1//===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The InductiveRangeCheckElimination pass splits a loop's iteration space into
10// three disjoint ranges.  It does that in a way such that the loop running in
11// the middle loop provably does not need range checks. As an example, it will
12// convert
13//
14//   len = < known positive >
15//   for (i = 0; i < n; i++) {
16//     if (0 <= i && i < len) {
17//       do_something();
18//     } else {
19//       throw_out_of_bounds();
20//     }
21//   }
22//
23// to
24//
25//   len = < known positive >
26//   limit = smin(n, len)
27//   // no first segment
28//   for (i = 0; i < limit; i++) {
29//     if (0 <= i && i < len) { // this check is fully redundant
30//       do_something();
31//     } else {
32//       throw_out_of_bounds();
33//     }
34//   }
35//   for (i = limit; i < n; i++) {
36//     if (0 <= i && i < len) {
37//       do_something();
38//     } else {
39//       throw_out_of_bounds();
40//     }
41//   }
42//
43//===----------------------------------------------------------------------===//
44
45#include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46#include "llvm/ADT/APInt.h"
47#include "llvm/ADT/ArrayRef.h"
48#include "llvm/ADT/None.h"
49#include "llvm/ADT/Optional.h"
50#include "llvm/ADT/PriorityWorklist.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringRef.h"
54#include "llvm/ADT/Twine.h"
55#include "llvm/Analysis/BranchProbabilityInfo.h"
56#include "llvm/Analysis/LoopAnalysisManager.h"
57#include "llvm/Analysis/LoopInfo.h"
58#include "llvm/Analysis/LoopPass.h"
59#include "llvm/Analysis/PostDominators.h"
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/ScalarEvolutionExpressions.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/CFG.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/IR/DerivedTypes.h"
66#include "llvm/IR/Dominators.h"
67#include "llvm/IR/Function.h"
68#include "llvm/IR/IRBuilder.h"
69#include "llvm/IR/InstrTypes.h"
70#include "llvm/IR/Instructions.h"
71#include "llvm/IR/Metadata.h"
72#include "llvm/IR/Module.h"
73#include "llvm/IR/PatternMatch.h"
74#include "llvm/IR/Type.h"
75#include "llvm/IR/Use.h"
76#include "llvm/IR/User.h"
77#include "llvm/IR/Value.h"
78#include "llvm/InitializePasses.h"
79#include "llvm/Pass.h"
80#include "llvm/Support/BranchProbability.h"
81#include "llvm/Support/Casting.h"
82#include "llvm/Support/CommandLine.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/Debug.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/raw_ostream.h"
87#include "llvm/Transforms/Scalar.h"
88#include "llvm/Transforms/Utils/Cloning.h"
89#include "llvm/Transforms/Utils/LoopSimplify.h"
90#include "llvm/Transforms/Utils/LoopUtils.h"
91#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
92#include "llvm/Transforms/Utils/ValueMapper.h"
93#include <algorithm>
94#include <cassert>
95#include <iterator>
96#include <limits>
97#include <utility>
98#include <vector>
99
100using namespace llvm;
101using namespace llvm::PatternMatch;
102
103static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
104                                        cl::init(64));
105
106static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
107                                       cl::init(false));
108
109static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
110                                      cl::init(false));
111
112static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
113                                          cl::Hidden, cl::init(10));
114
115static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
116                                             cl::Hidden, cl::init(false));
117
118static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
119                                                 cl::Hidden, cl::init(true));
120
121static cl::opt<bool> AllowNarrowLatchCondition(
122    "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
123    cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
124             "with narrow latch condition."));
125
126static const char *ClonedLoopTag = "irce.loop.clone";
127
128#define DEBUG_TYPE "irce"
129
130namespace {
131
132/// An inductive range check is conditional branch in a loop with
133///
134///  1. a very cold successor (i.e. the branch jumps to that successor very
135///     rarely)
136///
137///  and
138///
139///  2. a condition that is provably true for some contiguous range of values
140///     taken by the containing loop's induction variable.
141///
142class InductiveRangeCheck {
143
144  const SCEV *Begin = nullptr;
145  const SCEV *Step = nullptr;
146  const SCEV *End = nullptr;
147  Use *CheckUse = nullptr;
148  bool IsSigned = true;
149
150  static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
151                                  Value *&Index, Value *&Length,
152                                  bool &IsSigned);
153
154  static void
155  extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
156                             SmallVectorImpl<InductiveRangeCheck> &Checks,
157                             SmallPtrSetImpl<Value *> &Visited);
158
159public:
160  const SCEV *getBegin() const { return Begin; }
161  const SCEV *getStep() const { return Step; }
162  const SCEV *getEnd() const { return End; }
163  bool isSigned() const { return IsSigned; }
164
165  void print(raw_ostream &OS) const {
166    OS << "InductiveRangeCheck:\n";
167    OS << "  Begin: ";
168    Begin->print(OS);
169    OS << "  Step: ";
170    Step->print(OS);
171    OS << "  End: ";
172    End->print(OS);
173    OS << "\n  CheckUse: ";
174    getCheckUse()->getUser()->print(OS);
175    OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
176  }
177
178  LLVM_DUMP_METHOD
179  void dump() {
180    print(dbgs());
181  }
182
183  Use *getCheckUse() const { return CheckUse; }
184
185  /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
186  /// R.getEnd() le R.getBegin(), then R denotes the empty range.
187
188  class Range {
189    const SCEV *Begin;
190    const SCEV *End;
191
192  public:
193    Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
194      assert(Begin->getType() == End->getType() && "ill-typed range!");
195    }
196
197    Type *getType() const { return Begin->getType(); }
198    const SCEV *getBegin() const { return Begin; }
199    const SCEV *getEnd() const { return End; }
200    bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
201      if (Begin == End)
202        return true;
203      if (IsSigned)
204        return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
205      else
206        return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
207    }
208  };
209
210  /// This is the value the condition of the branch needs to evaluate to for the
211  /// branch to take the hot successor (see (1) above).
212  bool getPassingDirection() { return true; }
213
214  /// Computes a range for the induction variable (IndVar) in which the range
215  /// check is redundant and can be constant-folded away.  The induction
216  /// variable is not required to be the canonical {0,+,1} induction variable.
217  Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
218                                            const SCEVAddRecExpr *IndVar,
219                                            bool IsLatchSigned) const;
220
221  /// Parse out a set of inductive range checks from \p BI and append them to \p
222  /// Checks.
223  ///
224  /// NB! There may be conditions feeding into \p BI that aren't inductive range
225  /// checks, and hence don't end up in \p Checks.
226  static void
227  extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
228                               BranchProbabilityInfo *BPI,
229                               SmallVectorImpl<InductiveRangeCheck> &Checks);
230};
231
232class InductiveRangeCheckElimination {
233  ScalarEvolution &SE;
234  BranchProbabilityInfo *BPI;
235  DominatorTree &DT;
236  LoopInfo &LI;
237
238public:
239  InductiveRangeCheckElimination(ScalarEvolution &SE,
240                                 BranchProbabilityInfo *BPI, DominatorTree &DT,
241                                 LoopInfo &LI)
242      : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
243
244  bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
245};
246
247class IRCELegacyPass : public FunctionPass {
248public:
249  static char ID;
250
251  IRCELegacyPass() : FunctionPass(ID) {
252    initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
253  }
254
255  void getAnalysisUsage(AnalysisUsage &AU) const override {
256    AU.addRequired<BranchProbabilityInfoWrapperPass>();
257    AU.addRequired<DominatorTreeWrapperPass>();
258    AU.addPreserved<DominatorTreeWrapperPass>();
259    AU.addRequired<LoopInfoWrapperPass>();
260    AU.addPreserved<LoopInfoWrapperPass>();
261    AU.addRequired<ScalarEvolutionWrapperPass>();
262    AU.addPreserved<ScalarEvolutionWrapperPass>();
263  }
264
265  bool runOnFunction(Function &F) override;
266};
267
268} // end anonymous namespace
269
270char IRCELegacyPass::ID = 0;
271
272INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
273                      "Inductive range check elimination", false, false)
274INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
275INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
276INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
277INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
278INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
279                    false, false)
280
281/// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
282/// be interpreted as a range check, return false and set `Index` and `Length`
283/// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
284/// set `Length` to the upper limit `Index` is being range checked.
