1//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for add, fadd, sub, and fsub.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Type.h"
28#include "llvm/IR/Value.h"
29#include "llvm/Support/AlignOf.h"
30#include "llvm/Support/Casting.h"
31#include "llvm/Support/KnownBits.h"
32#include <cassert>
33#include <utility>
34
35using namespace llvm;
36using namespace PatternMatch;
37
38#define DEBUG_TYPE "instcombine"
39
40namespace {
41
42  /// Class representing coefficient of floating-point addend.
43  /// This class needs to be highly efficient, which is especially true for
44  /// the constructor. As of I write this comment, the cost of the default
45  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46  /// perform write-merging).
47  ///
48  class FAddendCoef {
49  public:
50    // The constructor has to initialize a APFloat, which is unnecessary for
51    // most addends which have coefficient either 1 or -1. So, the constructor
52    // is expensive. In order to avoid the cost of the constructor, we should
53    // reuse some instances whenever possible. The pre-created instances
54    // FAddCombine::Add[0-5] embodies this idea.
55    FAddendCoef() = default;
56    ~FAddendCoef();
57
58    // If possible, don't define operator+/operator- etc because these
59    // operators inevitably call FAddendCoef's constructor which is not cheap.
60    void operator=(const FAddendCoef &A);
61    void operator+=(const FAddendCoef &A);
62    void operator*=(const FAddendCoef &S);
63
64    void set(short C) {
65      assert(!insaneIntVal(C) && "Insane coefficient");
66      IsFp = false; IntVal = C;
67    }
68
69    void set(const APFloat& C);
70
71    void negate();
72
73    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74    Value *getValue(Type *) const;
75
76    bool isOne() const { return isInt() && IntVal == 1; }
77    bool isTwo() const { return isInt() && IntVal == 2; }
78    bool isMinusOne() const { return isInt() && IntVal == -1; }
79    bool isMinusTwo() const { return isInt() && IntVal == -2; }
80
81  private:
82    bool insaneIntVal(int V) { return V > 4 || V < -4; }
83
84    APFloat *getFpValPtr()
85      { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
86
87    const APFloat *getFpValPtr() const
88      { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
89
90    const APFloat &getFpVal() const {
91      assert(IsFp && BufHasFpVal && "Incorret state");
92      return *getFpValPtr();
93    }
94
95    APFloat &getFpVal() {
96      assert(IsFp && BufHasFpVal && "Incorret state");
97      return *getFpValPtr();
98    }
99
100    bool isInt() const { return !IsFp; }
101
102    // If the coefficient is represented by an integer, promote it to a
103    // floating point.
104    void convertToFpType(const fltSemantics &Sem);
105
106    // Construct an APFloat from a signed integer.
107    // TODO: We should get rid of this function when APFloat can be constructed
108    //       from an *SIGNED* integer.
109    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
110
111    bool IsFp = false;
112
113    // True iff FpValBuf contains an instance of APFloat.
114    bool BufHasFpVal = false;
115
116    // The integer coefficient of an individual addend is either 1 or -1,
117    // and we try to simplify at most 4 addends from neighboring at most
118    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119    // is overkill of this end.
120    short IntVal = 0;
121
122    AlignedCharArrayUnion<APFloat> FpValBuf;
123  };
124
125  /// FAddend is used to represent floating-point addend. An addend is
126  /// represented as <C, V>, where the V is a symbolic value, and C is a
127  /// constant coefficient. A constant addend is represented as <C, 0>.
128  class FAddend {
129  public:
130    FAddend() = default;
131
132    void operator+=(const FAddend &T) {
133      assert((Val == T.Val) && "Symbolic-values disagree");
134      Coeff += T.Coeff;
135    }
136
137    Value *getSymVal() const { return Val; }
138    const FAddendCoef &getCoef() const { return Coeff; }
139
140    bool isConstant() const { return Val == nullptr; }
141    bool isZero() const { return Coeff.isZero(); }
142
143    void set(short Coefficient, Value *V) {
144      Coeff.set(Coefficient);
145      Val = V;
146    }
147    void set(const APFloat &Coefficient, Value *V) {
148      Coeff.set(Coefficient);
149      Val = V;
150    }
151    void set(const ConstantFP *Coefficient, Value *V) {
152      Coeff.set(Coefficient->getValueAPF());
153      Val = V;
154    }
155
156    void negate() { Coeff.negate(); }
157
158    /// Drill down the U-D chain one step to find the definition of V, and
159    /// try to break the definition into one or two addends.
160    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
161
162    /// Similar to FAddend::drillDownOneStep() except that the value being
163    /// splitted is the addend itself.
164    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
165
166  private:
167    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
168
169    // This addend has the value of "Coeff * Val".
170    Value *Val = nullptr;
171    FAddendCoef Coeff;
172  };
173
174  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175  /// with its neighboring at most two instructions.
176  ///
177  class FAddCombine {
178  public:
179    FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
180
181    Value *simplify(Instruction *FAdd);
182
183  private:
184    using AddendVect = SmallVector<const FAddend *, 4>;
185
186    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
187
188    /// Convert given addend to a Value
189    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
190
191    /// Return the number of instructions needed to emit the N-ary addition.
192    unsigned calcInstrNumber(const AddendVect& Vect);
193
194    Value *createFSub(Value *Opnd0, Value *Opnd1);
195    Value *createFAdd(Value *Opnd0, Value *Opnd1);
196    Value *createFMul(Value *Opnd0, Value *Opnd1);
197    Value *createFNeg(Value *V);
198    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199    void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
200
201     // Debugging stuff are clustered here.
202    #ifndef NDEBUG
203      unsigned CreateInstrNum;
204      void initCreateInstNum() { CreateInstrNum = 0; }
205      void incCreateInstNum() { CreateInstrNum++; }
206    #else
207      void initCreateInstNum() {}
208      void incCreateInstNum() {}
209    #endif
210
211    InstCombiner::BuilderTy &Builder;
212    Instruction *Instr = nullptr;
213  };
214
215} // end anonymous namespace
216
217//===----------------------------------------------------------------------===//
218//
219// Implementation of
220//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
221//
222//===----------------------------------------------------------------------===//
223FAddendCoef::~FAddendCoef() {
224  if (BufHasFpVal)
225    getFpValPtr()->~APFloat();
226}
227
228void FAddendCoef::set(const APFloat& C) {
229  APFloat *P = getFpValPtr();
230
231  if (isInt()) {
232    // As the buffer is meanless byte stream, we cannot call
233    // APFloat::operator=().
234    new(P) APFloat(C);
235  } else
236    *P = C;
237
238  IsFp = BufHasFpVal = true;
239}
240
241void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242  if (!isInt())
243    return;
244
245  APFloat *P = getFpValPtr();
246  if (IntVal > 0)
247    new(P) APFloat(Sem, IntVal);
248  else {
249    new(P) APFloat(Sem, 0 - IntVal);
250    P->changeSign();
251  }
252  IsFp = BufHasFpVal = true;
253}
254
255APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256  if (Val >= 0)
257    return APFloat(Sem, Val);
258
259  APFloat T(Sem, 0 - Val);
260  T.changeSign();
261
262  return T;
263}
264
265void FAddendCoef::operator=(const FAddendCoef &That) {
266  if (That.isInt())
267    set(That.IntVal);
268  else
269    set(That.getFpVal());
270}
271
272void FAddendCoef::operator+=(const FAddendCoef &That) {
273  RoundingMode RndMode = RoundingMode::NearestTiesToEven;
274  if (isInt() == That.isInt()) {
275    if (isInt())
276      IntVal += That.IntVal;
277    else
278      getFpVal().add(That.getFpVal(), RndMode);
279    return;
280  }
281
282  if (isInt()) {
283    const APFloat &T = That.getFpVal();
284    convertToFpType(T.getSemantics());
285    getFpVal().add(T, RndMode);
286    return;
287  }
288
289  APFloat &T = getFpVal();
290  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
291}
292
293void FAddendCoef::operator*=(const FAddendCoef &That) {
294  if (That.isOne())
295    return;
296
297  if (That.isMinusOne()) {
298    negate();
299    return;
300  }
301
302  if (isInt() && That.isInt()) {
303    int Res = IntVal * (int)That.IntVal;
304    assert(!insaneIntVal(Res) && "Insane int value");
305    IntVal = Res;
306    return;
307  }
308
309  const fltSemantics &Semantic =
310    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311
312  if (isInt())
313    convertToFpType(Semantic);
314  APFloat &F0 = getFpVal();
315
316  if (That.isInt())
317    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                APFloat::rmNearestTiesToEven);
319  else
320    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321}
322
323void FAddendCoef::negate() {
324  if (isInt())
325    IntVal = 0 - IntVal;
326  else
327    getFpVal().changeSign();
328}
329
330Value *FAddendCoef::getValue(Type *Ty) const {
331  return isInt() ?
