1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements instcombine for ExtractElement, InsertElement and
10// ShuffleVector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallBitVector.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/Analysis/VectorUtils.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Constant.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/Instruction.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/IR/PatternMatch.h"
32#include "llvm/IR/Type.h"
33#include "llvm/IR/User.h"
34#include "llvm/IR/Value.h"
35#include "llvm/Support/Casting.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
38#include <cassert>
39#include <cstdint>
40#include <iterator>
41#include <utility>
42
43using namespace llvm;
44using namespace PatternMatch;
45
46#define DEBUG_TYPE "instcombine"
47
48/// Return true if the value is cheaper to scalarize than it is to leave as a
49/// vector operation. IsConstantExtractIndex indicates whether we are extracting
50/// one known element from a vector constant.
51///
52/// FIXME: It's possible to create more instructions than previously existed.
53static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
54  // If we can pick a scalar constant value out of a vector, that is free.
55  if (auto *C = dyn_cast<Constant>(V))
56    return IsConstantExtractIndex || C->getSplatValue();
57
58  // An insertelement to the same constant index as our extract will simplify
59  // to the scalar inserted element. An insertelement to a different constant
60  // index is irrelevant to our extract.
61  if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
62    return IsConstantExtractIndex;
63
64  if (match(V, m_OneUse(m_Load(m_Value()))))
65    return true;
66
67  if (match(V, m_OneUse(m_UnOp())))
68    return true;
69
70  Value *V0, *V1;
71  if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
72    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
73        cheapToScalarize(V1, IsConstantExtractIndex))
74      return true;
75
76  CmpInst::Predicate UnusedPred;
77  if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
78    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
79        cheapToScalarize(V1, IsConstantExtractIndex))
80      return true;
81
82  return false;
83}
84
85// If we have a PHI node with a vector type that is only used to feed
86// itself and be an operand of extractelement at a constant location,
87// try to replace the PHI of the vector type with a PHI of a scalar type.
88Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
89  SmallVector<Instruction *, 2> Extracts;
90  // The users we want the PHI to have are:
91  // 1) The EI ExtractElement (we already know this)
92  // 2) Possibly more ExtractElements with the same index.
93  // 3) Another operand, which will feed back into the PHI.
94  Instruction *PHIUser = nullptr;
95  for (auto U : PN->users()) {
96    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
97      if (EI.getIndexOperand() == EU->getIndexOperand())
98        Extracts.push_back(EU);
99      else
100        return nullptr;
101    } else if (!PHIUser) {
102      PHIUser = cast<Instruction>(U);
103    } else {
104      return nullptr;
105    }
106  }
107
108  if (!PHIUser)
109    return nullptr;
110
111  // Verify that this PHI user has one use, which is the PHI itself,
112  // and that it is a binary operation which is cheap to scalarize.
113  // otherwise return nullptr.
114  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
115      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
116    return nullptr;
117
118  // Create a scalar PHI node that will replace the vector PHI node
119  // just before the current PHI node.
120  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
121      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
122  // Scalarize each PHI operand.
123  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
124    Value *PHIInVal = PN->getIncomingValue(i);
125    BasicBlock *inBB = PN->getIncomingBlock(i);
126    Value *Elt = EI.getIndexOperand();
127    // If the operand is the PHI induction variable:
128    if (PHIInVal == PHIUser) {
129      // Scalarize the binary operation. Its first operand is the
130      // scalar PHI, and the second operand is extracted from the other
131      // vector operand.
132      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
133      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
134      Value *Op = InsertNewInstWith(
135          ExtractElementInst::Create(B0->getOperand(opId), Elt,
136                                     B0->getOperand(opId)->getName() + ".Elt"),
137          *B0);
138      Value *newPHIUser = InsertNewInstWith(
139          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
140                                                scalarPHI, Op, B0), *B0);
141      scalarPHI->addIncoming(newPHIUser, inBB);
142    } else {
143      // Scalarize PHI input:
144      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
145      // Insert the new instruction into the predecessor basic block.
146      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
147      BasicBlock::iterator InsertPos;
148      if (pos && !isa<PHINode>(pos)) {
149        InsertPos = ++pos->getIterator();
150      } else {
151        InsertPos = inBB->getFirstInsertionPt();
152      }
153
154      InsertNewInstWith(newEI, *InsertPos);
155
156      scalarPHI->addIncoming(newEI, inBB);
157    }
158  }
159
160  for (auto E : Extracts)
161    replaceInstUsesWith(*E, scalarPHI);
162
163  return &EI;
164}
165
166static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
167                                      InstCombiner::BuilderTy &Builder,
168                                      bool IsBigEndian) {
169  Value *X;
170  uint64_t ExtIndexC;
171  if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
172      !X->getType()->isVectorTy() ||
173      !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
174    return nullptr;
175
176  // If this extractelement is using a bitcast from a vector of the same number
177  // of elements, see if we can find the source element from the source vector:
178  // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
179  auto *SrcTy = cast<VectorType>(X->getType());
180  Type *DestTy = Ext.getType();
181  unsigned NumSrcElts = SrcTy->getNumElements();
182  unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
183  if (NumSrcElts == NumElts)
184    if (Value *Elt = findScalarElement(X, ExtIndexC))
185      return new BitCastInst(Elt, DestTy);
186
187  // If the source elements are wider than the destination, try to shift and
188  // truncate a subset of scalar bits of an insert op.
189  if (NumSrcElts < NumElts) {
190    Value *Scalar;
191    uint64_t InsIndexC;
192    if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
193                              m_ConstantInt(InsIndexC))))
194      return nullptr;
195
196    // The extract must be from the subset of vector elements that we inserted
197    // into. Example: if we inserted element 1 of a <2 x i64> and we are
198    // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
199    // of elements 4-7 of the bitcasted vector.
200    unsigned NarrowingRatio = NumElts / NumSrcElts;
201    if (ExtIndexC / NarrowingRatio != InsIndexC)
202      return nullptr;
203
204    // We are extracting part of the original scalar. How that scalar is
205    // inserted into the vector depends on the endian-ness. Example:
206    //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
207    //                                       +--+--+--+--+--+--+--+--+
208    // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
209    // extelt <4 x i16> V', 3:               |                 |S2|S3|
210    //                                       +--+--+--+--+--+--+--+--+
211    // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
212    // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
213    // In this example, we must right-shift little-endian. Big-endian is just a
214    // truncate.
215    unsigned Chunk = ExtIndexC % NarrowingRatio;
216    if (IsBigEndian)
217      Chunk = NarrowingRatio - 1 - Chunk;
218
219    // Bail out if this is an FP vector to FP vector sequence. That would take
220    // more instructions than we started with unless there is no shift, and it
221    // may not be handled as well in the backend.
222    bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
223    bool NeedDestBitcast = DestTy->isFloatingPointTy();
224    if (NeedSrcBitcast && NeedDestBitcast)
225      return nullptr;
226
227    unsigned SrcWidth = SrcTy->getScalarSizeInBits();
228    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
229    unsigned ShAmt = Chunk * DestWidth;
230
231    // TODO: This limitation is more strict than necessary. We could sum the
232    // number of new instructions and subtract the number eliminated to know if
233    // we can proceed.
234    if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
235      if (NeedSrcBitcast || NeedDestBitcast)
236        return nullptr;
237
238    if (NeedSrcBitcast) {
239      Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
240      Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
241    }
242
243    if (ShAmt) {
244      // Bail out if we could end with more instructions than we started with.
245      if (!Ext.getVectorOperand()->hasOneUse())
246        return nullptr;
247      Scalar = Builder.CreateLShr(Scalar, ShAmt);
248    }
249
250    if (NeedDestBitcast) {
251      Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
252      return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
253    }
254    return new TruncInst(Scalar, DestTy);
255  }
256
257  return nullptr;
258}
259
260/// Find elements of V demanded by UserInstr.
261static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
262  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
263
264  // Conservatively assume that all elements are needed.
265  APInt UsedElts(APInt::getAllOnesValue(VWidth));
266
267  switch (UserInstr->getOpcode()) {
268  case Instruction::ExtractElement: {
269    ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
270    assert(EEI->getVectorOperand() == V);
271    ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
272    if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
273      UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
274    }
275    break;
276  }
277  case Instruction::ShuffleVector: {
278    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
279    unsigned MaskNumElts =
280        cast<VectorType>(UserInstr->getType())->getNumElements();
281
282    UsedElts = APInt(VWidth, 0);
283    for (unsigned i = 0; i < MaskNumElts; i++) {
284      unsigned MaskVal = Shuffle->getMaskValue(i);
285      if (MaskVal == -1u || MaskVal >= 2 * VWidth)
286        continue;
287      if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
288        UsedElts.setBit(MaskVal);
289      if (Shuffle->getOperand(1) == V &&
290          ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
291        UsedElts.setBit(MaskVal - VWidth);
292    }
293    break;
294  }
295  default:
296    break;
297  }
298  return UsedElts;
299}
300
301/// Find union of elements of V demanded by all its users.
302/// If it is known by querying findDemandedEltsBySingleUser that
303/// no user demands an element of V, then the corresponding bit
304/// remains unset in the returned value.
305static APInt findDemandedEltsByAllUsers(Value *V) {
306  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
307
308  APInt UnionUsedElts(VWidth, 0);
309  for (const Use &U : V->uses()) {
310    if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
311      UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
312    } else {
313      UnionUsedElts = APInt::getAllOnesValue(VWidth);
314      break;
315    }
316
317    if (UnionUsedElts.isAllOnesValue())
318      break;
319  }
320
321  return UnionUsedElts;
322}
323
324Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
325  Value *SrcVec = EI.getVectorOperand();
326  Value *Index = EI.getIndexOperand();
327  if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
328                                            SQ.getWithInstruction(&EI)))
329    return replaceInstUsesWith(EI, V);
330
331  // If extracting a specified index from the vector, see if we can recursively
332  // find a previously computed scalar that was inserted into the vector.
