachableInst(BB->getContext(), BB);
287
288  // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
289  // do that since we might end up with redundant dbg.values describing the
290  // entry PHI node post-splice.
291  RemoveRedundantDbgInstrs(PredBB);
292
293  // Inherit predecessors name if it exists.
294  if (!PredBB->hasName())
295    PredBB->takeName(BB);
296
297  if (LI)
298    LI->removeBlock(BB);
299
300  if (MemDep)
301    MemDep->invalidateCachedPredecessors();
302
303  // Finally, erase the old block and update dominator info.
304  if (DTU) {
305    assert(BB->getInstList().size() == 1 &&
306           isa<UnreachableInst>(BB->getTerminator()) &&
307           "The successor list of BB isn't empty before "
308           "applying corresponding DTU updates.");
309    DTU->applyUpdatesPermissive(Updates);
310    DTU->deleteBB(BB);
311  } else {
312    BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
313  }
314
315  return true;
316}
317
318bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
319    SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
320    LoopInfo *LI) {
321  assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
322
323  bool BlocksHaveBeenMerged = false;
324  while (!MergeBlocks.empty()) {
325    BasicBlock *BB = *MergeBlocks.begin();
326    BasicBlock *Dest = BB->getSingleSuccessor();
327    if (Dest && (!L || L->contains(Dest))) {
328      BasicBlock *Fold = Dest->getUniquePredecessor();
329      (void)Fold;
330      if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
331        assert(Fold == BB &&
332               "Expecting BB to be unique predecessor of the Dest block");
333        MergeBlocks.erase(Dest);
334        BlocksHaveBeenMerged = true;
335      } else
336        MergeBlocks.erase(BB);
337    } else
338      MergeBlocks.erase(BB);
339  }
340  return BlocksHaveBeenMerged;
341}
342
343/// Remove redundant instructions within sequences of consecutive dbg.value
344/// instructions. This is done using a backward scan to keep the last dbg.value
345/// describing a specific variable/fragment.
346///
347/// BackwardScan strategy:
348/// ----------------------
349/// Given a sequence of consecutive DbgValueInst like this
350///
351///   dbg.value ..., "x", FragmentX1  (*)
352///   dbg.value ..., "y", FragmentY1
353///   dbg.value ..., "x", FragmentX2
354///   dbg.value ..., "x", FragmentX1  (**)
355///
356/// then the instruction marked with (*) can be removed (it is guaranteed to be
357/// obsoleted by the instruction marked with (**) as the latter instruction is
358/// describing the same variable using the same fragment info).
359///
360/// Possible improvements:
361/// - Check fully overlapping fragments and not only identical fragments.
362/// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
363///   instructions being part of the sequence of consecutive instructions.
364static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
365  SmallVector<DbgValueInst *, 8> ToBeRemoved;
366  SmallDenseSet<DebugVariable> VariableSet;
367  for (auto &I : reverse(*BB)) {
368    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
369      DebugVariable Key(DVI->getVariable(),
370                        DVI->getExpression(),
371                        DVI->getDebugLoc()->getInlinedAt());
372      auto R = VariableSet.insert(Key);
373      // If the same variable fragment is described more than once it is enough
374      // to keep the last one (i.e. the first found since we for reverse
375      // iteration).
376      if (!R.second)
377        ToBeRemoved.push_back(DVI);
378      continue;
379    }
380    // Sequence with consecutive dbg.value instrs ended. Clear the map to
381    // restart identifying redundant instructions if case we find another
382    // dbg.value sequence.
383    VariableSet.clear();
384  }
385
386  for (auto &Instr : ToBeRemoved)
387    Instr->eraseFromParent();
388
389  return !ToBeRemoved.empty();
390}
391
392/// Remove redundant dbg.value instructions using a forward scan. This can
393/// remove a dbg.value instruction that is redundant due to indicating that a
394/// variable has the same value as already being indicated by an earlier
395/// dbg.value.
396///
397/// ForwardScan strategy:
398/// ---------------------
399/// Given two identical dbg.value instructions, separated by a block of
400/// instructions that isn't describing the same variable, like this
401///
402///   dbg.value X1, "x", FragmentX1  (**)
403///   <block of instructions, none being "dbg.value ..., "x", ...">
404///   dbg.value X1, "x", FragmentX1  (*)
405///
406/// then the instruction marked with (*) can be removed. Variable "x" is already
407/// described as being mapped to the SSA value X1.
408///
409/// Possible improvements:
410/// - Keep track of non-overlapping fragments.
411static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
412  SmallVector<DbgValueInst *, 8> ToBeRemoved;
413  DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
414  for (auto &I : *BB) {
415    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
416      DebugVariable Key(DVI->getVariable(),
417                        NoneType(),
418                        DVI->getDebugLoc()->getInlinedAt());
419      auto VMI = VariableMap.find(Key);
420      // Update the map if we found a new value/expression describing the
421      // variable, or if the variable wasn't mapped already.