332    ConstantFP::get(Ty, float(IntVal)) :
333    ConstantFP::get(Ty->getContext(), getFpVal());
334}
335
336// The definition of <Val>     Addends
337// =========================================
338//  A + B                     <1, A>, <1,B>
339//  A - B                     <1, A>, <1,B>
340//  0 - B                     <-1, B>
341//  C * A,                    <C, A>
342//  A + C                     <1, A> <C, NULL>
343//  0 +/- 0                   <0, NULL> (corner case)
344//
345// Legend: A and B are not constant, C is constant
346unsigned FAddend::drillValueDownOneStep
347  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348  Instruction *I = nullptr;
349  if (!Val || !(I = dyn_cast<Instruction>(Val)))
350    return 0;
351
352  unsigned Opcode = I->getOpcode();
353
354  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355    ConstantFP *C0, *C1;
356    Value *Opnd0 = I->getOperand(0);
357    Value *Opnd1 = I->getOperand(1);
358    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359      Opnd0 = nullptr;
360
361    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362      Opnd1 = nullptr;
363
364    if (Opnd0) {
365      if (!C0)
366        Addend0.set(1, Opnd0);
367      else
368        Addend0.set(C0, nullptr);
369    }
370
371    if (Opnd1) {
372      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373      if (!C1)
374        Addend.set(1, Opnd1);
375      else
376        Addend.set(C1, nullptr);
377      if (Opcode == Instruction::FSub)
378        Addend.negate();
379    }
380
381    if (Opnd0 || Opnd1)
382      return Opnd0 && Opnd1 ? 2 : 1;
383
384    // Both operands are zero. Weird!
385    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386    return 1;
387  }
388
389  if (I->getOpcode() == Instruction::FMul) {
390    Value *V0 = I->getOperand(0);
391    Value *V1 = I->getOperand(1);
392    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393      Addend0.set(C, V1);
394      return 1;
395    }
396
397    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398      Addend0.set(C, V0);
399      return 1;
400    }
401  }
402
403  return 0;
404}
405
406// Try to break *this* addend into two addends. e.g. Suppose this addend is
407// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408// i.e. <2.3, X> and <2.3, Y>.
409unsigned FAddend::drillAddendDownOneStep
410  (FAddend &Addend0, FAddend &Addend1) const {
411  if (isConstant())
412    return 0;
413
414  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415  if (!BreakNum || Coeff.isOne())
416    return BreakNum;
417
418  Addend0.Scale(Coeff);
419
420  if (BreakNum == 2)
421    Addend1.Scale(Coeff);
422
423  return BreakNum;
424}
425
426Value *FAddCombine::simplify(Instruction *I) {
427  assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428         "Expected 'reassoc'+'nsz' instruction");
429
430  // Currently we are not able to handle vector type.
431  if (I->getType()->isVectorTy())
432    return nullptr;
433
434  assert((I->getOpcode() == Instruction::FAdd ||
435          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
436
437  // Save the instruction before calling other member-functions.
438  Instr = I;
439
440  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
441
442  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
443
444  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445  unsigned Opnd0_ExpNum = 0;
446  unsigned Opnd1_ExpNum = 0;
447
448  if (!Opnd0.isConstant())
449    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
450
451  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452  if (OpndNum == 2 && !Opnd1.isConstant())
453    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
454
455  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456  if (Opnd0_ExpNum && Opnd1_ExpNum) {
457    AddendVect AllOpnds;
458    AllOpnds.push_back(&Opnd0_0);
459    AllOpnds.push_back(&Opnd1_0);
460    if (Opnd0_ExpNum == 2)
461      AllOpnds.push_back(&Opnd0_1);
462    if (Opnd1_ExpNum == 2)
463      AllOpnds.push_back(&Opnd1_1);
464
465    // Compute instruction quota. We should save at least one instruction.
466    unsigned InstQuota = 0;
467
468    Value *V0 = I->getOperand(0);
469    Value *V1 = I->getOperand(1);
470    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
472
473    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474      return R;
475  }
476
477  if (OpndNum != 2) {
478    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479    // splitted into two addends, say "V = X - Y", the instruction would have
480    // been optimized into "I = Y - X" in the previous steps.
481    //
482    const FAddendCoef &CE = Opnd0.getCoef();
483    return CE.isOne() ? Opnd0.getSymVal() : nullptr;
484  }
485
486  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487  if (Opnd1_ExpNum) {
488    AddendVect AllOpnds;
489    AllOpnds.push_back(&Opnd0);
490    AllOpnds.push_back(&Opnd1_0);
491    if (Opnd1_ExpNum == 2)
492      AllOpnds.push_back(&Opnd1_1);
493
494    if (Value *R = simplifyFAdd(AllOpnds, 1))
495      return R;
496  }
497
498  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499  if (Opnd0_ExpNum) {
500    AddendVect AllOpnds;
501    AllOpnds.push_back(&Opnd1);
502    AllOpnds.push_back(&Opnd0_0);
503    if (Opnd0_ExpNum == 2)
504      AllOpnds.push_back(&Opnd0_1);
505
506    if (Value *R = simplifyFAdd(AllOpnds, 1))
507      return R;
508  }
509
510  return nullptr;
511}
512
513Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514  unsigned AddendNum = Addends.size();
515  assert(AddendNum <= 4 && "Too many addends");
516
517  // For saving intermediate results;
518  unsigned NextTmpIdx = 0;
519  FAddend TmpResult[3];
520
521  // Points to the constant addend of the resulting simplified expression.
522  // If the resulting expr has constant-addend, this constant-addend is
523  // desirable to reside at the top of the resulting expression tree. Placing
524  // constant close to supper-expr(s) will potentially reveal some optimization
525  // opportunities in super-expr(s).
526  const FAddend *ConstAdd = nullptr;
527
528  // Simplified addends are placed <SimpVect>.
529  AddendVect SimpVect;
530
531  // The outer loop works on one symbolic-value at a time. Suppose the input
532  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533  // The symbolic-values will be processed in this order: x, y, z.
534  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
535
536    const FAddend *ThisAddend = Addends[SymIdx];
537    if (!ThisAddend) {
538      // This addend was processed before.
539      continue;
540    }
541
542    Value *Val = ThisAddend->getSymVal();
543    unsigned StartIdx = SimpVect.size();
544    SimpVect.push_back(ThisAddend);
545
546    // The inner loop collects addends sharing same symbolic-value, and these
547    // addends will be later on folded into a single addend. Following above
548    // example, if the symbolic value "y" is being processed, the inner loop
549    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550    // be later on folded into "<b1+b2, y>".
551    for (unsigned SameSymIdx = SymIdx + 1;
552         SameSymIdx < AddendNum; SameSymIdx++) {
553      const FAddend *T = Addends[SameSymIdx];
554      if (T && T->getSymVal() == Val) {
555        // Set null such that next iteration of the outer loop will not process
556        // this addend again.
557        Addends[SameSymIdx] = nullptr;
558        SimpVect.push_back(T);
559      }
560    }
561
562    // If multiple addends share same symbolic value, fold them together.
563    if (StartIdx + 1 != SimpVect.size()) {
564      FAddend &R = TmpResult[NextTmpIdx ++];
565      R = *SimpVect[StartIdx];
566      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567        R += *SimpVect[Idx];
568
569      // Pop all addends being folded and push the resulting folded addend.
570      SimpVect.resize(StartIdx);
571      if (Val) {
572        if (!R.isZero()) {
573          SimpVect.push_back(&R);
574        }
575      } else {
576        // Don't push constant addend at this time. It will be the last element
577        // of <SimpVect>.
578        ConstAdd = &R;
579      }
580    }
581  }
582
583  assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584         "out-of-bound access");
585
586  if (ConstAdd)
587    SimpVect.push_back(ConstAdd);
588
589  Value *Result;
590  if (!SimpVect.empty())
591    Result = createNaryFAdd(SimpVect, InstrQuota);
592  else {
593    // The addition is folded to 0.0.
594    Result = ConstantFP::get(Instr->getType(), 0.0);
595  }
596
597  return Result;
598}
599
600Value *FAddCombine::createNaryFAdd
601  (const AddendVect &Opnds, unsigned InstrQuota) {
602  assert(!Opnds.empty() && "Expect at least one addend");
603
604  // Step 1: Check if the # of instructions needed exceeds the quota.