333  auto *IndexC = dyn_cast<ConstantInt>(Index);
334  if (IndexC) {
335    ElementCount EC = EI.getVectorOperandType()->getElementCount();
336    unsigned NumElts = EC.Min;
337
338    // InstSimplify should handle cases where the index is invalid.
339    // For fixed-length vector, it's invalid to extract out-of-range element.
340    if (!EC.Scalable && IndexC->getValue().uge(NumElts))
341      return nullptr;
342
343    // This instruction only demands the single element from the input vector.
344    // Skip for scalable type, the number of elements is unknown at
345    // compile-time.
346    if (!EC.Scalable && NumElts != 1) {
347      // If the input vector has a single use, simplify it based on this use
348      // property.
349      if (SrcVec->hasOneUse()) {
350        APInt UndefElts(NumElts, 0);
351        APInt DemandedElts(NumElts, 0);
352        DemandedElts.setBit(IndexC->getZExtValue());
353        if (Value *V =
354                SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
355          return replaceOperand(EI, 0, V);
356      } else {
357        // If the input vector has multiple uses, simplify it based on a union
358        // of all elements used.
359        APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
360        if (!DemandedElts.isAllOnesValue()) {
361          APInt UndefElts(NumElts, 0);
362          if (Value *V = SimplifyDemandedVectorElts(
363                  SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
364                  true /* AllowMultipleUsers */)) {
365            if (V != SrcVec) {
366              SrcVec->replaceAllUsesWith(V);
367              return &EI;
368            }
369          }
370        }
371      }
372    }
373    if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
374      return I;
375
376    // If there's a vector PHI feeding a scalar use through this extractelement
377    // instruction, try to scalarize the PHI.
378    if (auto *Phi = dyn_cast<PHINode>(SrcVec))
379      if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
380        return ScalarPHI;
381  }
382
383  // TODO come up with a n-ary matcher that subsumes both unary and
384  // binary matchers.
385  UnaryOperator *UO;
386  if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
387    // extelt (unop X), Index --> unop (extelt X, Index)
388    Value *X = UO->getOperand(0);
389    Value *E = Builder.CreateExtractElement(X, Index);
390    return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
391  }
392
393  BinaryOperator *BO;
394  if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
395    // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
396    Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
397    Value *E0 = Builder.CreateExtractElement(X, Index);
398    Value *E1 = Builder.CreateExtractElement(Y, Index);
399    return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
400  }
401
402  Value *X, *Y;
403  CmpInst::Predicate Pred;
404  if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
405      cheapToScalarize(SrcVec, IndexC)) {
406    // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
407    Value *E0 = Builder.CreateExtractElement(X, Index);
408    Value *E1 = Builder.CreateExtractElement(Y, Index);
409    return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
410  }
411
412  if (auto *I = dyn_cast<Instruction>(SrcVec)) {
413    if (auto *IE = dyn_cast<InsertElementInst>(I)) {
414      // Extracting the inserted element?
415      if (IE->getOperand(2) == Index)
416        return replaceInstUsesWith(EI, IE->getOperand(1));
417      // If the inserted and extracted elements are constants, they must not
418      // be the same value, extract from the pre-inserted value instead.
419      if (isa<Constant>(IE->getOperand(2)) && IndexC)
420        return replaceOperand(EI, 0, IE->getOperand(0));
421    } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
422      // If this is extracting an element from a shufflevector, figure out where
423      // it came from and extract from the appropriate input element instead.
424      // Restrict the following transformation to fixed-length vector.
425      if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
426        int SrcIdx =
427            SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
428        Value *Src;
429        unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
430                                ->getNumElements();
431
432        if (SrcIdx < 0)
433          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
434        if (SrcIdx < (int)LHSWidth)
435          Src = SVI->getOperand(0);
436        else {
437          SrcIdx -= LHSWidth;
438          Src = SVI->getOperand(1);
439        }
440        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
441        return ExtractElementInst::Create(
442            Src, ConstantInt::get(Int32Ty, SrcIdx, false));
443      }
444    } else if (auto *CI = dyn_cast<CastInst>(I)) {
445      // Canonicalize extractelement(cast) -> cast(extractelement).
446      // Bitcasts can change the number of vector elements, and they cost
447      // nothing.
448      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
449        Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
450        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
451      }
452    }
453  }
454  return nullptr;
455}
456
457/// If V is a shuffle of values that ONLY returns elements from either LHS or
458/// RHS, return the shuffle mask and true. Otherwise, return false.
459static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
460                                         SmallVectorImpl<int> &Mask) {
461  assert(LHS->getType() == RHS->getType() &&
462         "Invalid CollectSingleShuffleElements");
463  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
464
465  if (isa<UndefValue>(V)) {
466    Mask.assign(NumElts, -1);
467    return true;
468  }
469
470  if (V == LHS) {
471    for (unsigned i = 0; i != NumElts; ++i)
472      Mask.push_back(i);
473    return true;
474  }
475
476  if (V == RHS) {
477    for (unsigned i = 0; i != NumElts; ++i)
478      Mask.push_back(i + NumElts);
479    return true;
480  }
481
482  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
483    // If this is an insert of an extract from some other vector, include it.
484    Value *VecOp    = IEI->getOperand(0);
485    Value *ScalarOp = IEI->getOperand(1);
486    Value *IdxOp    = IEI->getOperand(2);
487
488    if (!isa<ConstantInt>(IdxOp))
489      return false;
490    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
491
492    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
493      // We can handle this if the vector we are inserting into is
494      // transitively ok.
495      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
496        // If so, update the mask to reflect the inserted undef.
497        Mask[InsertedIdx] = -1;
498        return true;
499      }
500    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
501      if (isa<ConstantInt>(EI->getOperand(1))) {
502        unsigned ExtractedIdx =
503        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
504        unsigned NumLHSElts =
505            cast<VectorType>(LHS->getType())->getNumElements();
506
507        // This must be extracting from either LHS or RHS.
508        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
509          // We can handle this if the vector we are inserting into is
510          // transitively ok.
511          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
512            // If so, update the mask to reflect the inserted value.
513            if (EI->getOperand(0) == LHS) {
514              Mask[InsertedIdx % NumElts] = ExtractedIdx;
515            } else {
516              assert(EI->getOperand(0) == RHS);
517              Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
518            }
519            return true;
520          }
521        }
522      }
523    }
524  }
525
526  return false;
527}
528
529/// If we have insertion into a vector that is wider than the vector that we
530/// are extracting from, try to widen the source vector to allow a single
531/// shufflevector to replace one or more insert/extract pairs.
532static void replaceExtractElements(InsertElementInst *InsElt,
533                                   ExtractElementInst *ExtElt,
534                                   InstCombiner &IC) {
535  VectorType *InsVecType = InsElt->getType();
536  VectorType *ExtVecType = ExtElt->getVectorOperandType();
537  unsigned NumInsElts = InsVecType->getNumElements();
538  unsigned NumExtElts = ExtVecType->getNumElements();
539
540  // The inserted-to vector must be wider than the extracted-from vector.
541  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
542      NumExtElts >= NumInsElts)
543    return;
544
545  // Create a shuffle mask to widen the extended-from vector using undefined
546  // values. The mask selects all of the values of the original vector followed
547  // by as many undefined values as needed to create a vector of the same length
548  // as the inserted-to vector.
549  SmallVector<int, 16> ExtendMask;
550  for (unsigned i = 0; i < NumExtElts; ++i)
551    ExtendMask.push_back(i);
552  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
553    ExtendMask.push_back(-1);
554
555  Value *ExtVecOp = ExtElt->getVectorOperand();
556  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
557  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
558                                   ? ExtVecOpInst->getParent()
559                                   : ExtElt->getParent();
560
561  // TODO: This restriction matches the basic block check below when creating
562  // new extractelement instructions. If that limitation is removed, this one
563  // could also be removed. But for now, we just bail out to ensure that we
564  // will replace the extractelement instruction that is feeding our
565  // insertelement instruction. This allows the insertelement to then be
566  // replaced by a shufflevector. If the insertelement is not replaced, we can
567  // induce infinite looping because there's an optimization for extractelement
568  // that will delete our widening shuffle. This would trigger another attempt
569  // here to create that shuffle, and we spin forever.
570  if (InsertionBlock != InsElt->getParent())
571    return;
572
573  // TODO: This restriction matches the check in visitInsertElementInst() and
574  // prevents an infinite loop caused by not turning the extract/insert pair
575  // into a shuffle. We really should not need either check, but we're lacking
576  // folds for shufflevectors because we're afraid to generate shuffle masks
577  // that the backend can't handle.
578  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
579    return;
580
581  auto *WideVec =
582      new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask);
583
584  // Insert the new shuffle after the vector operand of the extract is defined
585  // (as long as it's not a PHI) or at the start of the basic block of the
586  // extract, so any subsequent extracts in the same basic block can use it.
587  // TODO: Insert before the earliest ExtractElementInst that is replaced.
588  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
589    WideVec->insertAfter(ExtVecOpInst);
590  else
591    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
592
593  // Replace extracts from the original narrow vector with extracts from the new
594  // wide vector.
595  for (User *U : ExtVecOp->users()) {
596    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
597    if (!OldExt || OldExt->getParent() != WideVec->getParent())
598      continue;
599    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
600    NewExt->insertAfter(OldExt);
601    IC.replaceInstUsesWith(*OldExt, NewExt);
602  }
603}
604
605/// We are building a shuffle to create V, which is a sequence of insertelement,
606/// extractelement pairs. If PermittedRHS is set, then we must either use it or
607/// not rely on the second vector source. Return a std::pair containing the
608/// left and right vectors of the proposed shuffle (or 0), and set the Mask
609/// parameter as required.
610///
611/// Note: we intentionally don't try to fold earlier shuffles since they have
612/// often been chosen carefully to be efficiently implementable on the target.
613using ShuffleOps = std::pair<Value *, Value *>;
614
615static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
616                                         Value *PermittedRHS,
617                                         InstCombiner &IC) {
618  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
619  unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
620
621  if (isa<UndefValue>(V)) {
622    Mask.assign(NumElts, -1);
623    return std::make_pair(
624        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
625  }
626
627  if (isa<ConstantAggregateZero>(V)) {
628    Mask.assign(NumElts, 0);
629    return std::make_pair(V, nullptr);
630  }
631
632  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
633    // If this is an insert of an extract from some other vector, include it.