422      if (VMI == VariableMap.end() ||
423          VMI->second.first != DVI->getValue() ||
424          VMI->second.second != DVI->getExpression()) {
425        VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
426        continue;
427      }
428      // Found an identical mapping. Remember the instruction for later removal.
429      ToBeRemoved.push_back(DVI);
430    }
431  }
432
433  for (auto &Instr : ToBeRemoved)
434    Instr->eraseFromParent();
435
436  return !ToBeRemoved.empty();
437}
438
439bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
440  bool MadeChanges = false;
441  // By using the "backward scan" strategy before the "forward scan" strategy we
442  // can remove both dbg.value (2) and (3) in a situation like this:
443  //
444  //   (1) dbg.value V1, "x", DIExpression()
445  //       ...
446  //   (2) dbg.value V2, "x", DIExpression()
447  //   (3) dbg.value V1, "x", DIExpression()
448  //
449  // The backward scan will remove (2), it is made obsolete by (3). After
450  // getting (2) out of the way, the foward scan will remove (3) since "x"
451  // already is described as having the value V1 at (1).
452  MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
453  MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
454
455  if (MadeChanges)
456    LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
457                      << BB->getName() << "\n");
458  return MadeChanges;
459}
460
461void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
462                                BasicBlock::iterator &BI, Value *V) {
463  Instruction &I = *BI;
464  // Replaces all of the uses of the instruction with uses of the value
465  I.replaceAllUsesWith(V);
466
467  // Make sure to propagate a name if there is one already.
468  if (I.hasName() && !V->hasName())
469    V->takeName(&I);
470
471  // Delete the unnecessary instruction now...
472  BI = BIL.erase(BI);
473}
474
475void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
476                               BasicBlock::iterator &BI, Instruction *I) {
477  assert(I->getParent() == nullptr &&
478         "ReplaceInstWithInst: Instruction already inserted into basic block!");
479
480  // Copy debug location to newly added instruction, if it wasn't already set
481  // by the caller.
482  if (!I->getDebugLoc())
483    I->setDebugLoc(BI->getDebugLoc());
484
485  // Insert the new instruction into the basic block...
486  BasicBlock::iterator New = BIL.insert(BI, I);
487
488  // Replace all uses of the old instruction, and delete it.
489  ReplaceInstWithValue(BIL, BI, I);
490
491  // Move BI back to point to the newly inserted instruction
492  BI = New;
493}
494
495void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
496  BasicBlock::iterator BI(From);
497  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
498}
499
500BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
501                            LoopInfo *LI, MemorySSAUpdater *MSSAU) {
502  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
503
504  // If this is a critical edge, let SplitCriticalEdge do it.
505  Instruction *LatchTerm = BB->getTerminator();
506  if (SplitCriticalEdge(
507          LatchTerm, SuccNum,
508          CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
509    return LatchTerm->getSuccessor(SuccNum);
510
511  // If the edge isn't critical, then BB has a single successor or Succ has a
512  // single pred.  Split the block.
513  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
514    // If the successor only has a single pred, split the top of the successor
515    // block.
516    assert(SP == BB && "CFG broken");
517    SP = nullptr;
518    return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
519  }
520
521  // Otherwise, if BB has a single successor, split it at the bottom of the
522  // block.
523  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
524         "Should have a single succ!");
525  return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
526}
527
528unsigned
529llvm::SplitAllCriticalEdges(Function &F,
530                            const CriticalEdgeSplittingOptions &Options) {
531  unsigned NumBroken = 0;
532  for (BasicBlock &BB : F) {
533    Instruction *TI = BB.getTerminator();
534    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
535        !isa<CallBrInst>(TI))
536      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
537        if (SplitCriticalEdge(TI, i, Options))
538          ++NumBroken;
539  }
540  return NumBroken;
541}
542
543BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
544                             DominatorTree *DT, LoopInfo *LI,
545                             MemorySSAUpdater *MSSAU, const Twine &BBName) {
546  BasicBlock::iterator SplitIt = SplitPt->getIterator();
547  while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
548    ++SplitIt;
549  std::string Name = BBName.str();
550  BasicBlock *New = Old->splitBasicBlock(
551      SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
552
553  // The new block lives in whichever loop the old one did. This preserves
554  // LCSSA as well, because we force the split point to be after any PHI nodes.
555  if (LI)
556    if (Loop *L = LI->getLoopFor(Old))
557      L->addBasicBlockToLoop(New, *LI);
558
559  if (DT)
560    // Old dominates New. New node dominates all other nodes dominated by Old.