285bool
286InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
287                                         ScalarEvolution &SE, Value *&Index,
288                                         Value *&Length, bool &IsSigned) {
289  auto IsLoopInvariant = [&SE, L](Value *V) {
290    return SE.isLoopInvariant(SE.getSCEV(V), L);
291  };
292
293  ICmpInst::Predicate Pred = ICI->getPredicate();
294  Value *LHS = ICI->getOperand(0);
295  Value *RHS = ICI->getOperand(1);
296
297  switch (Pred) {
298  default:
299    return false;
300
301  case ICmpInst::ICMP_SLE:
302    std::swap(LHS, RHS);
303    LLVM_FALLTHROUGH;
304  case ICmpInst::ICMP_SGE:
305    IsSigned = true;
306    if (match(RHS, m_ConstantInt<0>())) {
307      Index = LHS;
308      return true; // Lower.
309    }
310    return false;
311
312  case ICmpInst::ICMP_SLT:
313    std::swap(LHS, RHS);
314    LLVM_FALLTHROUGH;
315  case ICmpInst::ICMP_SGT:
316    IsSigned = true;
317    if (match(RHS, m_ConstantInt<-1>())) {
318      Index = LHS;
319      return true; // Lower.
320    }
321
322    if (IsLoopInvariant(LHS)) {
323      Index = RHS;
324      Length = LHS;
325      return true; // Upper.
326    }
327    return false;
328
329  case ICmpInst::ICMP_ULT:
330    std::swap(LHS, RHS);
331    LLVM_FALLTHROUGH;
332  case ICmpInst::ICMP_UGT:
333    IsSigned = false;
334    if (IsLoopInvariant(LHS)) {
335      Index = RHS;
336      Length = LHS;
337      return true; // Both lower and upper.
338    }
339    return false;
340  }
341
342  llvm_unreachable("default clause returns!");
343}
344
345void InductiveRangeCheck::extractRangeChecksFromCond(
346    Loop *L, ScalarEvolution &SE, Use &ConditionUse,
347    SmallVectorImpl<InductiveRangeCheck> &Checks,
348    SmallPtrSetImpl<Value *> &Visited) {
349  Value *Condition = ConditionUse.get();
350  if (!Visited.insert(Condition).second)
351    return;
352
353  // TODO: Do the same for OR, XOR, NOT etc?
354  if (match(Condition, m_And(m_Value(), m_Value()))) {
355    extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
356                               Checks, Visited);
357    extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
358                               Checks, Visited);
359    return;
360  }
361
362  ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
363  if (!ICI)
364    return;
365
366  Value *Length = nullptr, *Index;
367  bool IsSigned;
368  if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
369    return;
370
371  const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
372  bool IsAffineIndex =
373      IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
374
375  if (!IsAffineIndex)
376    return;
377
378  const SCEV *End = nullptr;
379  // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
380  // We can potentially do much better here.
381  if (Length)
382    End = SE.getSCEV(Length);
383  else {
384    // So far we can only reach this point for Signed range check. This may
385    // change in future. In this case we will need to pick Unsigned max for the
386    // unsigned range check.
387    unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
388    const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
389    End = SIntMax;
390  }
391
392  InductiveRangeCheck IRC;
393  IRC.End = End;
394  IRC.Begin = IndexAddRec->getStart();
395  IRC.Step = IndexAddRec->getStepRecurrence(SE);
396  IRC.CheckUse = &ConditionUse;
397  IRC.IsSigned = IsSigned;
398  Checks.push_back(IRC);
399}
400
401void InductiveRangeCheck::extractRangeChecksFromBranch(
402    BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
403    SmallVectorImpl<InductiveRangeCheck> &Checks) {
404  if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
405    return;
406
407  BranchProbability LikelyTaken(15, 16);
408
409  if (!SkipProfitabilityChecks && BPI &&
410      BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
411    return;
412
413  SmallPtrSet<Value *, 8> Visited;
414  InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
415                                                  Checks, Visited);
416}
417
418// Add metadata to the loop L to disable loop optimizations. Callers need to
419// confirm that optimizing loop L is not beneficial.
420static void DisableAllLoopOptsOnLoop(Loop &L) {
421  // We do not care about any existing loopID related metadata for L, since we
422  // are setting all loop metadata to false.
423  LLVMContext &Context = L.getHeader()->getContext();
424  // Reserve first location for self reference to the LoopID metadata node.
425  MDNode *Dummy = MDNode::get(Context, {});
426  MDNode *DisableUnroll = MDNode::get(
427      Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
428  Metadata *FalseVal =
429      ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
430  MDNode *DisableVectorize = MDNode::get(
431      Context,
432      {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
433  MDNode *DisableLICMVersioning = MDNode::get(
434      Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
435  MDNode *DisableDistribution= MDNode::get(
436      Context,
437      {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
438  MDNode *NewLoopID =
439      MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
440                            DisableLICMVersioning, DisableDistribution});
441  // Set operand 0 to refer to the loop id itself.
442  NewLoopID->replaceOperandWith(0, NewLoopID);
443  L.setLoopID(NewLoopID);
444}
445
446namespace {
447
448// Keeps track of the structure of a loop.  This is similar to llvm::Loop,
449// except that it is more lightweight and can track the state of a loop through
450// changing and potentially invalid IR.  This structure also formalizes the
451// kinds of loops we can deal with -- ones that have a single latch that is also
452// an exiting block *and* have a canonical induction variable.
453struct LoopStructure {
454  const char *Tag = "";
455
456  BasicBlock *Header = nullptr;
457  BasicBlock *Latch = nullptr;
458
459  // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
460  // successor is `LatchExit', the exit block of the loop.
461  BranchInst *LatchBr = nullptr;
462  BasicBlock *LatchExit = nullptr;
463  unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
464
465  // The loop represented by this instance of LoopStructure is semantically
466  // equivalent to:
467  //
468  // intN_ty inc = IndVarIncreasing ? 1 : -1;
469  // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
470  //
471  // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
472  //   ... body ...
473
474  Value *IndVarBase = nullptr;
475  Value *IndVarStart = nullptr;
476  Value *IndVarStep = nullptr;
477  Value *LoopExitAt = nullptr;
478  bool IndVarIncreasing = false;
479  bool IsSignedPredicate = true;
480
481  LoopStructure() = default;
482
483  template <typename M> LoopStructure map(M Map) const {
484    LoopStructure Result;
485    Result.Tag = Tag;
486    Result.Header = cast<BasicBlock>(Map(Header));
487    Result.Latch = cast<BasicBlock>(Map(Latch));
488    Result.LatchBr = cast<BranchInst>(Map(LatchBr));
489    Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
490    Result.LatchBrExitIdx = LatchBrExitIdx;
491    Result.IndVarBase = Map(IndVarBase);
492    Result.IndVarStart = Map(IndVarStart);
493    Result.IndVarStep = Map(IndVarStep);
494    Result.LoopExitAt = Map(LoopExitAt);
495    Result.IndVarIncreasing = IndVarIncreasing;
496    Result.IsSignedPredicate = IsSignedPredicate;
497    return Result;
498  }
499
500  static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
501                                                    BranchProbabilityInfo *BPI,
502                                                    Loop &, const char *&);
503};
504
505/// This class is used to constrain loops to run within a given iteration space.
