1//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// The goal of hot/cold splitting is to improve the memory locality of code.
11/// The splitting pass does this by identifying cold blocks and moving them into
12/// separate functions.
13///
14/// When the splitting pass finds a cold block (referred to as "the sink"), it
15/// grows a maximal cold region around that block. The maximal region contains
16/// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17/// cold as the sink. Once a region is found, it's split out of the original
18/// function provided it's profitable to do so.
19///
20/// [*] In practice, there is some added complexity because some blocks are not
21/// safe to extract.
22///
23/// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24/// TODO: Reorder outlined functions.
25///
26//===----------------------------------------------------------------------===//
27
28#include "llvm/Transforms/IPO/HotColdSplitting.h"
29#include "llvm/ADT/PostOrderIterator.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/BlockFrequencyInfo.h"
34#include "llvm/Analysis/BranchProbabilityInfo.h"
35#include "llvm/Analysis/CFG.h"
36#include "llvm/Analysis/OptimizationRemarkEmitter.h"
37#include "llvm/Analysis/PostDominators.h"
38#include "llvm/Analysis/ProfileSummaryInfo.h"
39#include "llvm/Analysis/TargetTransformInfo.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/CFG.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/DiagnosticInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/Instruction.h"
47#include "llvm/IR/Instructions.h"
48#include "llvm/IR/IntrinsicInst.h"
49#include "llvm/IR/Metadata.h"
50#include "llvm/IR/Module.h"
51#include "llvm/IR/PassManager.h"
52#include "llvm/IR/Type.h"
53#include "llvm/IR/Use.h"
54#include "llvm/IR/User.h"
55#include "llvm/IR/Value.h"
56#include "llvm/InitializePasses.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/BlockFrequency.h"
59#include "llvm/Support/BranchProbability.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Transforms/IPO.h"
64#include "llvm/Transforms/Scalar.h"
65#include "llvm/Transforms/Utils/BasicBlockUtils.h"
66#include "llvm/Transforms/Utils/Cloning.h"
67#include "llvm/Transforms/Utils/CodeExtractor.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/Transforms/Utils/ValueMapper.h"
70#include <algorithm>
71#include <cassert>
72
73#define DEBUG_TYPE "hotcoldsplit"
74
75STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
76STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
77
78using namespace llvm;
79
80static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
81                              cl::init(true), cl::Hidden);
82
83static cl::opt<int>
84    SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
85                       cl::desc("Base penalty for splitting cold code (as a "
86                                "multiple of TCC_Basic)"));
87
88namespace {
89// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
90// this function unless you modify the MBB version as well.
91//
92/// A no successor, non-return block probably ends in unreachable and is cold.
93/// Also consider a block that ends in an indirect branch to be a return block,
94/// since many targets use plain indirect branches to return.
95bool blockEndsInUnreachable(const BasicBlock &BB) {
96  if (!succ_empty(&BB))
97    return false;
98  if (BB.empty())
99    return true;
100  const Instruction *I = BB.getTerminator();
101  return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
102}
103
104bool unlikelyExecuted(BasicBlock &BB) {
105  // Exception handling blocks are unlikely executed.
106  if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
107    return true;
108
109  // The block is cold if it calls/invokes a cold function. However, do not
110  // mark sanitizer traps as cold.
111  for (Instruction &I : BB)
112    if (auto *CB = dyn_cast<CallBase>(&I))
113      if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize"))
114        return true;
115
116  // The block is cold if it has an unreachable terminator, unless it's
117  // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
118  if (blockEndsInUnreachable(BB)) {
119    if (auto *CI =
120            dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
121      if (CI->hasFnAttr(Attribute::NoReturn))
122        return false;
123    return true;
124  }
125
126  return false;
127}
128
129/// Check whether it's safe to outline \p BB.
130static bool mayExtractBlock(const BasicBlock &BB) {
131  // EH pads are unsafe to outline because doing so breaks EH type tables. It
132  // follows that invoke instructions cannot be extracted, because CodeExtractor
133  // requires unwind destinations to be within the extraction region.