561    if (DomTreeNode *OldNode = DT->getNode(Old)) {
562      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
563
564      DomTreeNode *NewNode = DT->addNewBlock(New, Old);
565      for (DomTreeNode *I : Children)
566        DT->changeImmediateDominator(I, NewNode);
567    }
568
569  // Move MemoryAccesses still tracked in Old, but part of New now.
570  // Update accesses in successor blocks accordingly.
571  if (MSSAU)
572    MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
573
574  return New;
575}
576
577/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
578static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
579                                      ArrayRef<BasicBlock *> Preds,
580                                      DominatorTree *DT, LoopInfo *LI,
581                                      MemorySSAUpdater *MSSAU,
582                                      bool PreserveLCSSA, bool &HasLoopExit) {
583  // Update dominator tree if available.
584  if (DT) {
585    if (OldBB == DT->getRootNode()->getBlock()) {
586      assert(NewBB == &NewBB->getParent()->getEntryBlock());
587      DT->setNewRoot(NewBB);
588    } else {
589      // Split block expects NewBB to have a non-empty set of predecessors.
590      DT->splitBlock(NewBB);
591    }
592  }
593
594  // Update MemoryPhis after split if MemorySSA is available
595  if (MSSAU)
596    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
597
598  // The rest of the logic is only relevant for updating the loop structures.
599  if (!LI)
600    return;
601
602  assert(DT && "DT should be available to update LoopInfo!");
603  Loop *L = LI->getLoopFor(OldBB);
604
605  // If we need to preserve loop analyses, collect some information about how
606  // this split will affect loops.
607  bool IsLoopEntry = !!L;
608  bool SplitMakesNewLoopHeader = false;
609  for (BasicBlock *Pred : Preds) {
610    // Preds that are not reachable from entry should not be used to identify if
611    // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
612    // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
613    // as true and make the NewBB the header of some loop. This breaks LI.
614    if (!DT->isReachableFromEntry(Pred))
615      continue;
616    // If we need to preserve LCSSA, determine if any of the preds is a loop
617    // exit.
618    if (PreserveLCSSA)
619      if (Loop *PL = LI->getLoopFor(Pred))
620        if (!PL->contains(OldBB))
621          HasLoopExit = true;
622
623    // If we need to preserve LoopInfo, note whether any of the preds crosses
624    // an interesting loop boundary.
625    if (!L)
626      continue;
627    if (L->contains(Pred))
628      IsLoopEntry = false;
629    else
630      SplitMakesNewLoopHeader = true;
631  }
632
633  // Unless we have a loop for OldBB, nothing else to do here.
634  if (!L)
635    return;
636
637  if (IsLoopEntry) {
638    // Add the new block to the nearest enclosing loop (and not an adjacent
639    // loop). To find this, examine each of the predecessors and determine which
640    // loops enclose them, and select the most-nested loop which contains the
641    // loop containing the block being split.
642    Loop *InnermostPredLoop = nullptr;
643    for (BasicBlock *Pred : Preds) {
644      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
645        // Seek a loop which actually contains the block being split (to avoid
646        // adjacent loops).
647        while (PredLoop && !PredLoop->contains(OldBB))
648          PredLoop = PredLoop->getParentLoop();
649
650        // Select the most-nested of these loops which contains the block.
651        if (PredLoop && PredLoop->contains(OldBB) &&
652            (!InnermostPredLoop ||
653             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
654          InnermostPredLoop = PredLoop;
655      }
656    }
657
658    if (InnermostPredLoop)
659      InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
660  } else {
661    L->addBasicBlockToLoop(NewBB, *LI);
662    if (SplitMakesNewLoopHeader)
663      L->moveToHeader(NewBB);
664  }
665}
666
667/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
668/// This also updates AliasAnalysis, if available.
669static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
670                           ArrayRef<BasicBlock *> Preds, BranchInst *BI,
671                           bool HasLoopExit) {
672  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
673  SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
674  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
675    PHINode *PN = cast<PHINode>(I++);
676
677    // Check to see if all of the values coming in are the same.  If so, we
678    // don't need to create a new PHI node, unless it's needed for LCSSA.
679    Value *InVal = nullptr;
680    if (!HasLoopExit) {
681      InVal = PN->getIncomingValueForBlock(Preds[0]);
682      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
683        if (!PredSet.count(PN->getIncomingBlock(i)))
684          continue;
685        if (!InVal)
686          InVal = PN->getIncomingValue(i);
687        else if (InVal != PN->getIncomingValue(i)) {
688          InVal = nullptr;
689          break;
690        }
691      }
692    }
693
694    if (InVal) {
695      // If all incoming values for the new PHI would be the same, just don't
696      // make a new PHI.  Instead, just remove the incoming values from the old
697      // PHI.
