1//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SampleProfileLoader transformation. This pass
10// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12// profile information in the given profile.
13//
14// This pass generates branch weight annotations on the IR:
15//
16// - prof: Represents branch weights. This annotation is added to branches
17//      to indicate the weights of each edge coming out of the branch.
18//      The weight of each edge is the weight of the target block for
19//      that edge. The weight of a block B is computed as the maximum
20//      number of samples found in B.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/IPO/SampleProfile.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/None.h"
29#include "llvm/ADT/SCCIterator.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringMap.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/ADT/Twine.h"
37#include "llvm/Analysis/AssumptionCache.h"
38#include "llvm/Analysis/CallGraph.h"
39#include "llvm/Analysis/CallGraphSCCPass.h"
40#include "llvm/Analysis/InlineAdvisor.h"
41#include "llvm/Analysis/InlineCost.h"
42#include "llvm/Analysis/LoopInfo.h"
43#include "llvm/Analysis/OptimizationRemarkEmitter.h"
44#include "llvm/Analysis/PostDominators.h"
45#include "llvm/Analysis/ProfileSummaryInfo.h"
46#include "llvm/Analysis/TargetLibraryInfo.h"
47#include "llvm/Analysis/TargetTransformInfo.h"
48#include "llvm/IR/BasicBlock.h"
49#include "llvm/IR/CFG.h"
50#include "llvm/IR/DebugInfoMetadata.h"
51#include "llvm/IR/DebugLoc.h"
52#include "llvm/IR/DiagnosticInfo.h"
53#include "llvm/IR/Dominators.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/GlobalValue.h"
56#include "llvm/IR/InstrTypes.h"
57#include "llvm/IR/Instruction.h"
58#include "llvm/IR/Instructions.h"
59#include "llvm/IR/IntrinsicInst.h"
60#include "llvm/IR/LLVMContext.h"
61#include "llvm/IR/MDBuilder.h"
62#include "llvm/IR/Module.h"
63#include "llvm/IR/PassManager.h"
64#include "llvm/IR/ValueSymbolTable.h"
65#include "llvm/InitializePasses.h"
66#include "llvm/Pass.h"
67#include "llvm/ProfileData/InstrProf.h"
68#include "llvm/ProfileData/SampleProf.h"
69#include "llvm/ProfileData/SampleProfReader.h"
70#include "llvm/Support/Casting.h"
71#include "llvm/Support/CommandLine.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/ErrorHandling.h"
74#include "llvm/Support/ErrorOr.h"
75#include "llvm/Support/GenericDomTree.h"
76#include "llvm/Support/raw_ostream.h"
77#include "llvm/Transforms/IPO.h"
78#include "llvm/Transforms/Instrumentation.h"
79#include "llvm/Transforms/Utils/CallPromotionUtils.h"
80#include "llvm/Transforms/Utils/Cloning.h"
81#include "llvm/Transforms/Utils/MisExpect.h"
82#include <algorithm>
83#include <cassert>
84#include <cstdint>
85#include <functional>
86#include <limits>
87#include <map>
88#include <memory>
89#include <queue>
90#include <string>
91#include <system_error>
92#include <utility>
93#include <vector>
94
95using namespace llvm;
96using namespace sampleprof;
97using ProfileCount = Function::ProfileCount;
98#define DEBUG_TYPE "sample-profile"
99#define CSINLINE_DEBUG DEBUG_TYPE "-inline"
100
101STATISTIC(NumCSInlined,
102          "Number of functions inlined with context sensitive profile");
103STATISTIC(NumCSNotInlined,
104          "Number of functions not inlined with context sensitive profile");
105
106// Command line option to specify the file to read samples from. This is
107// mainly used for debugging.
108static cl::opt<std::string> SampleProfileFile(
109    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
110    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
111
112// The named file contains a set of transformations that may have been applied
113// to the symbol names between the program from which the sample data was
114// collected and the current program's symbols.
115static cl::opt<std::string> SampleProfileRemappingFile(
116    "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
117    cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
118
119static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
120    "sample-profile-max-propagate-iterations", cl::init(100),
121    cl::desc("Maximum number of iterations to go through when propagating "
122             "sample block/edge weights through the CFG."));
123
124static cl::opt<unsigned> SampleProfileRecordCoverage(
125    "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
126    cl::desc("Emit a warning if less than N% of records in the input profile "
127             "are matched to the IR."));
128
129static cl::opt<unsigned> SampleProfileSampleCoverage(
130    "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
131    cl::desc("Emit a warning if less than N% of samples in the input profile "
132             "are matched to the IR."));
133
134static cl::opt<bool> NoWarnSampleUnused(
135    "no-warn-sample-unused", cl::init(false), cl::Hidden,
136    cl::desc("Use this option to turn off/on warnings about function with "
137             "samples but without debug information to use those samples. "));
138
139static cl::opt<bool> ProfileSampleAccurate(
140    "profile-sample-accurate", cl::Hidden, cl::init(false),
141    cl::desc("If the sample profile is accurate, we will mark all un-sampled "
142             "callsite and function as having 0 samples. Otherwise, treat "
143             "un-sampled callsites and functions conservatively as unknown. "));
144
145static cl::opt<bool> ProfileAccurateForSymsInList(
146    "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
147    cl::init(true),
148    cl::desc("For symbols in profile symbol list, regard their profiles to "
149             "be accurate. It may be overriden by profile-sample-accurate. "));
150
151static cl::opt<bool> ProfileMergeInlinee(
152    "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
153    cl::desc("Merge past inlinee's profile to outline version if sample "
154             "profile loader decided not to inline a call site. It will "
155             "only be enabled when top-down order of profile loading is "
156             "enabled. "));
157
158static cl::opt<bool> ProfileTopDownLoad(
159    "sample-profile-top-down-load", cl::Hidden, cl::init(true),
160    cl::desc("Do profile annotation and inlining for functions in top-down "
161             "order of call graph during sample profile loading. It only "
162             "works for new pass manager. "));
163
164static cl::opt<bool> ProfileSizeInline(
165    "sample-profile-inline-size", cl::Hidden, cl::init(false),
166    cl::desc("Inline cold call sites in profile loader if it's beneficial "
167             "for code size."));
168
169static cl::opt<int> SampleColdCallSiteThreshold(
170    "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
171    cl::desc("Threshold for inlining cold callsites"));
172
173namespace {
174
175using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
176using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
177using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
178using EdgeWeightMap = DenseMap<Edge, uint64_t>;
179using BlockEdgeMap =
180    DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
181
182class SampleProfileLoader;
183
184class SampleCoverageTracker {
185public:
186  SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
187
188  bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
189                       uint32_t Discriminator, uint64_t Samples);
190  unsigned computeCoverage(unsigned Used, unsigned Total) const;
191  unsigned countUsedRecords(const FunctionSamples *FS,
192                            ProfileSummaryInfo *PSI) const;
193  unsigned countBodyRecords(const FunctionSamples *FS,
194                            ProfileSummaryInfo *PSI) const;
195  uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
196  uint64_t countBodySamples(const FunctionSamples *FS,
197                            ProfileSummaryInfo *PSI) const;
198
199  void clear() {
200    SampleCoverage.clear();
201    TotalUsedSamples = 0;
202  }
203
204private:
205  using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
206  using FunctionSamplesCoverageMap =
207      DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
208
209  /// Coverage map for sampling records.
210  ///
211  /// This map keeps a record of sampling records that have been matched to
212  /// an IR instruction. This is used to detect some form of staleness in
213  /// profiles (see flag -sample-profile-check-coverage).
214  ///
215  /// Each entry in the map corresponds to a FunctionSamples instance.  This is
216  /// another map that counts how many times the sample record at the
217  /// given location has been used.
218  FunctionSamplesCoverageMap SampleCoverage;
219
220  /// Number of samples used from the profile.
221  ///
222  /// When a sampling record is used for the first time, the samples from
223  /// that record are added to this accumulator.  Coverage is later computed
224  /// based on the total number of samples available in this function and
225  /// its callsites.
226  ///
227  /// Note that this accumulator tracks samples used from a single function
228  /// and all the inlined callsites. Strictly, we should have a map of counters
229  /// keyed by FunctionSamples pointers, but these stats are cleared after
230  /// every function, so we just need to keep a single counter.
231  uint64_t TotalUsedSamples = 0;
232
233  SampleProfileLoader &SPLoader;
234};
235
236class GUIDToFuncNameMapper {
237public:
238  GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
239                        DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
240      : CurrentReader(Reader), CurrentModule(M),
241      CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
242    if (!CurrentReader.useMD5())
243      return;
244
245    for (const auto &F : CurrentModule) {
246      StringRef OrigName = F.getName();
247      CurrentGUIDToFuncNameMap.insert(
248          {Function::getGUID(OrigName), OrigName});
249
250      // Local to global var promotion used by optimization like thinlto
251      // will rename the var and add suffix like ".llvm.xxx" to the
252      // original local name. In sample profile, the suffixes of function
253      // names are all stripped. Since it is possible that the mapper is
254      // built in post-thin-link phase and var promotion has been done,
255      // we need to add the substring of function name without the suffix
256      // into the GUIDToFuncNameMap.
