1///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10#include "llvm/ADT/DenseMap.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/Sequence.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/Twine.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/CFG.h"
20#include "llvm/Analysis/CodeMetrics.h"
21#include "llvm/Analysis/GuardUtils.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/LoopAnalysisManager.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/LoopIterator.h"
26#include "llvm/Analysis/LoopPass.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/Constant.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/Value.h"
41#include "llvm/InitializePasses.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/GenericDomTree.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Cloning.h"
52#include "llvm/Transforms/Utils/LoopUtils.h"
53#include "llvm/Transforms/Utils/ValueMapper.h"
54#include <algorithm>
55#include <cassert>
56#include <iterator>
57#include <numeric>
58#include <utility>
59
60#define DEBUG_TYPE "simple-loop-unswitch"
61
62using namespace llvm;
63
64STATISTIC(NumBranches, "Number of branches unswitched");
65STATISTIC(NumSwitches, "Number of switches unswitched");
66STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
67STATISTIC(NumTrivial, "Number of unswitches that are trivial");
68STATISTIC(
69    NumCostMultiplierSkipped,
70    "Number of unswitch candidates that had their cost multiplier skipped");
71
72static cl::opt<bool> EnableNonTrivialUnswitch(
73    "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
74    cl::desc("Forcibly enables non-trivial loop unswitching rather than "
75             "following the configuration passed into the pass."));
76
77static cl::opt<int>
78    UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
79                      cl::desc("The cost threshold for unswitching a loop."));
80
81static cl::opt<bool> EnableUnswitchCostMultiplier(
82    "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
83    cl::desc("Enable unswitch cost multiplier that prohibits exponential "
84             "explosion in nontrivial unswitch."));
85static cl::opt<int> UnswitchSiblingsToplevelDiv(
86    "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
87    cl::desc("Toplevel siblings divisor for cost multiplier."));
88static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
89    "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
90    cl::desc("Number of unswitch candidates that are ignored when calculating "
91             "cost multiplier."));
92static cl::opt<bool> UnswitchGuards(
93    "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
94    cl::desc("If enabled, simple loop unswitching will also consider "
95             "llvm.experimental.guard intrinsics as unswitch candidates."));
96
97/// Collect all of the loop invariant input values transitively used by the
98/// homogeneous instruction graph from a given root.
99///
100/// This essentially walks from a root recursively through loop variant operands
101/// which have the exact same opcode and finds all inputs which are loop
102/// invariant. For some operations these can be re-associated and unswitched out
103/// of the loop entirely.
104static TinyPtrVector<Value *>
105collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
106                                         LoopInfo &LI) {
107  assert(!L.isLoopInvariant(&Root) &&
108         "Only need to walk the graph if root itself is not invariant.");
109  TinyPtrVector<Value *> Invariants;
110
111  // Build a worklist and recurse through operators collecting invariants.
112  SmallVector<Instruction *, 4> Worklist;
113  SmallPtrSet<Instruction *, 8> Visited;
114  Worklist.push_back(&Root);
115  Visited.insert(&Root);
116  do {
117    Instruction &I = *Worklist.pop_back_val();
118    for (Value *OpV : I.operand_values()) {
119      // Skip constants as unswitching isn't interesting for them.
120      if (isa<Constant>(OpV))
121        continue;
122
123      // Add it to our result if loop invariant.
124      if (L.isLoopInvariant(OpV)) {
125        Invariants.push_back(OpV);
126        continue;
127      }
128
129      // If not an instruction with the same opcode, nothing we can do.
130      Instruction *OpI = dyn_cast<Instruction>(OpV);
131      if (!OpI || OpI->getOpcode() != Root.getOpcode())
132        continue;
133
134      // Visit this operand.
135      if (Visited.insert(OpI).second)
136        Worklist.push_back(OpI);
137    }
138  } while (!Worklist.empty());
139
140  return Invariants;
141}
142
143static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
144                                     Constant &Replacement) {
145  assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
146
147  // Replace uses of LIC in the loop with the given constant.
148  for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
149    // Grab the use and walk past it so we can clobber it in the use list.
150    Use *U = &*UI++;
151    Instruction *UserI = dyn_cast<Instruction>(U->getUser());
152
153    // Replace this use within the loop body.
154    if (UserI && L.contains(UserI))
155      U->set(&Replacement);
156  }
157}
158
159/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
160/// incoming values along this edge.
161static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
162                                         BasicBlock &ExitBB) {
163  for (Instruction &I : ExitBB) {
164    auto *PN = dyn_cast<PHINode>(&I);
165    if (!PN)
166      // No more PHIs to check.
167      return true;
168
169    // If the incoming value for this edge isn't loop invariant the unswitch
170    // won't be trivial.
171    if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
172      return false;
173  }
174  llvm_unreachable("Basic blocks should never be empty!");
175}
176
177/// Insert code to test a set of loop invariant values, and conditionally branch
178/// on them.
179static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
180                                                  ArrayRef<Value *> Invariants,
181                                                  bool Direction,
182                                                  BasicBlock &UnswitchedSucc,
183                                                  BasicBlock &NormalSucc) {
184  IRBuilder<> IRB(&BB);
185
186  Value *Cond = Direction ? IRB.CreateOr(Invariants) :
187    IRB.CreateAnd(Invariants);
188  IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
189                   Direction ? &NormalSucc : &UnswitchedSucc);
190}
191
192/// Rewrite the PHI nodes in an unswitched loop exit basic block.
193///
194/// Requires that the loop exit and unswitched basic block are the same, and
195/// that the exiting block was a unique predecessor of that block. Rewrites the
196/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
197/// PHI nodes from the old preheader that now contains the unswitched
198/// terminator.
199static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
200                                                  BasicBlock &OldExitingBB,
201                                                  BasicBlock &OldPH) {
202  for (PHINode &PN : UnswitchedBB.phis()) {
203    // When the loop exit is directly unswitched we just need to update the
204    // incoming basic block. We loop to handle weird cases with repeated
205    // incoming blocks, but expect to typically only have one operand here.
206    for (auto i : seq<int>(0, PN.getNumOperands())) {
207      assert(PN.getIncomingBlock(i) == &OldExitingBB &&
208             "Found incoming block different from unique predecessor!");
209      PN.setIncomingBlock(i, &OldPH);
210    }
211  }
212}
213
214/// Rewrite the PHI nodes in the loop exit basic block and the split off
215/// unswitched block.
216///
217/// Because the exit block remains an exit from the loop, this rewrites the
218/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
219/// nodes into the unswitched basic block to select between the value in the
220/// old preheader and the loop exit.
221static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
222                                                      BasicBlock &UnswitchedBB,
223                                                      BasicBlock &OldExitingBB,
224                                                      BasicBlock &OldPH,
225                                                      bool FullUnswitch) {
226  assert(&ExitBB != &UnswitchedBB &&
227         "Must have different loop exit and unswitched blocks!");
228  Instruction *InsertPt = &*UnswitchedBB.begin();
229  for (PHINode &PN : ExitBB.phis()) {
230    auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
231                                  PN.getName() + ".split", InsertPt);
232
233    // Walk backwards over the old PHI node's inputs to minimize the cost of
234    // removing each one. We have to do this weird loop manually so that we
235    // create the same number of new incoming edges in the new PHI as we expect
236    // each case-based edge to be included in the unswitched switch in some
237    // cases.
238    // FIXME: This is really, really gross. It would be much cleaner if LLVM
239    // allowed us to create a single entry for a predecessor block without
240    // having separate entries for each "edge" even though these edges are
241    // required to produce identical results.
242    for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
243      if (PN.getIncomingBlock(i) != &OldExitingBB)
244        continue;
245
246      Value *Incoming = PN.getIncomingValue(i);
247      if (FullUnswitch)
248        // No more edge from the old exiting block to the exit block.
249        PN.removeIncomingValue(i);
250
251      NewPN->addIncoming(Incoming, &OldPH);
252    }
253
254    // Now replace the old PHI with the new one and wire the old one in as an
255    // input to the new one.
256    PN.replaceAllUsesWith(NewPN);
257    NewPN->addIncoming(&PN, &ExitBB);
258  }
259}
260
261/// Hoist the current loop up to the innermost loop containing a remaining exit.
262///
263/// Because we've removed an exit from the loop, we may have changed the set of
264/// loops reachable and need to move the current loop up the loop nest or even
265/// to an entirely separate nest.
266static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
267                                 DominatorTree &DT, LoopInfo &LI,
268                                 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
269  // If the loop is already at the top level, we can't hoist it anywhere.
270  Loop *OldParentL = L.getParentLoop();
271  if (!OldParentL)
272    return;
273
274  SmallVector<BasicBlock *, 4> Exits;
275  L.getExitBlocks(Exits);
276  Loop *NewParentL = nullptr;
277  for (auto *ExitBB : Exits)
278    if (Loop *ExitL = LI.getLoopFor(ExitBB))
279      if (!NewParentL || NewParentL->contains(ExitL))
280        NewParentL = ExitL;
281
282  if (NewParentL == OldParentL)
283    return;
284
285  // The new parent loop (if different) should always contain the old one.
286  if (NewParentL)
287    assert(NewParentL->contains(OldParentL) &&
288           "Can only hoist this loop up the nest!");
289
290  // The preheader will need to move with the body of this loop. However,
291  // because it isn't in this loop we also need to update the primary loop map.
292  assert(OldParentL == LI.getLoopFor(&Preheader) &&
293         "Parent loop of this loop should contain this loop's preheader!");
294  LI.changeLoopFor(&Preheader, NewParentL);
295
296  // Remove this loop from its old parent.
297  OldParentL->removeChildLoop(&L);
298
299  // Add the loop either to the new parent or as a top-level loop.
300  if (NewParentL)
301    NewParentL->addChildLoop(&L);
302  else
303    LI.addTopLevelLoop(&L);
304
305  // Remove this loops blocks from the old parent and every other loop up the
306  // nest until reaching the new parent. Also update all of these
307  // no-longer-containing loops to reflect the nesting change.
308  for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
309       OldContainingL = OldContainingL->getParentLoop()) {
310    llvm::erase_if(OldContainingL->getBlocksVector(),
311                   [&](const BasicBlock *BB) {
312                     return BB == &Preheader || L.contains(BB);
313                   });
314
315    OldContainingL->getBlocksSet().erase(&Preheader);
316    for (BasicBlock *BB : L.blocks())
317      OldContainingL->getBlocksSet().erase(BB);
318
319    // Because we just hoisted a loop out of this one, we have essentially
320    // created new exit paths from it. That means we need to form LCSSA PHI
321    // nodes for values used in the no-longer-nested loop.
322    formLCSSA(*OldContainingL, DT, &LI, SE);
323
324    // We shouldn't need to form dedicated exits because the exit introduced
325    // here is the (just split by unswitching) preheader. However, after trivial
326    // unswitching it is possible to get new non-dedicated exits out of parent
327    // loop so let's conservatively form dedicated exit blocks and figure out
328    // if we can optimize later.
329    formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
330                            /*PreserveLCSSA*/ true);
331  }
332}
333
334// Return the top-most loop containing ExitBB and having ExitBB as exiting block
335// or the loop containing ExitBB, if there is no parent loop containing ExitBB
336// as exiting block.
337static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
338  Loop *TopMost = LI.getLoopFor(ExitBB);
339  Loop *Current = TopMost;
340  while (Current) {
341    if (Current->isLoopExiting(ExitBB))
342      TopMost = Current;
343    Current = Current->getParentLoop();
344  }
345  return TopMost;
346}
347
348/// Unswitch a trivial branch if the condition is loop invariant.
349///
350/// This routine should only be called when loop code leading to the branch has
351/// been validated as trivial (no side effects). This routine checks if the
352/// condition is invariant and one of the successors is a loop exit. This
353/// allows us to unswitch without duplicating the loop, making it trivial.
354///
355/// If this routine fails to unswitch the branch it returns false.
356///
357/// If the branch can be unswitched, this routine splits the preheader and
358/// hoists the branch above that split. Preserves loop simplified form
359/// (splitting the exit block as necessary). It simplifies the branch within
360/// the loop to an unconditional branch but doesn't remove it entirely. Further
361/// cleanup can be done with some simplify-cfg like pass.
362///
363/// If `SE` is not null, it will be updated based on the potential loop SCEVs
364/// invalidated by this.
365static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
366                                  LoopInfo &LI, ScalarEvolution *SE,
367                                  MemorySSAUpdater *MSSAU) {
368  assert(BI.isConditional() && "Can only unswitch a conditional branch!");
369  LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
370
371  // The loop invariant values that we want to unswitch.
372  TinyPtrVector<Value *> Invariants;
373
374  // When true, we're fully unswitching the branch rather than just unswitching
375  // some input conditions to the branch.
376  bool FullUnswitch = false;
377
378  if (L.isLoopInvariant(BI.getCondition())) {
379    Invariants.push_back(BI.getCondition());
380    FullUnswitch = true;
381  } else {
382    if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
383      Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
384    if (Invariants.empty())
385      // Couldn't find invariant inputs!
386      return false;
387  }
388
389  // Check that one of the branch's successors exits, and which one.
390  bool ExitDirection = true;
391  int LoopExitSuccIdx = 0;
392  auto *LoopExitBB = BI.getSuccessor(0);
393  if (L.contains(LoopExitBB)) {
394    ExitDirection = false;
395    LoopExitSuccIdx = 1;
396    LoopExitBB = BI.getSuccessor(1);
397    if (L.contains(LoopExitBB))
398      return false;
399  }
400  auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
401  auto *ParentBB = BI.getParent();
402  if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
403    return false;
404
405  // When unswitching only part of the branch's condition, we need the exit
406  // block to be reached directly from the partially unswitched input. This can
407  // be done when the exit block is along the true edge and the branch condition
408  // is a graph of `or` operations, or the exit block is along the false edge
409  // and the condition is a graph of `and` operations.
