1//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass identifies expensive constants to hoist and coalesces them to
10// better prepare it for SelectionDAG-based code generation. This works around
11// the limitations of the basic-block-at-a-time approach.
12//
13// First it scans all instructions for integer constants and calculates its
14// cost. If the constant can be folded into the instruction (the cost is
15// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16// consider it expensive and leave it alone. This is the default behavior and
17// the default implementation of getIntImmCostInst will always return TCC_Free.
18//
19// If the cost is more than TCC_BASIC, then the integer constant can't be folded
20// into the instruction and it might be beneficial to hoist the constant.
21// Similar constants are coalesced to reduce register pressure and
22// materialization code.
23//
24// When a constant is hoisted, it is also hidden behind a bitcast to force it to
25// be live-out of the basic block. Otherwise the constant would be just
26// duplicated and each basic block would have its own copy in the SelectionDAG.
27// The SelectionDAG recognizes such constants as opaque and doesn't perform
28// certain transformations on them, which would create a new expensive constant.
29//
30// This optimization is only applied to integer constants in instructions and
31// simple (this means not nested) constant cast expressions. For example:
32// %0 = load i64* inttoptr (i64 big_constant to i64*)
33//===----------------------------------------------------------------------===//
34
35#include "llvm/Transforms/Scalar/ConstantHoisting.h"
36#include "llvm/ADT/APInt.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/None.h"
39#include "llvm/ADT/Optional.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/Analysis/BlockFrequencyInfo.h"
44#include "llvm/Analysis/ProfileSummaryInfo.h"
45#include "llvm/Analysis/TargetTransformInfo.h"
46#include "llvm/IR/BasicBlock.h"
47#include "llvm/IR/Constants.h"
48#include "llvm/IR/DebugInfoMetadata.h"
49#include "llvm/IR/Dominators.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/IntrinsicInst.h"
55#include "llvm/IR/Value.h"
56#include "llvm/InitializePasses.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/BlockFrequency.h"
59#include "llvm/Support/Casting.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Transforms/Scalar.h"
64#include "llvm/Transforms/Utils/Local.h"
65#include "llvm/Transforms/Utils/SizeOpts.h"
66#include <algorithm>
67#include <cassert>
68#include <cstdint>
69#include <iterator>
70#include <tuple>
71#include <utility>
72
73using namespace llvm;
74using namespace consthoist;
75
76#define DEBUG_TYPE "consthoist"
77
78STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
79STATISTIC(NumConstantsRebased, "Number of constants rebased");
80
81static cl::opt<bool> ConstHoistWithBlockFrequency(
82    "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
83    cl::desc("Enable the use of the block frequency analysis to reduce the "
84             "chance to execute const materialization more frequently than "
85             "without hoisting."));
86
87static cl::opt<bool> ConstHoistGEP(
88    "consthoist-gep", cl::init(false), cl::Hidden,
89    cl::desc("Try hoisting constant gep expressions"));
90
91static cl::opt<unsigned>
92MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93    cl::desc("Do not rebase if number of dependent constants of a Base is less "
94             "than this number."),
95    cl::init(0), cl::Hidden);
96
97namespace {
98
99/// The constant hoisting pass.
100class ConstantHoistingLegacyPass : public FunctionPass {
101public:
102  static char ID; // Pass identification, replacement for typeid
103
104  ConstantHoistingLegacyPass() : FunctionPass(ID) {
105    initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
106  }
107
108  bool runOnFunction(Function &Fn) override;
109
110  StringRef getPassName() const override { return "Constant Hoisting"; }
111
112  void getAnalysisUsage(AnalysisUsage &AU) const override {
113    AU.setPreservesCFG();
114    if (ConstHoistWithBlockFrequency)
115      AU.addRequired<BlockFrequencyInfoWrapperPass>();
116    AU.addRequired<DominatorTreeWrapperPass>();
117    AU.addRequired<ProfileSummaryInfoWrapperPass>();
118    AU.addRequired<TargetTransformInfoWrapperPass>();
119  }
120
121private:
122  ConstantHoistingPass Impl;
123};
124
125} // end anonymous namespace
126
127char ConstantHoistingLegacyPass::ID = 0;
128
129INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
130                      "Constant Hoisting", false, false)
131INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
132INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
133INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
134INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
136                    "Constant Hoisting", false, false)
137
138FunctionPass *llvm::createConstantHoistingPass() {
139  return new ConstantHoistingLegacyPass();
140}
141
142/// Perform the constant hoisting optimization for the given function.
143bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
144  if (skipFunction(Fn))
145    return false;
146
147  LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148  LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
149
150  bool MadeChange =
151      Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
152                   getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
153                   ConstHoistWithBlockFrequency
154                       ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
155                       : nullptr,
156                   Fn.getEntryBlock(),
157                   &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
158
159  if (MadeChange) {
160    LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
161                      << Fn.getName() << '\n');
162    LLVM_DEBUG(dbgs() << Fn);
163  }
164  LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
165
166  return MadeChange;
167}
168
169/// Find the constant materialization insertion point.
170Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
171                                                   unsigned Idx) const {
172  // If the operand is a cast instruction, then we have to materialize the
173  // constant before the cast instruction.
174  if (Idx != ~0U) {
175    Value *Opnd = Inst->getOperand(Idx);
176    if (auto CastInst = dyn_cast<Instruction>(Opnd))
177      if (CastInst->isCast())
178        return CastInst;
179  }
180
181  // The simple and common case. This also includes constant expressions.
182  if (!isa<PHINode>(Inst) && !Inst->isEHPad())
183    return Inst;
184
185  // We can't insert directly before a phi node or an eh pad. Insert before
186  // the terminator of the incoming or dominating block.
187  assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
188  if (Idx != ~0U && isa<PHINode>(Inst))
189    return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
190
191  // This must be an EH pad. Iterate over immediate dominators until we find a
192  // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
193  // and terminators.
194  auto IDom = DT->getNode(Inst->getParent())->getIDom();
195  while (IDom->getBlock()->isEHPad()) {
196    assert(Entry != IDom->getBlock() && "eh pad in entry block");
197    IDom = IDom->getIDom();
198  }
199
200  return IDom->getBlock()->getTerminator();
201}
202
203/// Given \p BBs as input, find another set of BBs which collectively
204/// dominates \p BBs and have the minimal sum of frequencies. Return the BB
205/// set found in \p BBs.
206static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
207                                 BasicBlock *Entry,
208                                 SetVector<BasicBlock *> &BBs) {
209  assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
210  // Nodes on the current path to the root.
211  SmallPtrSet<BasicBlock *, 8> Path;
212  // Candidates includes any block 'BB' in set 'BBs' that is not strictly
213  // dominated by any other blocks in set 'BBs', and all nodes in the path
214  // in the dominator tree from Entry to 'BB'.
215  SmallPtrSet<BasicBlock *, 16> Candidates;
216  for (auto BB : BBs) {
217    // Ignore unreachable basic blocks.
218    if (!DT.isReachableFromEntry(BB))
219      continue;
220    Path.clear();
221    // Walk up the dominator tree until Entry or another BB in BBs
222    // is reached. Insert the nodes on the way to the Path.
223    BasicBlock *Node = BB;
224    // The "Path" is a candidate path to be added into Candidates set.
225    bool isCandidate = false;
226    do {
227      Path.insert(Node);
228      if (Node == Entry || Candidates.count(Node)) {
229        isCandidate = true;
230        break;
231      }
232      assert(DT.getNode(Node)->getIDom() &&
233             "Entry doens't dominate current Node");
234      Node = DT.getNode(Node)->getIDom()->getBlock();
235    } while (!BBs.count(Node));
236
237    // If isCandidate is false, Node is another Block in BBs dominating
238    // current 'BB'. Drop the nodes on the Path.
239    if (!isCandidate)
240      continue;
241
242    // Add nodes on the Path into Candidates.
243    Candidates.insert(Path.begin(), Path.end());
244  }
245
246  // Sort the nodes in Candidates in top-down order and save the nodes
247  // in Orders.