506/// The algorithm this class implements is given a Loop and a range [Begin,
507/// End).  The algorithm then tries to break out a "main loop" out of the loop
508/// it is given in a way that the "main loop" runs with the induction variable
509/// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
510/// loops to run any remaining iterations.  The pre loop runs any iterations in
511/// which the induction variable is < Begin, and the post loop runs any
512/// iterations in which the induction variable is >= End.
513class LoopConstrainer {
514  // The representation of a clone of the original loop we started out with.
515  struct ClonedLoop {
516    // The cloned blocks
517    std::vector<BasicBlock *> Blocks;
518
519    // `Map` maps values in the clonee into values in the cloned version
520    ValueToValueMapTy Map;
521
522    // An instance of `LoopStructure` for the cloned loop
523    LoopStructure Structure;
524  };
525
526  // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
527  // more details on what these fields mean.
528  struct RewrittenRangeInfo {
529    BasicBlock *PseudoExit = nullptr;
530    BasicBlock *ExitSelector = nullptr;
531    std::vector<PHINode *> PHIValuesAtPseudoExit;
532    PHINode *IndVarEnd = nullptr;
533
534    RewrittenRangeInfo() = default;
535  };
536
537  // Calculated subranges we restrict the iteration space of the main loop to.
538  // See the implementation of `calculateSubRanges' for more details on how
539  // these fields are computed.  `LowLimit` is None if there is no restriction
540  // on low end of the restricted iteration space of the main loop.  `HighLimit`
541  // is None if there is no restriction on high end of the restricted iteration
542  // space of the main loop.
543
544  struct SubRanges {
545    Optional<const SCEV *> LowLimit;
546    Optional<const SCEV *> HighLimit;
547  };
548
549  // Compute a safe set of limits for the main loop to run in -- effectively the
550  // intersection of `Range' and the iteration space of the original loop.
551  // Return None if unable to compute the set of subranges.
552  Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
553
554  // Clone `OriginalLoop' and return the result in CLResult.  The IR after
555  // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
556  // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
557  // but there is no such edge.
558  void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
559
560  // Create the appropriate loop structure needed to describe a cloned copy of
561  // `Original`.  The clone is described by `VM`.
562  Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
563                                  ValueToValueMapTy &VM, bool IsSubloop);
564
565  // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
566  // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
567  // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
568  // `OriginalHeaderCount'.
569  //
570  // If there are iterations left to execute, control is made to jump to
571  // `ContinuationBlock', otherwise they take the normal loop exit.  The
572  // returned `RewrittenRangeInfo' object is populated as follows:
573  //
574  //  .PseudoExit is a basic block that unconditionally branches to
575  //      `ContinuationBlock'.
576  //
577  //  .ExitSelector is a basic block that decides, on exit from the loop,
578  //      whether to branch to the "true" exit or to `PseudoExit'.
579  //
580  //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
581  //      for each PHINode in the loop header on taking the pseudo exit.
582  //
583  // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
584  // preheader because it is made to branch to the loop header only
585  // conditionally.
586  RewrittenRangeInfo
587  changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
588                          Value *ExitLoopAt,
589                          BasicBlock *ContinuationBlock) const;
590
591  // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
592  // function creates a new preheader for `LS' and returns it.
593  BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
594                              const char *Tag) const;
595
596  // `ContinuationBlockAndPreheader' was the continuation block for some call to
597  // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
598  // This function rewrites the PHI nodes in `LS.Header' to start with the
599  // correct value.
600  void rewriteIncomingValuesForPHIs(
601      LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
602      const LoopConstrainer::RewrittenRangeInfo &RRI) const;
603
604  // Even though we do not preserve any passes at this time, we at least need to
605  // keep the parent loop structure consistent.  The `LPPassManager' seems to
606  // verify this after running a loop pass.  This function adds the list of
607  // blocks denoted by BBs to this loops parent loop if required.
608  void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
609
610  // Some global state.
611  Function &F;
612  LLVMContext &Ctx;
613  ScalarEvolution &SE;
614  DominatorTree &DT;
615  LoopInfo &LI;
616  function_ref<void(Loop *, bool)> LPMAddNewLoop;
617
618  // Information about the original loop we started out with.
619  Loop &OriginalLoop;
620
621  const SCEV *LatchTakenCount = nullptr;
622  BasicBlock *OriginalPreheader = nullptr;
623
624  // The preheader of the main loop.  This may or may not be different from
625  // `OriginalPreheader'.
626  BasicBlock *MainLoopPreheader = nullptr;
627
628  // The range we need to run the main loop in.
629  InductiveRangeCheck::Range Range;
630
631  // The structure of the main loop (see comment at the beginning of this class
632  // for a definition)
633  LoopStructure MainLoopStructure;
634
635public:
636  LoopConstrainer(Loop &L, LoopInfo &LI,
637                  function_ref<void(Loop *, bool)> LPMAddNewLoop,
638                  const LoopStructure &LS, ScalarEvolution &SE,
639                  DominatorTree &DT, InductiveRangeCheck::Range R)
640      : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
641        SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
642        Range(R), MainLoopStructure(LS) {}
643
644  // Entry point for the algorithm.  Returns true on success.
645  bool run();
646};
647
648} // end anonymous namespace
649
650/// Given a loop with an deccreasing induction variable, is it possible to
651/// safely calculate the bounds of a new loop using the given Predicate.
652static bool isSafeDecreasingBound(const SCEV *Start,
653                                  const SCEV *BoundSCEV, const SCEV *Step,
654                                  ICmpInst::Predicate Pred,
655                                  unsigned LatchBrExitIdx,
656                                  Loop *L, ScalarEvolution &SE) {
657  if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
658      Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
659    return false;
660
661  if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
662    return false;
663
664  assert(SE.isKnownNegative(Step) && "expecting negative step");
665
666  LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
667  LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
668  LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
669  LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
670  LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
671                    << "\n");
672  LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
673
674  bool IsSigned = ICmpInst::isSigned(Pred);
675  // The predicate that we need to check that the induction variable lies
676  // within bounds.
677  ICmpInst::Predicate BoundPred =
678    IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
679
680  if (LatchBrExitIdx == 1)
681    return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
682
683  assert(LatchBrExitIdx == 0 &&
684         "LatchBrExitIdx should be either 0 or 1");
685
686  const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
687  unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
688  APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
689    APInt::getMinValue(BitWidth);
690  const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
691
692  const SCEV *MinusOne =
693    SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
694
695  return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
696         SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
697
698}
699
700/// Given a loop with an increasing induction variable, is it possible to
701/// safely calculate the bounds of a new loop using the given Predicate.
702static bool isSafeIncreasingBound(const SCEV *Start,
703                                  const SCEV *BoundSCEV, const SCEV *Step,
704                                  ICmpInst::Predicate Pred,
705                                  unsigned LatchBrExitIdx,
706                                  Loop *L, ScalarEvolution &SE) {
707  if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
708      Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
709    return false;
710
711  if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
712    return false;
713
714  LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
715  LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
716  LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
717  LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
718  LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
719                    << "\n");
720  LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
721
722  bool IsSigned = ICmpInst::isSigned(Pred);
723  // The predicate that we need to check that the induction variable lies
724  // within bounds.