410  if (!FullUnswitch) {
411    if (ExitDirection) {
412      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
413        return false;
414    } else {
415      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
416        return false;
417    }
418  }
419
420  LLVM_DEBUG({
421    dbgs() << "    unswitching trivial invariant conditions for: " << BI
422           << "\n";
423    for (Value *Invariant : Invariants) {
424      dbgs() << "      " << *Invariant << " == true";
425      if (Invariant != Invariants.back())
426        dbgs() << " ||";
427      dbgs() << "\n";
428    }
429  });
430
431  // If we have scalar evolutions, we need to invalidate them including this
432  // loop, the loop containing the exit block and the topmost parent loop
433  // exiting via LoopExitBB.
434  if (SE) {
435    if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
436      SE->forgetLoop(ExitL);
437    else
438      // Forget the entire nest as this exits the entire nest.
439      SE->forgetTopmostLoop(&L);
440  }
441
442  if (MSSAU && VerifyMemorySSA)
443    MSSAU->getMemorySSA()->verifyMemorySSA();
444
445  // Split the preheader, so that we know that there is a safe place to insert
446  // the conditional branch. We will change the preheader to have a conditional
447  // branch on LoopCond.
448  BasicBlock *OldPH = L.getLoopPreheader();
449  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
450
451  // Now that we have a place to insert the conditional branch, create a place
452  // to branch to: this is the exit block out of the loop that we are
453  // unswitching. We need to split this if there are other loop predecessors.
454  // Because the loop is in simplified form, *any* other predecessor is enough.
455  BasicBlock *UnswitchedBB;
456  if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
457    assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
458           "A branch's parent isn't a predecessor!");
459    UnswitchedBB = LoopExitBB;
460  } else {
461    UnswitchedBB =
462        SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
463  }
464
465  if (MSSAU && VerifyMemorySSA)
466    MSSAU->getMemorySSA()->verifyMemorySSA();
467
468  // Actually move the invariant uses into the unswitched position. If possible,
469  // we do this by moving the instructions, but when doing partial unswitching
470  // we do it by building a new merge of the values in the unswitched position.
471  OldPH->getTerminator()->eraseFromParent();
472  if (FullUnswitch) {
473    // If fully unswitching, we can use the existing branch instruction.
474    // Splice it into the old PH to gate reaching the new preheader and re-point
475    // its successors.
476    OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
477                                BI);
478    if (MSSAU) {
479      // Temporarily clone the terminator, to make MSSA update cheaper by
480      // separating "insert edge" updates from "remove edge" ones.
481      ParentBB->getInstList().push_back(BI.clone());
482    } else {
483      // Create a new unconditional branch that will continue the loop as a new
484      // terminator.
485      BranchInst::Create(ContinueBB, ParentBB);
486    }
487    BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
488    BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
489  } else {
490    // Only unswitching a subset of inputs to the condition, so we will need to
491    // build a new branch that merges the invariant inputs.
492    if (ExitDirection)
493      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
494                 Instruction::Or &&
495             "Must have an `or` of `i1`s for the condition!");
496    else
497      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
498                 Instruction::And &&
499             "Must have an `and` of `i1`s for the condition!");
500    buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
501                                          *UnswitchedBB, *NewPH);
502  }
503
504  // Update the dominator tree with the added edge.
505  DT.insertEdge(OldPH, UnswitchedBB);
506
507  // After the dominator tree was updated with the added edge, update MemorySSA
508  // if available.
509  if (MSSAU) {
510    SmallVector<CFGUpdate, 1> Updates;
511    Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
512    MSSAU->applyInsertUpdates(Updates, DT);
513  }
514
515  // Finish updating dominator tree and memory ssa for full unswitch.
516  if (FullUnswitch) {
517    if (MSSAU) {
518      // Remove the cloned branch instruction.
519      ParentBB->getTerminator()->eraseFromParent();
520      // Create unconditional branch now.
521      BranchInst::Create(ContinueBB, ParentBB);
522      MSSAU->removeEdge(ParentBB, LoopExitBB);
523    }
524    DT.deleteEdge(ParentBB, LoopExitBB);
525  }
526
527  if (MSSAU && VerifyMemorySSA)
528    MSSAU->getMemorySSA()->verifyMemorySSA();
529
530  // Rewrite the relevant PHI nodes.
531  if (UnswitchedBB == LoopExitBB)
532    rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
533  else
534    rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
535                                              *ParentBB, *OldPH, FullUnswitch);
536
537  // The constant we can replace all of our invariants with inside the loop
538  // body. If any of the invariants have a value other than this the loop won't
539  // be entered.
540  ConstantInt *Replacement = ExitDirection
541                                 ? ConstantInt::getFalse(BI.getContext())
542                                 : ConstantInt::getTrue(BI.getContext());
543
544  // Since this is an i1 condition we can also trivially replace uses of it
545  // within the loop with a constant.
546  for (Value *Invariant : Invariants)
547    replaceLoopInvariantUses(L, Invariant, *Replacement);
548
549  // If this was full unswitching, we may have changed the nesting relationship
550  // for this loop so hoist it to its correct parent if needed.
551  if (FullUnswitch)
552    hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
553
554  if (MSSAU && VerifyMemorySSA)
555    MSSAU->getMemorySSA()->verifyMemorySSA();
556
557  LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
558  ++NumTrivial;
559  ++NumBranches;
560  return true;
561}
562
563/// Unswitch a trivial switch if the condition is loop invariant.
564///
565/// This routine should only be called when loop code leading to the switch has
566/// been validated as trivial (no side effects). This routine checks if the
567/// condition is invariant and that at least one of the successors is a loop
568/// exit. This allows us to unswitch without duplicating the loop, making it
569/// trivial.
570///
571/// If this routine fails to unswitch the switch it returns false.
572///
573/// If the switch can be unswitched, this routine splits the preheader and
574/// copies the switch above that split. If the default case is one of the
575/// exiting cases, it copies the non-exiting cases and points them at the new
576/// preheader. If the default case is not exiting, it copies the exiting cases
577/// and points the default at the preheader. It preserves loop simplified form
578/// (splitting the exit blocks as necessary). It simplifies the switch within
579/// the loop by removing now-dead cases. If the default case is one of those
580/// unswitched, it replaces its destination with a new basic block containing
581/// only unreachable. Such basic blocks, while technically loop exits, are not
582/// considered for unswitching so this is a stable transform and the same
583/// switch will not be revisited. If after unswitching there is only a single
584/// in-loop successor, the switch is further simplified to an unconditional
585/// branch. Still more cleanup can be done with some simplify-cfg like pass.
586///
587/// If `SE` is not null, it will be updated based on the potential loop SCEVs
588/// invalidated by this.
589static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
590                                  LoopInfo &LI, ScalarEvolution *SE,
591                                  MemorySSAUpdater *MSSAU) {
592  LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
593  Value *LoopCond = SI.getCondition();
594
595  // If this isn't switching on an invariant condition, we can't unswitch it.
596  if (!L.isLoopInvariant(LoopCond))
597    return false;
598
599  auto *ParentBB = SI.getParent();
600
601  // The same check must be used both for the default and the exit cases. We
602  // should never leave edges from the switch instruction to a basic block that
603  // we are unswitching, hence the condition used to determine the default case
604  // needs to also be used to populate ExitCaseIndices, which is then used to
605  // remove cases from the switch.
606  auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
607    // BBToCheck is not an exit block if it is inside loop L.
608    if (L.contains(&BBToCheck))
609      return false;
610    // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
611    if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
612      return false;
613    // We do not unswitch a block that only has an unreachable statement, as
614    // it's possible this is a previously unswitched block. Only unswitch if
615    // either the terminator is not unreachable, or, if it is, it's not the only
616    // instruction in the block.
617    auto *TI = BBToCheck.getTerminator();
618    bool isUnreachable = isa<UnreachableInst>(TI);
619    return !isUnreachable ||
620           (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
621  };
622
623  SmallVector<int, 4> ExitCaseIndices;
624  for (auto Case : SI.cases())
625    if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
626      ExitCaseIndices.push_back(Case.getCaseIndex());
627  BasicBlock *DefaultExitBB = nullptr;
628  SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
629      SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
630  if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
631    DefaultExitBB = SI.getDefaultDest();
632  } else if (ExitCaseIndices.empty())
633    return false;
634
635  LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
636
637  if (MSSAU && VerifyMemorySSA)
638    MSSAU->getMemorySSA()->verifyMemorySSA();
639
640  // We may need to invalidate SCEVs for the outermost loop reached by any of
641  // the exits.
642  Loop *OuterL = &L;
643
644  if (DefaultExitBB) {
645    // Clear out the default destination temporarily to allow accurate
646    // predecessor lists to be examined below.
647    SI.setDefaultDest(nullptr);
648    // Check the loop containing this exit.
649    Loop *ExitL = LI.getLoopFor(DefaultExitBB);
650    if (!ExitL || ExitL->contains(OuterL))
651      OuterL = ExitL;
652  }
653
654  // Store the exit cases into a separate data structure and remove them from
655  // the switch.
656  SmallVector<std::tuple<ConstantInt *, BasicBlock *,
657                         SwitchInstProfUpdateWrapper::CaseWeightOpt>,
658              4> ExitCases;
659  ExitCases.reserve(ExitCaseIndices.size());
660  SwitchInstProfUpdateWrapper SIW(SI);
661  // We walk the case indices backwards so that we remove the last case first
662  // and don't disrupt the earlier indices.
663  for (unsigned Index : reverse(ExitCaseIndices)) {
664    auto CaseI = SI.case_begin() + Index;
665    // Compute the outer loop from this exit.
666    Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
667    if (!ExitL || ExitL->contains(OuterL))
668      OuterL = ExitL;
669    // Save the value of this case.
670    auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
671    ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
672    // Delete the unswitched cases.
673    SIW.removeCase(CaseI);
674  }
675
676  if (SE) {
677    if (OuterL)
678      SE->forgetLoop(OuterL);
679    else
680      SE->forgetTopmostLoop(&L);
681  }
682
683  // Check if after this all of the remaining cases point at the same
684  // successor.
685  BasicBlock *CommonSuccBB = nullptr;
686  if (SI.getNumCases() > 0 &&
687      std::all_of(std::next(SI.case_begin()), SI.case_end(),
688                  [&SI](const SwitchInst::CaseHandle &Case) {
689                    return Case.getCaseSuccessor() ==
690                           SI.case_begin()->getCaseSuccessor();
691                  }))
692    CommonSuccBB = SI.case_begin()->getCaseSuccessor();
693  if (!DefaultExitBB) {
694    // If we're not unswitching the default, we need it to match any cases to
695    // have a common successor or if we have no cases it is the common
696    // successor.
697    if (SI.getNumCases() == 0)
698      CommonSuccBB = SI.getDefaultDest();
699    else if (SI.getDefaultDest() != CommonSuccBB)
700      CommonSuccBB = nullptr;
701  }
702
703  // Split the preheader, so that we know that there is a safe place to insert
704  // the switch.
705  BasicBlock *OldPH = L.getLoopPreheader();
706  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
707  OldPH->getTerminator()->eraseFromParent();
708
709  // Now add the unswitched switch.
710  auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
711  SwitchInstProfUpdateWrapper NewSIW(*NewSI);
712
713  // Rewrite the IR for the unswitched basic blocks. This requires two steps.
714  // First, we split any exit blocks with remaining in-loop predecessors. Then
715  // we update the PHIs in one of two ways depending on if there was a split.
716  // We walk in reverse so that we split in the same order as the cases
717  // appeared. This is purely for convenience of reading the resulting IR, but
718  // it doesn't cost anything really.
719  SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
720  SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
721  // Handle the default exit if necessary.
722  // FIXME: It'd be great if we could merge this with the loop below but LLVM's
723  // ranges aren't quite powerful enough yet.
724  if (DefaultExitBB) {
725    if (pred_empty(DefaultExitBB)) {
726      UnswitchedExitBBs.insert(DefaultExitBB);
727      rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
728    } else {
729      auto *SplitBB =
730          SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
731      rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
732                                                *ParentBB, *OldPH,
733                                                /*FullUnswitch*/ true);
734      DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
735    }
736  }
737  // Note that we must use a reference in the for loop so that we update the
738  // container.
739  for (auto &ExitCase : reverse(ExitCases)) {
740    // Grab a reference to the exit block in the pair so that we can update it.
741    BasicBlock *ExitBB = std::get<1>(ExitCase);
742
743    // If this case is the last edge into the exit block, we can simply reuse it
744    // as it will no longer be a loop exit. No mapping necessary.
745    if (pred_empty(ExitBB)) {
746      // Only rewrite once.
747      if (UnswitchedExitBBs.insert(ExitBB).second)
748        rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
749      continue;
750    }
751
752    // Otherwise we need to split the exit block so that we retain an exit
753    // block from the loop and a target for the unswitched condition.
754    BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
755    if (!SplitExitBB) {
756      // If this is the first time we see this, do the split and remember it.
757      SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
758      rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
759                                                *ParentBB, *OldPH,
760                                                /*FullUnswitch*/ true);
761    }
762    // Update the case pair to point to the split block.
763    std::get<1>(ExitCase) = SplitExitBB;
764  }
765
766  // Now add the unswitched cases. We do this in reverse order as we built them
767  // in reverse order.
768  for (auto &ExitCase : reverse(ExitCases)) {
769    ConstantInt *CaseVal = std::get<0>(ExitCase);
770    BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
771
772    NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
773  }
774
775  // If the default was unswitched, re-point it and add explicit cases for
776  // entering the loop.