257      StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
258      if (CanonName != OrigName)
259        CurrentGUIDToFuncNameMap.insert(
260            {Function::getGUID(CanonName), CanonName});
261    }
262
263    // Update GUIDToFuncNameMap for each function including inlinees.
264    SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
265  }
266
267  ~GUIDToFuncNameMapper() {
268    if (!CurrentReader.useMD5())
269      return;
270
271    CurrentGUIDToFuncNameMap.clear();
272
273    // Reset GUIDToFuncNameMap for of each function as they're no
274    // longer valid at this point.
275    SetGUIDToFuncNameMapForAll(nullptr);
276  }
277
278private:
279  void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
280    std::queue<FunctionSamples *> FSToUpdate;
281    for (auto &IFS : CurrentReader.getProfiles()) {
282      FSToUpdate.push(&IFS.second);
283    }
284
285    while (!FSToUpdate.empty()) {
286      FunctionSamples *FS = FSToUpdate.front();
287      FSToUpdate.pop();
288      FS->GUIDToFuncNameMap = Map;
289      for (const auto &ICS : FS->getCallsiteSamples()) {
290        const FunctionSamplesMap &FSMap = ICS.second;
291        for (auto &IFS : FSMap) {
292          FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
293          FSToUpdate.push(&FS);
294        }
295      }
296    }
297  }
298
299  SampleProfileReader &CurrentReader;
300  Module &CurrentModule;
301  DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
302};
303
304/// Sample profile pass.
305///
306/// This pass reads profile data from the file specified by
307/// -sample-profile-file and annotates every affected function with the
308/// profile information found in that file.
309class SampleProfileLoader {
310public:
311  SampleProfileLoader(
312      StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
313      std::function<AssumptionCache &(Function &)> GetAssumptionCache,
314      std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
315      std::function<const TargetLibraryInfo &(Function &)> GetTLI)
316      : GetAC(std::move(GetAssumptionCache)),
317        GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
318        CoverageTracker(*this), Filename(std::string(Name)),
319        RemappingFilename(std::string(RemapName)),
320        IsThinLTOPreLink(IsThinLTOPreLink) {}
321
322  bool doInitialization(Module &M);
323  bool runOnModule(Module &M, ModuleAnalysisManager *AM,
324                   ProfileSummaryInfo *_PSI, CallGraph *CG);
325
326  void dump() { Reader->dump(); }
327
328protected:
329  friend class SampleCoverageTracker;
330
331  bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
332  unsigned getFunctionLoc(Function &F);
333  bool emitAnnotations(Function &F);
334  ErrorOr<uint64_t> getInstWeight(const Instruction &I);
335  ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
336  const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
337  std::vector<const FunctionSamples *>
338  findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
339  mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
340  const FunctionSamples *findFunctionSamples(const Instruction &I) const;
341  bool inlineCallInstruction(CallBase &CB);
342  bool inlineHotFunctions(Function &F,
343                          DenseSet<GlobalValue::GUID> &InlinedGUIDs);
344  // Inline cold/small functions in addition to hot ones
345  bool shouldInlineColdCallee(CallBase &CallInst);
346  void emitOptimizationRemarksForInlineCandidates(
347      const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
348      bool Hot);
349  void printEdgeWeight(raw_ostream &OS, Edge E);
350  void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
351  void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
352  bool computeBlockWeights(Function &F);
353  void findEquivalenceClasses(Function &F);
354  template <bool IsPostDom>
355  void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
356                           DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
357
358  void propagateWeights(Function &F);
359  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
360  void buildEdges(Function &F);
361  std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
362  bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
363  void computeDominanceAndLoopInfo(Function &F);
364  void clearFunctionData();
365  bool callsiteIsHot(const FunctionSamples *CallsiteFS,
366                     ProfileSummaryInfo *PSI);
367
368  /// Map basic blocks to their computed weights.
369  ///
370  /// The weight of a basic block is defined to be the maximum
371  /// of all the instruction weights in that block.
372  BlockWeightMap BlockWeights;
373
374  /// Map edges to their computed weights.
375  ///
376  /// Edge weights are computed by propagating basic block weights in
377  /// SampleProfile::propagateWeights.
378  EdgeWeightMap EdgeWeights;
379
380  /// Set of visited blocks during propagation.
381  SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
382
383  /// Set of visited edges during propagation.
384  SmallSet<Edge, 32> VisitedEdges;
385
386  /// Equivalence classes for block weights.
387  ///
388  /// Two blocks BB1 and BB2 are in the same equivalence class if they
389  /// dominate and post-dominate each other, and they are in the same loop
390  /// nest. When this happens, the two blocks are guaranteed to execute
391  /// the same number of times.
392  EquivalenceClassMap EquivalenceClass;
393
394  /// Map from function name to Function *. Used to find the function from
395  /// the function name. If the function name contains suffix, additional
396  /// entry is added to map from the stripped name to the function if there
397  /// is one-to-one mapping.
398  StringMap<Function *> SymbolMap;
399
400  /// Dominance, post-dominance and loop information.
401  std::unique_ptr<DominatorTree> DT;
402  std::unique_ptr<PostDominatorTree> PDT;
403  std::unique_ptr<LoopInfo> LI;
404
405  std::function<AssumptionCache &(Function &)> GetAC;
406  std::function<TargetTransformInfo &(Function &)> GetTTI;
407  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
408
409  /// Predecessors for each basic block in the CFG.
410  BlockEdgeMap Predecessors;
411
412  /// Successors for each basic block in the CFG.
413  BlockEdgeMap Successors;
414
415  SampleCoverageTracker CoverageTracker;
416
417  /// Profile reader object.
418  std::unique_ptr<SampleProfileReader> Reader;
419
420  /// Samples collected for the body of this function.
421  FunctionSamples *Samples = nullptr;
422
423  /// Name of the profile file to load.
424  std::string Filename;
425
426  /// Name of the profile remapping file to load.
427  std::string RemappingFilename;
428
429  /// Flag indicating whether the profile input loaded successfully.
430  bool ProfileIsValid = false;
431
432  /// Flag indicating if the pass is invoked in ThinLTO compile phase.
433  ///
434  /// In this phase, in annotation, we should not promote indirect calls.
435  /// Instead, we will mark GUIDs that needs to be annotated to the function.
436  bool IsThinLTOPreLink;
437
438  /// Profile Summary Info computed from sample profile.
439  ProfileSummaryInfo *PSI = nullptr;
440
441  /// Profle Symbol list tells whether a function name appears in the binary
442  /// used to generate the current profile.
443  std::unique_ptr<ProfileSymbolList> PSL;
444
445  /// Total number of samples collected in this profile.
446  ///
447  /// This is the sum of all the samples collected in all the functions executed
448  /// at runtime.
449  uint64_t TotalCollectedSamples = 0;
450
451  /// Optimization Remark Emitter used to emit diagnostic remarks.
452  OptimizationRemarkEmitter *ORE = nullptr;
453
454  // Information recorded when we declined to inline a call site
455  // because we have determined it is too cold is accumulated for
456  // each callee function. Initially this is just the entry count.
457  struct NotInlinedProfileInfo {
458    uint64_t entryCount;
459  };
460  DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
461
462  // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
463  // all the function symbols defined or declared in current module.
464  DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
465
466  // All the Names used in FunctionSamples including outline function
467  // names, inline instance names and call target names.
468  StringSet<> NamesInProfile;
469
470  // For symbol in profile symbol list, whether to regard their profiles
471  // to be accurate. It is mainly decided by existance of profile symbol
472  // list and -profile-accurate-for-symsinlist flag, but it can be
473  // overriden by -profile-sample-accurate or profile-sample-accurate
474  // attribute.