248  unsigned Idx = 0;
249  SmallVector<BasicBlock *, 16> Orders;
250  Orders.push_back(Entry);
251  while (Idx != Orders.size()) {
252    BasicBlock *Node = Orders[Idx++];
253    for (auto ChildDomNode : DT.getNode(Node)->children()) {
254      if (Candidates.count(ChildDomNode->getBlock()))
255        Orders.push_back(ChildDomNode->getBlock());
256    }
257  }
258
259  // Visit Orders in bottom-up order.
260  using InsertPtsCostPair =
261      std::pair<SetVector<BasicBlock *>, BlockFrequency>;
262
263  // InsertPtsMap is a map from a BB to the best insertion points for the
264  // subtree of BB (subtree not including the BB itself).
265  DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
266  InsertPtsMap.reserve(Orders.size() + 1);
267  for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
268    BasicBlock *Node = *RIt;
269    bool NodeInBBs = BBs.count(Node);
270    auto &InsertPts = InsertPtsMap[Node].first;
271    BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
272
273    // Return the optimal insert points in BBs.
274    if (Node == Entry) {
275      BBs.clear();
276      if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
277          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
278        BBs.insert(Entry);
279      else
280        BBs.insert(InsertPts.begin(), InsertPts.end());
281      break;
282    }
283
284    BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
285    // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
286    // will update its parent's ParentInsertPts and ParentPtsFreq.
287    auto &ParentInsertPts = InsertPtsMap[Parent].first;
288    BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
289    // Choose to insert in Node or in subtree of Node.
290    // Don't hoist to EHPad because we may not find a proper place to insert
291    // in EHPad.
292    // If the total frequency of InsertPts is the same as the frequency of the
293    // target Node, and InsertPts contains more than one nodes, choose hoisting
294    // to reduce code size.
295    if (NodeInBBs ||
296        (!Node->isEHPad() &&
297         (InsertPtsFreq > BFI.getBlockFreq(Node) ||
298          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
299      ParentInsertPts.insert(Node);
300      ParentPtsFreq += BFI.getBlockFreq(Node);
301    } else {
302      ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
303      ParentPtsFreq += InsertPtsFreq;
304    }
305  }
306}
307
308/// Find an insertion point that dominates all uses.
309SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
310    const ConstantInfo &ConstInfo) const {
311  assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
312  // Collect all basic blocks.
313  SetVector<BasicBlock *> BBs;
314  SetVector<Instruction *> InsertPts;
315  for (auto const &RCI : ConstInfo.RebasedConstants)
316    for (auto const &U : RCI.Uses)
317      BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
318
319  if (BBs.count(Entry)) {
320    InsertPts.insert(&Entry->front());
321    return InsertPts;
322  }
323
324  if (BFI) {
325    findBestInsertionSet(*DT, *BFI, Entry, BBs);
326    for (auto BB : BBs) {
327      BasicBlock::iterator InsertPt = BB->begin();
328      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
329        ;
330      InsertPts.insert(&*InsertPt);
331    }
332    return InsertPts;
333  }
334
335  while (BBs.size() >= 2) {
336    BasicBlock *BB, *BB1, *BB2;
337    BB1 = BBs.pop_back_val();
338    BB2 = BBs.pop_back_val();
339    BB = DT->findNearestCommonDominator(BB1, BB2);
340    if (BB == Entry) {
341      InsertPts.insert(&Entry->front());
342      return InsertPts;
343    }
344    BBs.insert(BB);
345  }
346  assert((BBs.size() == 1) && "Expected only one element.");
347  Instruction &FirstInst = (*BBs.begin())->front();
348  InsertPts.insert(findMatInsertPt(&FirstInst));
349  return InsertPts;
350}
351
352/// Record constant integer ConstInt for instruction Inst at operand
353/// index Idx.
354///
355/// The operand at index Idx is not necessarily the constant integer itself. It
356/// could also be a cast instruction or a constant expression that uses the
357/// constant integer.
358void ConstantHoistingPass::collectConstantCandidates(
359    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
360    ConstantInt *ConstInt) {
361  unsigned Cost;
362  // Ask the target about the cost of materializing the constant for the given
363  // instruction and operand index.