777  if (DefaultExitBB) {
778    NewSIW->setDefaultDest(DefaultExitBB);
779    NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
780
781    // We removed all the exit cases, so we just copy the cases to the
782    // unswitched switch.
783    for (const auto &Case : SI.cases())
784      NewSIW.addCase(Case.getCaseValue(), NewPH,
785                     SIW.getSuccessorWeight(Case.getSuccessorIndex()));
786  } else if (DefaultCaseWeight) {
787    // We have to set branch weight of the default case.
788    uint64_t SW = *DefaultCaseWeight;
789    for (const auto &Case : SI.cases()) {
790      auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
791      assert(W &&
792             "case weight must be defined as default case weight is defined");
793      SW += *W;
794    }
795    NewSIW.setSuccessorWeight(0, SW);
796  }
797
798  // If we ended up with a common successor for every path through the switch
799  // after unswitching, rewrite it to an unconditional branch to make it easy
800  // to recognize. Otherwise we potentially have to recognize the default case
801  // pointing at unreachable and other complexity.
802  if (CommonSuccBB) {
803    BasicBlock *BB = SI.getParent();
804    // We may have had multiple edges to this common successor block, so remove
805    // them as predecessors. We skip the first one, either the default or the
806    // actual first case.
807    bool SkippedFirst = DefaultExitBB == nullptr;
808    for (auto Case : SI.cases()) {
809      assert(Case.getCaseSuccessor() == CommonSuccBB &&
810             "Non-common successor!");
811      (void)Case;
812      if (!SkippedFirst) {
813        SkippedFirst = true;
814        continue;
815      }
816      CommonSuccBB->removePredecessor(BB,
817                                      /*KeepOneInputPHIs*/ true);
818    }
819    // Now nuke the switch and replace it with a direct branch.
820    SIW.eraseFromParent();
821    BranchInst::Create(CommonSuccBB, BB);
822  } else if (DefaultExitBB) {
823    assert(SI.getNumCases() > 0 &&
824           "If we had no cases we'd have a common successor!");
825    // Move the last case to the default successor. This is valid as if the
826    // default got unswitched it cannot be reached. This has the advantage of
827    // being simple and keeping the number of edges from this switch to
828    // successors the same, and avoiding any PHI update complexity.
829    auto LastCaseI = std::prev(SI.case_end());
830
831    SI.setDefaultDest(LastCaseI->getCaseSuccessor());
832    SIW.setSuccessorWeight(
833        0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
834    SIW.removeCase(LastCaseI);
835  }
836
837  // Walk the unswitched exit blocks and the unswitched split blocks and update
838  // the dominator tree based on the CFG edits. While we are walking unordered
839  // containers here, the API for applyUpdates takes an unordered list of
840  // updates and requires them to not contain duplicates.
841  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
842  for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
843    DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
844    DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
845  }
846  for (auto SplitUnswitchedPair : SplitExitBBMap) {
847    DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
848    DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
849  }
850  DT.applyUpdates(DTUpdates);
851
852  if (MSSAU) {
853    MSSAU->applyUpdates(DTUpdates, DT);
854    if (VerifyMemorySSA)
855      MSSAU->getMemorySSA()->verifyMemorySSA();
856  }
857
858  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
859
860  // We may have changed the nesting relationship for this loop so hoist it to
861  // its correct parent if needed.
862  hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
863
864  if (MSSAU && VerifyMemorySSA)
865    MSSAU->getMemorySSA()->verifyMemorySSA();
866
867  ++NumTrivial;
868  ++NumSwitches;
869  LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
870  return true;
871}
872
873/// This routine scans the loop to find a branch or switch which occurs before
874/// any side effects occur. These can potentially be unswitched without
875/// duplicating the loop. If a branch or switch is successfully unswitched the
876/// scanning continues to see if subsequent branches or switches have become
877/// trivial. Once all trivial candidates have been unswitched, this routine
878/// returns.
879///
880/// The return value indicates whether anything was unswitched (and therefore
881/// changed).
882///
883/// If `SE` is not null, it will be updated based on the potential loop SCEVs
884/// invalidated by this.
885static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
886                                         LoopInfo &LI, ScalarEvolution *SE,
887                                         MemorySSAUpdater *MSSAU) {
888  bool Changed = false;
889
890  // If loop header has only one reachable successor we should keep looking for
891  // trivial condition candidates in the successor as well. An alternative is
892  // to constant fold conditions and merge successors into loop header (then we
893  // only need to check header's terminator). The reason for not doing this in
894  // LoopUnswitch pass is that it could potentially break LoopPassManager's
895  // invariants. Folding dead branches could either eliminate the current loop
896  // or make other loops unreachable. LCSSA form might also not be preserved
897  // after deleting branches. The following code keeps traversing loop header's
898  // successors until it finds the trivial condition candidate (condition that
899  // is not a constant). Since unswitching generates branches with constant
900  // conditions, this scenario could be very common in practice.
901  BasicBlock *CurrentBB = L.getHeader();
902  SmallPtrSet<BasicBlock *, 8> Visited;
903  Visited.insert(CurrentBB);
904  do {
905    // Check if there are any side-effecting instructions (e.g. stores, calls,
906    // volatile loads) in the part of the loop that the code *would* execute
907    // without unswitching.
908    if (MSSAU) // Possible early exit with MSSA
909      if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
910        if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
911          return Changed;
912    if (llvm::any_of(*CurrentBB,
913                     [](Instruction &I) { return I.mayHaveSideEffects(); }))
914      return Changed;
915
916    Instruction *CurrentTerm = CurrentBB->getTerminator();
917
918    if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
919      // Don't bother trying to unswitch past a switch with a constant
920      // condition. This should be removed prior to running this pass by
921      // simplify-cfg.
922      if (isa<Constant>(SI->getCondition()))
923        return Changed;
924
925      if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
926        // Couldn't unswitch this one so we're done.
927        return Changed;
928
929      // Mark that we managed to unswitch something.
930      Changed = true;
931
932      // If unswitching turned the terminator into an unconditional branch then
933      // we can continue. The unswitching logic specifically works to fold any
934      // cases it can into an unconditional branch to make it easier to
935      // recognize here.
936      auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
937      if (!BI || BI->isConditional())
938        return Changed;
939
940      CurrentBB = BI->getSuccessor(0);
941      continue;
942    }
943
944    auto *BI = dyn_cast<BranchInst>(CurrentTerm);
945    if (!BI)
946      // We do not understand other terminator instructions.
947      return Changed;
948
949    // Don't bother trying to unswitch past an unconditional branch or a branch
950    // with a constant value. These should be removed by simplify-cfg prior to
951    // running this pass.
952    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
953      return Changed;
954
955    // Found a trivial condition candidate: non-foldable conditional branch. If
956    // we fail to unswitch this, we can't do anything else that is trivial.
957    if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
958      return Changed;
959
960    // Mark that we managed to unswitch something.
961    Changed = true;
962
963    // If we only unswitched some of the conditions feeding the branch, we won't
964    // have collapsed it to a single successor.
965    BI = cast<BranchInst>(CurrentBB->getTerminator());
966    if (BI->isConditional())
967      return Changed;
968
969    // Follow the newly unconditional branch into its successor.
970    CurrentBB = BI->getSuccessor(0);
971
972    // When continuing, if we exit the loop or reach a previous visited block,
973    // then we can not reach any trivial condition candidates (unfoldable
974    // branch instructions or switch instructions) and no unswitch can happen.
975  } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
976
977  return Changed;
978}
979
980/// Build the cloned blocks for an unswitched copy of the given loop.
981///
982/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
983/// after the split block (`SplitBB`) that will be used to select between the
984/// cloned and original loop.
985///
986/// This routine handles cloning all of the necessary loop blocks and exit
987/// blocks including rewriting their instructions and the relevant PHI nodes.
988/// Any loop blocks or exit blocks which are dominated by a different successor
989/// than the one for this clone of the loop blocks can be trivially skipped. We
990/// use the `DominatingSucc` map to determine whether a block satisfies that
991/// property with a simple map lookup.
992///
993/// It also correctly creates the unconditional branch in the cloned
994/// unswitched parent block to only point at the unswitched successor.
995///
996/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
997/// block splitting is correctly reflected in `LoopInfo`, essentially all of
998/// the cloned blocks (and their loops) are left without full `LoopInfo`
999/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1000/// blocks to them but doesn't create the cloned `DominatorTree` structure and
1001/// instead the caller must recompute an accurate DT. It *does* correctly
1002/// update the `AssumptionCache` provided in `AC`.
1003static BasicBlock *buildClonedLoopBlocks(
1004    Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1005    ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1006    BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1007    const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1008    ValueToValueMapTy &VMap,
1009    SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1010    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1011  SmallVector<BasicBlock *, 4> NewBlocks;
1012  NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1013
1014  // We will need to clone a bunch of blocks, wrap up the clone operation in
1015  // a helper.
1016  auto CloneBlock = [&](BasicBlock *OldBB) {
1017    // Clone the basic block and insert it before the new preheader.
1018    BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1019    NewBB->moveBefore(LoopPH);
1020
1021    // Record this block and the mapping.
1022    NewBlocks.push_back(NewBB);
1023    VMap[OldBB] = NewBB;
1024
1025    return NewBB;
1026  };
1027
1028  // We skip cloning blocks when they have a dominating succ that is not the
1029  // succ we are cloning for.
1030  auto SkipBlock = [&](BasicBlock *BB) {
1031    auto It = DominatingSucc.find(BB);
1032    return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1033  };
1034
1035  // First, clone the preheader.
1036  auto *ClonedPH = CloneBlock(LoopPH);
1037
1038  // Then clone all the loop blocks, skipping the ones that aren't necessary.
1039  for (auto *LoopBB : L.blocks())
1040    if (!SkipBlock(LoopBB))
1041      CloneBlock(LoopBB);
1042
1043  // Split all the loop exit edges so that when we clone the exit blocks, if
1044  // any of the exit blocks are *also* a preheader for some other loop, we
1045  // don't create multiple predecessors entering the loop header.
1046  for (auto *ExitBB : ExitBlocks) {
1047    if (SkipBlock(ExitBB))
1048      continue;
1049
1050    // When we are going to clone an exit, we don't need to clone all the
1051    // instructions in the exit block and we want to ensure we have an easy
1052    // place to merge the CFG, so split the exit first. This is always safe to
1053    // do because there cannot be any non-loop predecessors of a loop exit in
1054    // loop simplified form.
1055    auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1056
1057    // Rearrange the names to make it easier to write test cases by having the
1058    // exit block carry the suffix rather than the merge block carrying the
1059    // suffix.
1060    MergeBB->takeName(ExitBB);
1061    ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1062
1063    // Now clone the original exit block.
1064    auto *ClonedExitBB = CloneBlock(ExitBB);
1065    assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1066           "Exit block should have been split to have one successor!");
1067    assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1068           "Cloned exit block has the wrong successor!");
1069
1070    // Remap any cloned instructions and create a merge phi node for them.
1071    for (auto ZippedInsts : llvm::zip_first(
1072             llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1073             llvm::make_range(ClonedExitBB->begin(),
1074                              std::prev(ClonedExitBB->end())))) {
1075      Instruction &I = std::get<0>(ZippedInsts);
1076      Instruction &ClonedI = std::get<1>(ZippedInsts);
1077
1078      // The only instructions in the exit block should be PHI nodes and
1079      // potentially a landing pad.
1080      assert(
1081          (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1082          "Bad instruction in exit block!");
1083      // We should have a value map between the instruction and its clone.
1084      assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1085
1086      auto *MergePN =
1087          PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1088                          &*MergeBB->getFirstInsertionPt());
1089      I.replaceAllUsesWith(MergePN);
1090      MergePN->addIncoming(&I, ExitBB);
1091      MergePN->addIncoming(&ClonedI, ClonedExitBB);
1092    }
1093  }
1094
1095  // Rewrite the instructions in the cloned blocks to refer to the instructions
1096  // in the cloned blocks. We have to do this as a second pass so that we have
1097  // everything available. Also, we have inserted new instructions which may
1098  // include assume intrinsics, so we update the assumption cache while
1099  // processing this.
1100  for (auto *ClonedBB : NewBlocks)
1101    for (Instruction &I : *ClonedBB) {
1102      RemapInstruction(&I, VMap,
1103                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1104      if (auto *II = dyn_cast<IntrinsicInst>(&I))
1105        if (II->getIntrinsicID() == Intrinsic::assume)
1106          AC.registerAssumption(II);
1107    }
1108
1109  // Update any PHI nodes in the cloned successors of the skipped blocks to not
1110  // have spurious incoming values.
1111  for (auto *LoopBB : L.blocks())
1112    if (SkipBlock(LoopBB))
1113      for (auto *SuccBB : successors(LoopBB))
1114        if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1115          for (PHINode &PN : ClonedSuccBB->phis())
1116            PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1117
1118  // Remove the cloned parent as a predecessor of any successor we ended up
1119  // cloning other than the unswitched one.
1120  auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1121  for (auto *SuccBB : successors(ParentBB)) {
1122    if (SuccBB == UnswitchedSuccBB)
1123      continue;
1124
1125    auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1126    if (!ClonedSuccBB)
1127      continue;
1128
1129    ClonedSuccBB->removePredecessor(ClonedParentBB,
1130                                    /*KeepOneInputPHIs*/ true);
1131  }
1132
1133  // Replace the cloned branch with an unconditional branch to the cloned
1134  // unswitched successor.
1135  auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1136  ClonedParentBB->getTerminator()->eraseFromParent();
1137  BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1138
1139  // If there are duplicate entries in the PHI nodes because of multiple edges
1140  // to the unswitched successor, we need to nuke all but one as we replaced it
1141  // with a direct branch.
1142  for (PHINode &PN : ClonedSuccBB->phis()) {
1143    bool Found = false;
1144    // Loop over the incoming operands backwards so we can easily delete as we
1145    // go without invalidating the index.