634    Value *VecOp    = IEI->getOperand(0);
635    Value *ScalarOp = IEI->getOperand(1);
636    Value *IdxOp    = IEI->getOperand(2);
637
638    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
639      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
640        unsigned ExtractedIdx =
641          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
642        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
643
644        // Either the extracted from or inserted into vector must be RHSVec,
645        // otherwise we'd end up with a shuffle of three inputs.
646        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
647          Value *RHS = EI->getOperand(0);
648          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
649          assert(LR.second == nullptr || LR.second == RHS);
650
651          if (LR.first->getType() != RHS->getType()) {
652            // Although we are giving up for now, see if we can create extracts
653            // that match the inserts for another round of combining.
654            replaceExtractElements(IEI, EI, IC);
655
656            // We tried our best, but we can't find anything compatible with RHS
657            // further up the chain. Return a trivial shuffle.
658            for (unsigned i = 0; i < NumElts; ++i)
659              Mask[i] = i;
660            return std::make_pair(V, nullptr);
661          }
662
663          unsigned NumLHSElts =
664              cast<VectorType>(RHS->getType())->getNumElements();
665          Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
666          return std::make_pair(LR.first, RHS);
667        }
668
669        if (VecOp == PermittedRHS) {
670          // We've gone as far as we can: anything on the other side of the
671          // extractelement will already have been converted into a shuffle.
672          unsigned NumLHSElts =
673              cast<VectorType>(EI->getOperand(0)->getType())->getNumElements();
674          for (unsigned i = 0; i != NumElts; ++i)
675            Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
676          return std::make_pair(EI->getOperand(0), PermittedRHS);
677        }
678
679        // If this insertelement is a chain that comes from exactly these two
680        // vectors, return the vector and the effective shuffle.
681        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
682            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
683                                         Mask))
684          return std::make_pair(EI->getOperand(0), PermittedRHS);
685      }
686    }
687  }
688
689  // Otherwise, we can't do anything fancy. Return an identity vector.
690  for (unsigned i = 0; i != NumElts; ++i)
691    Mask.push_back(i);
692  return std::make_pair(V, nullptr);
693}
694
695/// Try to find redundant insertvalue instructions, like the following ones:
696///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
697///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
698/// Here the second instruction inserts values at the same indices, as the
699/// first one, making the first one redundant.
700/// It should be transformed to:
701///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
702Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
703  bool IsRedundant = false;
704  ArrayRef<unsigned int> FirstIndices = I.getIndices();
705
706  // If there is a chain of insertvalue instructions (each of them except the
707  // last one has only one use and it's another insertvalue insn from this
708  // chain), check if any of the 'children' uses the same indices as the first
709  // instruction. In this case, the first one is redundant.
710  Value *V = &I;
711  unsigned Depth = 0;
712  while (V->hasOneUse() && Depth < 10) {
713    User *U = V->user_back();
714    auto UserInsInst = dyn_cast<InsertValueInst>(U);
715    if (!UserInsInst || U->getOperand(0) != V)
716      break;
717    if (UserInsInst->getIndices() == FirstIndices) {
718      IsRedundant = true;
719      break;
720    }
721    V = UserInsInst;
722    Depth++;
723  }
724
725  if (IsRedundant)
726    return replaceInstUsesWith(I, I.getOperand(0));
727  return nullptr;
728}
729
730static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
731  // Can not analyze scalable type, the number of elements is not a compile-time
732  // constant.
733  if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
734    return false;
735
736  int MaskSize = Shuf.getShuffleMask().size();
737  int VecSize =
738      cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
739
740  // A vector select does not change the size of the operands.
741  if (MaskSize != VecSize)
742    return false;
743
744  // Each mask element must be undefined or choose a vector element from one of
745  // the source operands without crossing vector lanes.
746  for (int i = 0; i != MaskSize; ++i) {
747    int Elt = Shuf.getMaskValue(i);
748    if (Elt != -1 && Elt != i && Elt != i + VecSize)
749      return false;
750  }
751
752  return true;
753}
754
755/// Turn a chain of inserts that splats a value into an insert + shuffle:
756/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
757/// shufflevector(insertelt(X, %k, 0), undef, zero)
758static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
759  // We are interested in the last insert in a chain. So if this insert has a
760  // single user and that user is an insert, bail.
761  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
762    return nullptr;
763
764  VectorType *VecTy = InsElt.getType();
765  // Can not handle scalable type, the number of elements is not a compile-time
766  // constant.
767  if (isa<ScalableVectorType>(VecTy))
768    return nullptr;
769  unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
770
771  // Do not try to do this for a one-element vector, since that's a nop,
772  // and will cause an inf-loop.
773  if (NumElements == 1)
774    return nullptr;
775
776  Value *SplatVal = InsElt.getOperand(1);
777  InsertElementInst *CurrIE = &InsElt;
778  SmallBitVector ElementPresent(NumElements, false);
779  InsertElementInst *FirstIE = nullptr;
780
781  // Walk the chain backwards, keeping track of which indices we inserted into,
782  // until we hit something that isn't an insert of the splatted value.
783  while (CurrIE) {
784    auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
785    if (!Idx || CurrIE->getOperand(1) != SplatVal)
786      return nullptr;
787
788    auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
789    // Check none of the intermediate steps have any additional uses, except
790    // for the root insertelement instruction, which can be re-used, if it
791    // inserts at position 0.
792    if (CurrIE != &InsElt &&
793        (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
794      return nullptr;
795
796    ElementPresent[Idx->getZExtValue()] = true;
797    FirstIE = CurrIE;
798    CurrIE = NextIE;
799  }
800
801  // If this is just a single insertelement (not a sequence), we are done.
802  if (FirstIE == &InsElt)
803    return nullptr;
804
805  // If we are not inserting into an undef vector, make sure we've seen an
806  // insert into every element.
807  // TODO: If the base vector is not undef, it might be better to create a splat
808  //       and then a select-shuffle (blend) with the base vector.
809  if (!isa<UndefValue>(FirstIE->getOperand(0)))
810    if (!ElementPresent.all())
811      return nullptr;
812
813  // Create the insert + shuffle.
814  Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
815  UndefValue *UndefVec = UndefValue::get(VecTy);
816  Constant *Zero = ConstantInt::get(Int32Ty, 0);
817  if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
818    FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
819
820  // Splat from element 0, but replace absent elements with undef in the mask.
821  SmallVector<int, 16> Mask(NumElements, 0);
822  for (unsigned i = 0; i != NumElements; ++i)
823    if (!ElementPresent[i])
824      Mask[i] = -1;
825
826  return new ShuffleVectorInst(FirstIE, UndefVec, Mask);
827}
828
829/// Try to fold an insert element into an existing splat shuffle by changing
830/// the shuffle's mask to include the index of this insert element.
831static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
832  // Check if the vector operand of this insert is a canonical splat shuffle.
833  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
834  if (!Shuf || !Shuf->isZeroEltSplat())
835    return nullptr;
836
837  // Bail out early if shuffle is scalable type. The number of elements in
838  // shuffle mask is unknown at compile-time.
839  if (isa<ScalableVectorType>(Shuf->getType()))
840    return nullptr;
841
842  // Check for a constant insertion index.
843  uint64_t IdxC;
844  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
845    return nullptr;
846
847  // Check if the splat shuffle's input is the same as this insert's scalar op.
848  Value *X = InsElt.getOperand(1);
849  Value *Op0 = Shuf->getOperand(0);
850  if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
851    return nullptr;
852
853  // Replace the shuffle mask element at the index of this insert with a zero.
854  // For example:
855  // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
856  //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
857  unsigned NumMaskElts = Shuf->getType()->getNumElements();
858  SmallVector<int, 16> NewMask(NumMaskElts);
859  for (unsigned i = 0; i != NumMaskElts; ++i)
860    NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
861
862  return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
863}
864
865/// Try to fold an extract+insert element into an existing identity shuffle by
866/// changing the shuffle's mask to include the index of this insert element.
867static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
868  // Check if the vector operand of this insert is an identity shuffle.
869  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
870  if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
871      !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
872    return nullptr;
873
874  // Bail out early if shuffle is scalable type. The number of elements in
875  // shuffle mask is unknown at compile-time.
876  if (isa<ScalableVectorType>(Shuf->getType()))
877    return nullptr;
878
879  // Check for a constant insertion index.
880  uint64_t IdxC;
881  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
882    return nullptr;
883
884  // Check if this insert's scalar op is extracted from the identity shuffle's
885  // input vector.
886  Value *Scalar = InsElt.getOperand(1);
887  Value *X = Shuf->getOperand(0);
888  if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
889    return nullptr;
890
891  // Replace the shuffle mask element at the index of this extract+insert with
892  // that same index value.
893  // For example:
894  // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
895  unsigned NumMaskElts = Shuf->getType()->getNumElements();
896  SmallVector<int, 16> NewMask(NumMaskElts);
897  ArrayRef<int> OldMask = Shuf->getShuffleMask();
898  for (unsigned i = 0; i != NumMaskElts; ++i) {
899    if (i != IdxC) {
900      // All mask elements besides the inserted element remain the same.
901      NewMask[i] = OldMask[i];
902    } else if (OldMask[i] == (int)IdxC) {
903      // If the mask element was already set, there's nothing to do
904      // (demanded elements analysis may unset it later).
905      return nullptr;
906    } else {
907      assert(OldMask[i] == UndefMaskElem &&
908             "Unexpected shuffle mask element for identity shuffle");
909      NewMask[i] = IdxC;
910    }
911  }
912
913  return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
914}
915
916/// If we have an insertelement instruction feeding into another insertelement
917/// and the 2nd is inserting a constant into the vector, canonicalize that
918/// constant insertion before the insertion of a variable:
919///
920/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
921/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
922///
923/// This has the potential of eliminating the 2nd insertelement instruction
924/// via constant folding of the scalar constant into a vector constant.