475  bool ProfAccForSymsInList;
476};
477
478class SampleProfileLoaderLegacyPass : public ModulePass {
479public:
480  // Class identification, replacement for typeinfo
481  static char ID;
482
483  SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
484                                bool IsThinLTOPreLink = false)
485      : ModulePass(ID), SampleLoader(
486                            Name, SampleProfileRemappingFile, IsThinLTOPreLink,
487                            [&](Function &F) -> AssumptionCache & {
488                              return ACT->getAssumptionCache(F);
489                            },
490                            [&](Function &F) -> TargetTransformInfo & {
491                              return TTIWP->getTTI(F);
492                            },
493                            [&](Function &F) -> TargetLibraryInfo & {
494                              return TLIWP->getTLI(F);
495                            }) {
496    initializeSampleProfileLoaderLegacyPassPass(
497        *PassRegistry::getPassRegistry());
498  }
499
500  void dump() { SampleLoader.dump(); }
501
502  bool doInitialization(Module &M) override {
503    return SampleLoader.doInitialization(M);
504  }
505
506  StringRef getPassName() const override { return "Sample profile pass"; }
507  bool runOnModule(Module &M) override;
508
509  void getAnalysisUsage(AnalysisUsage &AU) const override {
510    AU.addRequired<AssumptionCacheTracker>();
511    AU.addRequired<TargetTransformInfoWrapperPass>();
512    AU.addRequired<TargetLibraryInfoWrapperPass>();
513    AU.addRequired<ProfileSummaryInfoWrapperPass>();
514  }
515
516private:
517  SampleProfileLoader SampleLoader;
518  AssumptionCacheTracker *ACT = nullptr;
519  TargetTransformInfoWrapperPass *TTIWP = nullptr;
520  TargetLibraryInfoWrapperPass *TLIWP = nullptr;
521};
522
523} // end anonymous namespace
524
525/// Return true if the given callsite is hot wrt to hot cutoff threshold.
526///
527/// Functions that were inlined in the original binary will be represented
528/// in the inline stack in the sample profile. If the profile shows that
529/// the original inline decision was "good" (i.e., the callsite is executed
530/// frequently), then we will recreate the inline decision and apply the
531/// profile from the inlined callsite.
532///
533/// To decide whether an inlined callsite is hot, we compare the callsite
534/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
535/// regarded as hot if the count is above the cutoff value.
536///
537/// When ProfileAccurateForSymsInList is enabled and profile symbol list
538/// is present, functions in the profile symbol list but without profile will
539/// be regarded as cold and much less inlining will happen in CGSCC inlining
540/// pass, so we tend to lower the hot criteria here to allow more early
541/// inlining to happen for warm callsites and it is helpful for performance.
542bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
543                                        ProfileSummaryInfo *PSI) {
544  if (!CallsiteFS)
545    return false; // The callsite was not inlined in the original binary.
546
547  assert(PSI && "PSI is expected to be non null");
548  uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
549  if (ProfAccForSymsInList)
550    return !PSI->isColdCount(CallsiteTotalSamples);
551  else
552    return PSI->isHotCount(CallsiteTotalSamples);
553}
554
555/// Mark as used the sample record for the given function samples at
556/// (LineOffset, Discriminator).
557///
558/// \returns true if this is the first time we mark the given record.
559bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
560                                            uint32_t LineOffset,
561                                            uint32_t Discriminator,
562                                            uint64_t Samples) {
563  LineLocation Loc(LineOffset, Discriminator);
564  unsigned &Count = SampleCoverage[FS][Loc];
565  bool FirstTime = (++Count == 1);
566  if (FirstTime)
567    TotalUsedSamples += Samples;
568  return FirstTime;
569}
570
571/// Return the number of sample records that were applied from this profile.
572///
573/// This count does not include records from cold inlined callsites.
574unsigned
575SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
576                                        ProfileSummaryInfo *PSI) const {
577  auto I = SampleCoverage.find(FS);
578
579  // The size of the coverage map for FS represents the number of records
580  // that were marked used at least once.
581  unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
582
583  // If there are inlined callsites in this function, count the samples found
584  // in the respective bodies. However, do not bother counting callees with 0
585  // total samples, these are callees that were never invoked at runtime.
586  for (const auto &I : FS->getCallsiteSamples())
587    for (const auto &J : I.second) {
588      const FunctionSamples *CalleeSamples = &J.second;
589      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
590        Count += countUsedRecords(CalleeSamples, PSI);
591    }
592
593  return Count;
594}
595
596/// Return the number of sample records in the body of this profile.
597///
598/// This count does not include records from cold inlined callsites.
599unsigned
600SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
601                                        ProfileSummaryInfo *PSI) const {
602  unsigned Count = FS->getBodySamples().size();
603
604  // Only count records in hot callsites.
605  for (const auto &I : FS->getCallsiteSamples())
606    for (const auto &J : I.second) {
607      const FunctionSamples *CalleeSamples = &J.second;
608      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
609        Count += countBodyRecords(CalleeSamples, PSI);
610    }
611
612  return Count;
613}
614
615/// Return the number of samples collected in the body of this profile.
616///
617/// This count does not include samples from cold inlined callsites.
618uint64_t
619SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
620                                        ProfileSummaryInfo *PSI) const {
621  uint64_t Total = 0;
622  for (const auto &I : FS->getBodySamples())
623    Total += I.second.getSamples();
624
625  // Only count samples in hot callsites.
626  for (const auto &I : FS->getCallsiteSamples())
627    for (const auto &J : I.second) {
628      const FunctionSamples *CalleeSamples = &J.second;
629      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
630        Total += countBodySamples(CalleeSamples, PSI);
631    }
632
633  return Total;
634}
635
636/// Return the fraction of sample records used in this profile.
637///
638/// The returned value is an unsigned integer in the range 0-100 indicating
639/// the percentage of sample records that were used while applying this
640/// profile to the associated function.
641unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
642                                                unsigned Total) const {
643  assert(Used <= Total &&
644         "number of used records cannot exceed the total number of records");
645  return Total > 0 ? Used * 100 / Total : 100;
646}
647
648/// Clear all the per-function data used to load samples and propagate weights.
649void SampleProfileLoader::clearFunctionData() {
650  BlockWeights.clear();
651  EdgeWeights.clear();
652  VisitedBlocks.clear();
653  VisitedEdges.clear();
654  EquivalenceClass.clear();
655  DT = nullptr;
656  PDT = nullptr;
657  LI = nullptr;
658  Predecessors.clear();
659  Successors.clear();
660  CoverageTracker.clear();
661}
662
663#ifndef NDEBUG
664/// Print the weight of edge \p E on stream \p OS.
665///
666/// \param OS  Stream to emit the output to.
667/// \param E  Edge to print.
668void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
669  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
670     << "]: " << EdgeWeights[E] << "\n";
671}
672
673/// Print the equivalence class of block \p BB on stream \p OS.
674///
675/// \param OS  Stream to emit the output to.
676/// \param BB  Block to print.
677void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
678                                                const BasicBlock *BB) {
679  const BasicBlock *Equiv = EquivalenceClass[BB];
680  OS << "equivalence[" << BB->getName()
681     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
682}
683
684/// Print the weight of block \p BB on stream \p OS.
685///
686/// \param OS  Stream to emit the output to.
687/// \param BB  Block to print.
688void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
689                                           const BasicBlock *BB) const {
690  const auto &I = BlockWeights.find(BB);
691  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
692  OS << "weight[" << BB->getName() << "]: " << W << "\n";
693}
694#endif
695
696/// Get the weight for an instruction.
697///
698/// The "weight" of an instruction \p Inst is the number of samples
699/// collected on that instruction at runtime. To retrieve it, we
700/// need to compute the line number of \p Inst relative to the start of its
701/// function. We use HeaderLineno to compute the offset. We then
702/// look up the samples collected for \p Inst using BodySamples.
703///
704/// \param Inst Instruction to query.
705///
706/// \returns the weight of \p Inst.
707ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
708  const DebugLoc &DLoc = Inst.getDebugLoc();
709  if (!DLoc)
710    return std::error_code();
711
712  const FunctionSamples *FS = findFunctionSamples(Inst);
713  if (!FS)
714    return std::error_code();
715
716  // Ignore all intrinsics, phinodes and branch instructions.
717  // Branch and phinodes instruction usually contains debug info from sources outside of
718  // the residing basic block, thus we ignore them during annotation.
719  if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
720    return std::error_code();
721
722  // If a direct call/invoke instruction is inlined in profile
723  // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
724  // it means that the inlined callsite has no sample, thus the call
725  // instruction should have 0 count.
726  if (auto *CB = dyn_cast<CallBase>(&Inst))
727    if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
728      return 0;
729
730  const DILocation *DIL = DLoc;
731  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
732  uint32_t Discriminator = DIL->getBaseDiscriminator();
733  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
734  if (R) {
735    bool FirstMark =
736        CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
737    if (FirstMark) {
738      ORE->emit([&]() {
739        OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
740        Remark << "Applied " << ore::NV("NumSamples", *R);
741        Remark << " samples from profile (offset: ";
742        Remark << ore::NV("LineOffset", LineOffset);
743        if (Discriminator) {
744          Remark << ".";
745          Remark << ore::NV("Discriminator", Discriminator);
746        }
747        Remark << ")";
748        return Remark;
749      });
750    }
751    LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
752                      << DIL->getBaseDiscriminator() << ":" << Inst
753                      << " (line offset: " << LineOffset << "."
754                      << DIL->getBaseDiscriminator() << " - weight: " << R.get()
755                      << ")\n");
756  }
757  return R;
758}
759
760/// Compute the weight of a basic block.
761///
762/// The weight of basic block \p BB is the maximum weight of all the
763/// instructions in BB.