605
606  unsigned InstrNeeded = calcInstrNumber(Opnds);
607  if (InstrNeeded > InstrQuota)
608    return nullptr;
609
610  initCreateInstNum();
611
612  // step 2: Emit the N-ary addition.
613  // Note that at most three instructions are involved in Fadd-InstCombine: the
614  // addition in question, and at most two neighboring instructions.
615  // The resulting optimized addition should have at least one less instruction
616  // than the original addition expression tree. This implies that the resulting
617  // N-ary addition has at most two instructions, and we don't need to worry
618  // about tree-height when constructing the N-ary addition.
619
620  Value *LastVal = nullptr;
621  bool LastValNeedNeg = false;
622
623  // Iterate the addends, creating fadd/fsub using adjacent two addends.
624  for (const FAddend *Opnd : Opnds) {
625    bool NeedNeg;
626    Value *V = createAddendVal(*Opnd, NeedNeg);
627    if (!LastVal) {
628      LastVal = V;
629      LastValNeedNeg = NeedNeg;
630      continue;
631    }
632
633    if (LastValNeedNeg == NeedNeg) {
634      LastVal = createFAdd(LastVal, V);
635      continue;
636    }
637
638    if (LastValNeedNeg)
639      LastVal = createFSub(V, LastVal);
640    else
641      LastVal = createFSub(LastVal, V);
642
643    LastValNeedNeg = false;
644  }
645
646  if (LastValNeedNeg) {
647    LastVal = createFNeg(LastVal);
648  }
649
650#ifndef NDEBUG
651  assert(CreateInstrNum == InstrNeeded &&
652         "Inconsistent in instruction numbers");
653#endif
654
655  return LastVal;
656}
657
658Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659  Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660  if (Instruction *I = dyn_cast<Instruction>(V))
661    createInstPostProc(I);
662  return V;
663}
664
665Value *FAddCombine::createFNeg(Value *V) {
666  Value *NewV = Builder.CreateFNeg(V);
667  if (Instruction *I = dyn_cast<Instruction>(NewV))
668    createInstPostProc(I, true); // fneg's don't receive instruction numbers.
669  return NewV;
670}
671
672Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
673  Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
674  if (Instruction *I = dyn_cast<Instruction>(V))
675    createInstPostProc(I);
676  return V;
677}
678
679Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
680  Value *V = Builder.CreateFMul(Opnd0, Opnd1);
681  if (Instruction *I = dyn_cast<Instruction>(V))
682    createInstPostProc(I);
683  return V;
684}
685
686void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
687  NewInstr->setDebugLoc(Instr->getDebugLoc());
688
689  // Keep track of the number of instruction created.
690  if (!NoNumber)
691    incCreateInstNum();
692
693  // Propagate fast-math flags
694  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
695}
696
697// Return the number of instruction needed to emit the N-ary addition.
698// NOTE: Keep this function in sync with createAddendVal().
699unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
700  unsigned OpndNum = Opnds.size();
701  unsigned InstrNeeded = OpndNum - 1;
702
703  // The number of addends in the form of "(-1)*x".
704  unsigned NegOpndNum = 0;
705
706  // Adjust the number of instructions needed to emit the N-ary add.
707  for (const FAddend *Opnd : Opnds) {
708    if (Opnd->isConstant())
709      continue;
710
711    // The constant check above is really for a few special constant
712    // coefficients.
713    if (isa<UndefValue>(Opnd->getSymVal()))
714      continue;
715
716    const FAddendCoef &CE = Opnd->getCoef();
717    if (CE.isMinusOne() || CE.isMinusTwo())
718      NegOpndNum++;
719
720    // Let the addend be "c * x". If "c == +/-1", the value of the addend
721    // is immediately available; otherwise, it needs exactly one instruction
722    // to evaluate the value.
723    if (!CE.isMinusOne() && !CE.isOne())
724      InstrNeeded++;
725  }
726  return InstrNeeded;
727}
728
729// Input Addend        Value           NeedNeg(output)
730// ================================================================
731// Constant C          C               false
732// <+/-1, V>           V               coefficient is -1
733// <2/-2, V>          "fadd V, V"      coefficient is -2
734// <C, V>             "fmul V, C"      false
735//
736// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
737Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
738  const FAddendCoef &Coeff = Opnd.getCoef();
739
740  if (Opnd.isConstant()) {
741    NeedNeg = false;
742    return Coeff.getValue(Instr->getType());
743  }
744
745  Value *OpndVal = Opnd.getSymVal();
746
747  if (Coeff.isMinusOne() || Coeff.isOne()) {
748    NeedNeg = Coeff.isMinusOne();
749    return OpndVal;
750  }
751
752  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
753    NeedNeg = Coeff.isMinusTwo();
754    return createFAdd(OpndVal, OpndVal);
755  }
756
757  NeedNeg = false;
758  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
759}
760
761// Checks if any operand is negative and we can convert add to sub.
762// This function checks for following negative patterns
763//   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
764//   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
765//   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
766static Value *checkForNegativeOperand(BinaryOperator &I,
767                                      InstCombiner::BuilderTy &Builder) {
768  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
769
770  // This function creates 2 instructions to replace ADD, we need at least one
771  // of LHS or RHS to have one use to ensure benefit in transform.
772  if (!LHS->hasOneUse() && !RHS->hasOneUse())
773    return nullptr;
774
775  Value *X = nullptr, *Y = nullptr, *Z = nullptr;
776  const APInt *C1 = nullptr, *C2 = nullptr;
777
778  // if ONE is on other side, swap
779  if (match(RHS, m_Add(m_Value(X), m_One())))
780    std::swap(LHS, RHS);
781
782  if (match(LHS, m_Add(m_Value(X), m_One()))) {
783    // if XOR on other side, swap
784    if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
785      std::swap(X, RHS);
786
787    if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
788      // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
789      // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
790      if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
791        Value *NewAnd = Builder.CreateAnd(Z, *C1);
792        return Builder.CreateSub(RHS, NewAnd, "sub");
793      } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
794        // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
795        // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
796        Value *NewOr = Builder.CreateOr(Z, ~(*C1));
797        return Builder.CreateSub(RHS, NewOr, "sub");
798      }
799    }
800  }
801
802  // Restore LHS and RHS
803  LHS = I.getOperand(0);
804  RHS = I.getOperand(1);
805
806  // if XOR is on other side, swap
807  if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
808    std::swap(LHS, RHS);
809
810  // C2 is ODD
811  // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
812  // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
813  if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
814    if (C1->countTrailingZeros() == 0)
815      if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
816        Value *NewOr = Builder.CreateOr(Z, ~(*C2));
817        return Builder.CreateSub(RHS, NewOr, "sub");
818      }
819  return nullptr;
820}
821
822/// Wrapping flags may allow combining constants separated by an extend.
823static Instruction *foldNoWrapAdd(BinaryOperator &Add,
824                                  InstCombiner::BuilderTy &Builder) {
825  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
826  Type *Ty = Add.getType();
827  Constant *Op1C;
828  if (!match(Op1, m_Constant(Op1C)))
829    return nullptr;
830
831  // Try this match first because it results in an add in the narrow type.
832  // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
833  Value *X;
834  const APInt *C1, *C2;
835  if (match(Op1, m_APInt(C1)) &&
836      match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
837      C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
838    Constant *NewC =
839        ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
840    return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
841  }
842
843  // More general combining of constants in the wide type.
844  // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
845  Constant *NarrowC;
846  if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
847    Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
848    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
849    Value *WideX = Builder.CreateSExt(X, Ty);
850    return BinaryOperator::CreateAdd(WideX, NewC);
851  }
852  // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
853  if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
854    Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
855    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
856    Value *WideX = Builder.CreateZExt(X, Ty);
857    return BinaryOperator::CreateAdd(WideX, NewC);
858  }
859
860  return nullptr;
861}
862
863Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
864  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
865  Constant *Op1C;
866  if (!match(Op1, m_Constant(Op1C)))
867    return nullptr;
868
869  if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
870    return NV;
871
872  Value *X;
873  Constant *Op00C;
874
875  // add (sub C1, X), C2 --> sub (add C1, C2), X
876  if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
877    return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
878
879  Value *Y;
880
881  // add (sub X, Y), -1 --> add (not Y), X
882  if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
883      match(Op1, m_AllOnes()))
884    return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
885
886  // zext(bool) + C -> bool ? C + 1 : C
887  if (match(Op0, m_ZExt(m_Value(X))) &&
888      X->getType()->getScalarSizeInBits() == 1)
889    return SelectInst::Create(X, AddOne(Op1C), Op1);
890  // sext(bool) + C -> bool ? C - 1 : C
891  if (match(Op0, m_SExt(m_Value(X))) &&
892      X->getType()->getScalarSizeInBits() == 1)
893    return SelectInst::Create(X, SubOne(Op1C), Op1);
894
895  // ~X + C --> (C-1) - X
896  if (match(Op0, m_Not(m_Value(X))))
897    return BinaryOperator::CreateSub(SubOne(Op1C), X);
898
899  const APInt *C;
900  if (!match(Op1, m_APInt(C)))
901    return nullptr;
902
903  // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
904  const APInt *C2;
905  if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
906    return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
907
908  if (C->isSignMask()) {
909    // If wrapping is not allowed, then the addition must set the sign bit:
910    // X + (signmask) --> X | signmask
911    if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
912      return BinaryOperator::CreateOr(Op0, Op1);
913
914    // If wrapping is allowed, then the addition flips the sign bit of LHS:
915    // X + (signmask) --> X ^ signmask
916    return BinaryOperator::CreateXor(Op0, Op1);
917  }
918
919  // Is this add the last step in a convoluted sext?