925static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
926                                     InstCombiner::BuilderTy &Builder) {
927  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
928  if (!InsElt1 || !InsElt1->hasOneUse())
929    return nullptr;
930
931  Value *X, *Y;
932  Constant *ScalarC;
933  ConstantInt *IdxC1, *IdxC2;
934  if (match(InsElt1->getOperand(0), m_Value(X)) &&
935      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
936      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
937      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
938      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
939    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
940    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
941  }
942
943  return nullptr;
944}
945
946/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
947/// --> shufflevector X, CVec', Mask'
948static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
949  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
950  // Bail out if the parent has more than one use. In that case, we'd be
951  // replacing the insertelt with a shuffle, and that's not a clear win.
952  if (!Inst || !Inst->hasOneUse())
953    return nullptr;
954  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
955    // The shuffle must have a constant vector operand. The insertelt must have
956    // a constant scalar being inserted at a constant position in the vector.
957    Constant *ShufConstVec, *InsEltScalar;
958    uint64_t InsEltIndex;
959    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
960        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
961        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
962      return nullptr;
963
964    // Adding an element to an arbitrary shuffle could be expensive, but a
965    // shuffle that selects elements from vectors without crossing lanes is
966    // assumed cheap.
967    // If we're just adding a constant into that shuffle, it will still be
968    // cheap.
969    if (!isShuffleEquivalentToSelect(*Shuf))
970      return nullptr;
971
972    // From the above 'select' check, we know that the mask has the same number
973    // of elements as the vector input operands. We also know that each constant
974    // input element is used in its lane and can not be used more than once by
975    // the shuffle. Therefore, replace the constant in the shuffle's constant
976    // vector with the insertelt constant. Replace the constant in the shuffle's
977    // mask vector with the insertelt index plus the length of the vector
978    // (because the constant vector operand of a shuffle is always the 2nd
979    // operand).
980    ArrayRef<int> Mask = Shuf->getShuffleMask();
981    unsigned NumElts = Mask.size();
982    SmallVector<Constant *, 16> NewShufElts(NumElts);
983    SmallVector<int, 16> NewMaskElts(NumElts);
984    for (unsigned I = 0; I != NumElts; ++I) {
985      if (I == InsEltIndex) {
986        NewShufElts[I] = InsEltScalar;
987        NewMaskElts[I] = InsEltIndex + NumElts;
988      } else {
989        // Copy over the existing values.
990        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
991        NewMaskElts[I] = Mask[I];
992      }
993    }
994
995    // Create new operands for a shuffle that includes the constant of the
996    // original insertelt. The old shuffle will be dead now.
997    return new ShuffleVectorInst(Shuf->getOperand(0),
998                                 ConstantVector::get(NewShufElts), NewMaskElts);
999  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1000    // Transform sequences of insertelements ops with constant data/indexes into
1001    // a single shuffle op.
1002    // Can not handle scalable type, the number of elements needed to create
1003    // shuffle mask is not a compile-time constant.
1004    if (isa<ScalableVectorType>(InsElt.getType()))
1005      return nullptr;
1006    unsigned NumElts =
1007        cast<FixedVectorType>(InsElt.getType())->getNumElements();
1008
1009    uint64_t InsertIdx[2];
1010    Constant *Val[2];
1011    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1012        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1013        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1014        !match(IEI->getOperand(1), m_Constant(Val[1])))
1015      return nullptr;
1016    SmallVector<Constant *, 16> Values(NumElts);
1017    SmallVector<int, 16> Mask(NumElts);
1018    auto ValI = std::begin(Val);
1019    // Generate new constant vector and mask.
1020    // We have 2 values/masks from the insertelements instructions. Insert them
1021    // into new value/mask vectors.
1022    for (uint64_t I : InsertIdx) {
1023      if (!Values[I]) {
1024        Values[I] = *ValI;
1025        Mask[I] = NumElts + I;
1026      }
1027      ++ValI;
1028    }
1029    // Remaining values are filled with 'undef' values.
1030    for (unsigned I = 0; I < NumElts; ++I) {
1031      if (!Values[I]) {
1032        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1033        Mask[I] = I;
1034      }
1035    }
1036    // Create new operands for a shuffle that includes the constant of the
1037    // original insertelt.
1038    return new ShuffleVectorInst(IEI->getOperand(0),
1039                                 ConstantVector::get(Values), Mask);
1040  }
1041  return nullptr;
1042}
1043
1044Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1045  Value *VecOp    = IE.getOperand(0);
1046  Value *ScalarOp = IE.getOperand(1);
1047  Value *IdxOp    = IE.getOperand(2);
1048
1049  if (auto *V = SimplifyInsertElementInst(
1050          VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1051    return replaceInstUsesWith(IE, V);
1052
1053  // If the scalar is bitcast and inserted into undef, do the insert in the
1054  // source type followed by bitcast.
1055  // TODO: Generalize for insert into any constant, not just undef?
1056  Value *ScalarSrc;
1057  if (match(VecOp, m_Undef()) &&
1058      match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1059      (ScalarSrc->getType()->isIntegerTy() ||
1060       ScalarSrc->getType()->isFloatingPointTy())) {
1061    // inselt undef, (bitcast ScalarSrc), IdxOp -->
1062    //   bitcast (inselt undef, ScalarSrc, IdxOp)
1063    Type *ScalarTy = ScalarSrc->getType();
1064    Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1065    UndefValue *NewUndef = UndefValue::get(VecTy);
1066    Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1067    return new BitCastInst(NewInsElt, IE.getType());
1068  }
1069
1070  // If the vector and scalar are both bitcast from the same element type, do
1071  // the insert in that source type followed by bitcast.
1072  Value *VecSrc;
1073  if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1074      match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1075      (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1076      VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1077      cast<VectorType>(VecSrc->getType())->getElementType() ==
1078          ScalarSrc->getType()) {
1079    // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1080    //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1081    Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1082    return new BitCastInst(NewInsElt, IE.getType());
1083  }
1084
1085  // If the inserted element was extracted from some other fixed-length vector
1086  // and both indexes are valid constants, try to turn this into a shuffle.
1087  // Can not handle scalable vector type, the number of elements needed to
1088  // create shuffle mask is not a compile-time constant.
1089  uint64_t InsertedIdx, ExtractedIdx;
1090  Value *ExtVecOp;
1091  if (isa<FixedVectorType>(IE.getType()) &&
1092      match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1093      match(ScalarOp,
1094            m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1095      isa<FixedVectorType>(ExtVecOp->getType()) &&
1096      ExtractedIdx <
1097          cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1098    // TODO: Looking at the user(s) to determine if this insert is a
1099    // fold-to-shuffle opportunity does not match the usual instcombine
1100    // constraints. We should decide if the transform is worthy based only
1101    // on this instruction and its operands, but that may not work currently.
1102    //
1103    // Here, we are trying to avoid creating shuffles before reaching
1104    // the end of a chain of extract-insert pairs. This is complicated because
1105    // we do not generally form arbitrary shuffle masks in instcombine
1106    // (because those may codegen poorly), but collectShuffleElements() does
1107    // exactly that.
1108    //
1109    // The rules for determining what is an acceptable target-independent
1110    // shuffle mask are fuzzy because they evolve based on the backend's
1111    // capabilities and real-world impact.
1112    auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1113      if (!Insert.hasOneUse())
1114        return true;
1115      auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1116      if (!InsertUser)
1117        return true;
1118      return false;
1119    };
1120
1121    // Try to form a shuffle from a chain of extract-insert ops.
1122    if (isShuffleRootCandidate(IE)) {
1123      SmallVector<int, 16> Mask;
1124      ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1125
1126      // The proposed shuffle may be trivial, in which case we shouldn't
1127      // perform the combine.
1128      if (LR.first != &IE && LR.second != &IE) {
1129        // We now have a shuffle of LHS, RHS, Mask.
1130        if (LR.second == nullptr)
1131          LR.second = UndefValue::get(LR.first->getType());
1132        return new ShuffleVectorInst(LR.first, LR.second, Mask);
1133      }
1134    }
1135  }
1136
1137  if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1138    unsigned VWidth = VecTy->getNumElements();
1139    APInt UndefElts(VWidth, 0);
1140    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1141    if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1142      if (V != &IE)
1143        return replaceInstUsesWith(IE, V);
1144      return &IE;
1145    }
1146  }
1147
1148  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1149    return Shuf;
1150
1151  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1152    return NewInsElt;
1153
1154  if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1155    return Broadcast;
1156
1157  if (Instruction *Splat = foldInsEltIntoSplat(IE))
1158    return Splat;
1159
1160  if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1161    return IdentityShuf;
1162
1163  return nullptr;
1164}
1165
1166/// Return true if we can evaluate the specified expression tree if the vector
1167/// elements were shuffled in a different order.
1168static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1169                                unsigned Depth = 5) {
1170  // We can always reorder the elements of a constant.
1171  if (isa<Constant>(V))
1172    return true;
1173
1174  // We won't reorder vector arguments. No IPO here.
1175  Instruction *I = dyn_cast<Instruction>(V);
1176  if (!I) return false;
1177
1178  // Two users may expect different orders of the elements. Don't try it.
1179  if (!I->hasOneUse())
1180    return false;
1181
1182  if (Depth == 0) return false;
1183
1184  switch (I->getOpcode()) {
1185    case Instruction::UDiv:
1186    case Instruction::SDiv:
1187    case Instruction::URem:
1188    case Instruction::SRem:
1189      // Propagating an undefined shuffle mask element to integer div/rem is not
1190      // allowed because those opcodes can create immediate undefined behavior
1191      // from an undefined element in an operand.