725  ICmpInst::Predicate BoundPred =
726      IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
727
728  if (LatchBrExitIdx == 1)
729    return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
730
731  assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
732
733  const SCEV *StepMinusOne =
734    SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
735  unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
736  APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
737    APInt::getMaxValue(BitWidth);
738  const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
739
740  return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
741                                      SE.getAddExpr(BoundSCEV, Step)) &&
742          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
743}
744
745Optional<LoopStructure>
746LoopStructure::parseLoopStructure(ScalarEvolution &SE,
747                                  BranchProbabilityInfo *BPI, Loop &L,
748                                  const char *&FailureReason) {
749  if (!L.isLoopSimplifyForm()) {
750    FailureReason = "loop not in LoopSimplify form";
751    return None;
752  }
753
754  BasicBlock *Latch = L.getLoopLatch();
755  assert(Latch && "Simplified loops only have one latch!");
756
757  if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
758    FailureReason = "loop has already been cloned";
759    return None;
760  }
761
762  if (!L.isLoopExiting(Latch)) {
763    FailureReason = "no loop latch";
764    return None;
765  }
766
767  BasicBlock *Header = L.getHeader();
768  BasicBlock *Preheader = L.getLoopPreheader();
769  if (!Preheader) {
770    FailureReason = "no preheader";
771    return None;
772  }
773
774  BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
775  if (!LatchBr || LatchBr->isUnconditional()) {
776    FailureReason = "latch terminator not conditional branch";
777    return None;
778  }
779
780  unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
781
782  BranchProbability ExitProbability =
783      BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
784          : BranchProbability::getZero();
785
786  if (!SkipProfitabilityChecks &&
787      ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
788    FailureReason = "short running loop, not profitable";
789    return None;
790  }
791
792  ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
793  if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
794    FailureReason = "latch terminator branch not conditional on integral icmp";
795    return None;
796  }
797
798  const SCEV *LatchCount = SE.getExitCount(&L, Latch);
799  if (isa<SCEVCouldNotCompute>(LatchCount)) {
800    FailureReason = "could not compute latch count";
801    return None;
802  }
803
804  ICmpInst::Predicate Pred = ICI->getPredicate();
805  Value *LeftValue = ICI->getOperand(0);
806  const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
807  IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
808
809  Value *RightValue = ICI->getOperand(1);
810  const SCEV *RightSCEV = SE.getSCEV(RightValue);
811
812  // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
813  if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
814    if (isa<SCEVAddRecExpr>(RightSCEV)) {
815      std::swap(LeftSCEV, RightSCEV);
816      std::swap(LeftValue, RightValue);
817      Pred = ICmpInst::getSwappedPredicate(Pred);
818    } else {
819      FailureReason = "no add recurrences in the icmp";
820      return None;
821    }
822  }
823
824  auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
825    if (AR->getNoWrapFlags(SCEV::FlagNSW))
826      return true;
827
828    IntegerType *Ty = cast<IntegerType>(AR->getType());
829    IntegerType *WideTy =
830        IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
831
832    const SCEVAddRecExpr *ExtendAfterOp =
833        dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
834    if (ExtendAfterOp) {
835      const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
836      const SCEV *ExtendedStep =
837          SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
838
839      bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
840                          ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
841
842      if (NoSignedWrap)
843        return true;
844    }
845
846    // We may have proved this when computing the sign extension above.
847    return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
848  };
849
850  // `ICI` is interpreted as taking the backedge if the *next* value of the
851  // induction variable satisfies some constraint.
852
853  const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
854  if (!IndVarBase->isAffine()) {
855    FailureReason = "LHS in icmp not induction variable";
856    return None;
857  }
858  const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
859  if (!isa<SCEVConstant>(StepRec)) {
860    FailureReason = "LHS in icmp not induction variable";
861    return None;
862  }
863  ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
864
865  if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
866    FailureReason = "LHS in icmp needs nsw for equality predicates";
867    return None;
868  }
869
870  assert(!StepCI->isZero() && "Zero step?");
871  bool IsIncreasing = !StepCI->isNegative();
872  bool IsSignedPredicate;
873  const SCEV *StartNext = IndVarBase->getStart();
874  const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
875  const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
876  const SCEV *Step = SE.getSCEV(StepCI);
877
878  const SCEV *FixedRightSCEV = nullptr;
879
880  // If RightValue resides within loop (but still being loop invariant),
881  // regenerate it as preheader.
882  if (auto *I = dyn_cast<Instruction>(RightValue))
883    if (L.contains(I->getParent()))
884      FixedRightSCEV = RightSCEV;
885
886  if (IsIncreasing) {
887    bool DecreasedRightValueByOne = false;
888    if (StepCI->isOne()) {
889      // Try to turn eq/ne predicates to those we can work with.
890      if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
891        // while (++i != len) {         while (++i < len) {
892        //   ...                 --->     ...
893        // }                            }
894        // If both parts are known non-negative, it is profitable to use
895        // unsigned comparison in increasing loop. This allows us to make the
896        // comparison check against "RightSCEV + 1" more optimistic.
897        if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
898            isKnownNonNegativeInLoop(RightSCEV, &L, SE))
899          Pred = ICmpInst::ICMP_ULT;
900        else
901          Pred = ICmpInst::ICMP_SLT;
902      else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
903        // while (true) {               while (true) {
904        //   if (++i == len)     --->     if (++i > len - 1)
905        //     break;                       break;
906        //   ...                          ...
907        // }                            }
908        if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
909            cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
910          Pred = ICmpInst::ICMP_UGT;
911          RightSCEV = SE.getMinusSCEV(RightSCEV,
912                                      SE.getOne(RightSCEV->getType()));
913          DecreasedRightValueByOne = true;
914        } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
915          Pred = ICmpInst::ICMP_SGT;
916          RightSCEV = SE.getMinusSCEV(RightSCEV,
917                                      SE.getOne(RightSCEV->getType()));
918          DecreasedRightValueByOne = true;
919        }
920      }
921    }
922
923    bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
924    bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
925    bool FoundExpectedPred =
926        (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
927
928    if (!FoundExpectedPred) {
929      FailureReason = "expected icmp slt semantically, found something else";
930      return None;
931    }
932
933    IsSignedPredicate = ICmpInst::isSigned(Pred);
934    if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
935      FailureReason = "unsigned latch conditions are explicitly prohibited";
936      return None;
937    }
938
939    if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
940                               LatchBrExitIdx, &L, SE)) {
941      FailureReason = "Unsafe loop bounds";
942      return None;
943    }
944    if (LatchBrExitIdx == 0) {
945      // We need to increase the right value unless we have already decreased
946      // it virtually when we replaced EQ with SGT.
947      if (!DecreasedRightValueByOne)
948        FixedRightSCEV =
949            SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
950    } else {
951      assert(!DecreasedRightValueByOne &&
952             "Right value can be decreased only for LatchBrExitIdx == 0!");
953    }
954  } else {
955    bool IncreasedRightValueByOne = false;
956    if (StepCI->isMinusOne()) {
957      // Try to turn eq/ne predicates to those we can work with.
958      if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
959        // while (--i != len) {         while (--i > len) {
960        //   ...                 --->     ...
961        // }                            }
962        // We intentionally don't turn the predicate into UGT even if we know
963        // that both operands are non-negative, because it will only pessimize
964        // our check against "RightSCEV - 1".
965        Pred = ICmpInst::ICMP_SGT;
966      else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
967        // while (true) {               while (true) {
968        //   if (--i == len)     --->     if (--i < len + 1)
969        //     break;                       break;
970        //   ...                          ...