920  // add(zext(xor i16 X, -32768), -32768) --> sext X
921  Type *Ty = Add.getType();
922  if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
923      C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
924    return CastInst::Create(Instruction::SExt, X, Ty);
925
926  if (C->isOneValue() && Op0->hasOneUse()) {
927    // add (sext i1 X), 1 --> zext (not X)
928    // TODO: The smallest IR representation is (select X, 0, 1), and that would
929    // not require the one-use check. But we need to remove a transform in
930    // visitSelect and make sure that IR value tracking for select is equal or
931    // better than for these ops.
932    if (match(Op0, m_SExt(m_Value(X))) &&
933        X->getType()->getScalarSizeInBits() == 1)
934      return new ZExtInst(Builder.CreateNot(X), Ty);
935
936    // Shifts and add used to flip and mask off the low bit:
937    // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
938    const APInt *C3;
939    if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
940        C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
941      Value *NotX = Builder.CreateNot(X);
942      return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
943    }
944  }
945
946  return nullptr;
947}
948
949// Matches multiplication expression Op * C where C is a constant. Returns the
950// constant value in C and the other operand in Op. Returns true if such a
951// match is found.
952static bool MatchMul(Value *E, Value *&Op, APInt &C) {
953  const APInt *AI;
954  if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
955    C = *AI;
956    return true;
957  }
958  if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
959    C = APInt(AI->getBitWidth(), 1);
960    C <<= *AI;
961    return true;
962  }
963  return false;
964}
965
966// Matches remainder expression Op % C where C is a constant. Returns the
967// constant value in C and the other operand in Op. Returns the signedness of
968// the remainder operation in IsSigned. Returns true if such a match is
969// found.
970static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
971  const APInt *AI;
972  IsSigned = false;
973  if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
974    IsSigned = true;
975    C = *AI;
976    return true;
977  }
978  if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
979    C = *AI;
980    return true;
981  }
982  if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
983    C = *AI + 1;
984    return true;
985  }
986  return false;
987}
988
989// Matches division expression Op / C with the given signedness as indicated
990// by IsSigned, where C is a constant. Returns the constant value in C and the
991// other operand in Op. Returns true if such a match is found.
992static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
993  const APInt *AI;
994  if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
995    C = *AI;
996    return true;
997  }
998  if (!IsSigned) {
999    if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1000      C = *AI;
1001      return true;
1002    }
1003    if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1004      C = APInt(AI->getBitWidth(), 1);
1005      C <<= *AI;
1006      return true;
1007    }
1008  }
1009  return false;
1010}
1011
1012// Returns whether C0 * C1 with the given signedness overflows.
1013static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1014  bool overflow;
1015  if (IsSigned)
1016    (void)C0.smul_ov(C1, overflow);
1017  else
1018    (void)C0.umul_ov(C1, overflow);
1019  return overflow;
1020}
1021
1022// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1023// does not overflow.
1024Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1025  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1026  Value *X, *MulOpV;
1027  APInt C0, MulOpC;
1028  bool IsSigned;
1029  // Match I = X % C0 + MulOpV * C0
1030  if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1031       (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1032      C0 == MulOpC) {
1033    Value *RemOpV;
1034    APInt C1;
1035    bool Rem2IsSigned;
1036    // Match MulOpC = RemOpV % C1
1037    if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1038        IsSigned == Rem2IsSigned) {
1039      Value *DivOpV;
1040      APInt DivOpC;
1041      // Match RemOpV = X / C0
1042      if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1043          C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1044        Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1045        return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1046                        : Builder.CreateURem(X, NewDivisor, "urem");
1047      }
1048    }
1049  }
1050
1051  return nullptr;
1052}
1053
1054/// Fold
1055///   (1 << NBits) - 1
1056/// Into:
1057///   ~(-(1 << NBits))
1058/// Because a 'not' is better for bit-tracking analysis and other transforms
1059/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1060static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1061                                           InstCombiner::BuilderTy &Builder) {
1062  Value *NBits;
1063  if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1064    return nullptr;
1065
1066  Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1067  Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1068  // Be wary of constant folding.
1069  if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1070    // Always NSW. But NUW propagates from `add`.
1071    BOp->setHasNoSignedWrap();
1072    BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1073  }
1074
1075  return BinaryOperator::CreateNot(NotMask, I.getName());
1076}
1077
1078static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1079  assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1080  Type *Ty = I.getType();
1081  auto getUAddSat = [&]() {
1082    return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1083  };
1084
1085  // add (umin X, ~Y), Y --> uaddsat X, Y
1086  Value *X, *Y;
1087  if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1088                        m_Deferred(Y))))
1089    return CallInst::Create(getUAddSat(), { X, Y });
1090
1091  // add (umin X, ~C), C --> uaddsat X, C
1092  const APInt *C, *NotC;
1093  if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1094      *C == ~*NotC)
1095    return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1096
1097  return nullptr;
1098}
1099
1100Instruction *
1101InstCombiner::canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1102    BinaryOperator &I) {
1103  assert((I.getOpcode() == Instruction::Add ||
1104          I.getOpcode() == Instruction::Or ||
1105          I.getOpcode() == Instruction::Sub) &&
1106         "Expecting add/or/sub instruction");
1107
1108  // We have a subtraction/addition between a (potentially truncated) *logical*
1109  // right-shift of X and a "select".
1110  Value *X, *Select;
1111  Instruction *LowBitsToSkip, *Extract;
1112  if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1113                               m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1114                               m_Instruction(Extract))),
1115                           m_Value(Select))))
1116    return nullptr;
1117
1118  // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1119  if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1120    return nullptr;
1121
1122  Type *XTy = X->getType();
1123  bool HadTrunc = I.getType() != XTy;
1124
1125  // If there was a truncation of extracted value, then we'll need to produce
1126  // one extra instruction, so we need to ensure one instruction will go away.
1127  if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1128    return nullptr;
1129
1130  // Extraction should extract high NBits bits, with shift amount calculated as:
1131  //   low bits to skip = shift bitwidth - high bits to extract
1132  // The shift amount itself may be extended, and we need to look past zero-ext
1133  // when matching NBits, that will matter for matching later.
1134  Constant *C;
1135  Value *NBits;
1136  if (!match(
1137          LowBitsToSkip,
1138          m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1139      !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1140                                   APInt(C->getType()->getScalarSizeInBits(),
1141                                         X->getType()->getScalarSizeInBits()))))
1142    return nullptr;
1143
1144  // Sign-extending value can be zero-extended if we `sub`tract it,
1145  // or sign-extended otherwise.
1146  auto SkipExtInMagic = [&I](Value *&V) {
1147    if (I.getOpcode() == Instruction::Sub)
1148      match(V, m_ZExtOrSelf(m_Value(V)));
1149    else
1150      match(V, m_SExtOrSelf(m_Value(V)));
1151  };
1152
1153  // Now, finally validate the sign-extending magic.
1154  // `select` itself may be appropriately extended, look past that.
1155  SkipExtInMagic(Select);
1156
1157  ICmpInst::Predicate Pred;
1158  const APInt *Thr;
1159  Value *SignExtendingValue, *Zero;
1160  bool ShouldSignext;
1161  // It must be a select between two values we will later establish to be a
1162  // sign-extending value and a zero constant. The condition guarding the
1163  // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1164  if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1165                              m_Value(SignExtendingValue), m_Value(Zero))) ||
1166      !isSignBitCheck(Pred, *Thr, ShouldSignext))
1167    return nullptr;
1168
1169  // icmp-select pair is commutative.
1170  if (!ShouldSignext)
1171    std::swap(SignExtendingValue, Zero);
1172
1173  // If we should not perform sign-extension then we must add/or/subtract zero.