1146    for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1147      if (PN.getIncomingBlock(i) != ClonedParentBB)
1148        continue;
1149      if (!Found) {
1150        Found = true;
1151        continue;
1152      }
1153      PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1154    }
1155  }
1156
1157  // Record the domtree updates for the new blocks.
1158  SmallPtrSet<BasicBlock *, 4> SuccSet;
1159  for (auto *ClonedBB : NewBlocks) {
1160    for (auto *SuccBB : successors(ClonedBB))
1161      if (SuccSet.insert(SuccBB).second)
1162        DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1163    SuccSet.clear();
1164  }
1165
1166  return ClonedPH;
1167}
1168
1169/// Recursively clone the specified loop and all of its children.
1170///
1171/// The target parent loop for the clone should be provided, or can be null if
1172/// the clone is a top-level loop. While cloning, all the blocks are mapped
1173/// with the provided value map. The entire original loop must be present in
1174/// the value map. The cloned loop is returned.
1175static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1176                           const ValueToValueMapTy &VMap, LoopInfo &LI) {
1177  auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1178    assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1179    ClonedL.reserveBlocks(OrigL.getNumBlocks());
1180    for (auto *BB : OrigL.blocks()) {
1181      auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1182      ClonedL.addBlockEntry(ClonedBB);
1183      if (LI.getLoopFor(BB) == &OrigL)
1184        LI.changeLoopFor(ClonedBB, &ClonedL);
1185    }
1186  };
1187
1188  // We specially handle the first loop because it may get cloned into
1189  // a different parent and because we most commonly are cloning leaf loops.
1190  Loop *ClonedRootL = LI.AllocateLoop();
1191  if (RootParentL)
1192    RootParentL->addChildLoop(ClonedRootL);
1193  else
1194    LI.addTopLevelLoop(ClonedRootL);
1195  AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1196
1197  if (OrigRootL.empty())
1198    return ClonedRootL;
1199
1200  // If we have a nest, we can quickly clone the entire loop nest using an
1201  // iterative approach because it is a tree. We keep the cloned parent in the
1202  // data structure to avoid repeatedly querying through a map to find it.
1203  SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1204  // Build up the loops to clone in reverse order as we'll clone them from the
1205  // back.
1206  for (Loop *ChildL : llvm::reverse(OrigRootL))
1207    LoopsToClone.push_back({ClonedRootL, ChildL});
1208  do {
1209    Loop *ClonedParentL, *L;
1210    std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1211    Loop *ClonedL = LI.AllocateLoop();
1212    ClonedParentL->addChildLoop(ClonedL);
1213    AddClonedBlocksToLoop(*L, *ClonedL);
1214    for (Loop *ChildL : llvm::reverse(*L))
1215      LoopsToClone.push_back({ClonedL, ChildL});
1216  } while (!LoopsToClone.empty());
1217
1218  return ClonedRootL;
1219}
1220
1221/// Build the cloned loops of an original loop from unswitching.
1222///
1223/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1224/// operation. We need to re-verify that there even is a loop (as the backedge
1225/// may not have been cloned), and even if there are remaining backedges the
1226/// backedge set may be different. However, we know that each child loop is
1227/// undisturbed, we only need to find where to place each child loop within
1228/// either any parent loop or within a cloned version of the original loop.
1229///
1230/// Because child loops may end up cloned outside of any cloned version of the
1231/// original loop, multiple cloned sibling loops may be created. All of them
1232/// are returned so that the newly introduced loop nest roots can be
1233/// identified.
1234static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1235                             const ValueToValueMapTy &VMap, LoopInfo &LI,
1236                             SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1237  Loop *ClonedL = nullptr;
1238
1239  auto *OrigPH = OrigL.getLoopPreheader();
1240  auto *OrigHeader = OrigL.getHeader();
1241
1242  auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1243  auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1244
1245  // We need to know the loops of the cloned exit blocks to even compute the
1246  // accurate parent loop. If we only clone exits to some parent of the
1247  // original parent, we want to clone into that outer loop. We also keep track
1248  // of the loops that our cloned exit blocks participate in.
1249  Loop *ParentL = nullptr;
1250  SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1251  SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1252  ClonedExitsInLoops.reserve(ExitBlocks.size());
1253  for (auto *ExitBB : ExitBlocks)
1254    if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1255      if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1256        ExitLoopMap[ClonedExitBB] = ExitL;
1257        ClonedExitsInLoops.push_back(ClonedExitBB);
1258        if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1259          ParentL = ExitL;
1260      }
1261  assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1262          ParentL->contains(OrigL.getParentLoop())) &&
1263         "The computed parent loop should always contain (or be) the parent of "
1264         "the original loop.");
1265
1266  // We build the set of blocks dominated by the cloned header from the set of
1267  // cloned blocks out of the original loop. While not all of these will
1268  // necessarily be in the cloned loop, it is enough to establish that they
1269  // aren't in unreachable cycles, etc.
1270  SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1271  for (auto *BB : OrigL.blocks())
1272    if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1273      ClonedLoopBlocks.insert(ClonedBB);
1274
1275  // Rebuild the set of blocks that will end up in the cloned loop. We may have
1276  // skipped cloning some region of this loop which can in turn skip some of
1277  // the backedges so we have to rebuild the blocks in the loop based on the
1278  // backedges that remain after cloning.
1279  SmallVector<BasicBlock *, 16> Worklist;
1280  SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1281  for (auto *Pred : predecessors(ClonedHeader)) {
1282    // The only possible non-loop header predecessor is the preheader because
1283    // we know we cloned the loop in simplified form.
1284    if (Pred == ClonedPH)
1285      continue;
1286
1287    // Because the loop was in simplified form, the only non-loop predecessor
1288    // should be the preheader.
1289    assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1290                                           "header other than the preheader "
1291                                           "that is not part of the loop!");
1292
1293    // Insert this block into the loop set and on the first visit (and if it
1294    // isn't the header we're currently walking) put it into the worklist to
1295    // recurse through.
1296    if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1297      Worklist.push_back(Pred);
1298  }
1299
1300  // If we had any backedges then there *is* a cloned loop. Put the header into
1301  // the loop set and then walk the worklist backwards to find all the blocks
1302  // that remain within the loop after cloning.
1303  if (!BlocksInClonedLoop.empty()) {
1304    BlocksInClonedLoop.insert(ClonedHeader);
1305
1306    while (!Worklist.empty()) {
1307      BasicBlock *BB = Worklist.pop_back_val();
1308      assert(BlocksInClonedLoop.count(BB) &&
1309             "Didn't put block into the loop set!");
1310
1311      // Insert any predecessors that are in the possible set into the cloned
1312      // set, and if the insert is successful, add them to the worklist. Note
1313      // that we filter on the blocks that are definitely reachable via the
1314      // backedge to the loop header so we may prune out dead code within the
1315      // cloned loop.
1316      for (auto *Pred : predecessors(BB))
1317        if (ClonedLoopBlocks.count(Pred) &&
1318            BlocksInClonedLoop.insert(Pred).second)
1319          Worklist.push_back(Pred);
1320    }
1321
1322    ClonedL = LI.AllocateLoop();
1323    if (ParentL) {
1324      ParentL->addBasicBlockToLoop(ClonedPH, LI);
1325      ParentL->addChildLoop(ClonedL);
1326    } else {
1327      LI.addTopLevelLoop(ClonedL);
1328    }
1329    NonChildClonedLoops.push_back(ClonedL);
1330
1331    ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1332    // We don't want to just add the cloned loop blocks based on how we
1333    // discovered them. The original order of blocks was carefully built in
1334    // a way that doesn't rely on predecessor ordering. Rather than re-invent
1335    // that logic, we just re-walk the original blocks (and those of the child
1336    // loops) and filter them as we add them into the cloned loop.
1337    for (auto *BB : OrigL.blocks()) {
1338      auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1339      if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1340        continue;
1341
1342      // Directly add the blocks that are only in this loop.
1343      if (LI.getLoopFor(BB) == &OrigL) {
1344        ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1345        continue;
1346      }
1347
1348      // We want to manually add it to this loop and parents.
1349      // Registering it with LoopInfo will happen when we clone the top
1350      // loop for this block.
1351      for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1352        PL->addBlockEntry(ClonedBB);
1353    }
1354
1355    // Now add each child loop whose header remains within the cloned loop. All
1356    // of the blocks within the loop must satisfy the same constraints as the
1357    // header so once we pass the header checks we can just clone the entire
1358    // child loop nest.
1359    for (Loop *ChildL : OrigL) {
1360      auto *ClonedChildHeader =
1361          cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1362      if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1363        continue;
1364
1365#ifndef NDEBUG
1366      // We should never have a cloned child loop header but fail to have
1367      // all of the blocks for that child loop.
1368      for (auto *ChildLoopBB : ChildL->blocks())
1369        assert(BlocksInClonedLoop.count(
1370                   cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1371               "Child cloned loop has a header within the cloned outer "
1372               "loop but not all of its blocks!");
1373#endif
1374
1375      cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1376    }
1377  }
1378
1379  // Now that we've handled all the components of the original loop that were
1380  // cloned into a new loop, we still need to handle anything from the original
1381  // loop that wasn't in a cloned loop.
1382
1383  // Figure out what blocks are left to place within any loop nest containing
1384  // the unswitched loop. If we never formed a loop, the cloned PH is one of
1385  // them.
1386  SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1387  if (BlocksInClonedLoop.empty())
1388    UnloopedBlockSet.insert(ClonedPH);
1389  for (auto *ClonedBB : ClonedLoopBlocks)
1390    if (!BlocksInClonedLoop.count(ClonedBB))
1391      UnloopedBlockSet.insert(ClonedBB);
1392
1393  // Copy the cloned exits and sort them in ascending loop depth, we'll work
1394  // backwards across these to process them inside out. The order shouldn't
1395  // matter as we're just trying to build up the map from inside-out; we use
1396  // the map in a more stably ordered way below.
1397  auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1398  llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1399    return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1400           ExitLoopMap.lookup(RHS)->getLoopDepth();
1401  });
1402
1403  // Populate the existing ExitLoopMap with everything reachable from each
1404  // exit, starting from the inner most exit.
1405  while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1406    assert(Worklist.empty() && "Didn't clear worklist!");
1407
1408    BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1409    Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1410
1411    // Walk the CFG back until we hit the cloned PH adding everything reachable
1412    // and in the unlooped set to this exit block's loop.
1413    Worklist.push_back(ExitBB);
1414    do {
1415      BasicBlock *BB = Worklist.pop_back_val();
1416      // We can stop recursing at the cloned preheader (if we get there).
1417      if (BB == ClonedPH)
1418        continue;
1419
1420      for (BasicBlock *PredBB : predecessors(BB)) {
1421        // If this pred has already been moved to our set or is part of some
1422        // (inner) loop, no update needed.
1423        if (!UnloopedBlockSet.erase(PredBB)) {
1424          assert(
1425              (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1426              "Predecessor not mapped to a loop!");
1427          continue;
1428        }
1429
1430        // We just insert into the loop set here. We'll add these blocks to the
1431        // exit loop after we build up the set in an order that doesn't rely on
1432        // predecessor order (which in turn relies on use list order).
1433        bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1434        (void)Inserted;
1435        assert(Inserted && "Should only visit an unlooped block once!");
1436
1437        // And recurse through to its predecessors.
1438        Worklist.push_back(PredBB);
1439      }
1440    } while (!Worklist.empty());
1441  }
1442
1443  // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1444  // blocks to their outer loops, walk the cloned blocks and the cloned exits
1445  // in their original order adding them to the correct loop.
1446
1447  // We need a stable insertion order. We use the order of the original loop
1448  // order and map into the correct parent loop.
1449  for (auto *BB : llvm::concat<BasicBlock *const>(
1450           makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1451    if (Loop *OuterL = ExitLoopMap.lookup(BB))
1452      OuterL->addBasicBlockToLoop(BB, LI);
1453
1454#ifndef NDEBUG
1455  for (auto &BBAndL : ExitLoopMap) {
1456    auto *BB = BBAndL.first;
1457    auto *OuterL = BBAndL.second;
1458    assert(LI.getLoopFor(BB) == OuterL &&
1459           "Failed to put all blocks into outer loops!");
1460  }
1461#endif
1462
1463  // Now that all the blocks are placed into the correct containing loop in the
1464  // absence of child loops, find all the potentially cloned child loops and
1465  // clone them into whatever outer loop we placed their header into.
1466  for (Loop *ChildL : OrigL) {
1467    auto *ClonedChildHeader =
1468        cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1469    if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1470      continue;
1471
1472#ifndef NDEBUG
1473    for (auto *ChildLoopBB : ChildL->blocks())
1474      assert(VMap.count(ChildLoopBB) &&
1475             "Cloned a child loop header but not all of that loops blocks!");
1476#endif
1477
1478    NonChildClonedLoops.push_back(cloneLoopNest(
1479        *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1480  }
1481}
1482
1483static void
1484deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1485                       ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1486                       DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1487  // Find all the dead clones, and remove them from their successors.
1488  SmallVector<BasicBlock *, 16> DeadBlocks;
1489  for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1490    for (auto &VMap : VMaps)
1491      if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1492        if (!DT.isReachableFromEntry(ClonedBB)) {
1493          for (BasicBlock *SuccBB : successors(ClonedBB))
1494            SuccBB->removePredecessor(ClonedBB);
1495          DeadBlocks.push_back(ClonedBB);
1496        }
1497
1498  // Remove all MemorySSA in the dead blocks
1499  if (MSSAU) {
1500    SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1501                                                 DeadBlocks.end());
1502    MSSAU->removeBlocks(DeadBlockSet);
1503  }
1504
1505  // Drop any remaining references to break cycles.