134  //
135  // Resumes that are not reachable from a cleanup landing pad are considered to
136  // be unreachable. It���s not safe to split them out either.
137  auto Term = BB.getTerminator();
138  return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
139         !isa<ResumeInst>(Term);
140}
141
142/// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
143/// If \p UpdateEntryCount is true (set when this is a new split function and
144/// module has profile data), set entry count to 0 to ensure treated as cold.
145/// Return true if the function is changed.
146static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
147  assert(!F.hasOptNone() && "Can't mark this cold");
148  bool Changed = false;
149  if (!F.hasFnAttribute(Attribute::Cold)) {
150    F.addFnAttr(Attribute::Cold);
151    Changed = true;
152  }
153  if (!F.hasFnAttribute(Attribute::MinSize)) {
154    F.addFnAttr(Attribute::MinSize);
155    Changed = true;
156  }
157  if (UpdateEntryCount) {
158    // Set the entry count to 0 to ensure it is placed in the unlikely text
159    // section when function sections are enabled.
160    F.setEntryCount(0);
161    Changed = true;
162  }
163
164  return Changed;
165}
166
167class HotColdSplittingLegacyPass : public ModulePass {
168public:
169  static char ID;
170  HotColdSplittingLegacyPass() : ModulePass(ID) {
171    initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
172  }
173
174  void getAnalysisUsage(AnalysisUsage &AU) const override {
175    AU.addRequired<BlockFrequencyInfoWrapperPass>();
176    AU.addRequired<ProfileSummaryInfoWrapperPass>();
177    AU.addRequired<TargetTransformInfoWrapperPass>();
178    AU.addUsedIfAvailable<AssumptionCacheTracker>();
179  }
180
181  bool runOnModule(Module &M) override;
182};
183
184} // end anonymous namespace
185
186/// Check whether \p F is inherently cold.
187bool HotColdSplitting::isFunctionCold(const Function &F) const {
188  if (F.hasFnAttribute(Attribute::Cold))
189    return true;
190
191  if (F.getCallingConv() == CallingConv::Cold)
192    return true;
193
194  if (PSI->isFunctionEntryCold(&F))
195    return true;
196
197  return false;
198}
199
200// Returns false if the function should not be considered for hot-cold split
201// optimization.
202bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
203  if (F.hasFnAttribute(Attribute::AlwaysInline))
204    return false;
205
206  if (F.hasFnAttribute(Attribute::NoInline))
207    return false;
208
209  // A function marked `noreturn` may contain unreachable terminators: these
210  // should not be considered cold, as the function may be a trampoline.
211  if (F.hasFnAttribute(Attribute::NoReturn))
212    return false;
213
214  if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
215      F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
216      F.hasFnAttribute(Attribute::SanitizeThread) ||
217      F.hasFnAttribute(Attribute::SanitizeMemory))
218    return false;
219
220  return true;
221}
222
223/// Get the benefit score of outlining \p Region.
224static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
225                               TargetTransformInfo &TTI) {
226  // Sum up the code size costs of non-terminator instructions. Tight coupling
227  // with \ref getOutliningPenalty is needed to model the costs of terminators.
228  int Benefit = 0;
229  for (BasicBlock *BB : Region)
230    for (Instruction &I : BB->instructionsWithoutDebug())
231      if (&I != BB->getTerminator())
232        Benefit +=
233            TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
234
235  return Benefit;
236}
237
238/// Get the penalty score for outlining \p Region.
239static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
240                               unsigned NumInputs, unsigned NumOutputs) {
241  int Penalty = SplittingThreshold;
242  LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
243
244  // If the splitting threshold is set at or below zero, skip the usual
245  // profitability check.
246  if (SplittingThreshold <= 0)
247    return Penalty;
248
249  // The typical code size cost for materializing an argument for the outlined
250  // call.