1174  if (!match(Zero, m_Zero()))
1175    return nullptr;
1176  // Otherwise, it should be some constant, left-shifted by the same NBits we
1177  // had in `lshr`. Said left-shift can also be appropriately extended.
1178  // Again, we must look past zero-ext when looking for NBits.
1179  SkipExtInMagic(SignExtendingValue);
1180  Constant *SignExtendingValueBaseConstant;
1181  if (!match(SignExtendingValue,
1182             m_Shl(m_Constant(SignExtendingValueBaseConstant),
1183                   m_ZExtOrSelf(m_Specific(NBits)))))
1184    return nullptr;
1185  // If we `sub`, then the constant should be one, else it should be all-ones.
1186  if (I.getOpcode() == Instruction::Sub
1187          ? !match(SignExtendingValueBaseConstant, m_One())
1188          : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1189    return nullptr;
1190
1191  auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1192                                             Extract->getName() + ".sext");
1193  NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1194  if (!HadTrunc)
1195    return NewAShr;
1196
1197  Builder.Insert(NewAShr);
1198  return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1199}
1200
1201Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1202  if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1203                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1204                                 SQ.getWithInstruction(&I)))
1205    return replaceInstUsesWith(I, V);
1206
1207  if (SimplifyAssociativeOrCommutative(I))
1208    return &I;
1209
1210  if (Instruction *X = foldVectorBinop(I))
1211    return X;
1212
1213  // (A*B)+(A*C) -> A*(B+C) etc
1214  if (Value *V = SimplifyUsingDistributiveLaws(I))
1215    return replaceInstUsesWith(I, V);
1216
1217  if (Instruction *X = foldAddWithConstant(I))
1218    return X;
1219
1220  if (Instruction *X = foldNoWrapAdd(I, Builder))
1221    return X;
1222
1223  // FIXME: This should be moved into the above helper function to allow these
1224  // transforms for general constant or constant splat vectors.
1225  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1226  Type *Ty = I.getType();
1227  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1228    Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1229    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1230      unsigned TySizeBits = Ty->getScalarSizeInBits();
1231      const APInt &RHSVal = CI->getValue();
1232      unsigned ExtendAmt = 0;
1233      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1234      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1235      if (XorRHS->getValue() == -RHSVal) {
1236        if (RHSVal.isPowerOf2())
1237          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1238        else if (XorRHS->getValue().isPowerOf2())
1239          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1240      }
1241
1242      if (ExtendAmt) {
1243        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1244        if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1245          ExtendAmt = 0;
1246      }
1247
1248      if (ExtendAmt) {
1249        Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1250        Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1251        return BinaryOperator::CreateAShr(NewShl, ShAmt);
1252      }
1253
1254      // If this is a xor that was canonicalized from a sub, turn it back into
1255      // a sub and fuse this add with it.
1256      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1257        KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1258        if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1259          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1260                                           XorLHS);
1261      }
1262      // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1263      // transform them into (X + (signmask ^ C))
1264      if (XorRHS->getValue().isSignMask())
1265        return BinaryOperator::CreateAdd(XorLHS,
1266                                         ConstantExpr::getXor(XorRHS, CI));
1267    }
1268  }
1269
1270  if (Ty->isIntOrIntVectorTy(1))
1271    return BinaryOperator::CreateXor(LHS, RHS);
1272
1273  // X + X --> X << 1
1274  if (LHS == RHS) {
1275    auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1276    Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1277    Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1278    return Shl;
1279  }
1280
1281  Value *A, *B;
1282  if (match(LHS, m_Neg(m_Value(A)))) {
1283    // -A + -B --> -(A + B)
1284    if (match(RHS, m_Neg(m_Value(B))))
1285      return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1286
1287    // -A + B --> B - A
1288    return BinaryOperator::CreateSub(RHS, A);
1289  }
1290
1291  // A + -B  -->  A - B
1292  if (match(RHS, m_Neg(m_Value(B))))
1293    return BinaryOperator::CreateSub(LHS, B);
1294
1295  if (Value *V = checkForNegativeOperand(I, Builder))
1296    return replaceInstUsesWith(I, V);
1297
1298  // (A + 1) + ~B --> A - B
1299  // ~B + (A + 1) --> A - B
1300  // (~B + A) + 1 --> A - B
1301  // (A + ~B) + 1 --> A - B
1302  if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1303      match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1304    return BinaryOperator::CreateSub(A, B);
1305
1306  // (A + RHS) + RHS --> A + (RHS << 1)
1307  if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1308    return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1309
1310  // LHS + (A + LHS) --> A + (LHS << 1)
1311  if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1312    return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1313
1314  // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1315  if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1316
1317  // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1318  const APInt *C1, *C2;
1319  if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1320    APInt one(C2->getBitWidth(), 1);
1321    APInt minusC1 = -(*C1);
1322    if (minusC1 == (one << *C2)) {
1323      Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1324      return BinaryOperator::CreateSRem(RHS, NewRHS);
1325    }
1326  }
1327
1328  // A+B --> A|B iff A and B have no bits set in common.
1329  if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1330    return BinaryOperator::CreateOr(LHS, RHS);
1331
1332  // FIXME: We already did a check for ConstantInt RHS above this.
1333  // FIXME: Is this pattern covered by another fold? No regression tests fail on
1334  // removal.
1335  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1336    // (X & FF00) + xx00  -> (X+xx00) & FF00
1337    Value *X;
1338    ConstantInt *C2;
1339    if (LHS->hasOneUse() &&
1340        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1341        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1342      // See if all bits from the first bit set in the Add RHS up are included
1343      // in the mask.  First, get the rightmost bit.
1344      const APInt &AddRHSV = CRHS->getValue();
1345
1346      // Form a mask of all bits from the lowest bit added through the top.
1347      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1348
1349      // See if the and mask includes all of these bits.
1350      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1351
1352      if (AddRHSHighBits == AddRHSHighBitsAnd) {
1353        // Okay, the xform is safe.  Insert the new add pronto.
1354        Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1355        return BinaryOperator::CreateAnd(NewAdd, C2);
1356      }
1357    }
1358  }
1359
1360  // add (select X 0 (sub n A)) A  -->  select X A n
1361  {
1362    SelectInst *SI = dyn_cast<SelectInst>(LHS);
1363    Value *A = RHS;
1364    if (!SI) {
1365      SI = dyn_cast<SelectInst>(RHS);
1366      A = LHS;
1367    }
1368    if (SI && SI->hasOneUse()) {
1369      Value *TV = SI->getTrueValue();
1370      Value *FV = SI->getFalseValue();
1371      Value *N;
1372
1373      // Can we fold the add into the argument of the select?
1374      // We check both true and false select arguments for a matching subtract.
1375      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1376        // Fold the add into the true select value.
1377        return SelectInst::Create(SI->getCondition(), N, A);
1378
1379      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1380        // Fold the add into the false select value.
1381        return SelectInst::Create(SI->getCondition(), A, N);
1382    }
1383  }
1384
1385  if (Instruction *Ext = narrowMathIfNoOverflow(I))
1386    return Ext;
1387
1388  // (add (xor A, B) (and A, B)) --> (or A, B)
1389  // (add (and A, B) (xor A, B)) --> (or A, B)
1390  if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1391                          m_c_And(m_Deferred(A), m_Deferred(B)))))
1392    return BinaryOperator::CreateOr(A, B);
1393
1394  // (add (or A, B) (and A, B)) --> (add A, B)
1395  // (add (and A, B) (or A, B)) --> (add A, B)
1396  if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1397                          m_c_And(m_Deferred(A), m_Deferred(B))))) {
1398    // Replacing operands in-place to preserve nuw/nsw flags.
1399    replaceOperand(I, 0, A);
1400    replaceOperand(I, 1, B);
1401    return &I;
1402  }
1403
1404  // TODO(jingyue): Consider willNotOverflowSignedAdd and
1405  // willNotOverflowUnsignedAdd to reduce the number of invocations of
1406  // computeKnownBits.
1407  bool Changed = false;
1408  if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1409    Changed = true;
1410    I.setHasNoSignedWrap(true);
1411  }
1412  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1413    Changed = true;
1414    I.setHasNoUnsignedWrap(true);
1415  }
1416
1417  if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1418    return V;
1419
1420  if (Instruction *V =
1421          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1422    return V;
1423
1424  if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1425    return SatAdd;
1426
1427  return Changed ? &I : nullptr;
1428}
1429
1430/// Eliminate an op from a linear interpolation (lerp) pattern.
1431static Instruction *factorizeLerp(BinaryOperator &I,
1432                                  InstCombiner::BuilderTy &Builder) {
1433  Value *X, *Y, *Z;
1434  if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1435                                            m_OneUse(m_FSub(m_FPOne(),
1436                                                            m_Value(Z))))),
1437                          m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1438    return nullptr;
1439
1440  // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1441  Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1442  Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1443  return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1444}
1445
1446/// Factor a common operand out of fadd/fsub of fmul/fdiv.