1506  for (BasicBlock *BB : DeadBlocks)
1507    BB->dropAllReferences();
1508  // Erase them from the IR.
1509  for (BasicBlock *BB : DeadBlocks)
1510    BB->eraseFromParent();
1511}
1512
1513static void deleteDeadBlocksFromLoop(Loop &L,
1514                                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1515                                     DominatorTree &DT, LoopInfo &LI,
1516                                     MemorySSAUpdater *MSSAU) {
1517  // Find all the dead blocks tied to this loop, and remove them from their
1518  // successors.
1519  SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1520
1521  // Start with loop/exit blocks and get a transitive closure of reachable dead
1522  // blocks.
1523  SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1524                                                ExitBlocks.end());
1525  DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1526  while (!DeathCandidates.empty()) {
1527    auto *BB = DeathCandidates.pop_back_val();
1528    if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1529      for (BasicBlock *SuccBB : successors(BB)) {
1530        SuccBB->removePredecessor(BB);
1531        DeathCandidates.push_back(SuccBB);
1532      }
1533      DeadBlockSet.insert(BB);
1534    }
1535  }
1536
1537  // Remove all MemorySSA in the dead blocks
1538  if (MSSAU)
1539    MSSAU->removeBlocks(DeadBlockSet);
1540
1541  // Filter out the dead blocks from the exit blocks list so that it can be
1542  // used in the caller.
1543  llvm::erase_if(ExitBlocks,
1544                 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1545
1546  // Walk from this loop up through its parents removing all of the dead blocks.
1547  for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1548    for (auto *BB : DeadBlockSet)
1549      ParentL->getBlocksSet().erase(BB);
1550    llvm::erase_if(ParentL->getBlocksVector(),
1551                   [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1552  }
1553
1554  // Now delete the dead child loops. This raw delete will clear them
1555  // recursively.
1556  llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1557    if (!DeadBlockSet.count(ChildL->getHeader()))
1558      return false;
1559
1560    assert(llvm::all_of(ChildL->blocks(),
1561                        [&](BasicBlock *ChildBB) {
1562                          return DeadBlockSet.count(ChildBB);
1563                        }) &&
1564           "If the child loop header is dead all blocks in the child loop must "
1565           "be dead as well!");
1566    LI.destroy(ChildL);
1567    return true;
1568  });
1569
1570  // Remove the loop mappings for the dead blocks and drop all the references
1571  // from these blocks to others to handle cyclic references as we start
1572  // deleting the blocks themselves.
1573  for (auto *BB : DeadBlockSet) {
1574    // Check that the dominator tree has already been updated.
1575    assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1576    LI.changeLoopFor(BB, nullptr);
1577    // Drop all uses of the instructions to make sure we won't have dangling
1578    // uses in other blocks.
1579    for (auto &I : *BB)
1580      if (!I.use_empty())
1581        I.replaceAllUsesWith(UndefValue::get(I.getType()));
1582    BB->dropAllReferences();
1583  }
1584
1585  // Actually delete the blocks now that they've been fully unhooked from the
1586  // IR.
1587  for (auto *BB : DeadBlockSet)
1588    BB->eraseFromParent();
1589}
1590
1591/// Recompute the set of blocks in a loop after unswitching.
1592///
1593/// This walks from the original headers predecessors to rebuild the loop. We
1594/// take advantage of the fact that new blocks can't have been added, and so we
1595/// filter by the original loop's blocks. This also handles potentially
1596/// unreachable code that we don't want to explore but might be found examining
1597/// the predecessors of the header.
1598///
1599/// If the original loop is no longer a loop, this will return an empty set. If
1600/// it remains a loop, all the blocks within it will be added to the set
1601/// (including those blocks in inner loops).
1602static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1603                                                                 LoopInfo &LI) {
1604  SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1605
1606  auto *PH = L.getLoopPreheader();
1607  auto *Header = L.getHeader();
1608
1609  // A worklist to use while walking backwards from the header.
1610  SmallVector<BasicBlock *, 16> Worklist;
1611
1612  // First walk the predecessors of the header to find the backedges. This will
1613  // form the basis of our walk.
1614  for (auto *Pred : predecessors(Header)) {
1615    // Skip the preheader.
1616    if (Pred == PH)
1617      continue;
1618
1619    // Because the loop was in simplified form, the only non-loop predecessor
1620    // is the preheader.
1621    assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1622                               "than the preheader that is not part of the "
1623                               "loop!");
1624
1625    // Insert this block into the loop set and on the first visit and, if it
1626    // isn't the header we're currently walking, put it into the worklist to
1627    // recurse through.
1628    if (LoopBlockSet.insert(Pred).second && Pred != Header)
1629      Worklist.push_back(Pred);
1630  }
1631
1632  // If no backedges were found, we're done.
1633  if (LoopBlockSet.empty())
1634    return LoopBlockSet;
1635
1636  // We found backedges, recurse through them to identify the loop blocks.
1637  while (!Worklist.empty()) {
1638    BasicBlock *BB = Worklist.pop_back_val();
1639    assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1640
1641    // No need to walk past the header.
1642    if (BB == Header)
1643      continue;
1644
1645    // Because we know the inner loop structure remains valid we can use the
1646    // loop structure to jump immediately across the entire nested loop.
1647    // Further, because it is in loop simplified form, we can directly jump
1648    // to its preheader afterward.
1649    if (Loop *InnerL = LI.getLoopFor(BB))
1650      if (InnerL != &L) {
1651        assert(L.contains(InnerL) &&
1652               "Should not reach a loop *outside* this loop!");
1653        // The preheader is the only possible predecessor of the loop so
1654        // insert it into the set and check whether it was already handled.
1655        auto *InnerPH = InnerL->getLoopPreheader();
1656        assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1657                                      "but not contain the inner loop "
1658                                      "preheader!");
1659        if (!LoopBlockSet.insert(InnerPH).second)
1660          // The only way to reach the preheader is through the loop body
1661          // itself so if it has been visited the loop is already handled.
1662          continue;
1663
1664        // Insert all of the blocks (other than those already present) into
1665        // the loop set. We expect at least the block that led us to find the
1666        // inner loop to be in the block set, but we may also have other loop
1667        // blocks if they were already enqueued as predecessors of some other
1668        // outer loop block.
1669        for (auto *InnerBB : InnerL->blocks()) {
1670          if (InnerBB == BB) {
1671            assert(LoopBlockSet.count(InnerBB) &&
1672                   "Block should already be in the set!");
1673            continue;
1674          }
1675
1676          LoopBlockSet.insert(InnerBB);
1677        }
1678
1679        // Add the preheader to the worklist so we will continue past the
1680        // loop body.
1681        Worklist.push_back(InnerPH);
1682        continue;
1683      }
1684
1685    // Insert any predecessors that were in the original loop into the new
1686    // set, and if the insert is successful, add them to the worklist.
1687    for (auto *Pred : predecessors(BB))
1688      if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1689        Worklist.push_back(Pred);
1690  }
1691
1692  assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1693
1694  // We've found all the blocks participating in the loop, return our completed
1695  // set.
1696  return LoopBlockSet;
1697}
1698
1699/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1700///
1701/// The removal may have removed some child loops entirely but cannot have
1702/// disturbed any remaining child loops. However, they may need to be hoisted
1703/// to the parent loop (or to be top-level loops). The original loop may be
1704/// completely removed.
1705///
1706/// The sibling loops resulting from this update are returned. If the original
1707/// loop remains a valid loop, it will be the first entry in this list with all
1708/// of the newly sibling loops following it.
1709///
1710/// Returns true if the loop remains a loop after unswitching, and false if it
1711/// is no longer a loop after unswitching (and should not continue to be
1712/// referenced).
1713static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1714                                     LoopInfo &LI,
1715                                     SmallVectorImpl<Loop *> &HoistedLoops) {
1716  auto *PH = L.getLoopPreheader();
1717
1718  // Compute the actual parent loop from the exit blocks. Because we may have
1719  // pruned some exits the loop may be different from the original parent.
1720  Loop *ParentL = nullptr;
1721  SmallVector<Loop *, 4> ExitLoops;
1722  SmallVector<BasicBlock *, 4> ExitsInLoops;
1723  ExitsInLoops.reserve(ExitBlocks.size());
1724  for (auto *ExitBB : ExitBlocks)
1725    if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1726      ExitLoops.push_back(ExitL);
1727      ExitsInLoops.push_back(ExitBB);
1728      if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1729        ParentL = ExitL;
1730    }
1731
1732  // Recompute the blocks participating in this loop. This may be empty if it
1733  // is no longer a loop.
1734  auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1735
1736  // If we still have a loop, we need to re-set the loop's parent as the exit
1737  // block set changing may have moved it within the loop nest. Note that this
1738  // can only happen when this loop has a parent as it can only hoist the loop
1739  // *up* the nest.
1740  if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1741    // Remove this loop's (original) blocks from all of the intervening loops.
1742    for (Loop *IL = L.getParentLoop(); IL != ParentL;
1743         IL = IL->getParentLoop()) {
1744      IL->getBlocksSet().erase(PH);
1745      for (auto *BB : L.blocks())
1746        IL->getBlocksSet().erase(BB);
1747      llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1748        return BB == PH || L.contains(BB);
1749      });
1750    }
1751
1752    LI.changeLoopFor(PH, ParentL);
1753    L.getParentLoop()->removeChildLoop(&L);
1754    if (ParentL)
1755      ParentL->addChildLoop(&L);
1756    else
1757      LI.addTopLevelLoop(&L);
1758  }
1759
1760  // Now we update all the blocks which are no longer within the loop.
1761  auto &Blocks = L.getBlocksVector();
1762  auto BlocksSplitI =
1763      LoopBlockSet.empty()
1764          ? Blocks.begin()
1765          : std::stable_partition(
1766                Blocks.begin(), Blocks.end(),
1767                [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1768
1769  // Before we erase the list of unlooped blocks, build a set of them.
1770  SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1771  if (LoopBlockSet.empty())
1772    UnloopedBlocks.insert(PH);
1773
1774  // Now erase these blocks from the loop.
1775  for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1776    L.getBlocksSet().erase(BB);
1777  Blocks.erase(BlocksSplitI, Blocks.end());
1778
1779  // Sort the exits in ascending loop depth, we'll work backwards across these
1780  // to process them inside out.
1781  llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1782    return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1783  });
1784
1785  // We'll build up a set for each exit loop.
1786  SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1787  Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1788
1789  auto RemoveUnloopedBlocksFromLoop =
1790      [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1791        for (auto *BB : UnloopedBlocks)
1792          L.getBlocksSet().erase(BB);
1793        llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1794          return UnloopedBlocks.count(BB);
1795        });
1796      };
1797
1798  SmallVector<BasicBlock *, 16> Worklist;
1799  while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1800    assert(Worklist.empty() && "Didn't clear worklist!");
1801    assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1802
1803    // Grab the next exit block, in decreasing loop depth order.
1804    BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1805    Loop &ExitL = *LI.getLoopFor(ExitBB);
1806    assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1807
1808    // Erase all of the unlooped blocks from the loops between the previous
1809    // exit loop and this exit loop. This works because the ExitInLoops list is
1810    // sorted in increasing order of loop depth and thus we visit loops in
1811    // decreasing order of loop depth.
1812    for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1813      RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1814
1815    // Walk the CFG back until we hit the cloned PH adding everything reachable
1816    // and in the unlooped set to this exit block's loop.
1817    Worklist.push_back(ExitBB);
1818    do {
1819      BasicBlock *BB = Worklist.pop_back_val();
1820      // We can stop recursing at the cloned preheader (if we get there).
1821      if (BB == PH)
1822        continue;
1823
1824      for (BasicBlock *PredBB : predecessors(BB)) {
1825        // If this pred has already been moved to our set or is part of some
1826        // (inner) loop, no update needed.
1827        if (!UnloopedBlocks.erase(PredBB)) {
1828          assert((NewExitLoopBlocks.count(PredBB) ||
1829                  ExitL.contains(LI.getLoopFor(PredBB))) &&
1830                 "Predecessor not in a nested loop (or already visited)!");
1831          continue;
1832        }
1833
1834        // We just insert into the loop set here. We'll add these blocks to the
1835        // exit loop after we build up the set in a deterministic order rather
1836        // than the predecessor-influenced visit order.
1837        bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1838        (void)Inserted;
1839        assert(Inserted && "Should only visit an unlooped block once!");
1840
1841        // And recurse through to its predecessors.
1842        Worklist.push_back(PredBB);
1843      }
1844    } while (!Worklist.empty());
1845
1846    // If blocks in this exit loop were directly part of the original loop (as
1847    // opposed to a child loop) update the map to point to this exit loop. This
1848    // just updates a map and so the fact that the order is unstable is fine.
1849    for (auto *BB : NewExitLoopBlocks)
1850      if (Loop *BBL = LI.getLoopFor(BB))
1851        if (BBL == &L || !L.contains(BBL))
1852          LI.changeLoopFor(BB, &ExitL);
1853
1854    // We will remove the remaining unlooped blocks from this loop in the next
1855    // iteration or below.
1856    NewExitLoopBlocks.clear();
1857  }
1858
1859  // Any remaining unlooped blocks are no longer part of any loop unless they
1860  // are part of some child loop.
1861  for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1862    RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1863  for (auto *BB : UnloopedBlocks)
1864    if (Loop *BBL = LI.getLoopFor(BB))
1865      if (BBL == &L || !L.contains(BBL))
1866        LI.changeLoopFor(BB, nullptr);
1867
1868  // Sink all the child loops whose headers are no longer in the loop set to
1869  // the parent (or to be top level loops). We reach into the loop and directly
1870  // update its subloop vector to make this batch update efficient.