971        // }                            }
972        if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
973            cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
974          Pred = ICmpInst::ICMP_ULT;
975          RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
976          IncreasedRightValueByOne = true;
977        } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
978          Pred = ICmpInst::ICMP_SLT;
979          RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
980          IncreasedRightValueByOne = true;
981        }
982      }
983    }
984
985    bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
986    bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
987
988    bool FoundExpectedPred =
989        (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
990
991    if (!FoundExpectedPred) {
992      FailureReason = "expected icmp sgt semantically, found something else";
993      return None;
994    }
995
996    IsSignedPredicate =
997        Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
998
999    if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
1000      FailureReason = "unsigned latch conditions are explicitly prohibited";
1001      return None;
1002    }
1003
1004    if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1005                               LatchBrExitIdx, &L, SE)) {
1006      FailureReason = "Unsafe bounds";
1007      return None;
1008    }
1009
1010    if (LatchBrExitIdx == 0) {
1011      // We need to decrease the right value unless we have already increased
1012      // it virtually when we replaced EQ with SLT.
1013      if (!IncreasedRightValueByOne)
1014        FixedRightSCEV =
1015            SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1016    } else {
1017      assert(!IncreasedRightValueByOne &&
1018             "Right value can be increased only for LatchBrExitIdx == 0!");
1019    }
1020  }
1021  BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1022
1023  assert(SE.getLoopDisposition(LatchCount, &L) ==
1024             ScalarEvolution::LoopInvariant &&
1025         "loop variant exit count doesn't make sense!");
1026
1027  assert(!L.contains(LatchExit) && "expected an exit block!");
1028  const DataLayout &DL = Preheader->getModule()->getDataLayout();
1029  SCEVExpander Expander(SE, DL, "irce");
1030  Instruction *Ins = Preheader->getTerminator();
1031
1032  if (FixedRightSCEV)
1033    RightValue =
1034        Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1035
1036  Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1037  IndVarStartV->setName("indvar.start");
1038
1039  LoopStructure Result;
1040
1041  Result.Tag = "main";
1042  Result.Header = Header;
1043  Result.Latch = Latch;
1044  Result.LatchBr = LatchBr;
1045  Result.LatchExit = LatchExit;
1046  Result.LatchBrExitIdx = LatchBrExitIdx;
1047  Result.IndVarStart = IndVarStartV;
1048  Result.IndVarStep = StepCI;
1049  Result.IndVarBase = LeftValue;
1050  Result.IndVarIncreasing = IsIncreasing;
1051  Result.LoopExitAt = RightValue;
1052  Result.IsSignedPredicate = IsSignedPredicate;
1053
1054  FailureReason = nullptr;
1055
1056  return Result;
1057}
1058
1059/// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1060/// signed or unsigned extension of \p S to type \p Ty.
1061static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1062                                bool Signed) {
1063  return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1064}
1065
1066Optional<LoopConstrainer::SubRanges>
1067LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1068  IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1069
1070  auto *RTy = cast<IntegerType>(Range.getType());
1071
1072  // We only support wide range checks and narrow latches.
1073  if (!AllowNarrowLatchCondition && RTy != Ty)
1074    return None;
1075  if (RTy->getBitWidth() < Ty->getBitWidth())
1076    return None;
1077
1078  LoopConstrainer::SubRanges Result;
1079
1080  // I think we can be more aggressive here and make this nuw / nsw if the
1081  // addition that feeds into the icmp for the latch's terminating branch is nuw
1082  // / nsw.  In any case, a wrapping 2's complement addition is safe.
1083  const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1084                                   RTy, SE, IsSignedPredicate);
1085  const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1086                                 SE, IsSignedPredicate);
1087
1088  bool Increasing = MainLoopStructure.IndVarIncreasing;
1089
1090  // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1091  // [Smallest, GreatestSeen] is the range of values the induction variable
1092  // takes.
1093
1094  const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1095
1096  const SCEV *One = SE.getOne(RTy);
1097  if (Increasing) {
1098    Smallest = Start;
1099    Greatest = End;
1100    // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1101    GreatestSeen = SE.getMinusSCEV(End, One);
1102  } else {
1103    // These two computations may sign-overflow.  Here is why that is okay:
1104    //
1105    // We know that the induction variable does not sign-overflow on any
1106    // iteration except the last one, and it starts at `Start` and ends at
1107    // `End`, decrementing by one every time.
1108    //
1109    //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1110    //    induction variable is decreasing we know that that the smallest value
1111    //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1112    //
1113    //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1114    //    that case, `Clamp` will always return `Smallest` and
1115    //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1116    //    will be an empty range.  Returning an empty range is always safe.
1117
1118    Smallest = SE.getAddExpr(End, One);
1119    Greatest = SE.getAddExpr(Start, One);
1120    GreatestSeen = Start;
1121  }
1122
1123  auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1124    return IsSignedPredicate
1125               ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1126               : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1127  };
1128
1129  // In some cases we can prove that we don't need a pre or post loop.
1130  ICmpInst::Predicate PredLE =
1131      IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1132  ICmpInst::Predicate PredLT =
1133      IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1134
1135  bool ProvablyNoPreloop =
1136      SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1137  if (!ProvablyNoPreloop)
1138    Result.LowLimit = Clamp(Range.getBegin());
1139
1140  bool ProvablyNoPostLoop =
1141      SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1142  if (!ProvablyNoPostLoop)
1143    Result.HighLimit = Clamp(Range.getEnd());
1144
1145  return Result;
1146}
1147
1148void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1149                                const char *Tag) const {
1150  for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1151    BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1152    Result.Blocks.push_back(Clone);
1153    Result.Map[BB] = Clone;
1154  }
1155
1156  auto GetClonedValue = [&Result](Value *V) {
1157    assert(V && "null values not in domain!");
1158    auto It = Result.Map.find(V);
1159    if (It == Result.Map.end())
1160      return V;
1161    return static_cast<Value *>(It->second);
1162  };
1163
1164  auto *ClonedLatch =
1165      cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1166  ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1167                                            MDNode::get(Ctx, {}));
1168
1169  Result.Structure = MainLoopStructure.map(GetClonedValue);
1170  Result.Structure.Tag = Tag;
1171
1172  for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1173    BasicBlock *ClonedBB = Result.Blocks[i];
1174    BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1175
1176    assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1177
1178    for (Instruction &I : *ClonedBB)
1179      RemapInstruction(&I, Result.Map,
1180                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1181
1182    // Exit blocks will now have one more predecessor and their PHI nodes need
1183    // to be edited to reflect that.  No phi nodes need to be introduced because
1184    // the loop is in LCSSA.