698
699      // NOTE! This loop walks backwards for a reason! First off, this minimizes
700      // the cost of removal if we end up removing a large number of values, and
701      // second off, this ensures that the indices for the incoming values
702      // aren't invalidated when we remove one.
703      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
704        if (PredSet.count(PN->getIncomingBlock(i)))
705          PN->removeIncomingValue(i, false);
706
707      // Add an incoming value to the PHI node in the loop for the preheader
708      // edge.
709      PN->addIncoming(InVal, NewBB);
710      continue;
711    }
712
713    // If the values coming into the block are not the same, we need a new
714    // PHI.
715    // Create the new PHI node, insert it into NewBB at the end of the block
716    PHINode *NewPHI =
717        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
718
719    // NOTE! This loop walks backwards for a reason! First off, this minimizes
720    // the cost of removal if we end up removing a large number of values, and
721    // second off, this ensures that the indices for the incoming values aren't
722    // invalidated when we remove one.
723    for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
724      BasicBlock *IncomingBB = PN->getIncomingBlock(i);
725      if (PredSet.count(IncomingBB)) {
726        Value *V = PN->removeIncomingValue(i, false);
727        NewPHI->addIncoming(V, IncomingBB);
728      }
729    }
730
731    PN->addIncoming(NewPHI, NewBB);
732  }
733}
734
735BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
736                                         ArrayRef<BasicBlock *> Preds,
737                                         const char *Suffix, DominatorTree *DT,
738                                         LoopInfo *LI, MemorySSAUpdater *MSSAU,
739                                         bool PreserveLCSSA) {
740  // Do not attempt to split that which cannot be split.
741  if (!BB->canSplitPredecessors())
742    return nullptr;
743
744  // For the landingpads we need to act a bit differently.
745  // Delegate this work to the SplitLandingPadPredecessors.
746  if (BB->isLandingPad()) {
747    SmallVector<BasicBlock*, 2> NewBBs;
748    std::string NewName = std::string(Suffix) + ".split-lp";
749
750    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
751                                LI, MSSAU, PreserveLCSSA);
752    return NewBBs[0];
753  }
754
755  // Create new basic block, insert right before the original block.
756  BasicBlock *NewBB = BasicBlock::Create(
757      BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
758
759  // The new block unconditionally branches to the old block.
760  BranchInst *BI = BranchInst::Create(BB, NewBB);
761  // Splitting the predecessors of a loop header creates a preheader block.
762  if (LI && LI->isLoopHeader(BB))
763    // Using the loop start line number prevents debuggers stepping into the
764    // loop body for this instruction.
765    BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
766  else
767    BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
768
769  // Move the edges from Preds to point to NewBB instead of BB.
770  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
771    // This is slightly more strict than necessary; the minimum requirement
772    // is that there be no more than one indirectbr branching to BB. And
773    // all BlockAddress uses would need to be updated.
774    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
775           "Cannot split an edge from an IndirectBrInst");
776    assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
777           "Cannot split an edge from a CallBrInst");
778    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
779  }
780
781  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
782  // node becomes an incoming value for BB's phi node.  However, if the Preds
783  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
784  // account for the newly created predecessor.
785  if (Preds.empty()) {
786    // Insert dummy values as the incoming value.
787    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
788      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
789  }
790
791  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
792  bool HasLoopExit = false;
793  UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
794                            HasLoopExit);
795
796  if (!Preds.empty()) {
797    // Update the PHI nodes in BB with the values coming from NewBB.
798    UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
799  }
800
801  return NewBB;
802}
803
804void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
805                                       ArrayRef<BasicBlock *> Preds,
806                                       const char *Suffix1, const char *Suffix2,
807                                       SmallVectorImpl<BasicBlock *> &NewBBs,
808                                       DominatorTree *DT, LoopInfo *LI,
809                                       MemorySSAUpdater *MSSAU,
810                                       bool PreserveLCSSA) {
811  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
812
813  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
814  // it right before the original block.
815  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
816                                          OrigBB->getName() + Suffix1,
817                                          OrigBB->getParent(), OrigBB);
818  NewBBs.push_back(NewBB1);
819
820  // The new block unconditionally branches to the old block.
821  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
822  BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
823
824  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
825  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
826    // This is slightly more strict than necessary; the minimum requirement
827    // is that there be no more than one indirectbr branching to BB. And
828    // all BlockAddress uses would need to be updated.
829    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
830           "Cannot split an edge from an IndirectBrInst");
831    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
832  }
833
834  bool HasLoopExit = false;
835  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
836                            HasLoopExit);
837
838  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
839  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
840
841  // Move the remaining edges from OrigBB to point to NewBB2.