1871  auto &SubLoops = L.getSubLoopsVector();
1872  auto SubLoopsSplitI =
1873      LoopBlockSet.empty()
1874          ? SubLoops.begin()
1875          : std::stable_partition(
1876                SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1877                  return LoopBlockSet.count(SubL->getHeader());
1878                });
1879  for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1880    HoistedLoops.push_back(HoistedL);
1881    HoistedL->setParentLoop(nullptr);
1882
1883    // To compute the new parent of this hoisted loop we look at where we
1884    // placed the preheader above. We can't lookup the header itself because we
1885    // retained the mapping from the header to the hoisted loop. But the
1886    // preheader and header should have the exact same new parent computed
1887    // based on the set of exit blocks from the original loop as the preheader
1888    // is a predecessor of the header and so reached in the reverse walk. And
1889    // because the loops were all in simplified form the preheader of the
1890    // hoisted loop can't be part of some *other* loop.
1891    if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1892      NewParentL->addChildLoop(HoistedL);
1893    else
1894      LI.addTopLevelLoop(HoistedL);
1895  }
1896  SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1897
1898  // Actually delete the loop if nothing remained within it.
1899  if (Blocks.empty()) {
1900    assert(SubLoops.empty() &&
1901           "Failed to remove all subloops from the original loop!");
1902    if (Loop *ParentL = L.getParentLoop())
1903      ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1904    else
1905      LI.removeLoop(llvm::find(LI, &L));
1906    LI.destroy(&L);
1907    return false;
1908  }
1909
1910  return true;
1911}
1912
1913/// Helper to visit a dominator subtree, invoking a callable on each node.
1914///
1915/// Returning false at any point will stop walking past that node of the tree.
1916template <typename CallableT>
1917void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1918  SmallVector<DomTreeNode *, 4> DomWorklist;
1919  DomWorklist.push_back(DT[BB]);
1920#ifndef NDEBUG
1921  SmallPtrSet<DomTreeNode *, 4> Visited;
1922  Visited.insert(DT[BB]);
1923#endif
1924  do {
1925    DomTreeNode *N = DomWorklist.pop_back_val();
1926
1927    // Visit this node.
1928    if (!Callable(N->getBlock()))
1929      continue;
1930
1931    // Accumulate the child nodes.
1932    for (DomTreeNode *ChildN : *N) {
1933      assert(Visited.insert(ChildN).second &&
1934             "Cannot visit a node twice when walking a tree!");
1935      DomWorklist.push_back(ChildN);
1936    }
1937  } while (!DomWorklist.empty());
1938}
1939
1940static void unswitchNontrivialInvariants(
1941    Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1942    SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1943    AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1944    ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1945  auto *ParentBB = TI.getParent();
1946  BranchInst *BI = dyn_cast<BranchInst>(&TI);
1947  SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1948
1949  // We can only unswitch switches, conditional branches with an invariant
1950  // condition, or combining invariant conditions with an instruction.
1951  assert((SI || (BI && BI->isConditional())) &&
1952         "Can only unswitch switches and conditional branch!");
1953  bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1954  if (FullUnswitch)
1955    assert(Invariants.size() == 1 &&
1956           "Cannot have other invariants with full unswitching!");
1957  else
1958    assert(isa<Instruction>(BI->getCondition()) &&
1959           "Partial unswitching requires an instruction as the condition!");
1960
1961  if (MSSAU && VerifyMemorySSA)
1962    MSSAU->getMemorySSA()->verifyMemorySSA();
1963
1964  // Constant and BBs tracking the cloned and continuing successor. When we are
1965  // unswitching the entire condition, this can just be trivially chosen to
1966  // unswitch towards `true`. However, when we are unswitching a set of
1967  // invariants combined with `and` or `or`, the combining operation determines
1968  // the best direction to unswitch: we want to unswitch the direction that will
1969  // collapse the branch.
1970  bool Direction = true;
1971  int ClonedSucc = 0;
1972  if (!FullUnswitch) {
1973    if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1974      assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1975                 Instruction::And &&
1976             "Only `or` and `and` instructions can combine invariants being "
1977             "unswitched.");
1978      Direction = false;
1979      ClonedSucc = 1;
1980    }
1981  }
1982
1983  BasicBlock *RetainedSuccBB =
1984      BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1985  SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1986  if (BI)
1987    UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1988  else
1989    for (auto Case : SI->cases())
1990      if (Case.getCaseSuccessor() != RetainedSuccBB)
1991        UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1992
1993  assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1994         "Should not unswitch the same successor we are retaining!");
1995
1996  // The branch should be in this exact loop. Any inner loop's invariant branch
1997  // should be handled by unswitching that inner loop. The caller of this
1998  // routine should filter out any candidates that remain (but were skipped for
1999  // whatever reason).
2000  assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2001
2002  // Compute the parent loop now before we start hacking on things.
2003  Loop *ParentL = L.getParentLoop();
2004  // Get blocks in RPO order for MSSA update, before changing the CFG.
2005  LoopBlocksRPO LBRPO(&L);
2006  if (MSSAU)
2007    LBRPO.perform(&LI);
2008
2009  // Compute the outer-most loop containing one of our exit blocks. This is the
2010  // furthest up our loopnest which can be mutated, which we will use below to
2011  // update things.
2012  Loop *OuterExitL = &L;
2013  for (auto *ExitBB : ExitBlocks) {
2014    Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2015    if (!NewOuterExitL) {
2016      // We exited the entire nest with this block, so we're done.
2017      OuterExitL = nullptr;
2018      break;
2019    }
2020    if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2021      OuterExitL = NewOuterExitL;
2022  }
2023
2024  // At this point, we're definitely going to unswitch something so invalidate
2025  // any cached information in ScalarEvolution for the outer most loop
2026  // containing an exit block and all nested loops.
2027  if (SE) {
2028    if (OuterExitL)
2029      SE->forgetLoop(OuterExitL);
2030    else
2031      SE->forgetTopmostLoop(&L);
2032  }
2033
2034  // If the edge from this terminator to a successor dominates that successor,
2035  // store a map from each block in its dominator subtree to it. This lets us
2036  // tell when cloning for a particular successor if a block is dominated by
2037  // some *other* successor with a single data structure. We use this to
2038  // significantly reduce cloning.
2039  SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2040  for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2041           makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2042    if (SuccBB->getUniquePredecessor() ||
2043        llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2044          return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2045        }))
2046      visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2047        DominatingSucc[BB] = SuccBB;
2048        return true;
2049      });
2050
2051  // Split the preheader, so that we know that there is a safe place to insert
2052  // the conditional branch. We will change the preheader to have a conditional
2053  // branch on LoopCond. The original preheader will become the split point
2054  // between the unswitched versions, and we will have a new preheader for the
2055  // original loop.
2056  BasicBlock *SplitBB = L.getLoopPreheader();
2057  BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2058
2059  // Keep track of the dominator tree updates needed.
2060  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2061
2062  // Clone the loop for each unswitched successor.
2063  SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2064  VMaps.reserve(UnswitchedSuccBBs.size());
2065  SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2066  for (auto *SuccBB : UnswitchedSuccBBs) {
2067    VMaps.emplace_back(new ValueToValueMapTy());
2068    ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2069        L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2070        DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2071  }
2072
2073  // The stitching of the branched code back together depends on whether we're
2074  // doing full unswitching or not with the exception that we always want to
2075  // nuke the initial terminator placed in the split block.
2076  SplitBB->getTerminator()->eraseFromParent();
2077  if (FullUnswitch) {
2078    // Splice the terminator from the original loop and rewrite its
2079    // successors.
2080    SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2081
2082    // Keep a clone of the terminator for MSSA updates.
2083    Instruction *NewTI = TI.clone();
2084    ParentBB->getInstList().push_back(NewTI);
2085
2086    // First wire up the moved terminator to the preheaders.
2087    if (BI) {
2088      BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2089      BI->setSuccessor(ClonedSucc, ClonedPH);
2090      BI->setSuccessor(1 - ClonedSucc, LoopPH);
2091      DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2092    } else {
2093      assert(SI && "Must either be a branch or switch!");
2094
2095      // Walk the cases and directly update their successors.
2096      assert(SI->getDefaultDest() == RetainedSuccBB &&
2097             "Not retaining default successor!");
2098      SI->setDefaultDest(LoopPH);
2099      for (auto &Case : SI->cases())
2100        if (Case.getCaseSuccessor() == RetainedSuccBB)
2101          Case.setSuccessor(LoopPH);
2102        else
2103          Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2104
2105      // We need to use the set to populate domtree updates as even when there
2106      // are multiple cases pointing at the same successor we only want to
2107      // remove and insert one edge in the domtree.
2108      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2109        DTUpdates.push_back(
2110            {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2111    }
2112
2113    if (MSSAU) {
2114      DT.applyUpdates(DTUpdates);
2115      DTUpdates.clear();
2116
2117      // Remove all but one edge to the retained block and all unswitched
2118      // blocks. This is to avoid having duplicate entries in the cloned Phis,
2119      // when we know we only keep a single edge for each case.
2120      MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2121      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2122        MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2123
2124      for (auto &VMap : VMaps)
2125        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2126                                   /*IgnoreIncomingWithNoClones=*/true);
2127      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2128
2129      // Remove all edges to unswitched blocks.
2130      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2131        MSSAU->removeEdge(ParentBB, SuccBB);
2132    }
2133
2134    // Now unhook the successor relationship as we'll be replacing
2135    // the terminator with a direct branch. This is much simpler for branches
2136    // than switches so we handle those first.
2137    if (BI) {
2138      // Remove the parent as a predecessor of the unswitched successor.
2139      assert(UnswitchedSuccBBs.size() == 1 &&
2140             "Only one possible unswitched block for a branch!");
2141      BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2142      UnswitchedSuccBB->removePredecessor(ParentBB,
2143                                          /*KeepOneInputPHIs*/ true);
2144      DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2145    } else {
2146      // Note that we actually want to remove the parent block as a predecessor
2147      // of *every* case successor. The case successor is either unswitched,
2148      // completely eliminating an edge from the parent to that successor, or it
2149      // is a duplicate edge to the retained successor as the retained successor
2150      // is always the default successor and as we'll replace this with a direct
2151      // branch we no longer need the duplicate entries in the PHI nodes.
2152      SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2153      assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2154             "Not retaining default successor!");
2155      for (auto &Case : NewSI->cases())
2156        Case.getCaseSuccessor()->removePredecessor(
2157            ParentBB,
2158            /*KeepOneInputPHIs*/ true);
2159
2160      // We need to use the set to populate domtree updates as even when there
2161      // are multiple cases pointing at the same successor we only want to
2162      // remove and insert one edge in the domtree.
2163      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2164        DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2165    }
2166
2167    // After MSSAU update, remove the cloned terminator instruction NewTI.
2168    ParentBB->getTerminator()->eraseFromParent();
2169
2170    // Create a new unconditional branch to the continuing block (as opposed to
2171    // the one cloned).
2172    BranchInst::Create(RetainedSuccBB, ParentBB);
2173  } else {
2174    assert(BI && "Only branches have partial unswitching.");
2175    assert(UnswitchedSuccBBs.size() == 1 &&
2176           "Only one possible unswitched block for a branch!");
2177    BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2178    // When doing a partial unswitch, we have to do a bit more work to build up
2179    // the branch in the split block.
2180    buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2181                                          *ClonedPH, *LoopPH);
2182    DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2183
2184    if (MSSAU) {
2185      DT.applyUpdates(DTUpdates);
2186      DTUpdates.clear();
2187
2188      // Perform MSSA cloning updates.
2189      for (auto &VMap : VMaps)
2190        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2191                                   /*IgnoreIncomingWithNoClones=*/true);
2192      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2193    }
2194  }
2195
2196  // Apply the updates accumulated above to get an up-to-date dominator tree.
2197  DT.applyUpdates(DTUpdates);
2198
2199  // Now that we have an accurate dominator tree, first delete the dead cloned
2200  // blocks so that we can accurately build any cloned loops. It is important to
2201  // not delete the blocks from the original loop yet because we still want to
2202  // reference the original loop to understand the cloned loop's structure.
2203  deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2204
2205  // Build the cloned loop structure itself. This may be substantially
2206  // different from the original structure due to the simplified CFG. This also
2207  // handles inserting all the cloned blocks into the correct loops.
2208  SmallVector<Loop *, 4> NonChildClonedLoops;
2209  for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2210    buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2211
2212  // Now that our cloned loops have been built, we can update the original loop.
2213  // First we delete the dead blocks from it and then we rebuild the loop
2214  // structure taking these deletions into account.
2215  deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2216
2217  if (MSSAU && VerifyMemorySSA)
2218    MSSAU->getMemorySSA()->verifyMemorySSA();
2219
2220  SmallVector<Loop *, 4> HoistedLoops;
2221  bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2222
2223  if (MSSAU && VerifyMemorySSA)
2224    MSSAU->getMemorySSA()->verifyMemorySSA();
2225
2226  // This transformation has a high risk of corrupting the dominator tree, and
2227  // the below steps to rebuild loop structures will result in hard to debug
2228  // errors in that case so verify that the dominator tree is sane first.
2229  // FIXME: Remove this when the bugs stop showing up and rely on existing
2230  // verification steps.
2231  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2232
2233  if (BI) {
2234    // If we unswitched a branch which collapses the condition to a known
2235    // constant we want to replace all the uses of the invariants within both
2236    // the original and cloned blocks. We do this here so that we can use the
2237    // now updated dominator tree to identify which side the users are on.
2238    assert(UnswitchedSuccBBs.size() == 1 &&
2239           "Only one possible unswitched block for a branch!");
2240    BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2241
2242    // When considering multiple partially-unswitched invariants
2243    // we cant just go replace them with constants in both branches.