1185
1186    for (auto *SBB : successors(OriginalBB)) {
1187      if (OriginalLoop.contains(SBB))
1188        continue; // not an exit block
1189
1190      for (PHINode &PN : SBB->phis()) {
1191        Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1192        PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1193      }
1194    }
1195  }
1196}
1197
1198LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1199    const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1200    BasicBlock *ContinuationBlock) const {
1201  // We start with a loop with a single latch:
1202  //
1203  //    +--------------------+
1204  //    |                    |
1205  //    |     preheader      |
1206  //    |                    |
1207  //    +--------+-----------+
1208  //             |      ----------------\
1209  //             |     /                |
1210  //    +--------v----v------+          |
1211  //    |                    |          |
1212  //    |      header        |          |
1213  //    |                    |          |
1214  //    +--------------------+          |
1215  //                                    |
1216  //            .....                   |
1217  //                                    |
1218  //    +--------------------+          |
1219  //    |                    |          |
1220  //    |       latch        >----------/
1221  //    |                    |
1222  //    +-------v------------+
1223  //            |
1224  //            |
1225  //            |   +--------------------+
1226  //            |   |                    |
1227  //            +--->   original exit    |
1228  //                |                    |
1229  //                +--------------------+
1230  //
1231  // We change the control flow to look like
1232  //
1233  //
1234  //    +--------------------+
1235  //    |                    |
1236  //    |     preheader      >-------------------------+
1237  //    |                    |                         |
1238  //    +--------v-----------+                         |
1239  //             |    /-------------+                  |
1240  //             |   /              |                  |
1241  //    +--------v--v--------+      |                  |
1242  //    |                    |      |                  |
1243  //    |      header        |      |   +--------+     |
1244  //    |                    |      |   |        |     |
1245  //    +--------------------+      |   |  +-----v-----v-----------+
1246  //                                |   |  |                       |
1247  //                                |   |  |     .pseudo.exit      |
1248  //                                |   |  |                       |
1249  //                                |   |  +-----------v-----------+
1250  //                                |   |              |
1251  //            .....               |   |              |
1252  //                                |   |     +--------v-------------+
1253  //    +--------------------+      |   |     |                      |
1254  //    |                    |      |   |     |   ContinuationBlock  |
1255  //    |       latch        >------+   |     |                      |
1256  //    |                    |          |     +----------------------+
1257  //    +---------v----------+          |
1258  //              |                     |
1259  //              |                     |
1260  //              |     +---------------^-----+
1261  //              |     |                     |
1262  //              +----->    .exit.selector   |
1263  //                    |                     |
1264  //                    +----------v----------+
1265  //                               |
1266  //     +--------------------+    |
1267  //     |                    |    |
1268  //     |   original exit    <----+
1269  //     |                    |
1270  //     +--------------------+
1271
1272  RewrittenRangeInfo RRI;
1273
1274  BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1275  RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1276                                        &F, BBInsertLocation);
1277  RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1278                                      BBInsertLocation);
1279
1280  BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1281  bool Increasing = LS.IndVarIncreasing;
1282  bool IsSignedPredicate = LS.IsSignedPredicate;
1283
1284  IRBuilder<> B(PreheaderJump);
1285  auto *RangeTy = Range.getBegin()->getType();
1286  auto NoopOrExt = [&](Value *V) {
1287    if (V->getType() == RangeTy)
1288      return V;
1289    return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1290                             : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1291  };
1292
1293  // EnterLoopCond - is it okay to start executing this `LS'?
1294  Value *EnterLoopCond = nullptr;
1295  auto Pred =
1296      Increasing
1297          ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1298          : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1299  Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1300  EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1301
1302  B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1303  PreheaderJump->eraseFromParent();
1304
1305  LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1306  B.SetInsertPoint(LS.LatchBr);
1307  Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1308  Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1309
1310  Value *CondForBranch = LS.LatchBrExitIdx == 1
1311                             ? TakeBackedgeLoopCond
1312                             : B.CreateNot(TakeBackedgeLoopCond);
1313
1314  LS.LatchBr->setCondition(CondForBranch);
1315
1316  B.SetInsertPoint(RRI.ExitSelector);
1317
1318  // IterationsLeft - are there any more iterations left, given the original
1319  // upper bound on the induction variable?  If not, we branch to the "real"
1320  // exit.
1321  Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1322  Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1323  B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1324
1325  BranchInst *BranchToContinuation =
1326      BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1327
1328  // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1329  // each of the PHI nodes in the loop header.  This feeds into the initial
1330  // value of the same PHI nodes if/when we continue execution.
1331  for (PHINode &PN : LS.Header->phis()) {
1332    PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1333                                      BranchToContinuation);
1334
1335    NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1336    NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1337                        RRI.ExitSelector);
1338    RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1339  }
1340
1341  RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1342                                  BranchToContinuation);
1343  RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1344  RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1345
1346  // The latch exit now has a branch from `RRI.ExitSelector' instead of
1347  // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1348  LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1349
1350  return RRI;
1351}
1352
1353void LoopConstrainer::rewriteIncomingValuesForPHIs(
1354    LoopStructure &LS, BasicBlock *ContinuationBlock,
1355    const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1356  unsigned PHIIndex = 0;
1357  for (PHINode &PN : LS.Header->phis())
1358    PN.setIncomingValueForBlock(ContinuationBlock,
1359                                RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1360
1361  LS.IndVarStart = RRI.IndVarEnd;
1362}
1363
1364BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1365                                             BasicBlock *OldPreheader,
1366                                             const char *Tag) const {
1367  BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1368  BranchInst::Create(LS.Header, Preheader);
1369
1370  LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1371
1372  return Preheader;
1373}
1374
1375void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1376  Loop *ParentLoop = OriginalLoop.getParentLoop();
1377  if (!ParentLoop)
1378    return;
1379
1380  for (BasicBlock *BB : BBs)
1381    ParentLoop->addBasicBlockToLoop(BB, LI);
1382}
1383
1384Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1385                                                 ValueToValueMapTy &VM,
1386                                                 bool IsSubloop) {
1387  Loop &New = *LI.AllocateLoop();
1388  if (Parent)
1389    Parent->addChildLoop(&New);
1390  else
1391    LI.addTopLevelLoop(&New);
1392  LPMAddNewLoop(&New, IsSubloop);
1393
1394  // Add all of the blocks in Original to the new loop.
1395  for (auto *BB : Original->blocks())
1396    if (LI.getLoopFor(BB) == Original)
1397      New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1398
1399  // Add all of the subloops to the new loop.
1400  for (Loop *SubLoop : *Original)
1401    createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1402
1403  return &New;
1404}
1405
1406bool LoopConstrainer::run() {
1407  BasicBlock *Preheader = nullptr;
1408  LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1409  Preheader = OriginalLoop.getLoopPreheader();
1410  assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1411         "preconditions!");
1412
1413  OriginalPreheader = Preheader;
1414  MainLoopPreheader = Preheader;
1415
1416  bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1417  Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1418  if (!MaybeSR.hasValue()) {
1419    LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1420    return false;
1421  }
1422
1423  SubRanges SR = MaybeSR.getValue();
1424  bool Increasing = MainLoopStructure.IndVarIncreasing;
1425  IntegerType *IVTy =
1426      cast<IntegerType>(Range.getBegin()->getType());
1427
1428  SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1429  Instruction *InsertPt = OriginalPreheader->getTerminator();
1430
1431  // It would have been better to make `PreLoop' and `PostLoop'
1432  // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1433  // constructor.
1434  ClonedLoop PreLoop, PostLoop;
1435  bool NeedsPreLoop =
1436      Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1437  bool NeedsPostLoop =
1438      Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1439
1440  Value *ExitPreLoopAt = nullptr;
1441  Value *ExitMainLoopAt = nullptr;
1442  const SCEVConstant *MinusOneS =
1443      cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1444
1445  if (NeedsPreLoop) {
1446    const SCEV *ExitPreLoopAtSCEV = nullptr;
1447
1448    if (Increasing)
1449      ExitPreLoopAtSCEV = *SR.LowLimit;
1450    else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1451                               IsSignedPredicate))
1452      ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1453    else {
1454      LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1455                        << "preloop exit limit.  HighLimit = "
1456                        << *(*SR.HighLimit) << "\n");
1457      return false;
1458    }
1459
1460    if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1461      LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1462                        << " preloop exit limit " << *ExitPreLoopAtSCEV
1463                        << " at block " << InsertPt->getParent()->getName()
1464                        << "\n");
1465      return false;
1466    }
1467
1468    ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1469    ExitPreLoopAt->setName("exit.preloop.at");
1470  }
1471
1472  if (NeedsPostLoop) {
1473    const SCEV *ExitMainLoopAtSCEV = nullptr;
1474
1475    if (Increasing)
1476      ExitMainLoopAtSCEV = *SR.HighLimit;
1477    else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1478                               IsSignedPredicate))
1479      ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1480    else {
1481      LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1482                        << "mainloop exit limit.  LowLimit = "
1483                        << *(*SR.LowLimit) << "\n");
1484      return false;
1485    }
1486
1487    if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1488      LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1489                        << " main loop exit limit " << *ExitMainLoopAtSCEV
1490                        << " at block " << InsertPt->getParent()->getName()
1491                        << "\n");
1492      return false;
1493    }
1494
1495    ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1496    ExitMainLoopAt->setName("exit.mainloop.at");
1497  }
1498
1499  // We clone these ahead of time so that we don't have to deal with changing
1500  // and temporarily invalid IR as we transform the loops.