1447static Instruction *factorizeFAddFSub(BinaryOperator &I,
1448                                      InstCombiner::BuilderTy &Builder) {
1449  assert((I.getOpcode() == Instruction::FAdd ||
1450          I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1451  assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1452         "FP factorization requires FMF");
1453
1454  if (Instruction *Lerp = factorizeLerp(I, Builder))
1455    return Lerp;
1456
1457  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1458  Value *X, *Y, *Z;
1459  bool IsFMul;
1460  if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1461       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1462      (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1463       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1464    IsFMul = true;
1465  else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1466           match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1467    IsFMul = false;
1468  else
1469    return nullptr;
1470
1471  // (X * Z) + (Y * Z) --> (X + Y) * Z
1472  // (X * Z) - (Y * Z) --> (X - Y) * Z
1473  // (X / Z) + (Y / Z) --> (X + Y) / Z
1474  // (X / Z) - (Y / Z) --> (X - Y) / Z
1475  bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1476  Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1477                     : Builder.CreateFSubFMF(X, Y, &I);
1478
1479  // Bail out if we just created a denormal constant.
1480  // TODO: This is copied from a previous implementation. Is it necessary?
1481  const APFloat *C;
1482  if (match(XY, m_APFloat(C)) && !C->isNormal())
1483    return nullptr;
1484
1485  return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1486                : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1487}
1488
1489Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1490  if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1491                                  I.getFastMathFlags(),
1492                                  SQ.getWithInstruction(&I)))
1493    return replaceInstUsesWith(I, V);
1494
1495  if (SimplifyAssociativeOrCommutative(I))
1496    return &I;
1497
1498  if (Instruction *X = foldVectorBinop(I))
1499    return X;
1500
1501  if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1502    return FoldedFAdd;
1503
1504  // (-X) + Y --> Y - X
1505  Value *X, *Y;
1506  if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1507    return BinaryOperator::CreateFSubFMF(Y, X, &I);
1508
1509  // Similar to above, but look through fmul/fdiv for the negated term.
1510  // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1511  Value *Z;
1512  if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1513                         m_Value(Z)))) {
1514    Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1515    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1516  }
1517  // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1518  // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1519  if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1520                         m_Value(Z))) ||
1521      match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1522                         m_Value(Z)))) {
1523    Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1524    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1525  }
1526
1527  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1528  // integer add followed by a promotion.
1529  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1530  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1531    Value *LHSIntVal = LHSConv->getOperand(0);
1532    Type *FPType = LHSConv->getType();
1533
1534    // TODO: This check is overly conservative. In many cases known bits
1535    // analysis can tell us that the result of the addition has less significant
1536    // bits than the integer type can hold.
1537    auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1538      Type *FScalarTy = FTy->getScalarType();
1539      Type *IScalarTy = ITy->getScalarType();
1540
1541      // Do we have enough bits in the significand to represent the result of
1542      // the integer addition?
1543      unsigned MaxRepresentableBits =
1544          APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1545      return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1546    };
1547
1548    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1549    // ... if the constant fits in the integer value.  This is useful for things
1550    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1551    // requires a constant pool load, and generally allows the add to be better
1552    // instcombined.
1553    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1554      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1555        Constant *CI =
1556          ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1557        if (LHSConv->hasOneUse() &&
1558            ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1559            willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1560          // Insert the new integer add.
1561          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1562          return new SIToFPInst(NewAdd, I.getType());
1563        }
1564      }
1565
1566    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1567    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1568      Value *RHSIntVal = RHSConv->getOperand(0);
1569      // It's enough to check LHS types only because we require int types to
1570      // be the same for this transform.
1571      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1572        // Only do this if x/y have the same type, if at least one of them has a
1573        // single use (so we don't increase the number of int->fp conversions),
1574        // and if the integer add will not overflow.
1575        if (LHSIntVal->getType() == RHSIntVal->getType() &&
1576            (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1577            willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1578          // Insert the new integer add.
1579          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1580          return new SIToFPInst(NewAdd, I.getType());
1581        }
1582      }
1583    }
1584  }
1585
1586  // Handle specials cases for FAdd with selects feeding the operation
1587  if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1588    return replaceInstUsesWith(I, V);
1589
1590  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1591    if (Instruction *F = factorizeFAddFSub(I, Builder))
1592      return F;
1593    if (Value *V = FAddCombine(Builder).simplify(&I))
1594      return replaceInstUsesWith(I, V);
1595  }
1596
1597  return nullptr;
1598}
1599
1600/// Optimize pointer differences into the same array into a size.  Consider:
1601///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1602/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1603Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1604                                               Type *Ty, bool IsNUW) {
1605  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1606  // this.
1607  bool Swapped = false;
1608  GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1609
1610  // For now we require one side to be the base pointer "A" or a constant
1611  // GEP derived from it.
1612  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1613    // (gep X, ...) - X
1614    if (LHSGEP->getOperand(0) == RHS) {
1615      GEP1 = LHSGEP;
1616      Swapped = false;
1617    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1618      // (gep X, ...) - (gep X, ...)
1619      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1620            RHSGEP->getOperand(0)->stripPointerCasts()) {
1621        GEP2 = RHSGEP;
1622        GEP1 = LHSGEP;
1623        Swapped = false;
1624      }
1625    }
1626  }
1627
1628  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1629    // X - (gep X, ...)
1630    if (RHSGEP->getOperand(0) == LHS) {
1631      GEP1 = RHSGEP;
1632      Swapped = true;
1633    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1634      // (gep X, ...) - (gep X, ...)
1635      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1636            LHSGEP->getOperand(0)->stripPointerCasts()) {
1637        GEP2 = LHSGEP;
1638        GEP1 = RHSGEP;
1639        Swapped = true;
1640      }
1641    }
1642  }
1643
1644  if (!GEP1)
1645    // No GEP found.
1646    return nullptr;
1647
1648  if (GEP2) {
1649    // (gep X, ...) - (gep X, ...)
1650    //
1651    // Avoid duplicating the arithmetic if there are more than one non-constant
1652    // indices between the two GEPs and either GEP has a non-constant index and
1653    // multiple users. If zero non-constant index, the result is a constant and
1654    // there is no duplication. If one non-constant index, the result is an add
1655    // or sub with a constant, which is no larger than the original code, and
1656    // there's no duplicated arithmetic, even if either GEP has multiple
1657    // users. If more than one non-constant indices combined, as long as the GEP
1658    // with at least one non-constant index doesn't have multiple users, there
1659    // is no duplication.
1660    unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1661    unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1662    if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1663        ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1664         (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1665      return nullptr;
1666    }
1667  }
1668
1669  // Emit the offset of the GEP and an intptr_t.
1670  Value *Result = EmitGEPOffset(GEP1);
1671
1672  // If this is a single inbounds GEP and the original sub was nuw,
1673  // then the final multiplication is also nuw. We match an extra add zero
1674  // here, because that's what EmitGEPOffset() generates.
1675  Instruction *I;
1676  if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1677      match(Result, m_Add(m_Instruction(I), m_Zero())) &&
1678      I->getOpcode() == Instruction::Mul)
1679    I->setHasNoUnsignedWrap();
1680
1681  // If we had a constant expression GEP on the other side offsetting the
1682  // pointer, subtract it from the offset we have.
1683  if (GEP2) {
1684    Value *Offset = EmitGEPOffset(GEP2);
1685    Result = Builder.CreateSub(Result, Offset);
1686  }
1687
1688  // If we have p - gep(p, ...)  then we have to negate the result.
1689  if (Swapped)
1690    Result = Builder.CreateNeg(Result, "diff.neg");
1691
1692  return Builder.CreateIntCast(Result, Ty, true);
1693}
1694
1695Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1696  if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1697                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1698                                 SQ.getWithInstruction(&I)))
1699    return replaceInstUsesWith(I, V);
1700
1701  if (Instruction *X = foldVectorBinop(I))
1702    return X;
1703
1704  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1705
1706  // If this is a 'B = x-(-A)', change to B = x+A.
1707  // We deal with this without involving Negator to preserve NSW flag.