364  if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
365    Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
366                                    ConstInt->getValue(), ConstInt->getType(),
367                                    TargetTransformInfo::TCK_SizeAndLatency);
368  else
369    Cost = TTI->getIntImmCostInst(Inst->getOpcode(), Idx, ConstInt->getValue(),
370                                  ConstInt->getType(),
371                                  TargetTransformInfo::TCK_SizeAndLatency);
372
373  // Ignore cheap integer constants.
374  if (Cost > TargetTransformInfo::TCC_Basic) {
375    ConstCandMapType::iterator Itr;
376    bool Inserted;
377    ConstPtrUnionType Cand = ConstInt;
378    std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
379    if (Inserted) {
380      ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
381      Itr->second = ConstIntCandVec.size() - 1;
382    }
383    ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost);
384    LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
385                   << "Collect constant " << *ConstInt << " from " << *Inst
386                   << " with cost " << Cost << '\n';
387               else dbgs() << "Collect constant " << *ConstInt
388                           << " indirectly from " << *Inst << " via "
389                           << *Inst->getOperand(Idx) << " with cost " << Cost
390                           << '\n';);
391  }
392}
393
394/// Record constant GEP expression for instruction Inst at operand index Idx.
395void ConstantHoistingPass::collectConstantCandidates(
396    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
397    ConstantExpr *ConstExpr) {
398  // TODO: Handle vector GEPs
399  if (ConstExpr->getType()->isVectorTy())
400    return;
401
402  GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
403  if (!BaseGV)
404    return;
405
406  // Get offset from the base GV.
407  PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
408  IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
409  APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
410  auto *GEPO = cast<GEPOperator>(ConstExpr);
411  if (!GEPO->accumulateConstantOffset(*DL, Offset))
412    return;
413
414  if (!Offset.isIntN(32))
415    return;
416
417  // A constant GEP expression that has a GlobalVariable as base pointer is
418  // usually lowered to a load from constant pool. Such operation is unlikely
419  // to be cheaper than compute it by <Base + Offset>, which can be lowered to
420  // an ADD instruction or folded into Load/Store instruction.
421  int Cost = TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
422                                    TargetTransformInfo::TCK_SizeAndLatency);
423  ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
424  ConstCandMapType::iterator Itr;
425  bool Inserted;
426  ConstPtrUnionType Cand = ConstExpr;
427  std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
428  if (Inserted) {
429    ExprCandVec.push_back(ConstantCandidate(
430        ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
431        ConstExpr));
432    Itr->second = ExprCandVec.size() - 1;
433  }
434  ExprCandVec[Itr->second].addUser(Inst, Idx, Cost);
435}
436
437/// Check the operand for instruction Inst at index Idx.
438void ConstantHoistingPass::collectConstantCandidates(
439    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
440  Value *Opnd = Inst->getOperand(Idx);
441
442  // Visit constant integers.
443  if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
444    collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
445    return;
446  }
447
448  // Visit cast instructions that have constant integers.
449  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
450    // Only visit cast instructions, which have been skipped. All other
451    // instructions should have already been visited.
452    if (!CastInst->isCast())
453      return;
454
455    if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
456      // Pretend the constant is directly used by the instruction and ignore
457      // the cast instruction.
458      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
459      return;
460    }
461  }
462
463  // Visit constant expressions that have constant integers.
464  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
465    // Handle constant gep expressions.
466    if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
467      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
468
469    // Only visit constant cast expressions.
470    if (!ConstExpr->isCast())
471      return;
472
473    if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
474      // Pretend the constant is directly used by the instruction and ignore
475      // the constant expression.
476      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
477      return;
478    }
479  }
480}
481
482/// Scan the instruction for expensive integer constants and record them
483/// in the constant candidate vector.
484void ConstantHoistingPass::collectConstantCandidates(
485    ConstCandMapType &ConstCandMap, Instruction *Inst) {
486  // Skip all cast instructions. They are visited indirectly later on.
487  if (Inst->isCast())
488    return;
489
490  // Scan all operands.
491  for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
492    // The cost of materializing the constants (defined in
493    // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
494    // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
495    // So it's safe for us to collect constant candidates from all
496    // IntrinsicInsts.