251  LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
252  const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
253  Penalty += CostForArgMaterialization * NumInputs;
254
255  // The typical code size cost for an output alloca, its associated store, and
256  // its associated reload.
257  LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
258  const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
259  Penalty += CostForRegionOutput * NumOutputs;
260
261  // Find the number of distinct exit blocks for the region. Use a conservative
262  // check to determine whether control returns from the region.
263  bool NoBlocksReturn = true;
264  SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
265  for (BasicBlock *BB : Region) {
266    // If a block has no successors, only assume it does not return if it's
267    // unreachable.
268    if (succ_empty(BB)) {
269      NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
270      continue;
271    }
272
273    for (BasicBlock *SuccBB : successors(BB)) {
274      if (find(Region, SuccBB) == Region.end()) {
275        NoBlocksReturn = false;
276        SuccsOutsideRegion.insert(SuccBB);
277      }
278    }
279  }
280
281  // Apply a `noreturn` bonus.
282  if (NoBlocksReturn) {
283    LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
284                      << " non-returning terminators\n");
285    Penalty -= Region.size();
286  }
287
288  // Apply a penalty for having more than one successor outside of the region.
289  // This penalty accounts for the switch needed in the caller.
290  if (!SuccsOutsideRegion.empty()) {
291    LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
292                      << " non-region successors\n");
293    Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
294  }
295
296  return Penalty;
297}
298
299Function *HotColdSplitting::extractColdRegion(
300    const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
301    DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
302    OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
303  assert(!Region.empty());
304
305  // TODO: Pass BFI and BPI to update profile information.
306  CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
307                   /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
308                   /* AllowAlloca */ false,
309                   /* Suffix */ "cold." + std::to_string(Count));
310
311  // Perform a simple cost/benefit analysis to decide whether or not to permit
312  // splitting.
313  SetVector<Value *> Inputs, Outputs, Sinks;
314  CE.findInputsOutputs(Inputs, Outputs, Sinks);
315  int OutliningBenefit = getOutliningBenefit(Region, TTI);
316  int OutliningPenalty =
317      getOutliningPenalty(Region, Inputs.size(), Outputs.size());
318  LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
319                    << ", penalty = " << OutliningPenalty << "\n");
320  if (OutliningBenefit <= OutliningPenalty)
321    return nullptr;
322
323  Function *OrigF = Region[0]->getParent();
324  if (Function *OutF = CE.extractCodeRegion(CEAC)) {
325    User *U = *OutF->user_begin();
326    CallInst *CI = cast<CallInst>(U);
327    NumColdRegionsOutlined++;
328    if (TTI.useColdCCForColdCall(*OutF)) {
329      OutF->setCallingConv(CallingConv::Cold);
330      CI->setCallingConv(CallingConv::Cold);
331    }
332    CI->setIsNoInline();
333
334    if (OrigF->hasSection())
335      OutF->setSection(OrigF->getSection());
336
337    markFunctionCold(*OutF, BFI != nullptr);
338
339    LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
340    ORE.emit([&]() {
341      return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
342                                &*Region[0]->begin())
343             << ore::NV("Original", OrigF) << " split cold code into "
344             << ore::NV("Split", OutF);
345    });
346    return OutF;
347  }
348
349  ORE.emit([&]() {
350    return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
351                                    &*Region[0]->begin())
352           << "Failed to extract region at block "
353           << ore::NV("Block", Region.front());
354  });
355  return nullptr;
356}
357
358/// A pair of (basic block, score).
359using BlockTy = std::pair<BasicBlock *, unsigned>;
360
361namespace {
362/// A maximal outlining region. This contains all blocks post-dominated by a
363/// sink block, the sink block itself, and all blocks dominated by the sink.
364/// If sink-predecessors and sink-successors cannot be extracted in one region,
365/// the static constructor returns a list of suitable extraction regions.
366class OutliningRegion {
367  /// A list of (block, score) pairs. A block's score is non-zero iff it's a
368  /// viable sub-region entry point. Blocks with higher scores are better entry
369  /// points (i.e. they are more distant ancestors of the sink block).