1192      if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1193        return false;
1194      LLVM_FALLTHROUGH;
1195    case Instruction::Add:
1196    case Instruction::FAdd:
1197    case Instruction::Sub:
1198    case Instruction::FSub:
1199    case Instruction::Mul:
1200    case Instruction::FMul:
1201    case Instruction::FDiv:
1202    case Instruction::FRem:
1203    case Instruction::Shl:
1204    case Instruction::LShr:
1205    case Instruction::AShr:
1206    case Instruction::And:
1207    case Instruction::Or:
1208    case Instruction::Xor:
1209    case Instruction::ICmp:
1210    case Instruction::FCmp:
1211    case Instruction::Trunc:
1212    case Instruction::ZExt:
1213    case Instruction::SExt:
1214    case Instruction::FPToUI:
1215    case Instruction::FPToSI:
1216    case Instruction::UIToFP:
1217    case Instruction::SIToFP:
1218    case Instruction::FPTrunc:
1219    case Instruction::FPExt:
1220    case Instruction::GetElementPtr: {
1221      // Bail out if we would create longer vector ops. We could allow creating
1222      // longer vector ops, but that may result in more expensive codegen.
1223      Type *ITy = I->getType();
1224      if (ITy->isVectorTy() &&
1225          Mask.size() > cast<VectorType>(ITy)->getNumElements())
1226        return false;
1227      for (Value *Operand : I->operands()) {
1228        if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1229          return false;
1230      }
1231      return true;
1232    }
1233    case Instruction::InsertElement: {
1234      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1235      if (!CI) return false;
1236      int ElementNumber = CI->getLimitedValue();
1237
1238      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1239      // can't put an element into multiple indices.
1240      bool SeenOnce = false;
1241      for (int i = 0, e = Mask.size(); i != e; ++i) {
1242        if (Mask[i] == ElementNumber) {
1243          if (SeenOnce)
1244            return false;
1245          SeenOnce = true;
1246        }
1247      }
1248      return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1249    }
1250  }
1251  return false;
1252}
1253
1254/// Rebuild a new instruction just like 'I' but with the new operands given.
1255/// In the event of type mismatch, the type of the operands is correct.
1256static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1257  // We don't want to use the IRBuilder here because we want the replacement
1258  // instructions to appear next to 'I', not the builder's insertion point.
1259  switch (I->getOpcode()) {
1260    case Instruction::Add:
1261    case Instruction::FAdd:
1262    case Instruction::Sub:
1263    case Instruction::FSub:
1264    case Instruction::Mul:
1265    case Instruction::FMul:
1266    case Instruction::UDiv:
1267    case Instruction::SDiv:
1268    case Instruction::FDiv:
1269    case Instruction::URem:
1270    case Instruction::SRem:
1271    case Instruction::FRem:
1272    case Instruction::Shl:
1273    case Instruction::LShr:
1274    case Instruction::AShr:
1275    case Instruction::And:
1276    case Instruction::Or:
1277    case Instruction::Xor: {
1278      BinaryOperator *BO = cast<BinaryOperator>(I);
1279      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1280      BinaryOperator *New =
1281          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1282                                 NewOps[0], NewOps[1], "", BO);
1283      if (isa<OverflowingBinaryOperator>(BO)) {
1284        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1285        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1286      }
1287      if (isa<PossiblyExactOperator>(BO)) {
1288        New->setIsExact(BO->isExact());
1289      }
1290      if (isa<FPMathOperator>(BO))
1291        New->copyFastMathFlags(I);
1292      return New;
1293    }
1294    case Instruction::ICmp:
1295      assert(NewOps.size() == 2 && "icmp with #ops != 2");
1296      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1297                          NewOps[0], NewOps[1]);
1298    case Instruction::FCmp:
1299      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1300      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1301                          NewOps[0], NewOps[1]);
1302    case Instruction::Trunc:
1303    case Instruction::ZExt:
1304    case Instruction::SExt:
1305    case Instruction::FPToUI:
1306    case Instruction::FPToSI:
1307    case Instruction::UIToFP:
1308    case Instruction::SIToFP:
1309    case Instruction::FPTrunc:
1310    case Instruction::FPExt: {
1311      // It's possible that the mask has a different number of elements from
1312      // the original cast. We recompute the destination type to match the mask.
1313      Type *DestTy = VectorType::get(
1314          I->getType()->getScalarType(),
1315          cast<VectorType>(NewOps[0]->getType())->getElementCount());
1316      assert(NewOps.size() == 1 && "cast with #ops != 1");
1317      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1318                              "", I);
1319    }
1320    case Instruction::GetElementPtr: {
1321      Value *Ptr = NewOps[0];
1322      ArrayRef<Value*> Idx = NewOps.slice(1);
1323      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1324          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1325      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1326      return GEP;
1327    }
1328  }
1329  llvm_unreachable("failed to rebuild vector instructions");
1330}
1331
1332static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1333  // Mask.size() does not need to be equal to the number of vector elements.
1334
1335  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1336  Type *EltTy = V->getType()->getScalarType();
1337  Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1338  if (isa<UndefValue>(V))
1339    return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1340
1341  if (isa<ConstantAggregateZero>(V))
1342    return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1343
1344  if (Constant *C = dyn_cast<Constant>(V))
1345    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1346                                          Mask);
1347
1348  Instruction *I = cast<Instruction>(V);
1349  switch (I->getOpcode()) {
1350    case Instruction::Add:
1351    case Instruction::FAdd:
1352    case Instruction::Sub:
1353    case Instruction::FSub:
1354    case Instruction::Mul:
1355    case Instruction::FMul:
1356    case Instruction::UDiv:
1357    case Instruction::SDiv:
1358    case Instruction::FDiv:
1359    case Instruction::URem:
1360    case Instruction::SRem:
1361    case Instruction::FRem:
1362    case Instruction::Shl:
1363    case Instruction::LShr:
1364    case Instruction::AShr:
1365    case Instruction::And:
1366    case Instruction::Or:
1367    case Instruction::Xor:
1368    case Instruction::ICmp:
1369    case Instruction::FCmp:
1370    case Instruction::Trunc:
1371    case Instruction::ZExt:
1372    case Instruction::SExt:
1373    case Instruction::FPToUI:
1374    case Instruction::FPToSI:
1375    case Instruction::UIToFP:
1376    case Instruction::SIToFP:
1377    case Instruction::FPTrunc:
1378    case Instruction::FPExt:
1379    case Instruction::Select:
1380    case Instruction::GetElementPtr: {
1381      SmallVector<Value*, 8> NewOps;
1382      bool NeedsRebuild =
1383          (Mask.size() != cast<VectorType>(I->getType())->getNumElements());
1384      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1385        Value *V;
1386        // Recursively call evaluateInDifferentElementOrder on vector arguments
1387        // as well. E.g. GetElementPtr may have scalar operands even if the
1388        // return value is a vector, so we need to examine the operand type.
1389        if (I->getOperand(i)->getType()->isVectorTy())
1390          V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1391        else
1392          V = I->getOperand(i);
1393        NewOps.push_back(V);
1394        NeedsRebuild |= (V != I->getOperand(i));
1395      }
1396      if (NeedsRebuild) {
1397        return buildNew(I, NewOps);
1398      }
1399      return I;
1400    }
1401    case Instruction::InsertElement: {
1402      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1403
1404      // The insertelement was inserting at Element. Figure out which element
1405      // that becomes after shuffling. The answer is guaranteed to be unique
1406      // by CanEvaluateShuffled.
1407      bool Found = false;
1408      int Index = 0;
1409      for (int e = Mask.size(); Index != e; ++Index) {
1410        if (Mask[Index] == Element) {
1411          Found = true;
1412          break;
1413        }
1414      }
1415
1416      // If element is not in Mask, no need to handle the operand 1 (element to
1417      // be inserted). Just evaluate values in operand 0 according to Mask.
1418      if (!Found)
1419        return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1420
1421      Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1422      return InsertElementInst::Create(V, I->getOperand(1),
1423                                       ConstantInt::get(I32Ty, Index), "", I);
1424    }
1425  }
1426  llvm_unreachable("failed to reorder elements of vector instruction!");
1427}
1428
1429// Returns true if the shuffle is extracting a contiguous range of values from
1430// LHS, for example:
1431//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1432//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1433//   Shuffles to:  |EE|FF|GG|HH|
1434//                 +--+--+--+--+
1435static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1436                                       ArrayRef<int> Mask) {
1437  unsigned LHSElems =
1438      cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
1439  unsigned MaskElems = Mask.size();
1440  unsigned BegIdx = Mask.front();
1441  unsigned EndIdx = Mask.back();
1442  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1443    return false;
1444  for (unsigned I = 0; I != MaskElems; ++I)
1445    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1446      return false;
1447  return true;
1448}
1449
1450/// These are the ingredients in an alternate form binary operator as described
1451/// below.
1452struct BinopElts {
1453  BinaryOperator::BinaryOps Opcode;
1454  Value *Op0;
1455  Value *Op1;
1456  BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1457            Value *V0 = nullptr, Value *V1 = nullptr) :
1458      Opcode(Opc), Op0(V0), Op1(V1) {}
1459  operator bool() const { return Opcode != 0; }
1460};
1461
1462/// Binops may be transformed into binops with different opcodes and operands.
1463/// Reverse the usual canonicalization to enable folds with the non-canonical
1464/// form of the binop. If a transform is possible, return the elements of the
1465/// new binop. If not, return invalid elements.
1466static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1467  Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1468  Type *Ty = BO->getType();
1469  switch (BO->getOpcode()) {
1470    case Instruction::Shl: {
1471      // shl X, C --> mul X, (1 << C)
1472      Constant *C;
1473      if (match(BO1, m_Constant(C))) {
1474        Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1475        return { Instruction::Mul, BO0, ShlOne };
1476      }
1477      break;
1478    }
1479    case Instruction::Or: {
1480      // or X, C --> add X, C (when X and C have no common bits set)
1481      const APInt *C;
1482      if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1483        return { Instruction::Add, BO0, BO1 };
1484      break;
1485    }
1486    default:
1487      break;
1488  }
1489  return {};
1490}
1491
1492static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1493  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1494
1495  // Are we shuffling together some value and that same value after it has been
1496  // modified by a binop with a constant?