497    if (canReplaceOperandWithVariable(Inst, Idx)) {
498      collectConstantCandidates(ConstCandMap, Inst, Idx);
499    }
500  } // end of for all operands
501}
502
503/// Collect all integer constants in the function that cannot be folded
504/// into an instruction itself.
505void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
506  ConstCandMapType ConstCandMap;
507  for (BasicBlock &BB : Fn) {
508    // Ignore unreachable basic blocks.
509    if (!DT->isReachableFromEntry(&BB))
510      continue;
511    for (Instruction &Inst : BB)
512      collectConstantCandidates(ConstCandMap, &Inst);
513  }
514}
515
516// This helper function is necessary to deal with values that have different
517// bit widths (APInt Operator- does not like that). If the value cannot be
518// represented in uint64 we return an "empty" APInt. This is then interpreted
519// as the value is not in range.
520static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
521  Optional<APInt> Res = None;
522  unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
523                V1.getBitWidth() : V2.getBitWidth();
524  uint64_t LimVal1 = V1.getLimitedValue();
525  uint64_t LimVal2 = V2.getLimitedValue();
526
527  if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
528    return Res;
529
530  uint64_t Diff = LimVal1 - LimVal2;
531  return APInt(BW, Diff, true);
532}
533
534// From a list of constants, one needs to picked as the base and the other
535// constants will be transformed into an offset from that base constant. The
536// question is which we can pick best? For example, consider these constants
537// and their number of uses:
538//
539//  Constants| 2 | 4 | 12 | 42 |
540//  NumUses  | 3 | 2 |  8 |  7 |
541//
542// Selecting constant 12 because it has the most uses will generate negative
543// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
544// offsets lead to less optimal code generation, then there might be better
545// solutions. Suppose immediates in the range of 0..35 are most optimally
546// supported by the architecture, then selecting constant 2 is most optimal
547// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
548// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
549// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
550// selecting the base constant the range of the offsets is a very important
551// factor too that we take into account here. This algorithm calculates a total
552// costs for selecting a constant as the base and substract the costs if
553// immediates are out of range. It has quadratic complexity, so we call this
554// function only when we're optimising for size and there are less than 100
555// constants, we fall back to the straightforward algorithm otherwise
556// which does not do all the offset calculations.
557unsigned
558ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
559                                           ConstCandVecType::iterator E,
560                                           ConstCandVecType::iterator &MaxCostItr) {
561  unsigned NumUses = 0;
562
563  bool OptForSize = Entry->getParent()->hasOptSize() ||
564                    llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
565                                                PGSOQueryType::IRPass);
566  if (!OptForSize || std::distance(S,E) > 100) {
567    for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
568      NumUses += ConstCand->Uses.size();
569      if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
570        MaxCostItr = ConstCand;
571    }
572    return NumUses;
573  }
574
575  LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
576  int MaxCost = -1;
577  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
578    auto Value = ConstCand->ConstInt->getValue();
579    Type *Ty = ConstCand->ConstInt->getType();
580    int Cost = 0;
581    NumUses += ConstCand->Uses.size();
582    LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
583                      << "\n");
584
585    for (auto User : ConstCand->Uses) {
586      unsigned Opcode = User.Inst->getOpcode();
587      unsigned OpndIdx = User.OpndIdx;
588      Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
589                                     TargetTransformInfo::TCK_SizeAndLatency);
590      LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
591
592      for (auto C2 = S; C2 != E; ++C2) {
593        Optional<APInt> Diff = calculateOffsetDiff(
594                                   C2->ConstInt->getValue(),
595                                   ConstCand->ConstInt->getValue());
596        if (Diff) {
597          const int ImmCosts =
598            TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
599          Cost -= ImmCosts;
600          LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
601                            << "has penalty: " << ImmCosts << "\n"
602                            << "Adjusted cost: " << Cost << "\n");
603        }
604      }
605    }
606    LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
607    if (Cost > MaxCost) {
608      MaxCost = Cost;
609      MaxCostItr = ConstCand;
610      LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
611                        << "\n");
612    }
613  }
614  return NumUses;
615}
616
617/// Find the base constant within the given range and rebase all other
618/// constants with respect to the base constant.