370  SmallVector<BlockTy, 0> Blocks = {};
371
372  /// The suggested entry point into the region. If the region has multiple
373  /// entry points, all blocks within the region may not be reachable from this
374  /// entry point.
375  BasicBlock *SuggestedEntryPoint = nullptr;
376
377  /// Whether the entire function is cold.
378  bool EntireFunctionCold = false;
379
380  /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
381  static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
382    return mayExtractBlock(BB) ? Score : 0;
383  }
384
385  /// These scores should be lower than the score for predecessor blocks,
386  /// because regions starting at predecessor blocks are typically larger.
387  static constexpr unsigned ScoreForSuccBlock = 1;
388  static constexpr unsigned ScoreForSinkBlock = 1;
389
390  OutliningRegion(const OutliningRegion &) = delete;
391  OutliningRegion &operator=(const OutliningRegion &) = delete;
392
393public:
394  OutliningRegion() = default;
395  OutliningRegion(OutliningRegion &&) = default;
396  OutliningRegion &operator=(OutliningRegion &&) = default;
397
398  static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
399                                             const DominatorTree &DT,
400                                             const PostDominatorTree &PDT) {
401    std::vector<OutliningRegion> Regions;
402    SmallPtrSet<BasicBlock *, 4> RegionBlocks;
403
404    Regions.emplace_back();
405    OutliningRegion *ColdRegion = &Regions.back();
406
407    auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
408      RegionBlocks.insert(BB);
409      ColdRegion->Blocks.emplace_back(BB, Score);
410    };
411
412    // The ancestor farthest-away from SinkBB, and also post-dominated by it.
413    unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
414    ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
415    unsigned BestScore = SinkScore;
416
417    // Visit SinkBB's ancestors using inverse DFS.
418    auto PredIt = ++idf_begin(&SinkBB);
419    auto PredEnd = idf_end(&SinkBB);
420    while (PredIt != PredEnd) {
421      BasicBlock &PredBB = **PredIt;
422      bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
423
424      // If the predecessor is cold and has no predecessors, the entire
425      // function must be cold.
426      if (SinkPostDom && pred_empty(&PredBB)) {
427        ColdRegion->EntireFunctionCold = true;
428        return Regions;
429      }
430
431      // If SinkBB does not post-dominate a predecessor, do not mark the
432      // predecessor (or any of its predecessors) cold.
433      if (!SinkPostDom || !mayExtractBlock(PredBB)) {
434        PredIt.skipChildren();
435        continue;
436      }
437
438      // Keep track of the post-dominated ancestor farthest away from the sink.
439      // The path length is always >= 2, ensuring that predecessor blocks are
440      // considered as entry points before the sink block.
441      unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
442      if (PredScore > BestScore) {
443        ColdRegion->SuggestedEntryPoint = &PredBB;
444        BestScore = PredScore;
445      }
446
447      addBlockToRegion(&PredBB, PredScore);
448      ++PredIt;
449    }
450
451    // If the sink can be added to the cold region, do so. It's considered as
452    // an entry point before any sink-successor blocks.
453    //
454    // Otherwise, split cold sink-successor blocks using a separate region.
455    // This satisfies the requirement that all extraction blocks other than the
456    // first have predecessors within the extraction region.
457    if (mayExtractBlock(SinkBB)) {
458      addBlockToRegion(&SinkBB, SinkScore);
459      if (pred_empty(&SinkBB)) {
460        ColdRegion->EntireFunctionCold = true;
461        return Regions;
462      }
463    } else {
464      Regions.emplace_back();
465      ColdRegion = &Regions.back();
466      BestScore = 0;
467    }
468
469    // Find all successors of SinkBB dominated by SinkBB using DFS.