764///
765/// \param BB The basic block to query.
766///
767/// \returns the weight for \p BB.
768ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
769  uint64_t Max = 0;
770  bool HasWeight = false;
771  for (auto &I : BB->getInstList()) {
772    const ErrorOr<uint64_t> &R = getInstWeight(I);
773    if (R) {
774      Max = std::max(Max, R.get());
775      HasWeight = true;
776    }
777  }
778  return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
779}
780
781/// Compute and store the weights of every basic block.
782///
783/// This populates the BlockWeights map by computing
784/// the weights of every basic block in the CFG.
785///
786/// \param F The function to query.
787bool SampleProfileLoader::computeBlockWeights(Function &F) {
788  bool Changed = false;
789  LLVM_DEBUG(dbgs() << "Block weights\n");
790  for (const auto &BB : F) {
791    ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
792    if (Weight) {
793      BlockWeights[&BB] = Weight.get();
794      VisitedBlocks.insert(&BB);
795      Changed = true;
796    }
797    LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
798  }
799
800  return Changed;
801}
802
803/// Get the FunctionSamples for a call instruction.
804///
805/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
806/// instance in which that call instruction is calling to. It contains
807/// all samples that resides in the inlined instance. We first find the
808/// inlined instance in which the call instruction is from, then we
809/// traverse its children to find the callsite with the matching
810/// location.
811///
812/// \param Inst Call/Invoke instruction to query.
813///
814/// \returns The FunctionSamples pointer to the inlined instance.
815const FunctionSamples *
816SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
817  const DILocation *DIL = Inst.getDebugLoc();
818  if (!DIL) {
819    return nullptr;
820  }
821
822  StringRef CalleeName;
823  if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
824    if (Function *Callee = CI->getCalledFunction())
825      CalleeName = Callee->getName();
826
827  const FunctionSamples *FS = findFunctionSamples(Inst);
828  if (FS == nullptr)
829    return nullptr;
830
831  return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
832                                                DIL->getBaseDiscriminator()),
833                                   CalleeName);
834}
835
836/// Returns a vector of FunctionSamples that are the indirect call targets
837/// of \p Inst. The vector is sorted by the total number of samples. Stores
838/// the total call count of the indirect call in \p Sum.
839std::vector<const FunctionSamples *>
840SampleProfileLoader::findIndirectCallFunctionSamples(
841    const Instruction &Inst, uint64_t &Sum) const {
842  const DILocation *DIL = Inst.getDebugLoc();
843  std::vector<const FunctionSamples *> R;
844
845  if (!DIL) {
846    return R;
847  }
848
849  const FunctionSamples *FS = findFunctionSamples(Inst);
850  if (FS == nullptr)
851    return R;
852
853  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
854  uint32_t Discriminator = DIL->getBaseDiscriminator();
855
856  auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
857  Sum = 0;
858  if (T)
859    for (const auto &T_C : T.get())
860      Sum += T_C.second;
861  if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
862          FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
863    if (M->empty())
864      return R;
865    for (const auto &NameFS : *M) {
866      Sum += NameFS.second.getEntrySamples();
867      R.push_back(&NameFS.second);
868    }
869    llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
870      if (L->getEntrySamples() != R->getEntrySamples())
871        return L->getEntrySamples() > R->getEntrySamples();
872      return FunctionSamples::getGUID(L->getName()) <
873             FunctionSamples::getGUID(R->getName());
874    });
875  }
876  return R;
877}
878
879/// Get the FunctionSamples for an instruction.
880///
881/// The FunctionSamples of an instruction \p Inst is the inlined instance
882/// in which that instruction is coming from. We traverse the inline stack
883/// of that instruction, and match it with the tree nodes in the profile.
884///
885/// \param Inst Instruction to query.
886///
887/// \returns the FunctionSamples pointer to the inlined instance.
888const FunctionSamples *
889SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
890  const DILocation *DIL = Inst.getDebugLoc();
891  if (!DIL)
892    return Samples;
893
894  auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
895  if (it.second)
896    it.first->second = Samples->findFunctionSamples(DIL);
897  return it.first->second;
898}
899
900bool SampleProfileLoader::inlineCallInstruction(CallBase &CB) {
901  Function *CalledFunction = CB.getCalledFunction();
902  assert(CalledFunction);
903  DebugLoc DLoc = CB.getDebugLoc();
904  BasicBlock *BB = CB.getParent();
905  InlineParams Params = getInlineParams();
906  Params.ComputeFullInlineCost = true;
907  // Checks if there is anything in the reachable portion of the callee at
908  // this callsite that makes this inlining potentially illegal. Need to
909  // set ComputeFullInlineCost, otherwise getInlineCost may return early
910  // when cost exceeds threshold without checking all IRs in the callee.
911  // The acutal cost does not matter because we only checks isNever() to
912  // see if it is legal to inline the callsite.
913  InlineCost Cost =
914      getInlineCost(CB, Params, GetTTI(*CalledFunction), GetAC, GetTLI);
915  if (Cost.isNever()) {
916    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
917              << "incompatible inlining");
918    return false;
919  }
920  InlineFunctionInfo IFI(nullptr, GetAC);
921  if (InlineFunction(CB, IFI).isSuccess()) {
922    // The call to InlineFunction erases I, so we can't pass it here.
923    emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
924                    true, CSINLINE_DEBUG);
925    return true;
926  }
927  return false;
928}
929
930bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
931  if (!ProfileSizeInline)
932    return false;
933
934  Function *Callee = CallInst.getCalledFunction();
935  if (Callee == nullptr)
936    return false;
937
938  InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
939                                  GetAC, GetTLI);
940
941  return Cost.getCost() <= SampleColdCallSiteThreshold;
942}
943
944void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
945    const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
946    bool Hot) {
947  for (auto I : Candidates) {
948    Function *CalledFunction = I->getCalledFunction();
949    if (CalledFunction) {
950      ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
951                                           I->getDebugLoc(), I->getParent())
952                << "previous inlining reattempted for "
953                << (Hot ? "hotness: '" : "size: '")
954                << ore::NV("Callee", CalledFunction) << "' into '"
955                << ore::NV("Caller", &F) << "'");
956    }
957  }
958}
959
960/// Iteratively inline hot callsites of a function.
961///
962/// Iteratively traverse all callsites of the function \p F, and find if
963/// the corresponding inlined instance exists and is hot in profile. If
964/// it is hot enough, inline the callsites and adds new callsites of the
965/// callee into the caller. If the call is an indirect call, first promote
966/// it to direct call. Each indirect call is limited with a single target.
967///
968/// \param F function to perform iterative inlining.
969/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
970///     inlined in the profiled binary.
971///
972/// \returns True if there is any inline happened.
973bool SampleProfileLoader::inlineHotFunctions(
974    Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
975  DenseSet<Instruction *> PromotedInsns;
976
977  // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
978  // Profile symbol list is ignored when profile-sample-accurate is on.
979  assert((!ProfAccForSymsInList ||
980          (!ProfileSampleAccurate &&
981           !F.hasFnAttribute("profile-sample-accurate"))) &&
982         "ProfAccForSymsInList should be false when profile-sample-accurate "
983         "is enabled");
984
985  DenseMap<CallBase *, const FunctionSamples *> localNotInlinedCallSites;
986  bool Changed = false;
987  while (true) {
988    bool LocalChanged = false;
989    SmallVector<CallBase *, 10> CIS;
990    for (auto &BB : F) {
991      bool Hot = false;
992      SmallVector<CallBase *, 10> AllCandidates;
993      SmallVector<CallBase *, 10> ColdCandidates;
994      for (auto &I : BB.getInstList()) {
995        const FunctionSamples *FS = nullptr;
996        if (auto *CB = dyn_cast<CallBase>(&I)) {
997          if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
998            AllCandidates.push_back(CB);
999            if (FS->getEntrySamples() > 0)
1000              localNotInlinedCallSites.try_emplace(CB, FS);
1001            if (callsiteIsHot(FS, PSI))
1002              Hot = true;
1003            else if (shouldInlineColdCallee(*CB))
1004              ColdCandidates.push_back(CB);
1005          }
1006        }
1007      }
1008      if (Hot) {
1009        CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1010        emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1011      } else {
1012        CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1013        emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1014      }
1015    }
1016    for (CallBase *I : CIS) {
1017      Function *CalledFunction = I->getCalledFunction();
1018      // Do not inline recursive calls.
1019      if (CalledFunction == &F)
1020        continue;
1021      if (I->isIndirectCall()) {
1022        if (PromotedInsns.count(I))
1023          continue;
1024        uint64_t Sum;
1025        for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1026          if (IsThinLTOPreLink) {
1027            FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1028                                     PSI->getOrCompHotCountThreshold());
1029            continue;
1030          }
1031          auto CalleeFunctionName = FS->getFuncName();
1032          // If it is a recursive call, we do not inline it as it could bloat
1033          // the code exponentially. There is way to better handle this, e.g.