619void ConstantHoistingPass::findAndMakeBaseConstant(
620    ConstCandVecType::iterator S, ConstCandVecType::iterator E,
621    SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
622  auto MaxCostItr = S;
623  unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
624
625  // Don't hoist constants that have only one use.
626  if (NumUses <= 1)
627    return;
628
629  ConstantInt *ConstInt = MaxCostItr->ConstInt;
630  ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
631  ConstantInfo ConstInfo;
632  ConstInfo.BaseInt = ConstInt;
633  ConstInfo.BaseExpr = ConstExpr;
634  Type *Ty = ConstInt->getType();
635
636  // Rebase the constants with respect to the base constant.
637  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
638    APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
639    Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
640    Type *ConstTy =
641        ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
642    ConstInfo.RebasedConstants.push_back(
643      RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
644  }
645  ConstInfoVec.push_back(std::move(ConstInfo));
646}
647
648/// Finds and combines constant candidates that can be easily
649/// rematerialized with an add from a common base constant.
650void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
651  // If BaseGV is nullptr, find base among candidate constant integers;
652  // Otherwise find base among constant GEPs that share the same BaseGV.
653  ConstCandVecType &ConstCandVec = BaseGV ?
654      ConstGEPCandMap[BaseGV] : ConstIntCandVec;
655  ConstInfoVecType &ConstInfoVec = BaseGV ?
656      ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
657
658  // Sort the constants by value and type. This invalidates the mapping!
659  llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
660                                     const ConstantCandidate &RHS) {
661    if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
662      return LHS.ConstInt->getType()->getBitWidth() <
663             RHS.ConstInt->getType()->getBitWidth();
664    return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
665  });
666
667  // Simple linear scan through the sorted constant candidate vector for viable
668  // merge candidates.
669  auto MinValItr = ConstCandVec.begin();
670  for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
671       CC != E; ++CC) {
672    if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
673      Type *MemUseValTy = nullptr;
674      for (auto &U : CC->Uses) {
675        auto *UI = U.Inst;
676        if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
677          MemUseValTy = LI->getType();
678          break;
679        } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
680          // Make sure the constant is used as pointer operand of the StoreInst.
681          if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
682            MemUseValTy = SI->getValueOperand()->getType();
683            break;
684          }
685        }
686      }
687
688      // Check if the constant is in range of an add with immediate.
689      APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
690      if ((Diff.getBitWidth() <= 64) &&
691          TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
692          // Check if Diff can be used as offset in addressing mode of the user
693          // memory instruction.
694          (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
695           /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
696           /*HasBaseReg*/true, /*Scale*/0)))
697        continue;
698    }
699    // We either have now a different constant type or the constant is not in
700    // range of an add with immediate anymore.
701    findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
702    // Start a new base constant search.
703    MinValItr = CC;
704  }
705  // Finalize the last base constant search.
706  findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
707}
708
709/// Updates the operand at Idx in instruction Inst with the result of
710///        instruction Mat. If the instruction is a PHI node then special
711///        handling for duplicate values form the same incoming basic block is
712///        required.
713/// \return The update will always succeed, but the return value indicated if
714///         Mat was used for the update or not.
715static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
716  if (auto PHI = dyn_cast<PHINode>(Inst)) {
717    // Check if any previous operand of the PHI node has the same incoming basic
718    // block. This is a very odd case that happens when the incoming basic block
719    // has a switch statement. In this case use the same value as the previous
720    // operand(s), otherwise we will fail verification due to different values.
721    // The values are actually the same, but the variable names are different
722    // and the verifier doesn't like that.
723    BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
724    for (unsigned i = 0; i < Idx; ++i) {
725      if (PHI->getIncomingBlock(i) == IncomingBB) {
726        Value *IncomingVal = PHI->getIncomingValue(i);
727        Inst->setOperand(Idx, IncomingVal);
728        return false;
729      }
730    }
731  }
732
733  Inst->setOperand(Idx, Mat);
734  return true;
735}
736
737/// Emit materialization code for all rebased constants and update their
738/// users.