842  SmallVector<BasicBlock*, 8> NewBB2Preds;
843  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
844       i != e; ) {
845    BasicBlock *Pred = *i++;
846    if (Pred == NewBB1) continue;
847    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
848           "Cannot split an edge from an IndirectBrInst");
849    NewBB2Preds.push_back(Pred);
850    e = pred_end(OrigBB);
851  }
852
853  BasicBlock *NewBB2 = nullptr;
854  if (!NewBB2Preds.empty()) {
855    // Create another basic block for the rest of OrigBB's predecessors.
856    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
857                                OrigBB->getName() + Suffix2,
858                                OrigBB->getParent(), OrigBB);
859    NewBBs.push_back(NewBB2);
860
861    // The new block unconditionally branches to the old block.
862    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
863    BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
864
865    // Move the remaining edges from OrigBB to point to NewBB2.
866    for (BasicBlock *NewBB2Pred : NewBB2Preds)
867      NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
868
869    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
870    HasLoopExit = false;
871    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
872                              PreserveLCSSA, HasLoopExit);
873
874    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
875    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
876  }
877
878  LandingPadInst *LPad = OrigBB->getLandingPadInst();
879  Instruction *Clone1 = LPad->clone();
880  Clone1->setName(Twine("lpad") + Suffix1);
881  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
882
883  if (NewBB2) {
884    Instruction *Clone2 = LPad->clone();
885    Clone2->setName(Twine("lpad") + Suffix2);
886    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
887
888    // Create a PHI node for the two cloned landingpad instructions only
889    // if the original landingpad instruction has some uses.
890    if (!LPad->use_empty()) {
891      assert(!LPad->getType()->isTokenTy() &&
892             "Split cannot be applied if LPad is token type. Otherwise an "
893             "invalid PHINode of token type would be created.");
894      PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
895      PN->addIncoming(Clone1, NewBB1);
896      PN->addIncoming(Clone2, NewBB2);
897      LPad->replaceAllUsesWith(PN);
898    }
899    LPad->eraseFromParent();
900  } else {
901    // There is no second clone. Just replace the landing pad with the first
902    // clone.
903    LPad->replaceAllUsesWith(Clone1);
904    LPad->eraseFromParent();
905  }
906}
907
908ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
909                                             BasicBlock *Pred,
910                                             DomTreeUpdater *DTU) {
911  Instruction *UncondBranch = Pred->getTerminator();
912  // Clone the return and add it to the end of the predecessor.
913  Instruction *NewRet = RI->clone();
914  Pred->getInstList().push_back(NewRet);
915
916  // If the return instruction returns a value, and if the value was a
917  // PHI node in "BB", propagate the right value into the return.
918  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
919       i != e; ++i) {
920    Value *V = *i;
921    Instruction *NewBC = nullptr;
922    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
923      // Return value might be bitcasted. Clone and insert it before the
924      // return instruction.
925      V = BCI->getOperand(0);
926      NewBC = BCI->clone();
927      Pred->getInstList().insert(NewRet->getIterator(), NewBC);
928      *i = NewBC;
929    }
930
931    Instruction *NewEV = nullptr;
932    if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
933      V = EVI->getOperand(0);
934      NewEV = EVI->clone();
935      if (NewBC) {
936        NewBC->setOperand(0, NewEV);
937        Pred->getInstList().insert(NewBC->getIterator(), NewEV);
938      } else {
939        Pred->getInstList().insert(NewRet->getIterator(), NewEV);
940        *i = NewEV;
941      }
942    }
943
944    if (PHINode *PN = dyn_cast<PHINode>(V)) {
945      if (PN->getParent() == BB) {
946        if (NewEV) {
947          NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
948        } else if (NewBC)
949          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
950        else
951          *i = PN->getIncomingValueForBlock(Pred);
952      }
953    }
954  }
955
956  // Update any PHI nodes in the returning block to realize that we no
957  // longer branch to them.
958  BB->removePredecessor(Pred);
959  UncondBranch->eraseFromParent();
960
961  if (DTU)
962    DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
963
964  return cast<ReturnInst>(NewRet);
965}
966
967Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
968                                             Instruction *SplitBefore,
969                                             bool Unreachable,
970                                             MDNode *BranchWeights,
971                                             DominatorTree *DT, LoopInfo *LI,
972                                             BasicBlock *ThenBlock) {
973  BasicBlock *Head = SplitBefore->getParent();
974  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
975  Instruction *HeadOldTerm = Head->getTerminator();
976  LLVMContext &C = Head->getContext();
977  Instruction *CheckTerm;
978  bool CreateThenBlock = (ThenBlock == nullptr);
979  if (CreateThenBlock) {
980    ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
981    if (Unreachable)
982      CheckTerm = new UnreachableInst(C, ThenBlock);
983    else
984      CheckTerm = BranchInst::Create(Tail, ThenBlock);
985    CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
986  } else
987    CheckTerm = ThenBlock->getTerminator();
988  BranchInst *HeadNewTerm =
989    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
990  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
991  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
992
993  if (DT) {
994    if (DomTreeNode *OldNode = DT->getNode(Head)) {
995      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
996
997      DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
998      for (DomTreeNode *Child : Children)
999        DT->changeImmediateDominator(Child, NewNode);
1000
1001      // Head dominates ThenBlock.