1034          // clone the caller first, and inline the cloned caller if it is
1035          // recursive. As llvm does not inline recursive calls, we will
1036          // simply ignore it instead of handling it explicitly.
1037          if (CalleeFunctionName == F.getName())
1038            continue;
1039
1040          if (!callsiteIsHot(FS, PSI))
1041            continue;
1042
1043          const char *Reason = "Callee function not available";
1044          auto R = SymbolMap.find(CalleeFunctionName);
1045          if (R != SymbolMap.end() && R->getValue() &&
1046              !R->getValue()->isDeclaration() &&
1047              R->getValue()->getSubprogram() &&
1048              R->getValue()->hasFnAttribute("use-sample-profile") &&
1049              isLegalToPromote(*I, R->getValue(), &Reason)) {
1050            uint64_t C = FS->getEntrySamples();
1051            auto &DI =
1052                pgo::promoteIndirectCall(*I, R->getValue(), C, Sum, false, ORE);
1053            Sum -= C;
1054            PromotedInsns.insert(I);
1055            // If profile mismatches, we should not attempt to inline DI.
1056            if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1057                inlineCallInstruction(cast<CallBase>(DI))) {
1058              localNotInlinedCallSites.erase(I);
1059              LocalChanged = true;
1060              ++NumCSInlined;
1061            }
1062          } else {
1063            LLVM_DEBUG(dbgs()
1064                       << "\nFailed to promote indirect call to "
1065                       << CalleeFunctionName << " because " << Reason << "\n");
1066          }
1067        }
1068      } else if (CalledFunction && CalledFunction->getSubprogram() &&
1069                 !CalledFunction->isDeclaration()) {
1070        if (inlineCallInstruction(*I)) {
1071          localNotInlinedCallSites.erase(I);
1072          LocalChanged = true;
1073          ++NumCSInlined;
1074        }
1075      } else if (IsThinLTOPreLink) {
1076        findCalleeFunctionSamples(*I)->findInlinedFunctions(
1077            InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1078      }
1079    }
1080    if (LocalChanged) {
1081      Changed = true;
1082    } else {
1083      break;
1084    }
1085  }
1086
1087  // Accumulate not inlined callsite information into notInlinedSamples
1088  for (const auto &Pair : localNotInlinedCallSites) {
1089    CallBase *I = Pair.getFirst();
1090    Function *Callee = I->getCalledFunction();
1091    if (!Callee || Callee->isDeclaration())
1092      continue;
1093
1094    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1095                                         I->getDebugLoc(), I->getParent())
1096              << "previous inlining not repeated: '"
1097              << ore::NV("Callee", Callee) << "' into '"
1098              << ore::NV("Caller", &F) << "'");
1099
1100    ++NumCSNotInlined;
1101    const FunctionSamples *FS = Pair.getSecond();
1102    if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1103      continue;
1104    }
1105
1106    if (ProfileMergeInlinee) {
1107      // Use entry samples as head samples during the merge, as inlinees
1108      // don't have head samples.
1109      assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
1110      const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
1111
1112      // Note that we have to do the merge right after processing function.
1113      // This allows OutlineFS's profile to be used for annotation during
1114      // top-down processing of functions' annotation.
1115      FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1116      OutlineFS->merge(*FS);
1117    } else {
1118      auto pair =
1119          notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1120      pair.first->second.entryCount += FS->getEntrySamples();
1121    }
1122  }
1123  return Changed;
1124}
1125
1126/// Find equivalence classes for the given block.
1127///
1128/// This finds all the blocks that are guaranteed to execute the same
1129/// number of times as \p BB1. To do this, it traverses all the
1130/// descendants of \p BB1 in the dominator or post-dominator tree.
1131///
1132/// A block BB2 will be in the same equivalence class as \p BB1 if
1133/// the following holds:
1134///
1135/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1136///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1137///    dominate BB1 in the post-dominator tree.
1138///
1139/// 2- Both BB2 and \p BB1 must be in the same loop.
1140///
1141/// For every block BB2 that meets those two requirements, we set BB2's
1142/// equivalence class to \p BB1.
1143///
1144/// \param BB1  Block to check.
1145/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1146/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1147///                 with blocks from \p BB1's dominator tree, then
1148///                 this is the post-dominator tree, and vice versa.
1149template <bool IsPostDom>
1150void SampleProfileLoader::findEquivalencesFor(
1151    BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1152    DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1153  const BasicBlock *EC = EquivalenceClass[BB1];
1154  uint64_t Weight = BlockWeights[EC];
1155  for (const auto *BB2 : Descendants) {
1156    bool IsDomParent = DomTree->dominates(BB2, BB1);
1157    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1158    if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1159      EquivalenceClass[BB2] = EC;
1160      // If BB2 is visited, then the entire EC should be marked as visited.
1161      if (VisitedBlocks.count(BB2)) {
1162        VisitedBlocks.insert(EC);
1163      }
1164
1165      // If BB2 is heavier than BB1, make BB2 have the same weight
1166      // as BB1.
1167      //
1168      // Note that we don't worry about the opposite situation here
1169      // (when BB2 is lighter than BB1). We will deal with this
1170      // during the propagation phase. Right now, we just want to
1171      // make sure that BB1 has the largest weight of all the
1172      // members of its equivalence set.
1173      Weight = std::max(Weight, BlockWeights[BB2]);
1174    }
1175  }
1176  if (EC == &EC->getParent()->getEntryBlock()) {
1177    BlockWeights[EC] = Samples->getHeadSamples() + 1;
1178  } else {
1179    BlockWeights[EC] = Weight;
1180  }
1181}
1182
1183/// Find equivalence classes.
1184///
1185/// Since samples may be missing from blocks, we can fill in the gaps by setting
1186/// the weights of all the blocks in the same equivalence class to the same
1187/// weight. To compute the concept of equivalence, we use dominance and loop
1188/// information. Two blocks B1 and B2 are in the same equivalence class if B1
1189/// dominates B2, B2 post-dominates B1 and both are in the same loop.
1190///
1191/// \param F The function to query.
1192void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1193  SmallVector<BasicBlock *, 8> DominatedBBs;
1194  LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1195  // Find equivalence sets based on dominance and post-dominance information.
1196  for (auto &BB : F) {
1197    BasicBlock *BB1 = &BB;
1198
1199    // Compute BB1's equivalence class once.
1200    if (EquivalenceClass.count(BB1)) {
1201      LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1202      continue;
1203    }
1204
1205    // By default, blocks are in their own equivalence class.
1206    EquivalenceClass[BB1] = BB1;
1207
1208    // Traverse all the blocks dominated by BB1. We are looking for
1209    // every basic block BB2 such that:
1210    //
1211    // 1- BB1 dominates BB2.
1212    // 2- BB2 post-dominates BB1.
1213    // 3- BB1 and BB2 are in the same loop nest.
1214    //
1215    // If all those conditions hold, it means that BB2 is executed
1216    // as many times as BB1, so they are placed in the same equivalence
1217    // class by making BB2's equivalence class be BB1.
1218    DominatedBBs.clear();
1219    DT->getDescendants(BB1, DominatedBBs);
1220    findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1221
1222    LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1223  }
1224
1225  // Assign weights to equivalence classes.
1226  //
1227  // All the basic blocks in the same equivalence class will execute
1228  // the same number of times. Since we know that the head block in
1229  // each equivalence class has the largest weight, assign that weight
1230  // to all the blocks in that equivalence class.
1231  LLVM_DEBUG(
1232      dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1233  for (auto &BI : F) {
1234    const BasicBlock *BB = &BI;
1235    const BasicBlock *EquivBB = EquivalenceClass[BB];
1236    if (BB != EquivBB)
1237      BlockWeights[BB] = BlockWeights[EquivBB];
1238    LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1239  }
1240}
1241
1242/// Visit the given edge to decide if it has a valid weight.
1243///
1244/// If \p E has not been visited before, we copy to \p UnknownEdge
1245/// and increment the count of unknown edges.
1246///
1247/// \param E  Edge to visit.
1248/// \param NumUnknownEdges  Current number of unknown edges.
1249/// \param UnknownEdge  Set if E has not been visited before.
1250///
1251/// \returns E's weight, if known. Otherwise, return 0.
1252uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1253                                        Edge *UnknownEdge) {
1254  if (!VisitedEdges.count(E)) {
1255    (*NumUnknownEdges)++;
1256    *UnknownEdge = E;
1257    return 0;
1258  }
1259
1260  return EdgeWeights[E];
1261}
1262
1263/// Propagate weights through incoming/outgoing edges.
1264///
1265/// If the weight of a basic block is known, and there is only one edge
1266/// with an unknown weight, we can calculate the weight of that edge.
1267///
1268/// Similarly, if all the edges have a known count, we can calculate the
1269/// count of the basic block, if needed.