739void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
740                                             Constant *Offset,
741                                             Type *Ty,
742                                             const ConstantUser &ConstUser) {
743  Instruction *Mat = Base;
744
745  // The same offset can be dereferenced to different types in nested struct.
746  if (!Offset && Ty && Ty != Base->getType())
747    Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
748
749  if (Offset) {
750    Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
751                                               ConstUser.OpndIdx);
752    if (Ty) {
753      // Constant being rebased is a ConstantExpr.
754      PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
755          cast<PointerType>(Ty)->getAddressSpace());
756      Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
757      Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
758          Offset, "mat_gep", InsertionPt);
759      Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
760    } else
761      // Constant being rebased is a ConstantInt.
762      Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
763                                 "const_mat", InsertionPt);
764
765    LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
766                      << " + " << *Offset << ") in BB "
767                      << Mat->getParent()->getName() << '\n'
768                      << *Mat << '\n');
769    Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
770  }
771  Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
772
773  // Visit constant integer.
774  if (isa<ConstantInt>(Opnd)) {
775    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
776    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
777      Mat->eraseFromParent();
778    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
779    return;
780  }
781
782  // Visit cast instruction.
783  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
784    assert(CastInst->isCast() && "Expected an cast instruction!");
785    // Check if we already have visited this cast instruction before to avoid
786    // unnecessary cloning.
787    Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
788    if (!ClonedCastInst) {
789      ClonedCastInst = CastInst->clone();
790      ClonedCastInst->setOperand(0, Mat);
791      ClonedCastInst->insertAfter(CastInst);
792      // Use the same debug location as the original cast instruction.
793      ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
794      LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
795                        << "To               : " << *ClonedCastInst << '\n');
796    }
797
798    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
799    updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
800    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
801    return;
802  }
803
804  // Visit constant expression.
805  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
806    if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
807      // Operand is a ConstantGEP, replace it.
808      updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
809      return;
810    }
811
812    // Aside from constant GEPs, only constant cast expressions are collected.
813    assert(ConstExpr->isCast() && "ConstExpr should be a cast");
814    Instruction *ConstExprInst = ConstExpr->getAsInstruction();
815    ConstExprInst->setOperand(0, Mat);
816    ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
817                                                ConstUser.OpndIdx));
818
819    // Use the same debug location as the instruction we are about to update.
820    ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
821
822    LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
823                      << "From              : " << *ConstExpr << '\n');
824    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
825    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
826      ConstExprInst->eraseFromParent();
827      if (Offset)
828        Mat->eraseFromParent();
829    }
830    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
831    return;
832  }
833}
834
835/// Hoist and hide the base constant behind a bitcast and emit
836/// materialization code for derived constants.
837bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
838  bool MadeChange = false;
839  SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
840      BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
841  for (auto const &ConstInfo : ConstInfoVec) {
842    SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
843    // We can have an empty set if the function contains unreachable blocks.
844    if (IPSet.empty())
845      continue;
846
847    unsigned UsesNum = 0;
848    unsigned ReBasesNum = 0;
849    unsigned NotRebasedNum = 0;
850    for (Instruction *IP : IPSet) {
851      // First, collect constants depending on this IP of the base.
852      unsigned Uses = 0;
853      using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
854      SmallVector<RebasedUse, 4> ToBeRebased;
855      for (auto const &RCI : ConstInfo.RebasedConstants) {
856        for (auto const &U : RCI.Uses) {
857          Uses++;
858          BasicBlock *OrigMatInsertBB =
859              findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
860          // If Base constant is to be inserted in multiple places,
861          // generate rebase for U using the Base dominating U.
862          if (IPSet.size() == 1 ||
863              DT->dominates(IP->getParent(), OrigMatInsertBB))
864            ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
865        }
866      }
867      UsesNum = Uses;
868
869      // If only few constants depend on this IP of base, skip rebasing,
870      // assuming the base and the rebased have the same materialization cost.
871      if (ToBeRebased.size() < MinNumOfDependentToRebase) {
872        NotRebasedNum += ToBeRebased.size();
873        continue;
874      }
875
876      // Emit an instance of the base at this IP.