1002      if (CreateThenBlock)
1003        DT->addNewBlock(ThenBlock, Head);
1004      else
1005        DT->changeImmediateDominator(ThenBlock, Head);
1006    }
1007  }
1008
1009  if (LI) {
1010    if (Loop *L = LI->getLoopFor(Head)) {
1011      L->addBasicBlockToLoop(ThenBlock, *LI);
1012      L->addBasicBlockToLoop(Tail, *LI);
1013    }
1014  }
1015
1016  return CheckTerm;
1017}
1018
1019void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1020                                         Instruction **ThenTerm,
1021                                         Instruction **ElseTerm,
1022                                         MDNode *BranchWeights) {
1023  BasicBlock *Head = SplitBefore->getParent();
1024  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1025  Instruction *HeadOldTerm = Head->getTerminator();
1026  LLVMContext &C = Head->getContext();
1027  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1028  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1029  *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1030  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1031  *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1032  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1033  BranchInst *HeadNewTerm =
1034    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1035  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1036  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1037}
1038
1039Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1040                             BasicBlock *&IfFalse) {
1041  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1042  BasicBlock *Pred1 = nullptr;
1043  BasicBlock *Pred2 = nullptr;
1044
1045  if (SomePHI) {
1046    if (SomePHI->getNumIncomingValues() != 2)
1047      return nullptr;
1048    Pred1 = SomePHI->getIncomingBlock(0);
1049    Pred2 = SomePHI->getIncomingBlock(1);
1050  } else {
1051    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1052    if (PI == PE) // No predecessor
1053      return nullptr;
1054    Pred1 = *PI++;
1055    if (PI == PE) // Only one predecessor
1056      return nullptr;
1057    Pred2 = *PI++;
1058    if (PI != PE) // More than two predecessors
1059      return nullptr;
1060  }
1061
1062  // We can only handle branches.  Other control flow will be lowered to
1063  // branches if possible anyway.
1064  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1065  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1066  if (!Pred1Br || !Pred2Br)
1067    return nullptr;
1068
1069  // Eliminate code duplication by ensuring that Pred1Br is conditional if
1070  // either are.
1071  if (Pred2Br->isConditional()) {
1072    // If both branches are conditional, we don't have an "if statement".  In
1073    // reality, we could transform this case, but since the condition will be
1074    // required anyway, we stand no chance of eliminating it, so the xform is
1075    // probably not profitable.
1076    if (Pred1Br->isConditional())
1077      return nullptr;
1078
1079    std::swap(Pred1, Pred2);
1080    std::swap(Pred1Br, Pred2Br);
1081  }
1082
1083  if (Pred1Br->isConditional()) {
1084    // The only thing we have to watch out for here is to make sure that Pred2
1085    // doesn't have incoming edges from other blocks.  If it does, the condition
1086    // doesn't dominate BB.
1087    if (!Pred2->getSinglePredecessor())
1088      return nullptr;
1089
1090    // If we found a conditional branch predecessor, make sure that it branches
1091    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1092    if (Pred1Br->getSuccessor(0) == BB &&
1093        Pred1Br->getSuccessor(1) == Pred2) {
1094      IfTrue = Pred1;
1095      IfFalse = Pred2;
1096    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1097               Pred1Br->getSuccessor(1) == BB) {
1098      IfTrue = Pred2;
1099      IfFalse = Pred1;
1100    } else {
1101      // We know that one arm of the conditional goes to BB, so the other must
1102      // go somewhere unrelated, and this must not be an "if statement".
1103      return nullptr;
1104    }
1105
1106    return Pred1Br->getCondition();
1107  }
1108
1109  // Ok, if we got here, both predecessors end with an unconditional branch to
1110  // BB.  Don't panic!  If both blocks only have a single (identical)
1111  // predecessor, and THAT is a conditional branch, then we're all ok!
1112  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1113  if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1114    return nullptr;
1115
1116  // Otherwise, if this is a conditional branch, then we can use it!