1497  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1498  Constant *C;
1499  bool Op0IsBinop;
1500  if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1501    Op0IsBinop = true;
1502  else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1503    Op0IsBinop = false;
1504  else
1505    return nullptr;
1506
1507  // The identity constant for a binop leaves a variable operand unchanged. For
1508  // a vector, this is a splat of something like 0, -1, or 1.
1509  // If there's no identity constant for this binop, we're done.
1510  auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1511  BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1512  Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1513  if (!IdC)
1514    return nullptr;
1515
1516  // Shuffle identity constants into the lanes that return the original value.
1517  // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1518  // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1519  // The existing binop constant vector remains in the same operand position.
1520  ArrayRef<int> Mask = Shuf.getShuffleMask();
1521  Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1522                                ConstantExpr::getShuffleVector(IdC, C, Mask);
1523
1524  bool MightCreatePoisonOrUB =
1525      is_contained(Mask, UndefMaskElem) &&
1526      (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1527  if (MightCreatePoisonOrUB)
1528    NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1529
1530  // shuf (bop X, C), X, M --> bop X, C'
1531  // shuf X, (bop X, C), M --> bop X, C'
1532  Value *X = Op0IsBinop ? Op1 : Op0;
1533  Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1534  NewBO->copyIRFlags(BO);
1535
1536  // An undef shuffle mask element may propagate as an undef constant element in
1537  // the new binop. That would produce poison where the original code might not.
1538  // If we already made a safe constant, then there's no danger.
1539  if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1540    NewBO->dropPoisonGeneratingFlags();
1541  return NewBO;
1542}
1543
1544/// If we have an insert of a scalar to a non-zero element of an undefined
1545/// vector and then shuffle that value, that's the same as inserting to the zero
1546/// element and shuffling. Splatting from the zero element is recognized as the
1547/// canonical form of splat.
1548static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1549                                            InstCombiner::BuilderTy &Builder) {
1550  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1551  ArrayRef<int> Mask = Shuf.getShuffleMask();
1552  Value *X;
1553  uint64_t IndexC;
1554
1555  // Match a shuffle that is a splat to a non-zero element.
1556  if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
1557                                       m_ConstantInt(IndexC)))) ||
1558      !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1559    return nullptr;
1560
1561  // Insert into element 0 of an undef vector.
1562  UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1563  Constant *Zero = Builder.getInt32(0);
1564  Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1565
1566  // Splat from element 0. Any mask element that is undefined remains undefined.
1567  // For example:
1568  // shuf (inselt undef, X, 2), undef, <2,2,undef>
1569  //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1570  unsigned NumMaskElts = Shuf.getType()->getNumElements();
1571  SmallVector<int, 16> NewMask(NumMaskElts, 0);
1572  for (unsigned i = 0; i != NumMaskElts; ++i)
1573    if (Mask[i] == UndefMaskElem)
1574      NewMask[i] = Mask[i];
1575
1576  return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1577}
1578
1579/// Try to fold shuffles that are the equivalent of a vector select.
1580static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1581                                      InstCombiner::BuilderTy &Builder,
1582                                      const DataLayout &DL) {
1583  if (!Shuf.isSelect())
1584    return nullptr;
1585
1586  // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1587  // Commuting undef to operand 0 conflicts with another canonicalization.
1588  unsigned NumElts = Shuf.getType()->getNumElements();
1589  if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1590      Shuf.getMaskValue(0) >= (int)NumElts) {
1591    // TODO: Can we assert that both operands of a shuffle-select are not undef
1592    // (otherwise, it would have been folded by instsimplify?
1593    Shuf.commute();
1594    return &Shuf;
1595  }
1596
1597  if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1598    return I;
1599
1600  BinaryOperator *B0, *B1;
1601  if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1602      !match(Shuf.getOperand(1), m_BinOp(B1)))
1603    return nullptr;
1604
1605  Value *X, *Y;
1606  Constant *C0, *C1;
1607  bool ConstantsAreOp1;
1608  if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1609      match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1610    ConstantsAreOp1 = true;
1611  else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1612           match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1613    ConstantsAreOp1 = false;
1614  else
1615    return nullptr;
1616
1617  // We need matching binops to fold the lanes together.
1618  BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1619  BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1620  bool DropNSW = false;
1621  if (ConstantsAreOp1 && Opc0 != Opc1) {
1622    // TODO: We drop "nsw" if shift is converted into multiply because it may
1623    // not be correct when the shift amount is BitWidth - 1. We could examine
1624    // each vector element to determine if it is safe to keep that flag.
1625    if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1626      DropNSW = true;
1627    if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1628      assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1629      Opc0 = AltB0.Opcode;
1630      C0 = cast<Constant>(AltB0.Op1);
1631    } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1632      assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1633      Opc1 = AltB1.Opcode;
1634      C1 = cast<Constant>(AltB1.Op1);
1635    }
1636  }
1637
1638  if (Opc0 != Opc1)
1639    return nullptr;
1640
1641  // The opcodes must be the same. Use a new name to make that clear.
1642  BinaryOperator::BinaryOps BOpc = Opc0;
1643
1644  // Select the constant elements needed for the single binop.
1645  ArrayRef<int> Mask = Shuf.getShuffleMask();
1646  Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1647
1648  // We are moving a binop after a shuffle. When a shuffle has an undefined
1649  // mask element, the result is undefined, but it is not poison or undefined
1650  // behavior. That is not necessarily true for div/rem/shift.
1651  bool MightCreatePoisonOrUB =
1652      is_contained(Mask, UndefMaskElem) &&
1653      (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1654  if (MightCreatePoisonOrUB)
1655    NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1656
1657  Value *V;
1658  if (X == Y) {
1659    // Remove a binop and the shuffle by rearranging the constant:
1660    // shuffle (op V, C0), (op V, C1), M --> op V, C'
1661    // shuffle (op C0, V), (op C1, V), M --> op C', V
1662    V = X;
1663  } else {
1664    // If there are 2 different variable operands, we must create a new shuffle
1665    // (select) first, so check uses to ensure that we don't end up with more
1666    // instructions than we started with.
1667    if (!B0->hasOneUse() && !B1->hasOneUse())
1668      return nullptr;
1669
1670    // If we use the original shuffle mask and op1 is *variable*, we would be
1671    // putting an undef into operand 1 of div/rem/shift. This is either UB or
1672    // poison. We do not have to guard against UB when *constants* are op1
1673    // because safe constants guarantee that we do not overflow sdiv/srem (and
1674    // there's no danger for other opcodes).
1675    // TODO: To allow this case, create a new shuffle mask with no undefs.
1676    if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1677      return nullptr;
1678
1679    // Note: In general, we do not create new shuffles in InstCombine because we
1680    // do not know if a target can lower an arbitrary shuffle optimally. In this
1681    // case, the shuffle uses the existing mask, so there is no additional risk.
1682
1683    // Select the variable vectors first, then perform the binop:
1684    // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1685    // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1686    V = Builder.CreateShuffleVector(X, Y, Mask);
1687  }
1688
1689  Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1690                                         BinaryOperator::Create(BOpc, NewC, V);
1691
1692  // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1693  // 1. If we changed an opcode, poison conditions might have changed.
1694  // 2. If the shuffle had undef mask elements, the new binop might have undefs
1695  //    where the original code did not. But if we already made a safe constant,
1696  //    then there's no danger.
1697  NewBO->copyIRFlags(B0);
1698  NewBO->andIRFlags(B1);
1699  if (DropNSW)
1700    NewBO->setHasNoSignedWrap(false);
1701  if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1702    NewBO->dropPoisonGeneratingFlags();
1703  return NewBO;
1704}
1705
1706/// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
1707/// Example (little endian):
1708/// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
1709static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
1710                                     bool IsBigEndian) {
1711  // This must be a bitcasted shuffle of 1 vector integer operand.
1712  Type *DestType = Shuf.getType();
1713  Value *X;
1714  if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
1715      !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
1716    return nullptr;
1717
1718  // The source type must have the same number of elements as the shuffle,
1719  // and the source element type must be larger than the shuffle element type.
1720  Type *SrcType = X->getType();
1721  if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
1722      cast<VectorType>(SrcType)->getNumElements() !=
1723          cast<VectorType>(DestType)->getNumElements() ||
1724      SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
1725    return nullptr;
1726
1727  assert(Shuf.changesLength() && !Shuf.increasesLength() &&
1728         "Expected a shuffle that decreases length");
1729
1730  // Last, check that the mask chooses the correct low bits for each narrow
1731  // element in the result.
1732  uint64_t TruncRatio =
1733      SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
1734  ArrayRef<int> Mask = Shuf.getShuffleMask();
1735  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1736    if (Mask[i] == UndefMaskElem)
1737      continue;
1738    uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
1739    assert(LSBIndex <= std::numeric_limits<int32_t>::max() &&
1740           "Overflowed 32-bits");
1741    if (Mask[i] != (int)LSBIndex)
1742      return nullptr;
1743  }
1744
1745  return new TruncInst(X, DestType);
1746}
1747
1748/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1749/// narrowing (concatenating with undef and extracting back to the original
1750/// length). This allows replacing the wide select with a narrow select.
1751static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1752                                       InstCombiner::BuilderTy &Builder) {
1753  // This must be a narrowing identity shuffle. It extracts the 1st N elements
1754  // of the 1st vector operand of a shuffle.
1755  if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1756    return nullptr;
1757
1758  // The vector being shuffled must be a vector select that we can eliminate.
1759  // TODO: The one-use requirement could be eased if X and/or Y are constants.
1760  Value *Cond, *X, *Y;
1761  if (!match(Shuf.getOperand(0),
1762             m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1763    return nullptr;
1764
1765  // We need a narrow condition value. It must be extended with undef elements
1766  // and have the same number of elements as this shuffle.
1767  unsigned NarrowNumElts = Shuf.getType()->getNumElements();
1768  Value *NarrowCond;
1769  if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
1770      cast<VectorType>(NarrowCond->getType())->getNumElements() !=
1771          NarrowNumElts ||
1772      !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1773    return nullptr;
1774
1775  // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1776  // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1777  Value *Undef = UndefValue::get(X->getType());
1778  Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask());
1779  Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask());
1780  return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1781}
1782
1783/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1784static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1785  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1786  if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1787    return nullptr;
1788
1789  Value *X, *Y;
1790  ArrayRef<int> Mask;
1791  if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
1792    return nullptr;
1793
1794  // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1795  // then combining may result in worse codegen.