470    auto SuccIt = ++df_begin(&SinkBB);
471    auto SuccEnd = df_end(&SinkBB);
472    while (SuccIt != SuccEnd) {
473      BasicBlock &SuccBB = **SuccIt;
474      bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
475
476      // Don't allow the backwards & forwards DFSes to mark the same block.
477      bool DuplicateBlock = RegionBlocks.count(&SuccBB);
478
479      // If SinkBB does not dominate a successor, do not mark the successor (or
480      // any of its successors) cold.
481      if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
482        SuccIt.skipChildren();
483        continue;
484      }
485
486      unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
487      if (SuccScore > BestScore) {
488        ColdRegion->SuggestedEntryPoint = &SuccBB;
489        BestScore = SuccScore;
490      }
491
492      addBlockToRegion(&SuccBB, SuccScore);
493      ++SuccIt;
494    }
495
496    return Regions;
497  }
498
499  /// Whether this region has nothing to extract.
500  bool empty() const { return !SuggestedEntryPoint; }
501
502  /// The blocks in this region.
503  ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
504
505  /// Whether the entire function containing this region is cold.
506  bool isEntireFunctionCold() const { return EntireFunctionCold; }
507
508  /// Remove a sub-region from this region and return it as a block sequence.
509  BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
510    assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
511
512    // Remove blocks dominated by the suggested entry point from this region.
513    // During the removal, identify the next best entry point into the region.
514    // Ensure that the first extracted block is the suggested entry point.
515    BlockSequence SubRegion = {SuggestedEntryPoint};
516    BasicBlock *NextEntryPoint = nullptr;
517    unsigned NextScore = 0;
518    auto RegionEndIt = Blocks.end();
519    auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
520      BasicBlock *BB = Block.first;
521      unsigned Score = Block.second;
522      bool InSubRegion =
523          BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
524      if (!InSubRegion && Score > NextScore) {
525        NextEntryPoint = BB;
526        NextScore = Score;
527      }
528      if (InSubRegion && BB != SuggestedEntryPoint)
529        SubRegion.push_back(BB);
530      return InSubRegion;
531    });
532    Blocks.erase(RegionStartIt, RegionEndIt);
533
534    // Update the suggested entry point.
535    SuggestedEntryPoint = NextEntryPoint;
536
537    return SubRegion;
538  }
539};
540} // namespace
541
542bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
543  bool Changed = false;
544
545  // The set of cold blocks.
546  SmallPtrSet<BasicBlock *, 4> ColdBlocks;
547
548  // The worklist of non-intersecting regions left to outline.
549  SmallVector<OutliningRegion, 2> OutliningWorklist;
550
551  // Set up an RPO traversal. Experimentally, this performs better (outlines
552  // more) than a PO traversal, because we prevent region overlap by keeping
553  // the first region to contain a block.
554  ReversePostOrderTraversal<Function *> RPOT(&F);
555
556  // Calculate domtrees lazily. This reduces compile-time significantly.
557  std::unique_ptr<DominatorTree> DT;
558  std::unique_ptr<PostDominatorTree> PDT;
559
560  // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
561  // reduces compile-time significantly. TODO: When we *do* use BFI, we should
562  // be able to salvage its domtrees instead of recomputing them.
563  BlockFrequencyInfo *BFI = nullptr;
564  if (HasProfileSummary)
565    BFI = GetBFI(F);
566
567  TargetTransformInfo &TTI = GetTTI(F);
568  OptimizationRemarkEmitter &ORE = (*GetORE)(F);
569  AssumptionCache *AC = LookupAC(F);
570
571  // Find all cold regions.
572  for (BasicBlock *BB : RPOT) {
573    // This block is already part of some outlining region.