1708  if (Value *V = dyn_castNegVal(Op1)) {
1709    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1710
1711    if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1712      assert(BO->getOpcode() == Instruction::Sub &&
1713             "Expected a subtraction operator!");
1714      if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1715        Res->setHasNoSignedWrap(true);
1716    } else {
1717      if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1718        Res->setHasNoSignedWrap(true);
1719    }
1720
1721    return Res;
1722  }
1723
1724  auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1725    if (Instruction *Ext = narrowMathIfNoOverflow(I))
1726      return Ext;
1727
1728    bool Changed = false;
1729    if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1730      Changed = true;
1731      I.setHasNoSignedWrap(true);
1732    }
1733    if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1734      Changed = true;
1735      I.setHasNoUnsignedWrap(true);
1736    }
1737
1738    return Changed ? &I : nullptr;
1739  };
1740
1741  // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1742  // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1743  // a pure negation used by a select that looks like abs/nabs.
1744  bool IsNegation = match(Op0, m_ZeroInt());
1745  if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1746        const Instruction *UI = dyn_cast<Instruction>(U);
1747        if (!UI)
1748          return false;
1749        return match(UI,
1750                     m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1751               match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1752      })) {
1753    if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1754      return BinaryOperator::CreateAdd(NegOp1, Op0);
1755  }
1756  if (IsNegation)
1757    return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1758
1759  // (A*B)-(A*C) -> A*(B-C) etc
1760  if (Value *V = SimplifyUsingDistributiveLaws(I))
1761    return replaceInstUsesWith(I, V);
1762
1763  if (I.getType()->isIntOrIntVectorTy(1))
1764    return BinaryOperator::CreateXor(Op0, Op1);
1765
1766  // Replace (-1 - A) with (~A).
1767  if (match(Op0, m_AllOnes()))
1768    return BinaryOperator::CreateNot(Op1);
1769
1770  // (~X) - (~Y) --> Y - X
1771  Value *X, *Y;
1772  if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1773    return BinaryOperator::CreateSub(Y, X);
1774
1775  // (X + -1) - Y --> ~Y + X
1776  if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1777    return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1778
1779  // Reassociate sub/add sequences to create more add instructions and
1780  // reduce dependency chains:
1781  // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1782  Value *Z;
1783  if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
1784                                  m_Value(Z))))) {
1785    Value *XZ = Builder.CreateAdd(X, Z);
1786    Value *YW = Builder.CreateAdd(Y, Op1);
1787    return BinaryOperator::CreateSub(XZ, YW);
1788  }
1789
1790  auto m_AddRdx = [](Value *&Vec) {
1791    return m_OneUse(
1792        m_Intrinsic<Intrinsic::experimental_vector_reduce_add>(m_Value(Vec)));
1793  };
1794  Value *V0, *V1;
1795  if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
1796      V0->getType() == V1->getType()) {
1797    // Difference of sums is sum of differences:
1798    // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1799    Value *Sub = Builder.CreateSub(V0, V1);
1800    Value *Rdx = Builder.CreateIntrinsic(
1801        Intrinsic::experimental_vector_reduce_add, {Sub->getType()}, {Sub});
1802    return replaceInstUsesWith(I, Rdx);
1803  }
1804
1805  if (Constant *C = dyn_cast<Constant>(Op0)) {
1806    Value *X;
1807    if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1808      // C - (zext bool) --> bool ? C - 1 : C
1809      return SelectInst::Create(X, SubOne(C), C);
1810    if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1811      // C - (sext bool) --> bool ? C + 1 : C
1812      return SelectInst::Create(X, AddOne(C), C);
1813
1814    // C - ~X == X + (1+C)
1815    if (match(Op1, m_Not(m_Value(X))))
1816      return BinaryOperator::CreateAdd(X, AddOne(C));
1817
1818    // Try to fold constant sub into select arguments.
1819    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1820      if (Instruction *R = FoldOpIntoSelect(I, SI))
1821        return R;
1822
1823    // Try to fold constant sub into PHI values.
1824    if (PHINode *PN = dyn_cast<PHINode>(Op1))
1825      if (Instruction *R = foldOpIntoPhi(I, PN))
1826        return R;
1827
1828    Constant *C2;
1829
1830    // C-(C2-X) --> X+(C-C2)
1831    if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))) && !isa<ConstantExpr>(C2))
1832      return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1833
1834    // C-(X+C2) --> (C-C2)-X
1835    if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1836      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1837  }
1838
1839  const APInt *Op0C;
1840  if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
1841    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1842    // zero.
1843    KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1844    if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1845      return BinaryOperator::CreateXor(Op1, Op0);
1846  }
1847
1848  {
1849    Value *Y;
1850    // X-(X+Y) == -Y    X-(Y+X) == -Y
1851    if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1852      return BinaryOperator::CreateNeg(Y);
1853
1854    // (X-Y)-X == -Y
1855    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1856      return BinaryOperator::CreateNeg(Y);
1857  }
1858
1859  // (sub (or A, B) (and A, B)) --> (xor A, B)
1860  {
1861    Value *A, *B;
1862    if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1863        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1864      return BinaryOperator::CreateXor(A, B);
1865  }
1866
1867  // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1868  {
1869    Value *A, *B;
1870    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1871        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1872        (Op0->hasOneUse() || Op1->hasOneUse()))
1873      return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1874  }
1875
1876  // (sub (or A, B), (xor A, B)) --> (and A, B)
1877  {
1878    Value *A, *B;
1879    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1880        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1881      return BinaryOperator::CreateAnd(A, B);
1882  }
1883
1884  // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1885  {
1886    Value *A, *B;
1887    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1888        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1889        (Op0->hasOneUse() || Op1->hasOneUse()))
1890      return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1891  }
1892
1893  {
1894    Value *Y;
1895    // ((X | Y) - X) --> (~X & Y)
1896    if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1897      return BinaryOperator::CreateAnd(
1898          Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1899  }
1900
1901  {
1902    // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
1903    Value *X;
1904    if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
1905                                    m_OneUse(m_Neg(m_Value(X))))))) {
1906      return BinaryOperator::CreateNeg(Builder.CreateAnd(
1907          Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
1908    }
1909  }
1910
1911  {
1912    // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
1913    Constant *C;
1914    if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
1915      return BinaryOperator::CreateNeg(
1916          Builder.CreateAnd(Op1, Builder.CreateNot(C)));
1917    }
1918  }
1919
1920  {
1921    // If we have a subtraction between some value and a select between
1922    // said value and something else, sink subtraction into select hands, i.e.:
1923    //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
1924    //     ->
1925    //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
1926    //  or
1927    //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
1928    //     ->
1929    //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
1930    // This will result in select between new subtraction and 0.
1931    auto SinkSubIntoSelect =
1932        [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
1933                           auto SubBuilder) -> Instruction * {
1934      Value *Cond, *TrueVal, *FalseVal;
1935      if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
1936                                           m_Value(FalseVal)))))
1937        return nullptr;
1938      if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
1939        return nullptr;
1940      // While it is really tempting to just create two subtractions and let
1941      // InstCombine fold one of those to 0, it isn't possible to do so
1942      // because of worklist visitation order. So ugly it is.
1943      bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
1944      Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
1945      Constant *Zero = Constant::getNullValue(Ty);
1946      SelectInst *NewSel =
1947          SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
1948                             OtherHandOfSubIsTrueVal ? NewSub : Zero);
1949      // Preserve prof metadata if any.
1950      NewSel->copyMetadata(cast<Instruction>(*Select));
1951      return NewSel;
1952    };
1953    if (Instruction *NewSel = SinkSubIntoSelect(
1954            /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
1955            [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
1956              return Builder->CreateSub(OtherHandOfSelect,
1957                                        /*OtherHandOfSub=*/Op1);
1958            }))
1959      return NewSel;
1960    if (Instruction *NewSel = SinkSubIntoSelect(
1961            /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
1962            [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
1963              return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
1964                                        OtherHandOfSelect);
1965            }))
1966      return NewSel;
1967  }
1968
1969  // (X - (X & Y))   -->   (X & ~Y)
1970  if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
1971      (Op1->hasOneUse() || isa<Constant>(Y)))
1972    return BinaryOperator::CreateAnd(
1973        Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
1974
1975  {
1976    // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1977    // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1978    // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1979    // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1980    // So long as O here is freely invertible, this will be neutral or a win.
1981    Value *LHS, *RHS, *A;
1982    Value *NotA = Op0, *MinMax = Op1;
1983    SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1984    if (!SelectPatternResult::isMinOrMax(SPF)) {
1985      NotA = Op1;
1986      MinMax = Op0;
1987      SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1988    }
1989    if (SelectPatternResult::isMinOrMax(SPF) &&
1990        match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1991      if (NotA == LHS)
1992        std::swap(LHS, RHS);
1993      // LHS is now O above and expected to have at least 2 uses (the min/max)
1994      // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1995      if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1996          !NotA->hasNUsesOrMore(4)) {
1997        // Note: We don't generate the inverse max/min, just create the not of
1998        // it and let other folds do the rest.