877      Instruction *Base = nullptr;
878      // Hoist and hide the base constant behind a bitcast.
879      if (ConstInfo.BaseExpr) {
880        assert(BaseGV && "A base constant expression must have an base GV");
881        Type *Ty = ConstInfo.BaseExpr->getType();
882        Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
883      } else {
884        IntegerType *Ty = ConstInfo.BaseInt->getType();
885        Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
886      }
887
888      Base->setDebugLoc(IP->getDebugLoc());
889
890      LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
891                        << ") to BB " << IP->getParent()->getName() << '\n'
892                        << *Base << '\n');
893
894      // Emit materialization code for rebased constants depending on this IP.
895      for (auto const &R : ToBeRebased) {
896        Constant *Off = std::get<0>(R);
897        Type *Ty = std::get<1>(R);
898        ConstantUser U = std::get<2>(R);
899        emitBaseConstants(Base, Off, Ty, U);
900        ReBasesNum++;
901        // Use the same debug location as the last user of the constant.
902        Base->setDebugLoc(DILocation::getMergedLocation(
903            Base->getDebugLoc(), U.Inst->getDebugLoc()));
904      }
905      assert(!Base->use_empty() && "The use list is empty!?");
906      assert(isa<Instruction>(Base->user_back()) &&
907             "All uses should be instructions.");
908    }
909    (void)UsesNum;
910    (void)ReBasesNum;
911    (void)NotRebasedNum;
912    // Expect all uses are rebased after rebase is done.
913    assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
914           "Not all uses are rebased");
915
916    NumConstantsHoisted++;
917
918    // Base constant is also included in ConstInfo.RebasedConstants, so
919    // deduct 1 from ConstInfo.RebasedConstants.size().
920    NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
921
922    MadeChange = true;
923  }
924  return MadeChange;
925}
926
927/// Check all cast instructions we made a copy of and remove them if they
928/// have no more users.
929void ConstantHoistingPass::deleteDeadCastInst() const {
930  for (auto const &I : ClonedCastMap)
931    if (I.first->use_empty())
932      I.first->eraseFromParent();
933}
934
935/// Optimize expensive integer constants in the given function.
936bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
937                                   DominatorTree &DT, BlockFrequencyInfo *BFI,
938                                   BasicBlock &Entry, ProfileSummaryInfo *PSI) {
939  this->TTI = &TTI;
940  this->DT = &DT;
941  this->BFI = BFI;
942  this->DL = &Fn.getParent()->getDataLayout();
943  this->Ctx = &Fn.getContext();
944  this->Entry = &Entry;
945  this->PSI = PSI;
946  // Collect all constant candidates.
947  collectConstantCandidates(Fn);
948
949  // Combine constants that can be easily materialized with an add from a common
950  // base constant.
951  if (!ConstIntCandVec.empty())
952    findBaseConstants(nullptr);
953  for (auto &MapEntry : ConstGEPCandMap)
954    if (!MapEntry.second.empty())
955      findBaseConstants(MapEntry.first);
956
957  // Finally hoist the base constant and emit materialization code for dependent
958  // constants.
959  bool MadeChange = false;
960  if (!ConstIntInfoVec.empty())
961    MadeChange = emitBaseConstants(nullptr);
962  for (auto MapEntry : ConstGEPInfoMap)
963    if (!MapEntry.second.empty())
964      MadeChange |= emitBaseConstants(MapEntry.first);
965
966
967  // Cleanup dead instructions.
968  deleteDeadCastInst();
969
970  cleanup();
971
972  return MadeChange;
973}
974
975PreservedAnalyses ConstantHoistingPass::run(Function &F,
976                                            FunctionAnalysisManager &AM) {
977  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
978  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
979  auto BFI = ConstHoistWithBlockFrequency
980                 ? &AM.getResult<BlockFrequencyAnalysis>(F)
981                 : nullptr;
982  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
983  auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
984  if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
985    return PreservedAnalyses::all();
986
987  PreservedAnalyses PA;
988  PA.preserveSet<CFGAnalyses>();
989  return PA;
990}
991