2244    //
2245    // For 'AND' we infer that true branch ("continue") means true
2246    // for each invariant operand.
2247    // For 'OR' we can infer that false branch ("continue") means false
2248    // for each invariant operand.
2249    // So it happens that for multiple-partial case we dont replace
2250    // in the unswitched branch.
2251    bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2252
2253    ConstantInt *UnswitchedReplacement =
2254        Direction ? ConstantInt::getTrue(BI->getContext())
2255                  : ConstantInt::getFalse(BI->getContext());
2256    ConstantInt *ContinueReplacement =
2257        Direction ? ConstantInt::getFalse(BI->getContext())
2258                  : ConstantInt::getTrue(BI->getContext());
2259    for (Value *Invariant : Invariants)
2260      for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2261           UI != UE;) {
2262        // Grab the use and walk past it so we can clobber it in the use list.
2263        Use *U = &*UI++;
2264        Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2265        if (!UserI)
2266          continue;
2267
2268        // Replace it with the 'continue' side if in the main loop body, and the
2269        // unswitched if in the cloned blocks.
2270        if (DT.dominates(LoopPH, UserI->getParent()))
2271          U->set(ContinueReplacement);
2272        else if (ReplaceUnswitched &&
2273                 DT.dominates(ClonedPH, UserI->getParent()))
2274          U->set(UnswitchedReplacement);
2275      }
2276  }
2277
2278  // We can change which blocks are exit blocks of all the cloned sibling
2279  // loops, the current loop, and any parent loops which shared exit blocks
2280  // with the current loop. As a consequence, we need to re-form LCSSA for
2281  // them. But we shouldn't need to re-form LCSSA for any child loops.
2282  // FIXME: This could be made more efficient by tracking which exit blocks are
2283  // new, and focusing on them, but that isn't likely to be necessary.
2284  //
2285  // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2286  // loop nest and update every loop that could have had its exits changed. We
2287  // also need to cover any intervening loops. We add all of these loops to
2288  // a list and sort them by loop depth to achieve this without updating
2289  // unnecessary loops.
2290  auto UpdateLoop = [&](Loop &UpdateL) {
2291#ifndef NDEBUG
2292    UpdateL.verifyLoop();
2293    for (Loop *ChildL : UpdateL) {
2294      ChildL->verifyLoop();
2295      assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2296             "Perturbed a child loop's LCSSA form!");
2297    }
2298#endif
2299    // First build LCSSA for this loop so that we can preserve it when
2300    // forming dedicated exits. We don't want to perturb some other loop's
2301    // LCSSA while doing that CFG edit.
2302    formLCSSA(UpdateL, DT, &LI, SE);
2303
2304    // For loops reached by this loop's original exit blocks we may
2305    // introduced new, non-dedicated exits. At least try to re-form dedicated
2306    // exits for these loops. This may fail if they couldn't have dedicated
2307    // exits to start with.
2308    formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2309  };
2310
2311  // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2312  // and we can do it in any order as they don't nest relative to each other.
2313  //
2314  // Also check if any of the loops we have updated have become top-level loops
2315  // as that will necessitate widening the outer loop scope.
2316  for (Loop *UpdatedL :
2317       llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2318    UpdateLoop(*UpdatedL);
2319    if (!UpdatedL->getParentLoop())
2320      OuterExitL = nullptr;
2321  }
2322  if (IsStillLoop) {
2323    UpdateLoop(L);
2324    if (!L.getParentLoop())
2325      OuterExitL = nullptr;
2326  }
2327
2328  // If the original loop had exit blocks, walk up through the outer most loop
2329  // of those exit blocks to update LCSSA and form updated dedicated exits.
2330  if (OuterExitL != &L)
2331    for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2332         OuterL = OuterL->getParentLoop())
2333      UpdateLoop(*OuterL);
2334
2335#ifndef NDEBUG
2336  // Verify the entire loop structure to catch any incorrect updates before we
2337  // progress in the pass pipeline.
2338  LI.verify(DT);
2339#endif
2340
2341  // Now that we've unswitched something, make callbacks to report the changes.
2342  // For that we need to merge together the updated loops and the cloned loops
2343  // and check whether the original loop survived.
2344  SmallVector<Loop *, 4> SibLoops;
2345  for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2346    if (UpdatedL->getParentLoop() == ParentL)
2347      SibLoops.push_back(UpdatedL);
2348  UnswitchCB(IsStillLoop, SibLoops);
2349
2350  if (MSSAU && VerifyMemorySSA)
2351    MSSAU->getMemorySSA()->verifyMemorySSA();
2352
2353  if (BI)
2354    ++NumBranches;
2355  else
2356    ++NumSwitches;
2357}
2358
2359/// Recursively compute the cost of a dominator subtree based on the per-block
2360/// cost map provided.
2361///
2362/// The recursive computation is memozied into the provided DT-indexed cost map
2363/// to allow querying it for most nodes in the domtree without it becoming
2364/// quadratic.
2365static int
2366computeDomSubtreeCost(DomTreeNode &N,
2367                      const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2368                      SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2369  // Don't accumulate cost (or recurse through) blocks not in our block cost
2370  // map and thus not part of the duplication cost being considered.
2371  auto BBCostIt = BBCostMap.find(N.getBlock());
2372  if (BBCostIt == BBCostMap.end())
2373    return 0;
2374
2375  // Lookup this node to see if we already computed its cost.
2376  auto DTCostIt = DTCostMap.find(&N);
2377  if (DTCostIt != DTCostMap.end())
2378    return DTCostIt->second;
2379
2380  // If not, we have to compute it. We can't use insert above and update
2381  // because computing the cost may insert more things into the map.
2382  int Cost = std::accumulate(
2383      N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2384        return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2385      });
2386  bool Inserted = DTCostMap.insert({&N, Cost}).second;
2387  (void)Inserted;
2388  assert(Inserted && "Should not insert a node while visiting children!");
2389  return Cost;
2390}
2391
2392/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2393/// making the following replacement:
2394///
2395///   --code before guard--
2396///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2397///   --code after guard--
2398///
2399/// into
2400///
2401///   --code before guard--
2402///   br i1 %cond, label %guarded, label %deopt
2403///
2404/// guarded:
2405///   --code after guard--
2406///
2407/// deopt:
2408///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2409///   unreachable
2410///
2411/// It also makes all relevant DT and LI updates, so that all structures are in
2412/// valid state after this transform.
2413static BranchInst *
2414turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2415                    SmallVectorImpl<BasicBlock *> &ExitBlocks,
2416                    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2417  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2418  LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2419  BasicBlock *CheckBB = GI->getParent();
2420
2421  if (MSSAU && VerifyMemorySSA)
2422     MSSAU->getMemorySSA()->verifyMemorySSA();
2423
2424  // Remove all CheckBB's successors from DomTree. A block can be seen among
2425  // successors more than once, but for DomTree it should be added only once.
2426  SmallPtrSet<BasicBlock *, 4> Successors;
2427  for (auto *Succ : successors(CheckBB))
2428    if (Successors.insert(Succ).second)
2429      DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2430
2431  Instruction *DeoptBlockTerm =
2432      SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2433  BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2434  // SplitBlockAndInsertIfThen inserts control flow that branches to
2435  // DeoptBlockTerm if the condition is true.  We want the opposite.
2436  CheckBI->swapSuccessors();
2437
2438  BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2439  GuardedBlock->setName("guarded");
2440  CheckBI->getSuccessor(1)->setName("deopt");
2441  BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2442
2443  // We now have a new exit block.
2444  ExitBlocks.push_back(CheckBI->getSuccessor(1));
2445
2446  if (MSSAU)
2447    MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2448
2449  GI->moveBefore(DeoptBlockTerm);
2450  GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2451
2452  // Add new successors of CheckBB into DomTree.
2453  for (auto *Succ : successors(CheckBB))
2454    DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2455
2456  // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2457  // successors.
2458  for (auto *Succ : Successors)
2459    DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2460
2461  // Make proper changes to DT.
2462  DT.applyUpdates(DTUpdates);
2463  // Inform LI of a new loop block.
2464  L.addBasicBlockToLoop(GuardedBlock, LI);
2465
2466  if (MSSAU) {
2467    MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2468    MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2469    if (VerifyMemorySSA)
2470      MSSAU->getMemorySSA()->verifyMemorySSA();
2471  }
2472
2473  ++NumGuards;
2474  return CheckBI;
2475}
2476
2477/// Cost multiplier is a way to limit potentially exponential behavior
2478/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2479/// candidates available. Also accounting for the number of "sibling" loops with
2480/// the idea to account for previous unswitches that already happened on this
2481/// cluster of loops. There was an attempt to keep this formula simple,
2482/// just enough to limit the worst case behavior. Even if it is not that simple
2483/// now it is still not an attempt to provide a detailed heuristic size
2484/// prediction.
2485///
2486/// TODO: Make a proper accounting of "explosion" effect for all kinds of
2487/// unswitch candidates, making adequate predictions instead of wild guesses.
2488/// That requires knowing not just the number of "remaining" candidates but
2489/// also costs of unswitching for each of these candidates.
2490static int CalculateUnswitchCostMultiplier(
2491    Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2492    ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2493        UnswitchCandidates) {
2494
2495  // Guards and other exiting conditions do not contribute to exponential
2496  // explosion as soon as they dominate the latch (otherwise there might be
2497  // another path to the latch remaining that does not allow to eliminate the
2498  // loop copy on unswitch).
2499  BasicBlock *Latch = L.getLoopLatch();
2500  BasicBlock *CondBlock = TI.getParent();
2501  if (DT.dominates(CondBlock, Latch) &&
2502      (isGuard(&TI) ||
2503       llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2504         return L.contains(SuccBB);
2505       }) <= 1)) {
2506    NumCostMultiplierSkipped++;
2507    return 1;
2508  }
2509
2510  auto *ParentL = L.getParentLoop();
2511  int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2512                               : std::distance(LI.begin(), LI.end()));
2513  // Count amount of clones that all the candidates might cause during
2514  // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2515  int UnswitchedClones = 0;
2516  for (auto Candidate : UnswitchCandidates) {
2517    Instruction *CI = Candidate.first;
2518    BasicBlock *CondBlock = CI->getParent();
2519    bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2520    if (isGuard(CI)) {
2521      if (!SkipExitingSuccessors)
2522        UnswitchedClones++;
2523      continue;
2524    }
2525    int NonExitingSuccessors = llvm::count_if(
2526        successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2527          return !SkipExitingSuccessors || L.contains(SuccBB);
2528        });
2529    UnswitchedClones += Log2_32(NonExitingSuccessors);
2530  }
2531
2532  // Ignore up to the "unscaled candidates" number of unswitch candidates
2533  // when calculating the power-of-two scaling of the cost. The main idea
2534  // with this control is to allow a small number of unswitches to happen
2535  // and rely more on siblings multiplier (see below) when the number
2536  // of candidates is small.
2537  unsigned ClonesPower =
2538      std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2539
2540  // Allowing top-level loops to spread a bit more than nested ones.
2541  int SiblingsMultiplier =
2542      std::max((ParentL ? SiblingsCount
2543                        : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2544               1);
2545  // Compute the cost multiplier in a way that won't overflow by saturating
2546  // at an upper bound.
2547  int CostMultiplier;
2548  if (ClonesPower > Log2_32(UnswitchThreshold) ||
2549      SiblingsMultiplier > UnswitchThreshold)
2550    CostMultiplier = UnswitchThreshold;
2551  else
2552    CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2553                              (int)UnswitchThreshold);
2554
2555  LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2556                    << " (siblings " << SiblingsMultiplier << " * clones "
2557                    << (1 << ClonesPower) << ")"
2558                    << " for unswitch candidate: " << TI << "\n");
2559  return CostMultiplier;
2560}
2561
2562static bool
2563unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2564                      AssumptionCache &AC, TargetTransformInfo &TTI,
2565                      function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2566                      ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2567  // Collect all invariant conditions within this loop (as opposed to an inner
2568  // loop which would be handled when visiting that inner loop).
2569  SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2570      UnswitchCandidates;
2571
2572  // Whether or not we should also collect guards in the loop.
2573  bool CollectGuards = false;
2574  if (UnswitchGuards) {
2575    auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2576        Intrinsic::getName(Intrinsic::experimental_guard));
2577    if (GuardDecl && !GuardDecl->use_empty())
2578      CollectGuards = true;
2579  }
2580
2581  for (auto *BB : L.blocks()) {
2582    if (LI.getLoopFor(BB) != &L)
2583      continue;
2584
2585    if (CollectGuards)
2586      for (auto &I : *BB)
2587        if (isGuard(&I)) {
2588          auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2589          // TODO: Support AND, OR conditions and partial unswitching.
2590          if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2591            UnswitchCandidates.push_back({&I, {Cond}});
2592        }
2593
2594    if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2595      // We can only consider fully loop-invariant switch conditions as we need
2596      // to completely eliminate the switch after unswitching.
2597      if (!isa<Constant>(SI->getCondition()) &&
2598          L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2599        UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2600      continue;
2601    }
2602
2603    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2604    if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2605        BI->getSuccessor(0) == BI->getSuccessor(1))
2606      continue;
2607
2608    if (L.isLoopInvariant(BI->getCondition())) {
2609      UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2610      continue;
2611    }
2612
2613    Instruction &CondI = *cast<Instruction>(BI->getCondition());
2614    if (CondI.getOpcode() != Instruction::And &&
2615      CondI.getOpcode() != Instruction::Or)
2616      continue;
2617
2618    TinyPtrVector<Value *> Invariants =
2619        collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2620    if (Invariants.empty())
2621      continue;
2622
2623    UnswitchCandidates.push_back({BI, std::move(Invariants)});
2624  }
2625
2626  // If we didn't find any candidates, we're done.