1270///
1271/// \param F  Function to process.
1272/// \param UpdateBlockCount  Whether we should update basic block counts that
1273///                          has already been annotated.
1274///
1275/// \returns  True if new weights were assigned to edges or blocks.
1276bool SampleProfileLoader::propagateThroughEdges(Function &F,
1277                                                bool UpdateBlockCount) {
1278  bool Changed = false;
1279  LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1280  for (const auto &BI : F) {
1281    const BasicBlock *BB = &BI;
1282    const BasicBlock *EC = EquivalenceClass[BB];
1283
1284    // Visit all the predecessor and successor edges to determine
1285    // which ones have a weight assigned already. Note that it doesn't
1286    // matter that we only keep track of a single unknown edge. The
1287    // only case we are interested in handling is when only a single
1288    // edge is unknown (see setEdgeOrBlockWeight).
1289    for (unsigned i = 0; i < 2; i++) {
1290      uint64_t TotalWeight = 0;
1291      unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1292      Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1293
1294      if (i == 0) {
1295        // First, visit all predecessor edges.
1296        NumTotalEdges = Predecessors[BB].size();
1297        for (auto *Pred : Predecessors[BB]) {
1298          Edge E = std::make_pair(Pred, BB);
1299          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1300          if (E.first == E.second)
1301            SelfReferentialEdge = E;
1302        }
1303        if (NumTotalEdges == 1) {
1304          SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1305        }
1306      } else {
1307        // On the second round, visit all successor edges.
1308        NumTotalEdges = Successors[BB].size();
1309        for (auto *Succ : Successors[BB]) {
1310          Edge E = std::make_pair(BB, Succ);
1311          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1312        }
1313        if (NumTotalEdges == 1) {
1314          SingleEdge = std::make_pair(BB, Successors[BB][0]);
1315        }
1316      }
1317
1318      // After visiting all the edges, there are three cases that we
1319      // can handle immediately:
1320      //
1321      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1322      //   In this case, we simply check that the sum of all the edges
1323      //   is the same as BB's weight. If not, we change BB's weight
1324      //   to match. Additionally, if BB had not been visited before,
1325      //   we mark it visited.
1326      //
1327      // - Only one edge is unknown and BB has already been visited.
1328      //   In this case, we can compute the weight of the edge by
1329      //   subtracting the total block weight from all the known
1330      //   edge weights. If the edges weight more than BB, then the
1331      //   edge of the last remaining edge is set to zero.
1332      //
1333      // - There exists a self-referential edge and the weight of BB is
1334      //   known. In this case, this edge can be based on BB's weight.
1335      //   We add up all the other known edges and set the weight on
1336      //   the self-referential edge as we did in the previous case.
1337      //
1338      // In any other case, we must continue iterating. Eventually,
1339      // all edges will get a weight, or iteration will stop when
1340      // it reaches SampleProfileMaxPropagateIterations.
1341      if (NumUnknownEdges <= 1) {
1342        uint64_t &BBWeight = BlockWeights[EC];
1343        if (NumUnknownEdges == 0) {
1344          if (!VisitedBlocks.count(EC)) {
1345            // If we already know the weight of all edges, the weight of the
1346            // basic block can be computed. It should be no larger than the sum
1347            // of all edge weights.
1348            if (TotalWeight > BBWeight) {
1349              BBWeight = TotalWeight;
1350              Changed = true;
1351              LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1352                                << " known. Set weight for block: ";
1353                         printBlockWeight(dbgs(), BB););
1354            }
1355          } else if (NumTotalEdges == 1 &&
1356                     EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1357            // If there is only one edge for the visited basic block, use the
1358            // block weight to adjust edge weight if edge weight is smaller.
1359            EdgeWeights[SingleEdge] = BlockWeights[EC];
1360            Changed = true;
1361          }
1362        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1363          // If there is a single unknown edge and the block has been
1364          // visited, then we can compute E's weight.
1365          if (BBWeight >= TotalWeight)
1366            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1367          else
1368            EdgeWeights[UnknownEdge] = 0;
1369          const BasicBlock *OtherEC;
1370          if (i == 0)
1371            OtherEC = EquivalenceClass[UnknownEdge.first];
1372          else
1373            OtherEC = EquivalenceClass[UnknownEdge.second];
1374          // Edge weights should never exceed the BB weights it connects.
1375          if (VisitedBlocks.count(OtherEC) &&
1376              EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1377            EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1378          VisitedEdges.insert(UnknownEdge);
1379          Changed = true;
1380          LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1381                     printEdgeWeight(dbgs(), UnknownEdge));
1382        }
1383      } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1384        // If a block Weights 0, all its in/out edges should weight 0.
1385        if (i == 0) {
1386          for (auto *Pred : Predecessors[BB]) {
1387            Edge E = std::make_pair(Pred, BB);
1388            EdgeWeights[E] = 0;
1389            VisitedEdges.insert(E);
1390          }
1391        } else {
1392          for (auto *Succ : Successors[BB]) {
1393            Edge E = std::make_pair(BB, Succ);
1394            EdgeWeights[E] = 0;
1395            VisitedEdges.insert(E);
1396          }
1397        }
1398      } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1399        uint64_t &BBWeight = BlockWeights[BB];
1400        // We have a self-referential edge and the weight of BB is known.
1401        if (BBWeight >= TotalWeight)
1402          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1403        else
1404          EdgeWeights[SelfReferentialEdge] = 0;
1405        VisitedEdges.insert(SelfReferentialEdge);
1406        Changed = true;
1407        LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1408                   printEdgeWeight(dbgs(), SelfReferentialEdge));
1409      }
1410      if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1411        BlockWeights[EC] = TotalWeight;
1412        VisitedBlocks.insert(EC);
1413        Changed = true;
1414      }
1415    }
1416  }
1417
1418  return Changed;
1419}
1420
1421/// Build in/out edge lists for each basic block in the CFG.
1422///
1423/// We are interested in unique edges. If a block B1 has multiple
1424/// edges to another block B2, we only add a single B1->B2 edge.
1425void SampleProfileLoader::buildEdges(Function &F) {
1426  for (auto &BI : F) {
1427    BasicBlock *B1 = &BI;
1428
1429    // Add predecessors for B1.
1430    SmallPtrSet<BasicBlock *, 16> Visited;
1431    if (!Predecessors[B1].empty())
1432      llvm_unreachable("Found a stale predecessors list in a basic block.");
1433    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1434      BasicBlock *B2 = *PI;
1435      if (Visited.insert(B2).second)
1436        Predecessors[B1].push_back(B2);
1437    }
1438
1439    // Add successors for B1.
1440    Visited.clear();
1441    if (!Successors[B1].empty())
1442      llvm_unreachable("Found a stale successors list in a basic block.");
1443    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1444      BasicBlock *B2 = *SI;
1445      if (Visited.insert(B2).second)
1446        Successors[B1].push_back(B2);
1447    }
1448  }
1449}
1450
1451/// Returns the sorted CallTargetMap \p M by count in descending order.
1452static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1453    const SampleRecord::CallTargetMap & M) {
1454  SmallVector<InstrProfValueData, 2> R;
1455  for (const auto &I : SampleRecord::SortCallTargets(M)) {
1456    R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1457  }
1458  return R;
1459}
1460
1461/// Propagate weights into edges
1462///
1463/// The following rules are applied to every block BB in the CFG:
1464///
1465/// - If BB has a single predecessor/successor, then the weight
1466///   of that edge is the weight of the block.
1467///
1468/// - If all incoming or outgoing edges are known except one, and the
1469///   weight of the block is already known, the weight of the unknown
1470///   edge will be the weight of the block minus the sum of all the known
1471///   edges. If the sum of all the known edges is larger than BB's weight,
1472///   we set the unknown edge weight to zero.
1473///
1474/// - If there is a self-referential edge, and the weight of the block is
1475///   known, the weight for that edge is set to the weight of the block
1476///   minus the weight of the other incoming edges to that block (if
1477///   known).
1478void SampleProfileLoader::propagateWeights(Function &F) {
1479  bool Changed = true;
1480  unsigned I = 0;
1481
1482  // If BB weight is larger than its corresponding loop's header BB weight,
1483  // use the BB weight to replace the loop header BB weight.
1484  for (auto &BI : F) {
1485    BasicBlock *BB = &BI;
1486    Loop *L = LI->getLoopFor(BB);
1487    if (!L) {
1488      continue;
1489    }
1490    BasicBlock *Header = L->getHeader();
1491    if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1492      BlockWeights[Header] = BlockWeights[BB];
1493    }
1494  }
1495
1496  // Before propagation starts, build, for each block, a list of
1497  // unique predecessors and successors. This is necessary to handle
1498  // identical edges in multiway branches. Since we visit all blocks and all
1499  // edges of the CFG, it is cleaner to build these lists once at the start
1500  // of the pass.