1501  if (NeedsPreLoop)
1502    cloneLoop(PreLoop, "preloop");
1503  if (NeedsPostLoop)
1504    cloneLoop(PostLoop, "postloop");
1505
1506  RewrittenRangeInfo PreLoopRRI;
1507
1508  if (NeedsPreLoop) {
1509    Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1510                                                  PreLoop.Structure.Header);
1511
1512    MainLoopPreheader =
1513        createPreheader(MainLoopStructure, Preheader, "mainloop");
1514    PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1515                                         ExitPreLoopAt, MainLoopPreheader);
1516    rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1517                                 PreLoopRRI);
1518  }
1519
1520  BasicBlock *PostLoopPreheader = nullptr;
1521  RewrittenRangeInfo PostLoopRRI;
1522
1523  if (NeedsPostLoop) {
1524    PostLoopPreheader =
1525        createPreheader(PostLoop.Structure, Preheader, "postloop");
1526    PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1527                                          ExitMainLoopAt, PostLoopPreheader);
1528    rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1529                                 PostLoopRRI);
1530  }
1531
1532  BasicBlock *NewMainLoopPreheader =
1533      MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1534  BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1535                             PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1536                             PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1537
1538  // Some of the above may be nullptr, filter them out before passing to
1539  // addToParentLoopIfNeeded.
1540  auto NewBlocksEnd =
1541      std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1542
1543  addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1544
1545  DT.recalculate(F);
1546
1547  // We need to first add all the pre and post loop blocks into the loop
1548  // structures (as part of createClonedLoopStructure), and then update the
1549  // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1550  // LI when LoopSimplifyForm is generated.
1551  Loop *PreL = nullptr, *PostL = nullptr;
1552  if (!PreLoop.Blocks.empty()) {
1553    PreL = createClonedLoopStructure(&OriginalLoop,
1554                                     OriginalLoop.getParentLoop(), PreLoop.Map,
1555                                     /* IsSubLoop */ false);
1556  }
1557
1558  if (!PostLoop.Blocks.empty()) {
1559    PostL =
1560        createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1561                                  PostLoop.Map, /* IsSubLoop */ false);
1562  }
1563
1564  // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1565  auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1566    formLCSSARecursively(*L, DT, &LI, &SE);
1567    simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1568    // Pre/post loops are slow paths, we do not need to perform any loop
1569    // optimizations on them.
1570    if (!IsOriginalLoop)
1571      DisableAllLoopOptsOnLoop(*L);
1572  };
1573  if (PreL)
1574    CanonicalizeLoop(PreL, false);
1575  if (PostL)
1576    CanonicalizeLoop(PostL, false);
1577  CanonicalizeLoop(&OriginalLoop, true);
1578
1579  return true;
1580}
1581
1582/// Computes and returns a range of values for the induction variable (IndVar)
1583/// in which the range check can be safely elided.  If it cannot compute such a
1584/// range, returns None.
1585Optional<InductiveRangeCheck::Range>
1586InductiveRangeCheck::computeSafeIterationSpace(
1587    ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1588    bool IsLatchSigned) const {
1589  // We can deal when types of latch check and range checks don't match in case
1590  // if latch check is more narrow.
1591  auto *IVType = cast<IntegerType>(IndVar->getType());
1592  auto *RCType = cast<IntegerType>(getBegin()->getType());
1593  if (IVType->getBitWidth() > RCType->getBitWidth())
1594    return None;
1595  // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1596  // variable, that may or may not exist as a real llvm::Value in the loop) and
1597  // this inductive range check is a range check on the "C + D * I" ("C" is
1598  // getBegin() and "D" is getStep()).  We rewrite the value being range
1599  // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1600  //
1601  // The actual inequalities we solve are of the form
1602  //
1603  //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1604  //
1605  // Here L stands for upper limit of the safe iteration space.
1606  // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1607  // overflows when calculating (0 - M) and (L - M) we, depending on type of
1608  // IV's iteration space, limit the calculations by borders of the iteration
1609  // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1610  // If we figured out that "anything greater than (-M) is safe", we strengthen
1611  // this to "everything greater than 0 is safe", assuming that values between
1612  // -M and 0 just do not exist in unsigned iteration space, and we don't want
1613  // to deal with overflown values.
1614
1615  if (!IndVar->isAffine())
1616    return None;
1617
1618  const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1619  const SCEVConstant *B = dyn_cast<SCEVConstant>(
1620      NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1621  if (!B)
1622    return None;
1623  assert(!B->isZero() && "Recurrence with zero step?");
1624
1625  const SCEV *C = getBegin();
1626  const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1627  if (D != B)
1628    return None;
1629
1630  assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1631  unsigned BitWidth = RCType->getBitWidth();
1632  const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1633
1634  // Subtract Y from X so that it does not go through border of the IV
1635  // iteration space. Mathematically, it is equivalent to:
1636  //
1637  //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1638  //
1639  // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1640  // any width of bit grid). But after we take min/max, the result is
1641  // guaranteed to be within [INT_MIN, INT_MAX].
1642  //
1643  // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1644  // values, depending on type of latch condition that defines IV iteration
1645  // space.
1646  auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1647    // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1648    // This is required to ensure that SINT_MAX - X does not overflow signed and
1649    // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1650    // restriction and make it work for negative X either?
1651    if (IsLatchSigned) {
1652      // X is a number from signed range, Y is interpreted as signed.
1653      // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1654      // thing we should care about is that we didn't cross SINT_MAX.
1655      // So, if Y is positive, we subtract Y safely.
1656      //   Rule 1: Y > 0 ---> Y.
1657      // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1658      //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1659      // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1660      //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1661      // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1662      const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1663      return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1664                             SCEV::FlagNSW);
1665    } else
1666      // X is a number from unsigned range, Y is interpreted as signed.
1667      // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1668      // thing we should care about is that we didn't cross zero.
1669      // So, if Y is negative, we subtract Y safely.
1670      //   Rule 1: Y <s 0 ---> Y.
1671      // If 0 <= Y <= X, we subtract Y safely.
1672      //   Rule 2: Y <=s X ---> Y.
1673      // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1674      //   Rule 3: Y >s X ---> X.
1675      // It gives us smin(X, Y) to subtract in all cases.
1676      return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1677  };
1678  const SCEV *M = SE.getMinusSCEV(C, A);
1679  const SCEV *Zero = SE.getZero(M->getType());
1680
1681  // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1682  auto SCEVCheckNonNegative = [&](const SCEV *X) {
1683    const Loop *L = IndVar->getLoop();
1684    const SCEV *One = SE.getOne(X->getType());
1685    // Can we trivially prove that X is a non-negative or negative value?
1686    if (isKnownNonNegativeInLoop(X, L, SE))
1687      return One;
1688    else if (isKnownNegativeInLoop(X, L, SE))
1689      return Zero;
1690    // If not, we will have to figure it out during the execution.
1691    // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1692    const SCEV *NegOne = SE.getNegativeSCEV(One);
1693    return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1694  };
1695  // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1696  // X is non-negative (in sense of a signed value). We need to re-implement
1697  // this function in a way that it will correctly handle negative X as well.
1698  // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1699  // end up with a negative X and produce wrong results. So currently we ensure
1700  // that if getEnd() is negative then both ends of the safe range are zero.
1701  // Note that this may pessimize elimination of unsigned range checks against
1702  // negative values.