1796  if (!Op0->hasOneUse())
1797    return nullptr;
1798
1799  // We are extracting a subvector from a shuffle. Remove excess elements from
1800  // the 1st shuffle mask to eliminate the extract.
1801  //
1802  // This transform is conservatively limited to identity extracts because we do
1803  // not allow arbitrary shuffle mask creation as a target-independent transform
1804  // (because we can't guarantee that will lower efficiently).
1805  //
1806  // If the extracting shuffle has an undef mask element, it transfers to the
1807  // new shuffle mask. Otherwise, copy the original mask element. Example:
1808  //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1809  //   shuf X, Y, <C0, undef, C2, undef>
1810  unsigned NumElts = Shuf.getType()->getNumElements();
1811  SmallVector<int, 16> NewMask(NumElts);
1812  assert(NumElts < Mask.size() &&
1813         "Identity with extract must have less elements than its inputs");
1814
1815  for (unsigned i = 0; i != NumElts; ++i) {
1816    int ExtractMaskElt = Shuf.getMaskValue(i);
1817    int MaskElt = Mask[i];
1818    NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
1819  }
1820  return new ShuffleVectorInst(X, Y, NewMask);
1821}
1822
1823/// Try to replace a shuffle with an insertelement or try to replace a shuffle
1824/// operand with the operand of an insertelement.
1825static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
1826                                          InstCombiner &IC) {
1827  Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1828  SmallVector<int, 16> Mask;
1829  Shuf.getShuffleMask(Mask);
1830
1831  // The shuffle must not change vector sizes.
1832  // TODO: This restriction could be removed if the insert has only one use
1833  //       (because the transform would require a new length-changing shuffle).
1834  int NumElts = Mask.size();
1835  if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements()))
1836    return nullptr;
1837
1838  // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
1839  // not be able to handle it there if the insertelement has >1 use.
1840  // If the shuffle has an insertelement operand but does not choose the
1841  // inserted scalar element from that value, then we can replace that shuffle
1842  // operand with the source vector of the insertelement.
1843  Value *X;
1844  uint64_t IdxC;
1845  if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1846    // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
1847    if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1848      return IC.replaceOperand(Shuf, 0, X);
1849  }
1850  if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1851    // Offset the index constant by the vector width because we are checking for
1852    // accesses to the 2nd vector input of the shuffle.
1853    IdxC += NumElts;
1854    // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
1855    if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1856      return IC.replaceOperand(Shuf, 1, X);
1857  }
1858
1859  // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1860  auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1861    // We need an insertelement with a constant index.
1862    if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
1863                               m_ConstantInt(IndexC))))
1864      return false;
1865
1866    // Test the shuffle mask to see if it splices the inserted scalar into the
1867    // operand 1 vector of the shuffle.
1868    int NewInsIndex = -1;
1869    for (int i = 0; i != NumElts; ++i) {
1870      // Ignore undef mask elements.
1871      if (Mask[i] == -1)
1872        continue;
1873
1874      // The shuffle takes elements of operand 1 without lane changes.
1875      if (Mask[i] == NumElts + i)
1876        continue;
1877
1878      // The shuffle must choose the inserted scalar exactly once.
1879      if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1880        return false;
1881
1882      // The shuffle is placing the inserted scalar into element i.
1883      NewInsIndex = i;
1884    }
1885
1886    assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1887
1888    // Index is updated to the potentially translated insertion lane.
1889    IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1890    return true;
1891  };
1892
1893  // If the shuffle is unnecessary, insert the scalar operand directly into
1894  // operand 1 of the shuffle. Example:
1895  // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1896  Value *Scalar;
1897  ConstantInt *IndexC;
1898  if (isShufflingScalarIntoOp1(Scalar, IndexC))
1899    return InsertElementInst::Create(V1, Scalar, IndexC);
1900
1901  // Try again after commuting shuffle. Example:
1902  // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1903  // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1904  std::swap(V0, V1);
1905  ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1906  if (isShufflingScalarIntoOp1(Scalar, IndexC))
1907    return InsertElementInst::Create(V1, Scalar, IndexC);
1908
1909  return nullptr;
1910}
1911
1912static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1913  // Match the operands as identity with padding (also known as concatenation
1914  // with undef) shuffles of the same source type. The backend is expected to
1915  // recreate these concatenations from a shuffle of narrow operands.
1916  auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1917  auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1918  if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1919      !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1920    return nullptr;
1921
1922  // We limit this transform to power-of-2 types because we expect that the
1923  // backend can convert the simplified IR patterns to identical nodes as the
1924  // original IR.
1925  // TODO: If we can verify the same behavior for arbitrary types, the
1926  //       power-of-2 checks can be removed.
1927  Value *X = Shuffle0->getOperand(0);
1928  Value *Y = Shuffle1->getOperand(0);
1929  if (X->getType() != Y->getType() ||
1930      !isPowerOf2_32(Shuf.getType()->getNumElements()) ||
1931      !isPowerOf2_32(Shuffle0->getType()->getNumElements()) ||
1932      !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) ||
1933      isa<UndefValue>(X) || isa<UndefValue>(Y))
1934    return nullptr;
1935  assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1936         isa<UndefValue>(Shuffle1->getOperand(1)) &&
1937         "Unexpected operand for identity shuffle");
1938
1939  // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1940  // operands directly by adjusting the shuffle mask to account for the narrower
1941  // types:
1942  // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1943  int NarrowElts = cast<VectorType>(X->getType())->getNumElements();
1944  int WideElts = Shuffle0->getType()->getNumElements();
1945  assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1946
1947  ArrayRef<int> Mask = Shuf.getShuffleMask();
1948  SmallVector<int, 16> NewMask(Mask.size(), -1);
1949  for (int i = 0, e = Mask.size(); i != e; ++i) {
1950    if (Mask[i] == -1)
1951      continue;
1952
1953    // If this shuffle is choosing an undef element from 1 of the sources, that
1954    // element is undef.
1955    if (Mask[i] < WideElts) {
1956      if (Shuffle0->getMaskValue(Mask[i]) == -1)
1957        continue;
1958    } else {
1959      if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1960        continue;
1961    }
1962
1963    // If this shuffle is choosing from the 1st narrow op, the mask element is
1964    // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1965    // element is offset down to adjust for the narrow vector widths.
1966    if (Mask[i] < WideElts) {
1967      assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1968      NewMask[i] = Mask[i];
1969    } else {
1970      assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1971      NewMask[i] = Mask[i] - (WideElts - NarrowElts);
1972    }
1973  }
1974  return new ShuffleVectorInst(X, Y, NewMask);
1975}
1976
1977Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1978  Value *LHS = SVI.getOperand(0);
1979  Value *RHS = SVI.getOperand(1);
1980  SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
1981  if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
1982                                          SVI.getType(), ShufQuery))
1983    return replaceInstUsesWith(SVI, V);
1984
1985  // shuffle x, x, mask --> shuffle x, undef, mask'
1986  unsigned VWidth = SVI.getType()->getNumElements();
1987  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
1988  ArrayRef<int> Mask = SVI.getShuffleMask();
1989  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1990
1991  // Peek through a bitcasted shuffle operand by scaling the mask. If the
1992  // simulated shuffle can simplify, then this shuffle is unnecessary:
1993  // shuf (bitcast X), undef, Mask --> bitcast X'
1994  // TODO: This could be extended to allow length-changing shuffles.
1995  //       The transform might also be obsoleted if we allowed canonicalization
1996  //       of bitcasted shuffles.
1997  Value *X;
1998  if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
1999      X->getType()->isVectorTy() && VWidth == LHSWidth) {
2000    // Try to create a scaled mask constant.
2001    auto *XType = cast<VectorType>(X->getType());
2002    unsigned XNumElts = XType->getNumElements();
2003    SmallVector<int, 16> ScaledMask;
2004    if (XNumElts >= VWidth) {
2005      assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2006      narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2007    } else {
2008      assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2009      if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2010        ScaledMask.clear();
2011    }
2012    if (!ScaledMask.empty()) {
2013      // If the shuffled source vector simplifies, cast that value to this
2014      // shuffle's type.
2015      if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2016                                              ScaledMask, XType, ShufQuery))
2017        return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2018    }
2019  }
2020
2021  if (LHS == RHS) {
2022    assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
2023    // Remap any references to RHS to use LHS.
2024    SmallVector<int, 16> Elts;
2025    for (unsigned i = 0; i != VWidth; ++i) {
2026      // Propagate undef elements or force mask to LHS.
2027      if (Mask[i] < 0)
2028        Elts.push_back(UndefMaskElem);
2029      else
2030        Elts.push_back(Mask[i] % LHSWidth);
2031    }
2032    return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
2033  }
2034
2035  // shuffle undef, x, mask --> shuffle x, undef, mask'
2036  if (isa<UndefValue>(LHS)) {
2037    SVI.commute();
2038    return &SVI;
2039  }
2040
2041  if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2042    return I;
2043
2044  if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2045    return I;
2046
2047  if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2048    return I;
2049
2050  if (Instruction *I = narrowVectorSelect(SVI, Builder))
2051    return I;
2052
2053  APInt UndefElts(VWidth, 0);
2054  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2055  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2056    if (V != &SVI)
2057      return replaceInstUsesWith(SVI, V);
2058    return &SVI;
2059  }
2060
2061  if (Instruction *I = foldIdentityExtractShuffle(SVI))
2062    return I;
2063
2064  // These transforms have the potential to lose undef knowledge, so they are
2065  // intentionally placed after SimplifyDemandedVectorElts().