1999        Value *Not = Builder.CreateNot(MinMax);
2000        if (NotA == Op0)
2001          return BinaryOperator::CreateSub(Not, A);
2002        else
2003          return BinaryOperator::CreateSub(A, Not);
2004      }
2005    }
2006  }
2007
2008  // Optimize pointer differences into the same array into a size.  Consider:
2009  //  &A[10] - &A[0]: we should compile this to "10".
2010  Value *LHSOp, *RHSOp;
2011  if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2012      match(Op1, m_PtrToInt(m_Value(RHSOp))))
2013    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2014                                               I.hasNoUnsignedWrap()))
2015      return replaceInstUsesWith(I, Res);
2016
2017  // trunc(p)-trunc(q) -> trunc(p-q)
2018  if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2019      match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2020    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2021                                               /* IsNUW */ false))
2022      return replaceInstUsesWith(I, Res);
2023
2024  // Canonicalize a shifty way to code absolute value to the common pattern.
2025  // There are 2 potential commuted variants.
2026  // We're relying on the fact that we only do this transform when the shift has
2027  // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2028  // instructions).
2029  Value *A;
2030  const APInt *ShAmt;
2031  Type *Ty = I.getType();
2032  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2033      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2034      match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2035    // B = ashr i32 A, 31 ; smear the sign bit
2036    // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2037    // --> (A < 0) ? -A : A
2038    Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2039    // Copy the nuw/nsw flags from the sub to the negate.
2040    Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2041                                   I.hasNoSignedWrap());
2042    return SelectInst::Create(Cmp, Neg, A);
2043  }
2044
2045  if (Instruction *V =
2046          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2047    return V;
2048
2049  return TryToNarrowDeduceFlags();
2050}
2051
2052/// This eliminates floating-point negation in either 'fneg(X)' or
2053/// 'fsub(-0.0, X)' form by combining into a constant operand.
2054static Instruction *foldFNegIntoConstant(Instruction &I) {
2055  Value *X;
2056  Constant *C;
2057
2058  // Fold negation into constant operand. This is limited with one-use because
2059  // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
2060  // -(X * C) --> X * (-C)
2061  // FIXME: It's arguable whether these should be m_OneUse or not. The current
2062  // belief is that the FNeg allows for better reassociation opportunities.
2063  if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
2064    return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2065  // -(X / C) --> X / (-C)
2066  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
2067    return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2068  // -(C / X) --> (-C) / X
2069  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
2070    return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2071
2072  // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2073  // -(X + C) --> -X + -C --> -C - X
2074  if (I.hasNoSignedZeros() &&
2075      match(&I, m_FNeg(m_OneUse(m_FAdd(m_Value(X), m_Constant(C))))))
2076    return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2077
2078  return nullptr;
2079}
2080
2081static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2082                                           InstCombiner::BuilderTy &Builder) {
2083  Value *FNeg;
2084  if (!match(&I, m_FNeg(m_Value(FNeg))))
2085    return nullptr;
2086
2087  Value *X, *Y;
2088  if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2089    return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2090
2091  if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2092    return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2093
2094  return nullptr;
2095}
2096
2097Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
2098  Value *Op = I.getOperand(0);
2099
2100  if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2101                                  SQ.getWithInstruction(&I)))
2102    return replaceInstUsesWith(I, V);
2103
2104  if (Instruction *X = foldFNegIntoConstant(I))
2105    return X;
2106
2107  Value *X, *Y;
2108
2109  // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2110  if (I.hasNoSignedZeros() &&
2111      match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2112    return BinaryOperator::CreateFSubFMF(Y, X, &I);
2113
2114  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2115    return R;
2116
2117  return nullptr;
2118}
2119
2120Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
2121  if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
2122                                  I.getFastMathFlags(),
2123                                  SQ.getWithInstruction(&I)))
2124    return replaceInstUsesWith(I, V);
2125
2126  if (Instruction *X = foldVectorBinop(I))
2127    return X;
2128
2129  // Subtraction from -0.0 is the canonical form of fneg.
2130  // fsub -0.0, X ==> fneg X
2131  // fsub nsz 0.0, X ==> fneg nsz X
2132  //
2133  // FIXME This matcher does not respect FTZ or DAZ yet:
2134  // fsub -0.0, Denorm ==> +-0
2135  // fneg Denorm ==> -Denorm
2136  Value *Op;
2137  if (match(&I, m_FNeg(m_Value(Op))))
2138    return UnaryOperator::CreateFNegFMF(Op, &I);
2139
2140  if (Instruction *X = foldFNegIntoConstant(I))
2141    return X;
2142
2143  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2144    return R;
2145
2146  Value *X, *Y;
2147  Constant *C;
2148
2149  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2150  // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2151  // Canonicalize to fadd to make analysis easier.
2152  // This can also help codegen because fadd is commutative.
2153  // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2154  // killed later. We still limit that particular transform with 'hasOneUse'
2155  // because an fneg is assumed better/cheaper than a generic fsub.
2156  if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2157    if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2158      Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2159      return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2160    }
2161  }
2162
2163  // (-X) - Op1 --> -(X + Op1)
2164  if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2165      match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2166    Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2167    return UnaryOperator::CreateFNegFMF(FAdd, &I);
2168  }
2169
2170  if (isa<Constant>(Op0))
2171    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2172      if (Instruction *NV = FoldOpIntoSelect(I, SI))
2173        return NV;
2174
2175  // X - C --> X + (-C)
2176  // But don't transform constant expressions because there's an inverse fold
2177  // for X + (-Y) --> X - Y.
2178  if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
2179    return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2180
2181  // X - (-Y) --> X + Y
2182  if (match(Op1, m_FNeg(m_Value(Y))))
2183    return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2184
2185  // Similar to above, but look through a cast of the negated value:
2186  // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2187  Type *Ty = I.getType();
2188  if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2189    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2190
2191  // X - (fpext(-Y)) --> X + fpext(Y)
2192  if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2193    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2194
2195  // Similar to above, but look through fmul/fdiv of the negated value:
2196  // Op0 - (-X * Y) --> Op0 + (X * Y)
2197  // Op0 - (Y * -X) --> Op0 + (X * Y)
2198  if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2199    Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2200    return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2201  }
2202  // Op0 - (-X / Y) --> Op0 + (X / Y)
2203  // Op0 - (X / -Y) --> Op0 + (X / Y)
2204  if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2205      match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2206    Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2207    return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2208  }
2209
2210  // Handle special cases for FSub with selects feeding the operation
2211  if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2212    return replaceInstUsesWith(I, V);
2213
2214  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2215    // (Y - X) - Y --> -X
2216    if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2217      return UnaryOperator::CreateFNegFMF(X, &I);
2218
2219    // Y - (X + Y) --> -X
2220    // Y - (Y + X) --> -X
2221    if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2222      return UnaryOperator::CreateFNegFMF(X, &I);
2223
2224    // (X * C) - X --> X * (C - 1.0)
2225    if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2226      Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2227      return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2228    }
2229    // X - (X * C) --> X * (1.0 - C)
2230    if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2231      Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2232      return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2233    }
2234
2235    // Reassociate fsub/fadd sequences to create more fadd instructions and
2236    // reduce dependency chains:
2237    // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2238    Value *Z;
2239    if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2240                                     m_Value(Z))))) {
2241      Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2242      Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2243      return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2244    }
2245
2246    auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2247      return m_OneUse(
2248          m_Intrinsic<Intrinsic::experimental_vector_reduce_v2_fadd>(
2249              m_Value(Sum), m_Value(Vec)));
2250    };
2251    Value *A0, *A1, *V0, *V1;
2252    if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2253        V0->getType() == V1->getType()) {
2254      // Difference of sums is sum of differences:
2255      // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2256      Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2257      Value *Rdx = Builder.CreateIntrinsic(
2258          Intrinsic::experimental_vector_reduce_v2_fadd,
2259          {A0->getType(), Sub->getType()}, {A0, Sub}, &I);
2260      return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2261    }
2262
2263    if (Instruction *F = factorizeFAddFSub(I, Builder))
2264      return F;
2265
2266    // TODO: This performs reassociative folds for FP ops. Some fraction of the
2267    // functionality has been subsumed by simple pattern matching here and in
2268    // InstSimplify. We should let a dedicated reassociation pass handle more
2269    // complex pattern matching and remove this from InstCombine.
2270    if (Value *V = FAddCombine(Builder).simplify(&I))
2271      return replaceInstUsesWith(I, V);
2272
2273    // (X - Y) - Op1 --> X - (Y + Op1)
2274    if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2275      Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2276      return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2277    }
2278  }
2279
2280  return nullptr;
2281}
2282