1703  const SCEV *REnd = getEnd();
1704  const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1705
1706  const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1707  const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1708  return InductiveRangeCheck::Range(Begin, End);
1709}
1710
1711static Optional<InductiveRangeCheck::Range>
1712IntersectSignedRange(ScalarEvolution &SE,
1713                     const Optional<InductiveRangeCheck::Range> &R1,
1714                     const InductiveRangeCheck::Range &R2) {
1715  if (R2.isEmpty(SE, /* IsSigned */ true))
1716    return None;
1717  if (!R1.hasValue())
1718    return R2;
1719  auto &R1Value = R1.getValue();
1720  // We never return empty ranges from this function, and R1 is supposed to be
1721  // a result of intersection. Thus, R1 is never empty.
1722  assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1723         "We should never have empty R1!");
1724
1725  // TODO: we could widen the smaller range and have this work; but for now we
1726  // bail out to keep things simple.
1727  if (R1Value.getType() != R2.getType())
1728    return None;
1729
1730  const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1731  const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1732
1733  // If the resulting range is empty, just return None.
1734  auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1735  if (Ret.isEmpty(SE, /* IsSigned */ true))
1736    return None;
1737  return Ret;
1738}
1739
1740static Optional<InductiveRangeCheck::Range>
1741IntersectUnsignedRange(ScalarEvolution &SE,
1742                       const Optional<InductiveRangeCheck::Range> &R1,
1743                       const InductiveRangeCheck::Range &R2) {
1744  if (R2.isEmpty(SE, /* IsSigned */ false))
1745    return None;
1746  if (!R1.hasValue())
1747    return R2;
1748  auto &R1Value = R1.getValue();
1749  // We never return empty ranges from this function, and R1 is supposed to be
1750  // a result of intersection. Thus, R1 is never empty.
1751  assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1752         "We should never have empty R1!");
1753
1754  // TODO: we could widen the smaller range and have this work; but for now we
1755  // bail out to keep things simple.
1756  if (R1Value.getType() != R2.getType())
1757    return None;
1758
1759  const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1760  const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1761
1762  // If the resulting range is empty, just return None.
1763  auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1764  if (Ret.isEmpty(SE, /* IsSigned */ false))
1765    return None;
1766  return Ret;
1767}
1768
1769PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1770  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1771  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1772  auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1773  LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1774
1775  InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1776
1777  bool Changed = false;
1778
1779  for (const auto &L : LI) {
1780    Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1781                            /*PreserveLCSSA=*/false);
1782    Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1783  }
1784
1785  SmallPriorityWorklist<Loop *, 4> Worklist;
1786  appendLoopsToWorklist(LI, Worklist);
1787  auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1788    if (!IsSubloop)
1789      appendLoopsToWorklist(*NL, Worklist);
1790  };
1791
1792  while (!Worklist.empty()) {
1793    Loop *L = Worklist.pop_back_val();
1794    Changed |= IRCE.run(L, LPMAddNewLoop);
1795  }
1796
1797  if (!Changed)
1798    return PreservedAnalyses::all();
1799  return getLoopPassPreservedAnalyses();
1800}
1801
1802bool IRCELegacyPass::runOnFunction(Function &F) {
1803  if (skipFunction(F))
1804    return false;
1805
1806  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1807  BranchProbabilityInfo &BPI =
1808      getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1809  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1810  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1811  InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1812
1813  bool Changed = false;
1814
1815  for (const auto &L : LI) {
1816    Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1817                            /*PreserveLCSSA=*/false);
1818    Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1819  }
1820
1821  SmallPriorityWorklist<Loop *, 4> Worklist;
1822  appendLoopsToWorklist(LI, Worklist);
1823  auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1824    if (!IsSubloop)
1825      appendLoopsToWorklist(*NL, Worklist);
1826  };
1827
1828  while (!Worklist.empty()) {
1829    Loop *L = Worklist.pop_back_val();
1830    Changed |= IRCE.run(L, LPMAddNewLoop);
1831  }
1832  return Changed;
1833}
1834
1835bool InductiveRangeCheckElimination::run(
1836    Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1837  if (L->getBlocks().size() >= LoopSizeCutoff) {
1838    LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1839    return false;
1840  }
1841
1842  BasicBlock *Preheader = L->getLoopPreheader();
1843  if (!Preheader) {
1844    LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1845    return false;
1846  }
1847
1848  LLVMContext &Context = Preheader->getContext();
1849  SmallVector<InductiveRangeCheck, 16> RangeChecks;
1850
1851  for (auto BBI : L->getBlocks())
1852    if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1853      InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1854                                                        RangeChecks);
1855
1856  if (RangeChecks.empty())
1857    return false;
1858
1859  auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1860    OS << "irce: looking at loop "; L->print(OS);
1861    OS << "irce: loop has " << RangeChecks.size()
1862       << " inductive range checks: \n";
1863    for (InductiveRangeCheck &IRC : RangeChecks)
1864      IRC.print(OS);
1865  };
1866
1867  LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1868
1869  if (PrintRangeChecks)
1870    PrintRecognizedRangeChecks(errs());
1871
1872  const char *FailureReason = nullptr;
1873  Optional<LoopStructure> MaybeLoopStructure =
1874      LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1875  if (!MaybeLoopStructure.hasValue()) {
1876    LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1877                      << FailureReason << "\n";);
1878    return false;
1879  }
1880  LoopStructure LS = MaybeLoopStructure.getValue();
1881  const SCEVAddRecExpr *IndVar =
1882      cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1883
1884  Optional<InductiveRangeCheck::Range> SafeIterRange;
1885  Instruction *ExprInsertPt = Preheader->getTerminator();
1886
1887  SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1888  // Basing on the type of latch predicate, we interpret the IV iteration range
1889  // as signed or unsigned range. We use different min/max functions (signed or
1890  // unsigned) when intersecting this range with safe iteration ranges implied
1891  // by range checks.
1892  auto IntersectRange =
1893      LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1894
1895  IRBuilder<> B(ExprInsertPt);
1896  for (InductiveRangeCheck &IRC : RangeChecks) {
1897    auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1898                                                LS.IsSignedPredicate);
1899    if (Result.hasValue()) {
1900      auto MaybeSafeIterRange =
1901          IntersectRange(SE, SafeIterRange, Result.getValue());
1902      if (MaybeSafeIterRange.hasValue()) {
1903        assert(
1904            !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1905            "We should never return empty ranges!");
1906        RangeChecksToEliminate.push_back(IRC);
1907        SafeIterRange = MaybeSafeIterRange.getValue();
1908      }
1909    }
1910  }
1911
1912  if (!SafeIterRange.hasValue())
1913    return false;
1914
1915  LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1916                     SafeIterRange.getValue());
1917  bool Changed = LC.run();
1918
1919  if (Changed) {
1920    auto PrintConstrainedLoopInfo = [L]() {
1921      dbgs() << "irce: in function ";
1922      dbgs() << L->getHeader()->getParent()->getName() << ": ";
1923      dbgs() << "constrained ";
1924      L->print(dbgs());
1925    };
1926
1927    LLVM_DEBUG(PrintConstrainedLoopInfo());
1928
1929    if (PrintChangedLoops)
1930      PrintConstrainedLoopInfo();
1931
1932    // Optimize away the now-redundant range checks.
1933
1934    for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1935      ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1936                                          ? ConstantInt::getTrue(Context)
1937                                          : ConstantInt::getFalse(Context);
1938      IRC.getCheckUse()->set(FoldedRangeCheck);
1939    }
1940  }
1941
1942  return Changed;
1943}
1944
1945Pass *llvm::createInductiveRangeCheckEliminationPass() {
1946  return new IRCELegacyPass();
1947}
1948