2627  if (UnswitchCandidates.empty())
2628    return false;
2629
2630  // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2631  // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2632  // irreducible control flow into reducible control flow and introduce new
2633  // loops "out of thin air". If we ever discover important use cases for doing
2634  // this, we can add support to loop unswitch, but it is a lot of complexity
2635  // for what seems little or no real world benefit.
2636  LoopBlocksRPO RPOT(&L);
2637  RPOT.perform(&LI);
2638  if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2639    return false;
2640
2641  SmallVector<BasicBlock *, 4> ExitBlocks;
2642  L.getUniqueExitBlocks(ExitBlocks);
2643
2644  // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2645  // don't know how to split those exit blocks.
2646  // FIXME: We should teach SplitBlock to handle this and remove this
2647  // restriction.
2648  for (auto *ExitBB : ExitBlocks)
2649    if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2650      dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2651      return false;
2652    }
2653
2654  LLVM_DEBUG(
2655      dbgs() << "Considering " << UnswitchCandidates.size()
2656             << " non-trivial loop invariant conditions for unswitching.\n");
2657
2658  // Given that unswitching these terminators will require duplicating parts of
2659  // the loop, so we need to be able to model that cost. Compute the ephemeral
2660  // values and set up a data structure to hold per-BB costs. We cache each
2661  // block's cost so that we don't recompute this when considering different
2662  // subsets of the loop for duplication during unswitching.
2663  SmallPtrSet<const Value *, 4> EphValues;
2664  CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2665  SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2666
2667  // Compute the cost of each block, as well as the total loop cost. Also, bail
2668  // out if we see instructions which are incompatible with loop unswitching
2669  // (convergent, noduplicate, or cross-basic-block tokens).
2670  // FIXME: We might be able to safely handle some of these in non-duplicated
2671  // regions.
2672  int LoopCost = 0;
2673  for (auto *BB : L.blocks()) {
2674    int Cost = 0;
2675    for (auto &I : *BB) {
2676      if (EphValues.count(&I))
2677        continue;
2678
2679      if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2680        return false;
2681      if (auto *CB = dyn_cast<CallBase>(&I))
2682        if (CB->isConvergent() || CB->cannotDuplicate())
2683          return false;
2684
2685      Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize);
2686    }
2687    assert(Cost >= 0 && "Must not have negative costs!");
2688    LoopCost += Cost;
2689    assert(LoopCost >= 0 && "Must not have negative loop costs!");
2690    BBCostMap[BB] = Cost;
2691  }
2692  LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2693
2694  // Now we find the best candidate by searching for the one with the following
2695  // properties in order:
2696  //
2697  // 1) An unswitching cost below the threshold
2698  // 2) The smallest number of duplicated unswitch candidates (to avoid
2699  //    creating redundant subsequent unswitching)
2700  // 3) The smallest cost after unswitching.
2701  //
2702  // We prioritize reducing fanout of unswitch candidates provided the cost
2703  // remains below the threshold because this has a multiplicative effect.
2704  //
2705  // This requires memoizing each dominator subtree to avoid redundant work.
2706  //
2707  // FIXME: Need to actually do the number of candidates part above.
2708  SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2709  // Given a terminator which might be unswitched, computes the non-duplicated
2710  // cost for that terminator.
2711  auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2712    BasicBlock &BB = *TI.getParent();
2713    SmallPtrSet<BasicBlock *, 4> Visited;
2714
2715    int Cost = LoopCost;
2716    for (BasicBlock *SuccBB : successors(&BB)) {
2717      // Don't count successors more than once.
2718      if (!Visited.insert(SuccBB).second)
2719        continue;
2720
2721      // If this is a partial unswitch candidate, then it must be a conditional
2722      // branch with a condition of either `or` or `and`. In that case, one of
2723      // the successors is necessarily duplicated, so don't even try to remove
2724      // its cost.
2725      if (!FullUnswitch) {
2726        auto &BI = cast<BranchInst>(TI);
2727        if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2728            Instruction::And) {
2729          if (SuccBB == BI.getSuccessor(1))
2730            continue;
2731        } else {
2732          assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2733                     Instruction::Or &&
2734                 "Only `and` and `or` conditions can result in a partial "
2735                 "unswitch!");
2736          if (SuccBB == BI.getSuccessor(0))
2737            continue;
2738        }
2739      }
2740
2741      // This successor's domtree will not need to be duplicated after
2742      // unswitching if the edge to the successor dominates it (and thus the
2743      // entire tree). This essentially means there is no other path into this
2744      // subtree and so it will end up live in only one clone of the loop.
2745      if (SuccBB->getUniquePredecessor() ||
2746          llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2747            return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2748          })) {
2749        Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2750        assert(Cost >= 0 &&
2751               "Non-duplicated cost should never exceed total loop cost!");
2752      }
2753    }
2754
2755    // Now scale the cost by the number of unique successors minus one. We
2756    // subtract one because there is already at least one copy of the entire
2757    // loop. This is computing the new cost of unswitching a condition.
2758    // Note that guards always have 2 unique successors that are implicit and
2759    // will be materialized if we decide to unswitch it.
2760    int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2761    assert(SuccessorsCount > 1 &&
2762           "Cannot unswitch a condition without multiple distinct successors!");
2763    return Cost * (SuccessorsCount - 1);
2764  };
2765  Instruction *BestUnswitchTI = nullptr;
2766  int BestUnswitchCost = 0;
2767  ArrayRef<Value *> BestUnswitchInvariants;
2768  for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2769    Instruction &TI = *TerminatorAndInvariants.first;
2770    ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2771    BranchInst *BI = dyn_cast<BranchInst>(&TI);
2772    int CandidateCost = ComputeUnswitchedCost(
2773        TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2774                                     Invariants[0] == BI->getCondition()));
2775    // Calculate cost multiplier which is a tool to limit potentially
2776    // exponential behavior of loop-unswitch.
2777    if (EnableUnswitchCostMultiplier) {
2778      int CostMultiplier =
2779          CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2780      assert(
2781          (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2782          "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2783      CandidateCost *= CostMultiplier;
2784      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2785                        << " (multiplier: " << CostMultiplier << ")"
2786                        << " for unswitch candidate: " << TI << "\n");
2787    } else {
2788      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2789                        << " for unswitch candidate: " << TI << "\n");
2790    }
2791
2792    if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2793      BestUnswitchTI = &TI;
2794      BestUnswitchCost = CandidateCost;
2795      BestUnswitchInvariants = Invariants;
2796    }
2797  }
2798  assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2799
2800  if (BestUnswitchCost >= UnswitchThreshold) {
2801    LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2802                      << BestUnswitchCost << "\n");
2803    return false;
2804  }
2805
2806  // If the best candidate is a guard, turn it into a branch.
2807  if (isGuard(BestUnswitchTI))
2808    BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2809                                         ExitBlocks, DT, LI, MSSAU);
2810
2811  LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2812                    << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2813                    << "\n");
2814  unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2815                               ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2816  return true;
2817}
2818
2819/// Unswitch control flow predicated on loop invariant conditions.
2820///
2821/// This first hoists all branches or switches which are trivial (IE, do not
2822/// require duplicating any part of the loop) out of the loop body. It then
2823/// looks at other loop invariant control flows and tries to unswitch those as
2824/// well by cloning the loop if the result is small enough.
2825///
2826/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2827/// updated based on the unswitch.
2828/// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2829///
2830/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2831/// true, we will attempt to do non-trivial unswitching as well as trivial
2832/// unswitching.
2833///
2834/// The `UnswitchCB` callback provided will be run after unswitching is
2835/// complete, with the first parameter set to `true` if the provided loop
2836/// remains a loop, and a list of new sibling loops created.
2837///
2838/// If `SE` is non-null, we will update that analysis based on the unswitching
2839/// done.
2840static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2841                         AssumptionCache &AC, TargetTransformInfo &TTI,
2842                         bool NonTrivial,
2843                         function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2844                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2845  assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2846         "Loops must be in LCSSA form before unswitching.");
2847  bool Changed = false;
2848
2849  // Must be in loop simplified form: we need a preheader and dedicated exits.
2850  if (!L.isLoopSimplifyForm())
2851    return false;
2852
2853  // Try trivial unswitch first before loop over other basic blocks in the loop.
2854  if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2855    // If we unswitched successfully we will want to clean up the loop before
2856    // processing it further so just mark it as unswitched and return.
2857    UnswitchCB(/*CurrentLoopValid*/ true, {});
2858    return true;
2859  }
2860
2861  // If we're not doing non-trivial unswitching, we're done. We both accept
2862  // a parameter but also check a local flag that can be used for testing
2863  // a debugging.
2864  if (!NonTrivial && !EnableNonTrivialUnswitch)
2865    return false;
2866
2867  // For non-trivial unswitching, because it often creates new loops, we rely on
2868  // the pass manager to iterate on the loops rather than trying to immediately
2869  // reach a fixed point. There is no substantial advantage to iterating
2870  // internally, and if any of the new loops are simplified enough to contain
2871  // trivial unswitching we want to prefer those.
2872
2873  // Try to unswitch the best invariant condition. We prefer this full unswitch to
2874  // a partial unswitch when possible below the threshold.
2875  if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2876    return true;
2877
2878  // No other opportunities to unswitch.
2879  return Changed;
2880}
2881
2882PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2883                                              LoopStandardAnalysisResults &AR,
2884                                              LPMUpdater &U) {
2885  Function &F = *L.getHeader()->getParent();
2886  (void)F;
2887
2888  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2889                    << "\n");
2890
2891  // Save the current loop name in a variable so that we can report it even
2892  // after it has been deleted.
2893  std::string LoopName = std::string(L.getName());
2894
2895  auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2896                                        ArrayRef<Loop *> NewLoops) {
2897    // If we did a non-trivial unswitch, we have added new (cloned) loops.
2898    if (!NewLoops.empty())
2899      U.addSiblingLoops(NewLoops);
2900
2901    // If the current loop remains valid, we should revisit it to catch any
2902    // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2903    if (CurrentLoopValid)
2904      U.revisitCurrentLoop();
2905    else
2906      U.markLoopAsDeleted(L, LoopName);
2907  };
2908
2909  Optional<MemorySSAUpdater> MSSAU;
2910  if (AR.MSSA) {
2911    MSSAU = MemorySSAUpdater(AR.MSSA);
2912    if (VerifyMemorySSA)
2913      AR.MSSA->verifyMemorySSA();
2914  }
2915  if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2916                    &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2917    return PreservedAnalyses::all();
2918
2919  if (AR.MSSA && VerifyMemorySSA)
2920    AR.MSSA->verifyMemorySSA();
2921
2922  // Historically this pass has had issues with the dominator tree so verify it
2923  // in asserts builds.
2924  assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2925
2926  auto PA = getLoopPassPreservedAnalyses();
2927  if (AR.MSSA)
2928    PA.preserve<MemorySSAAnalysis>();
2929  return PA;
2930}
2931
2932namespace {
2933
2934class SimpleLoopUnswitchLegacyPass : public LoopPass {
2935  bool NonTrivial;
2936
2937public:
2938  static char ID; // Pass ID, replacement for typeid
2939
2940  explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2941      : LoopPass(ID), NonTrivial(NonTrivial) {
2942    initializeSimpleLoopUnswitchLegacyPassPass(
2943        *PassRegistry::getPassRegistry());
2944  }
2945
2946  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2947
2948  void getAnalysisUsage(AnalysisUsage &AU) const override {
2949    AU.addRequired<AssumptionCacheTracker>();
2950    AU.addRequired<TargetTransformInfoWrapperPass>();
2951    if (EnableMSSALoopDependency) {
2952      AU.addRequired<MemorySSAWrapperPass>();
2953      AU.addPreserved<MemorySSAWrapperPass>();
2954    }
2955    getLoopAnalysisUsage(AU);
2956  }
2957};
2958
2959} // end anonymous namespace
2960
2961bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2962  if (skipLoop(L))
2963    return false;
2964
2965  Function &F = *L->getHeader()->getParent();
2966
2967  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2968                    << "\n");
2969
2970  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2971  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2972  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2973  auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2974  MemorySSA *MSSA = nullptr;
2975  Optional<MemorySSAUpdater> MSSAU;
2976  if (EnableMSSALoopDependency) {
2977    MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2978    MSSAU = MemorySSAUpdater(MSSA);
2979  }
2980
2981  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2982  auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2983
2984  auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2985                               ArrayRef<Loop *> NewLoops) {
2986    // If we did a non-trivial unswitch, we have added new (cloned) loops.
2987    for (auto *NewL : NewLoops)
2988      LPM.addLoop(*NewL);
2989
2990    // If the current loop remains valid, re-add it to the queue. This is
2991    // a little wasteful as we'll finish processing the current loop as well,
2992    // but it is the best we can do in the old PM.
2993    if (CurrentLoopValid)
2994      LPM.addLoop(*L);
2995    else
2996      LPM.markLoopAsDeleted(*L);
2997  };
2998
2999  if (MSSA && VerifyMemorySSA)
3000    MSSA->verifyMemorySSA();
3001
3002  bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
3003                              MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
3004
3005  if (MSSA && VerifyMemorySSA)
3006    MSSA->verifyMemorySSA();
3007
3008  // Historically this pass has had issues with the dominator tree so verify it
3009  // in asserts builds.
3010  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3011
3012  return Changed;
3013}
3014
3015char SimpleLoopUnswitchLegacyPass::ID = 0;
3016INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3017                      "Simple unswitch loops", false, false)
3018INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3019INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3020INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3021INITIALIZE_PASS_DEPENDENCY(LoopPass)
3022INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3023INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3024INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3025                    "Simple unswitch loops", false, false)
3026
3027Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3028  return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3029}
3030