2066  if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2067    return I;
2068  if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2069    return I;
2070
2071  if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
2072    Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2073    return replaceInstUsesWith(SVI, V);
2074  }
2075
2076  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2077  // a non-vector type. We can instead bitcast the original vector followed by
2078  // an extract of the desired element:
2079  //
2080  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2081  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2082  //   %1 = bitcast <4 x i8> %sroa to i32
2083  // Becomes:
2084  //   %bc = bitcast <16 x i8> %in to <4 x i32>
2085  //   %ext = extractelement <4 x i32> %bc, i32 0
2086  //
2087  // If the shuffle is extracting a contiguous range of values from the input
2088  // vector then each use which is a bitcast of the extracted size can be
2089  // replaced. This will work if the vector types are compatible, and the begin
2090  // index is aligned to a value in the casted vector type. If the begin index
2091  // isn't aligned then we can shuffle the original vector (keeping the same
2092  // vector type) before extracting.
2093  //
2094  // This code will bail out if the target type is fundamentally incompatible
2095  // with vectors of the source type.
2096  //
2097  // Example of <16 x i8>, target type i32:
2098  // Index range [4,8):         v-----------v Will work.
2099  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2100  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2101  //     <4 x i32>: |           |           |           |           |
2102  //                +-----------+-----------+-----------+-----------+
2103  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2104  // Target type i40:           ^--------------^ Won't work, bail.
2105  bool MadeChange = false;
2106  if (isShuffleExtractingFromLHS(SVI, Mask)) {
2107    Value *V = LHS;
2108    unsigned MaskElems = Mask.size();
2109    VectorType *SrcTy = cast<VectorType>(V->getType());
2110    unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2111    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2112    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2113    unsigned SrcNumElems = SrcTy->getNumElements();
2114    SmallVector<BitCastInst *, 8> BCs;
2115    DenseMap<Type *, Value *> NewBCs;
2116    for (User *U : SVI.users())
2117      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2118        if (!BC->use_empty())
2119          // Only visit bitcasts that weren't previously handled.
2120          BCs.push_back(BC);
2121    for (BitCastInst *BC : BCs) {
2122      unsigned BegIdx = Mask.front();
2123      Type *TgtTy = BC->getDestTy();
2124      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2125      if (!TgtElemBitWidth)
2126        continue;
2127      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2128      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2129      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2130      if (!VecBitWidthsEqual)
2131        continue;
2132      if (!VectorType::isValidElementType(TgtTy))
2133        continue;
2134      auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2135      if (!BegIsAligned) {
2136        // Shuffle the input so [0,NumElements) contains the output, and
2137        // [NumElems,SrcNumElems) is undef.
2138        SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2139        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2140          ShuffleMask[I] = Idx;
2141        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2142                                        ShuffleMask,
2143                                        SVI.getName() + ".extract");
2144        BegIdx = 0;
2145      }
2146      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2147      assert(SrcElemsPerTgtElem);
2148      BegIdx /= SrcElemsPerTgtElem;
2149      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2150      auto *NewBC =
2151          BCAlreadyExists
2152              ? NewBCs[CastSrcTy]
2153              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2154      if (!BCAlreadyExists)
2155        NewBCs[CastSrcTy] = NewBC;
2156      auto *Ext = Builder.CreateExtractElement(
2157          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2158      // The shufflevector isn't being replaced: the bitcast that used it
2159      // is. InstCombine will visit the newly-created instructions.
2160      replaceInstUsesWith(*BC, Ext);
2161      MadeChange = true;
2162    }
2163  }
2164
2165  // If the LHS is a shufflevector itself, see if we can combine it with this
2166  // one without producing an unusual shuffle.
2167  // Cases that might be simplified:
2168  // 1.
2169  // x1=shuffle(v1,v2,mask1)
2170  //  x=shuffle(x1,undef,mask)
2171  //        ==>
2172  //  x=shuffle(v1,undef,newMask)
2173  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2174  // 2.
2175  // x1=shuffle(v1,undef,mask1)
2176  //  x=shuffle(x1,x2,mask)
2177  // where v1.size() == mask1.size()
2178  //        ==>
2179  //  x=shuffle(v1,x2,newMask)
2180  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2181  // 3.
2182  // x2=shuffle(v2,undef,mask2)
2183  //  x=shuffle(x1,x2,mask)
2184  // where v2.size() == mask2.size()
2185  //        ==>
2186  //  x=shuffle(x1,v2,newMask)
2187  // newMask[i] = (mask[i] < x1.size())
2188  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2189  // 4.
2190  // x1=shuffle(v1,undef,mask1)
2191  // x2=shuffle(v2,undef,mask2)
2192  //  x=shuffle(x1,x2,mask)
2193  // where v1.size() == v2.size()
2194  //        ==>
2195  //  x=shuffle(v1,v2,newMask)
2196  // newMask[i] = (mask[i] < x1.size())
2197  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2198  //
2199  // Here we are really conservative:
2200  // we are absolutely afraid of producing a shuffle mask not in the input
2201  // program, because the code gen may not be smart enough to turn a merged
2202  // shuffle into two specific shuffles: it may produce worse code.  As such,
2203  // we only merge two shuffles if the result is either a splat or one of the
2204  // input shuffle masks.  In this case, merging the shuffles just removes
2205  // one instruction, which we know is safe.  This is good for things like
2206  // turning: (splat(splat)) -> splat, or
2207  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2208  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2209  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2210  if (LHSShuffle)
2211    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2212      LHSShuffle = nullptr;
2213  if (RHSShuffle)
2214    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2215      RHSShuffle = nullptr;
2216  if (!LHSShuffle && !RHSShuffle)
2217    return MadeChange ? &SVI : nullptr;
2218
2219  Value* LHSOp0 = nullptr;
2220  Value* LHSOp1 = nullptr;
2221  Value* RHSOp0 = nullptr;
2222  unsigned LHSOp0Width = 0;
2223  unsigned RHSOp0Width = 0;
2224  if (LHSShuffle) {
2225    LHSOp0 = LHSShuffle->getOperand(0);
2226    LHSOp1 = LHSShuffle->getOperand(1);
2227    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
2228  }
2229  if (RHSShuffle) {
2230    RHSOp0 = RHSShuffle->getOperand(0);
2231    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
2232  }
2233  Value* newLHS = LHS;
2234  Value* newRHS = RHS;
2235  if (LHSShuffle) {
2236    // case 1
2237    if (isa<UndefValue>(RHS)) {
2238      newLHS = LHSOp0;
2239      newRHS = LHSOp1;
2240    }
2241    // case 2 or 4
2242    else if (LHSOp0Width == LHSWidth) {
2243      newLHS = LHSOp0;
2244    }
2245  }
2246  // case 3 or 4
2247  if (RHSShuffle && RHSOp0Width == LHSWidth) {
2248    newRHS = RHSOp0;
2249  }
2250  // case 4
2251  if (LHSOp0 == RHSOp0) {
2252    newLHS = LHSOp0;
2253    newRHS = nullptr;
2254  }
2255
2256  if (newLHS == LHS && newRHS == RHS)
2257    return MadeChange ? &SVI : nullptr;
2258
2259  ArrayRef<int> LHSMask;
2260  ArrayRef<int> RHSMask;
2261  if (newLHS != LHS)
2262    LHSMask = LHSShuffle->getShuffleMask();
2263  if (RHSShuffle && newRHS != RHS)
2264    RHSMask = RHSShuffle->getShuffleMask();
2265
2266  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2267  SmallVector<int, 16> newMask;
2268  bool isSplat = true;
2269  int SplatElt = -1;
2270  // Create a new mask for the new ShuffleVectorInst so that the new
2271  // ShuffleVectorInst is equivalent to the original one.
2272  for (unsigned i = 0; i < VWidth; ++i) {
2273    int eltMask;
2274    if (Mask[i] < 0) {
2275      // This element is an undef value.
2276      eltMask = -1;
2277    } else if (Mask[i] < (int)LHSWidth) {
2278      // This element is from left hand side vector operand.
2279      //
2280      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2281      // new mask value for the element.
2282      if (newLHS != LHS) {
2283        eltMask = LHSMask[Mask[i]];
2284        // If the value selected is an undef value, explicitly specify it
2285        // with a -1 mask value.
2286        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2287          eltMask = -1;
2288      } else
2289        eltMask = Mask[i];
2290    } else {
2291      // This element is from right hand side vector operand
2292      //
2293      // If the value selected is an undef value, explicitly specify it
2294      // with a -1 mask value. (case 1)
2295      if (isa<UndefValue>(RHS))
2296        eltMask = -1;
2297      // If RHS is going to be replaced (case 3 or 4), calculate the
2298      // new mask value for the element.
2299      else if (newRHS != RHS) {
2300        eltMask = RHSMask[Mask[i]-LHSWidth];
2301        // If the value selected is an undef value, explicitly specify it
2302        // with a -1 mask value.
2303        if (eltMask >= (int)RHSOp0Width) {
2304          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2305                 && "should have been check above");
2306          eltMask = -1;
2307        }
2308      } else
2309        eltMask = Mask[i]-LHSWidth;
2310
2311      // If LHS's width is changed, shift the mask value accordingly.
2312      // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2313      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2314      // If newRHS == newLHS, we want to remap any references from newRHS to
2315      // newLHS so that we can properly identify splats that may occur due to
2316      // obfuscation across the two vectors.
2317      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2318        eltMask += newLHSWidth;
2319    }
2320
2321    // Check if this could still be a splat.
2322    if (eltMask >= 0) {
2323      if (SplatElt >= 0 && SplatElt != eltMask)
2324        isSplat = false;
2325      SplatElt = eltMask;
2326    }
2327
2328    newMask.push_back(eltMask);
2329  }
2330
2331  // If the result mask is equal to one of the original shuffle masks,
2332  // or is a splat, do the replacement.
2333  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2334    SmallVector<Constant*, 16> Elts;
2335    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2336      if (newMask[i] < 0) {
2337        Elts.push_back(UndefValue::get(Int32Ty));
2338      } else {
2339        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2340      }
2341    }
2342    if (!newRHS)
2343      newRHS = UndefValue::get(newLHS->getType());
2344    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2345  }
2346
2347  return MadeChange ? &SVI : nullptr;
2348}
2349