1501  buildEdges(F);
1502
1503  // Propagate until we converge or we go past the iteration limit.
1504  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1505    Changed = propagateThroughEdges(F, false);
1506  }
1507
1508  // The first propagation propagates BB counts from annotated BBs to unknown
1509  // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1510  // to propagate edge weights.
1511  VisitedEdges.clear();
1512  Changed = true;
1513  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1514    Changed = propagateThroughEdges(F, false);
1515  }
1516
1517  // The 3rd propagation pass allows adjust annotated BB weights that are
1518  // obviously wrong.
1519  Changed = true;
1520  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1521    Changed = propagateThroughEdges(F, true);
1522  }
1523
1524  // Generate MD_prof metadata for every branch instruction using the
1525  // edge weights computed during propagation.
1526  LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1527  LLVMContext &Ctx = F.getContext();
1528  MDBuilder MDB(Ctx);
1529  for (auto &BI : F) {
1530    BasicBlock *BB = &BI;
1531
1532    if (BlockWeights[BB]) {
1533      for (auto &I : BB->getInstList()) {
1534        if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1535          continue;
1536        if (!cast<CallBase>(I).getCalledFunction()) {
1537          const DebugLoc &DLoc = I.getDebugLoc();
1538          if (!DLoc)
1539            continue;
1540          const DILocation *DIL = DLoc;
1541          uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1542          uint32_t Discriminator = DIL->getBaseDiscriminator();
1543
1544          const FunctionSamples *FS = findFunctionSamples(I);
1545          if (!FS)
1546            continue;
1547          auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1548          if (!T || T.get().empty())
1549            continue;
1550          SmallVector<InstrProfValueData, 2> SortedCallTargets =
1551              GetSortedValueDataFromCallTargets(T.get());
1552          uint64_t Sum;
1553          findIndirectCallFunctionSamples(I, Sum);
1554          annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1555                            SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1556                            SortedCallTargets.size());
1557        } else if (!isa<IntrinsicInst>(&I)) {
1558          I.setMetadata(LLVMContext::MD_prof,
1559                        MDB.createBranchWeights(
1560                            {static_cast<uint32_t>(BlockWeights[BB])}));
1561        }
1562      }
1563    }
1564    Instruction *TI = BB->getTerminator();
1565    if (TI->getNumSuccessors() == 1)
1566      continue;
1567    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1568      continue;
1569
1570    DebugLoc BranchLoc = TI->getDebugLoc();
1571    LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1572                      << ((BranchLoc) ? Twine(BranchLoc.getLine())
1573                                      : Twine("<UNKNOWN LOCATION>"))
1574                      << ".\n");
1575    SmallVector<uint32_t, 4> Weights;
1576    uint32_t MaxWeight = 0;
1577    Instruction *MaxDestInst;
1578    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1579      BasicBlock *Succ = TI->getSuccessor(I);
1580      Edge E = std::make_pair(BB, Succ);
1581      uint64_t Weight = EdgeWeights[E];
1582      LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1583      // Use uint32_t saturated arithmetic to adjust the incoming weights,
1584      // if needed. Sample counts in profiles are 64-bit unsigned values,
1585      // but internally branch weights are expressed as 32-bit values.
1586      if (Weight > std::numeric_limits<uint32_t>::max()) {
1587        LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1588        Weight = std::numeric_limits<uint32_t>::max();
1589      }
1590      // Weight is added by one to avoid propagation errors introduced by
1591      // 0 weights.
1592      Weights.push_back(static_cast<uint32_t>(Weight + 1));
1593      if (Weight != 0) {
1594        if (Weight > MaxWeight) {
1595          MaxWeight = Weight;
1596          MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1597        }
1598      }
1599    }
1600
1601    misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1602
1603    uint64_t TempWeight;
1604    // Only set weights if there is at least one non-zero weight.
1605    // In any other case, let the analyzer set weights.
1606    // Do not set weights if the weights are present. In ThinLTO, the profile
1607    // annotation is done twice. If the first annotation already set the
1608    // weights, the second pass does not need to set it.
1609    if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1610      LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1611      TI->setMetadata(LLVMContext::MD_prof,
1612                      MDB.createBranchWeights(Weights));
1613      ORE->emit([&]() {
1614        return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1615               << "most popular destination for conditional branches at "
1616               << ore::NV("CondBranchesLoc", BranchLoc);
1617      });
1618    } else {
1619      LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1620    }
1621  }
1622}
1623
1624/// Get the line number for the function header.
1625///
1626/// This looks up function \p F in the current compilation unit and
1627/// retrieves the line number where the function is defined. This is
1628/// line 0 for all the samples read from the profile file. Every line
1629/// number is relative to this line.
1630///
1631/// \param F  Function object to query.
1632///
1633/// \returns the line number where \p F is defined. If it returns 0,
1634///          it means that there is no debug information available for \p F.
1635unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1636  if (DISubprogram *S = F.getSubprogram())
1637    return S->getLine();
1638
1639  if (NoWarnSampleUnused)
1640    return 0;
1641
1642  // If the start of \p F is missing, emit a diagnostic to inform the user
1643  // about the missed opportunity.
1644  F.getContext().diagnose(DiagnosticInfoSampleProfile(
1645      "No debug information found in function " + F.getName() +
1646          ": Function profile not used",
1647      DS_Warning));
1648  return 0;
1649}
1650
1651void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1652  DT.reset(new DominatorTree);
1653  DT->recalculate(F);
1654
1655  PDT.reset(new PostDominatorTree(F));
1656
1657  LI.reset(new LoopInfo);
1658  LI->analyze(*DT);
1659}
1660
1661/// Generate branch weight metadata for all branches in \p F.
1662///
1663/// Branch weights are computed out of instruction samples using a
1664/// propagation heuristic. Propagation proceeds in 3 phases:
1665///
1666/// 1- Assignment of block weights. All the basic blocks in the function
1667///    are initial assigned the same weight as their most frequently
1668///    executed instruction.
1669///
1670/// 2- Creation of equivalence classes. Since samples may be missing from
1671///    blocks, we can fill in the gaps by setting the weights of all the
1672///    blocks in the same equivalence class to the same weight. To compute
1673///    the concept of equivalence, we use dominance and loop information.
1674///    Two blocks B1 and B2 are in the same equivalence class if B1
1675///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1676///
1677/// 3- Propagation of block weights into edges. This uses a simple
1678///    propagation heuristic. The following rules are applied to every
1679///    block BB in the CFG:
1680///
1681///    - If BB has a single predecessor/successor, then the weight
1682///      of that edge is the weight of the block.
1683///
1684///    - If all the edges are known except one, and the weight of the
1685///      block is already known, the weight of the unknown edge will
1686///      be the weight of the block minus the sum of all the known
1687///      edges. If the sum of all the known edges is larger than BB's weight,
1688///      we set the unknown edge weight to zero.
1689///
1690///    - If there is a self-referential edge, and the weight of the block is
1691///      known, the weight for that edge is set to the weight of the block
1692///      minus the weight of the other incoming edges to that block (if
1693///      known).
1694///
1695/// Since this propagation is not guaranteed to finalize for every CFG, we
1696/// only allow it to proceed for a limited number of iterations (controlled
1697/// by -sample-profile-max-propagate-iterations).
1698///
1699/// FIXME: Try to replace this propagation heuristic with a scheme
1700/// that is guaranteed to finalize. A work-list approach similar to
1701/// the standard value propagation algorithm used by SSA-CCP might
1702/// work here.
1703///
1704/// Once all the branch weights are computed, we emit the MD_prof
1705/// metadata on BB using the computed values for each of its branches.
1706///
1707/// \param F The function to query.
1708///
1709/// \returns true if \p F was modified. Returns false, otherwise.
1710bool SampleProfileLoader::emitAnnotations(Function &F) {
1711  bool Changed = false;
1712
1713  if (getFunctionLoc(F) == 0)
1714    return false;
1715
1716  LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1717                    << F.getName() << ": " << getFunctionLoc(F) << "\n");
1718
1719  DenseSet<GlobalValue::GUID> InlinedGUIDs;
1720  Changed |= inlineHotFunctions(F, InlinedGUIDs);
1721
1722  // Compute basic block weights.
1723  Changed |= computeBlockWeights(F);
1724
1725  if (Changed) {
1726    // Add an entry count to the function using the samples gathered at the
1727    // function entry.
1728    // Sets the GUIDs that are inlined in the profiled binary. This is used
1729    // for ThinLink to make correct liveness analysis, and also make the IR
1730    // match the profiled binary before annotation.
1731    F.setEntryCount(
1732        ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1733        &InlinedGUIDs);
1734
1735    // Compute dominance and loop info needed for propagation.
1736    computeDominanceAndLoopInfo(F);
1737
1738    // Find equivalence classes.