1117  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1118  if (!BI) return nullptr;
1119
1120  assert(BI->isConditional() && "Two successors but not conditional?");
1121  if (BI->getSuccessor(0) == Pred1) {
1122    IfTrue = Pred1;
1123    IfFalse = Pred2;
1124  } else {
1125    IfTrue = Pred2;
1126    IfFalse = Pred1;
1127  }
1128  return BI->getCondition();
1129}
1130
1131// After creating a control flow hub, the operands of PHINodes in an outgoing
1132// block Out no longer match the predecessors of that block. Predecessors of Out
1133// that are incoming blocks to the hub are now replaced by just one edge from
1134// the hub. To match this new control flow, the corresponding values from each
1135// PHINode must now be moved a new PHINode in the first guard block of the hub.
1136//
1137// This operation cannot be performed with SSAUpdater, because it involves one
1138// new use: If the block Out is in the list of Incoming blocks, then the newly
1139// created PHI in the Hub will use itself along that edge from Out to Hub.
1140static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1141                          const SetVector<BasicBlock *> &Incoming,
1142                          BasicBlock *FirstGuardBlock) {
1143  auto I = Out->begin();
1144  while (I != Out->end() && isa<PHINode>(I)) {
1145    auto Phi = cast<PHINode>(I);
1146    auto NewPhi =
1147        PHINode::Create(Phi->getType(), Incoming.size(),
1148                        Phi->getName() + ".moved", &FirstGuardBlock->back());
1149    for (auto In : Incoming) {
1150      Value *V = UndefValue::get(Phi->getType());
1151      if (In == Out) {
1152        V = NewPhi;
1153      } else if (Phi->getBasicBlockIndex(In) != -1) {
1154        V = Phi->removeIncomingValue(In, false);
1155      }
1156      NewPhi->addIncoming(V, In);
1157    }
1158    assert(NewPhi->getNumIncomingValues() == Incoming.size());
1159    if (Phi->getNumOperands() == 0) {
1160      Phi->replaceAllUsesWith(NewPhi);
1161      I = Phi->eraseFromParent();
1162      continue;
1163    }
1164    Phi->addIncoming(NewPhi, GuardBlock);
1165    ++I;
1166  }
1167}
1168
1169using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1170using BBSetVector = SetVector<BasicBlock *>;
1171
1172// Redirects the terminator of the incoming block to the first guard
1173// block in the hub. The condition of the original terminator (if it
1174// was conditional) and its original successors are returned as a
1175// tuple <condition, succ0, succ1>. The function additionally filters
1176// out successors that are not in the set of outgoing blocks.
1177//
1178// - condition is non-null iff the branch is conditional.
1179// - Succ1 is non-null iff the sole/taken target is an outgoing block.
1180// - Succ2 is non-null iff condition is non-null and the fallthrough
1181//         target is an outgoing block.
1182static std::tuple<Value *, BasicBlock *, BasicBlock *>
1183redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1184              const BBSetVector &Outgoing) {
1185  auto Branch = cast<BranchInst>(BB->getTerminator());
1186  auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1187
1188  BasicBlock *Succ0 = Branch->getSuccessor(0);
1189  BasicBlock *Succ1 = nullptr;
1190  Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1191
1192  if (Branch->isUnconditional()) {
1193    Branch->setSuccessor(0, FirstGuardBlock);
1194    assert(Succ0);
1195  } else {
1196    Succ1 = Branch->getSuccessor(1);
1197    Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1198    assert(Succ0 || Succ1);
1199    if (Succ0 && !Succ1) {
1200      Branch->setSuccessor(0, FirstGuardBlock);
1201    } else if (Succ1 && !Succ0) {
1202      Branch->setSuccessor(1, FirstGuardBlock);
1203    } else {
1204      Branch->eraseFromParent();
1205      BranchInst::Create(FirstGuardBlock, BB);
1206    }
1207  }
1208
1209  assert(Succ0 || Succ1);
1210  return std::make_tuple(Condition, Succ0, Succ1);
1211}
1212
1213// Capture the existing control flow as guard predicates, and redirect
1214// control flow from every incoming block to the first guard block in
1215// the hub.
1216//
1217// There is one guard predicate for each outgoing block OutBB. The
1218// predicate is a PHINode with one input for each InBB which
1219// represents whether the hub should transfer control flow to OutBB if
1220// it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1221// evaluates them in the same order as the Outgoing set-vector, and
1222// control branches to the first outgoing block whose predicate
1223// evaluates to true.
1224static void convertToGuardPredicates(
1225    BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1226    SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1227    const BBSetVector &Outgoing) {
1228  auto &Context = Incoming.front()->getContext();
1229  auto BoolTrue = ConstantInt::getTrue(Context);
1230  auto BoolFalse = ConstantInt::getFalse(Context);
1231
1232  // The predicate for the last outgoing is trivially true, and so we
1233  // process only the first N-1 successors.