1739    findEquivalenceClasses(F);
1740
1741    // Propagate weights to all edges.
1742    propagateWeights(F);
1743  }
1744
1745  // If coverage checking was requested, compute it now.
1746  if (SampleProfileRecordCoverage) {
1747    unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1748    unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1749    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1750    if (Coverage < SampleProfileRecordCoverage) {
1751      F.getContext().diagnose(DiagnosticInfoSampleProfile(
1752          F.getSubprogram()->getFilename(), getFunctionLoc(F),
1753          Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1754              Twine(Coverage) + "%) were applied",
1755          DS_Warning));
1756    }
1757  }
1758
1759  if (SampleProfileSampleCoverage) {
1760    uint64_t Used = CoverageTracker.getTotalUsedSamples();
1761    uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1762    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1763    if (Coverage < SampleProfileSampleCoverage) {
1764      F.getContext().diagnose(DiagnosticInfoSampleProfile(
1765          F.getSubprogram()->getFilename(), getFunctionLoc(F),
1766          Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1767              Twine(Coverage) + "%) were applied",
1768          DS_Warning));
1769    }
1770  }
1771  return Changed;
1772}
1773
1774char SampleProfileLoaderLegacyPass::ID = 0;
1775
1776INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1777                      "Sample Profile loader", false, false)
1778INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1779INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1780INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1781INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1782INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1783                    "Sample Profile loader", false, false)
1784
1785std::vector<Function *>
1786SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1787  std::vector<Function *> FunctionOrderList;
1788  FunctionOrderList.reserve(M.size());
1789
1790  if (!ProfileTopDownLoad || CG == nullptr) {
1791    if (ProfileMergeInlinee) {
1792      // Disable ProfileMergeInlinee if profile is not loaded in top down order,
1793      // because the profile for a function may be used for the profile
1794      // annotation of its outline copy before the profile merging of its
1795      // non-inlined inline instances, and that is not the way how
1796      // ProfileMergeInlinee is supposed to work.
1797      ProfileMergeInlinee = false;
1798    }
1799
1800    for (Function &F : M)
1801      if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
1802        FunctionOrderList.push_back(&F);
1803    return FunctionOrderList;
1804  }
1805
1806  assert(&CG->getModule() == &M);
1807  scc_iterator<CallGraph *> CGI = scc_begin(CG);
1808  while (!CGI.isAtEnd()) {
1809    for (CallGraphNode *node : *CGI) {
1810      auto F = node->getFunction();
1811      if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
1812        FunctionOrderList.push_back(F);
1813    }
1814    ++CGI;
1815  }
1816
1817  std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1818  return FunctionOrderList;
1819}
1820
1821bool SampleProfileLoader::doInitialization(Module &M) {
1822  auto &Ctx = M.getContext();
1823
1824  std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1825  auto ReaderOrErr =
1826      SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1827  if (std::error_code EC = ReaderOrErr.getError()) {
1828    std::string Msg = "Could not open profile: " + EC.message();
1829    Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1830    return false;
1831  }
1832  Reader = std::move(ReaderOrErr.get());
1833  Reader->collectFuncsFrom(M);
1834  ProfileIsValid = (Reader->read() == sampleprof_error::success);
1835  PSL = Reader->getProfileSymbolList();
1836
1837  // While profile-sample-accurate is on, ignore symbol list.
1838  ProfAccForSymsInList =
1839      ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1840  if (ProfAccForSymsInList) {
1841    NamesInProfile.clear();
1842    if (auto NameTable = Reader->getNameTable())
1843      NamesInProfile.insert(NameTable->begin(), NameTable->end());
1844  }
1845
1846  return true;
1847}
1848
1849ModulePass *llvm::createSampleProfileLoaderPass() {
1850  return new SampleProfileLoaderLegacyPass();
1851}
1852
1853ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1854  return new SampleProfileLoaderLegacyPass(Name);
1855}
1856
1857bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1858                                      ProfileSummaryInfo *_PSI, CallGraph *CG) {
1859  if (!ProfileIsValid)
1860    return false;
1861  GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1862
1863  PSI = _PSI;
1864  if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
1865    M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1866                        ProfileSummary::PSK_Sample);
1867    PSI->refresh();
1868  }
1869  // Compute the total number of samples collected in this profile.
1870  for (const auto &I : Reader->getProfiles())
1871    TotalCollectedSamples += I.second.getTotalSamples();
1872
1873  // Populate the symbol map.
1874  for (const auto &N_F : M.getValueSymbolTable()) {
1875    StringRef OrigName = N_F.getKey();
1876    Function *F = dyn_cast<Function>(N_F.getValue());
1877    if (F == nullptr)
1878      continue;
1879    SymbolMap[OrigName] = F;
1880    auto pos = OrigName.find('.');
1881    if (pos != StringRef::npos) {
1882      StringRef NewName = OrigName.substr(0, pos);
1883      auto r = SymbolMap.insert(std::make_pair(NewName, F));
1884      // Failiing to insert means there is already an entry in SymbolMap,
1885      // thus there are multiple functions that are mapped to the same
1886      // stripped name. In this case of name conflicting, set the value
1887      // to nullptr to avoid confusion.
1888      if (!r.second)
1889        r.first->second = nullptr;
1890    }
1891  }
1892
1893  bool retval = false;
1894  for (auto F : buildFunctionOrder(M, CG)) {
1895    assert(!F->isDeclaration());
1896    clearFunctionData();
1897    retval |= runOnFunction(*F, AM);
1898  }
1899
1900  // Account for cold calls not inlined....
1901  for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1902       notInlinedCallInfo)
1903    updateProfileCallee(pair.first, pair.second.entryCount);
1904
1905  return retval;
1906}
1907
1908bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1909  ACT = &getAnalysis<AssumptionCacheTracker>();
1910  TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1911  TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1912  ProfileSummaryInfo *PSI =
1913      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1914  return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1915}
1916
1917bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1918
1919  DILocation2SampleMap.clear();
1920  // By default the entry count is initialized to -1, which will be treated
1921  // conservatively by getEntryCount as the same as unknown (None). This is
1922  // to avoid newly added code to be treated as cold. If we have samples
1923  // this will be overwritten in emitAnnotations.
1924  uint64_t initialEntryCount = -1;
1925
1926  ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1927  if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1928    // initialize all the function entry counts to 0. It means all the
1929    // functions without profile will be regarded as cold.
1930    initialEntryCount = 0;
1931    // profile-sample-accurate is a user assertion which has a higher precedence
1932    // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1933    ProfAccForSymsInList = false;
1934  }
1935
1936  // PSL -- profile symbol list include all the symbols in sampled binary.
1937  // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1938  // old functions without samples being cold, without having to worry
1939  // about new and hot functions being mistakenly treated as cold.
1940  if (ProfAccForSymsInList) {
1941    // Initialize the entry count to 0 for functions in the list.
1942    if (PSL->contains(F.getName()))
1943      initialEntryCount = 0;
1944
1945    // Function in the symbol list but without sample will be regarded as
1946    // cold. To minimize the potential negative performance impact it could
1947    // have, we want to be a little conservative here saying if a function
1948    // shows up in the profile, no matter as outline function, inline instance
1949    // or call targets, treat the function as not being cold. This will handle
1950    // the cases such as most callsites of a function are inlined in sampled
1951    // binary but not inlined in current build (because of source code drift,
1952    // imprecise debug information, or the callsites are all cold individually
1953    // but not cold accumulatively...), so the outline function showing up as
1954    // cold in sampled binary will actually not be cold after current build.
1955    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1956    if (NamesInProfile.count(CanonName))
1957      initialEntryCount = -1;
1958  }
1959
1960  F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1961  std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1962  if (AM) {
1963    auto &FAM =
1964        AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1965            .getManager();
1966    ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1967  } else {
1968    OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1969    ORE = OwnedORE.get();
1970  }
1971  Samples = Reader->getSamplesFor(F);
1972  if (Samples && !Samples->empty())
1973    return emitAnnotations(F);
1974  return false;
1975}
1976
1977PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1978                                               ModuleAnalysisManager &AM) {
1979  FunctionAnalysisManager &FAM =
1980      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1981
1982  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1983    return FAM.getResult<AssumptionAnalysis>(F);
1984  };
1985  auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1986    return FAM.getResult<TargetIRAnalysis>(F);
1987  };
1988  auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
1989    return FAM.getResult<TargetLibraryAnalysis>(F);
1990  };
1991
1992  SampleProfileLoader SampleLoader(
1993      ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1994      ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1995                                       : ProfileRemappingFileName,
1996      IsThinLTOPreLink, GetAssumptionCache, GetTTI, GetTLI);
1997
1998  if (!SampleLoader.doInitialization(M))
1999    return PreservedAnalyses::all();
2000
2001  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
2002  CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
2003  if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
2004    return PreservedAnalyses::all();
2005
2006  return PreservedAnalyses::none();
2007}
2008