1234  for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1235    auto Out = Outgoing[i];
1236    LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1237    auto Phi =
1238        PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1239                        StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1240    GuardPredicates[Out] = Phi;
1241  }
1242
1243  for (auto In : Incoming) {
1244    Value *Condition;
1245    BasicBlock *Succ0;
1246    BasicBlock *Succ1;
1247    std::tie(Condition, Succ0, Succ1) =
1248        redirectToHub(In, FirstGuardBlock, Outgoing);
1249
1250    // Optimization: Consider an incoming block A with both successors
1251    // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1252    // for Succ0 and Succ1 complement each other. If Succ0 is visited
1253    // first in the loop below, control will branch to Succ0 using the
1254    // corresponding predicate. But if that branch is not taken, then
1255    // control must reach Succ1, which means that the predicate for
1256    // Succ1 is always true.
1257    bool OneSuccessorDone = false;
1258    for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1259      auto Out = Outgoing[i];
1260      auto Phi = GuardPredicates[Out];
1261      if (Out != Succ0 && Out != Succ1) {
1262        Phi->addIncoming(BoolFalse, In);
1263        continue;
1264      }
1265      // Optimization: When only one successor is an outgoing block,
1266      // the predicate is always true.
1267      if (!Succ0 || !Succ1 || OneSuccessorDone) {
1268        Phi->addIncoming(BoolTrue, In);
1269        continue;
1270      }
1271      assert(Succ0 && Succ1);
1272      OneSuccessorDone = true;
1273      if (Out == Succ0) {
1274        Phi->addIncoming(Condition, In);
1275        continue;
1276      }
1277      auto Inverted = invertCondition(Condition);
1278      DeletionCandidates.push_back(Condition);
1279      Phi->addIncoming(Inverted, In);
1280    }
1281  }
1282}
1283
1284// For each outgoing block OutBB, create a guard block in the Hub. The
1285// first guard block was already created outside, and available as the
1286// first element in the vector of guard blocks.
1287//
1288// Each guard block terminates in a conditional branch that transfers
1289// control to the corresponding outgoing block or the next guard
1290// block. The last guard block has two outgoing blocks as successors
1291// since the condition for the final outgoing block is trivially
1292// true. So we create one less block (including the first guard block)
1293// than the number of outgoing blocks.
1294static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1295                              Function *F, const BBSetVector &Outgoing,
1296                              BBPredicates &GuardPredicates, StringRef Prefix) {
1297  for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1298    GuardBlocks.push_back(
1299        BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1300  }
1301  assert(GuardBlocks.size() == GuardPredicates.size());
1302
1303  // To help keep the loop simple, temporarily append the last
1304  // outgoing block to the list of guard blocks.
1305  GuardBlocks.push_back(Outgoing.back());
1306
1307  for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1308    auto Out = Outgoing[i];
1309    assert(GuardPredicates.count(Out));
1310    BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1311                       GuardBlocks[i]);
1312  }
1313
1314  // Remove the last block from the guard list.
1315  GuardBlocks.pop_back();
1316}
1317
1318BasicBlock *llvm::CreateControlFlowHub(
1319    DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1320    const BBSetVector &Incoming, const BBSetVector &Outgoing,
1321    const StringRef Prefix) {
1322  auto F = Incoming.front()->getParent();
1323  auto FirstGuardBlock =
1324      BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1325
1326  SmallVector<DominatorTree::UpdateType, 16> Updates;
1327  if (DTU) {
1328    for (auto In : Incoming) {
1329      for (auto Succ : successors(In)) {
1330        if (Outgoing.count(Succ))
1331          Updates.push_back({DominatorTree::Delete, In, Succ});
1332      }
1333      Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1334    }
1335  }
1336
1337  BBPredicates GuardPredicates;
1338  SmallVector<WeakVH, 8> DeletionCandidates;
1339  convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1340                           Incoming, Outgoing);
1341
1342  GuardBlocks.push_back(FirstGuardBlock);
1343  createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1344
1345  // Update the PHINodes in each outgoing block to match the new control flow.
1346  for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1347    reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1348  }
1349  reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1350
1351  if (DTU) {
1352    int NumGuards = GuardBlocks.size();
1353    assert((int)Outgoing.size() == NumGuards + 1);
1354    for (int i = 0; i != NumGuards - 1; ++i) {
1355      Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1356      Updates.push_back(
1357          {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1358    }
1359    Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1360                       Outgoing[NumGuards - 1]});
1361    Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1362                       Outgoing[NumGuards]});
1363    DTU->applyUpdates(Updates);
1364  }
1365
1366  for (auto I : DeletionCandidates) {
1367    if (I->use_empty())
1368      if (auto Inst = dyn_cast_or_null<Instruction>(I))
1369        Inst->eraseFromParent();
1370  }
1371
1372  return FirstGuardBlock;
1373}
1374