574    if (ColdBlocks.count(BB))
575      continue;
576
577    bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
578                (EnableStaticAnalyis && unlikelyExecuted(*BB));
579    if (!Cold)
580      continue;
581
582    LLVM_DEBUG({
583      dbgs() << "Found a cold block:\n";
584      BB->dump();
585    });
586
587    if (!DT)
588      DT = std::make_unique<DominatorTree>(F);
589    if (!PDT)
590      PDT = std::make_unique<PostDominatorTree>(F);
591
592    auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
593    for (OutliningRegion &Region : Regions) {
594      if (Region.empty())
595        continue;
596
597      if (Region.isEntireFunctionCold()) {
598        LLVM_DEBUG(dbgs() << "Entire function is cold\n");
599        return markFunctionCold(F);
600      }
601
602      // If this outlining region intersects with another, drop the new region.
603      //
604      // TODO: It's theoretically possible to outline more by only keeping the
605      // largest region which contains a block, but the extra bookkeeping to do
606      // this is tricky/expensive.
607      bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
608        return !ColdBlocks.insert(Block.first).second;
609      });
610      if (RegionsOverlap)
611        continue;
612
613      OutliningWorklist.emplace_back(std::move(Region));
614      ++NumColdRegionsFound;
615    }
616  }
617
618  if (OutliningWorklist.empty())
619    return Changed;
620
621  // Outline single-entry cold regions, splitting up larger regions as needed.
622  unsigned OutlinedFunctionID = 1;
623  // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
624  CodeExtractorAnalysisCache CEAC(F);
625  do {
626    OutliningRegion Region = OutliningWorklist.pop_back_val();
627    assert(!Region.empty() && "Empty outlining region in worklist");
628    do {
629      BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
630      LLVM_DEBUG({
631        dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
632        for (BasicBlock *BB : SubRegion)
633          BB->dump();
634      });
635
636      Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
637                                             ORE, AC, OutlinedFunctionID);
638      if (Outlined) {
639        ++OutlinedFunctionID;
640        Changed = true;
641      }
642    } while (!Region.empty());
643  } while (!OutliningWorklist.empty());
644
645  return Changed;
646}
647
648bool HotColdSplitting::run(Module &M) {
649  bool Changed = false;
650  bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
651  for (auto It = M.begin(), End = M.end(); It != End; ++It) {
652    Function &F = *It;
653
654    // Do not touch declarations.
655    if (F.isDeclaration())
656      continue;
657
658    // Do not modify `optnone` functions.
659    if (F.hasOptNone())
660      continue;
661
662    // Detect inherently cold functions and mark them as such.
663    if (isFunctionCold(F)) {
664      Changed |= markFunctionCold(F);
665      continue;
666    }
667
668    if (!shouldOutlineFrom(F)) {
669      LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
670      continue;
671    }
672
673    LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
674    Changed |= outlineColdRegions(F, HasProfileSummary);
675  }
676  return Changed;
677}
678
679bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
680  if (skipModule(M))
681    return false;
682  ProfileSummaryInfo *PSI =
683      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
684  auto GTTI = [this](Function &F) -> TargetTransformInfo & {
685    return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
686  };
687  auto GBFI = [this](Function &F) {
688    return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
689  };
690  std::unique_ptr<OptimizationRemarkEmitter> ORE;
691  std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
692      [&ORE](Function &F) -> OptimizationRemarkEmitter & {
693    ORE.reset(new OptimizationRemarkEmitter(&F));
694    return *ORE.get();
695  };
696  auto LookupAC = [this](Function &F) -> AssumptionCache * {
697    if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
698      return ACT->lookupAssumptionCache(F);
699    return nullptr;
700  };
701
702  return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
703}
704
705PreservedAnalyses
706HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
707  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
708
709  auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
710    return FAM.getCachedResult<AssumptionAnalysis>(F);
711  };
712
713  auto GBFI = [&FAM](Function &F) {
714    return &FAM.getResult<BlockFrequencyAnalysis>(F);
715  };
716
717  std::function<TargetTransformInfo &(Function &)> GTTI =
718      [&FAM](Function &F) -> TargetTransformInfo & {
719    return FAM.getResult<TargetIRAnalysis>(F);
720  };
721
722  std::unique_ptr<OptimizationRemarkEmitter> ORE;
723  std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
724      [&ORE](Function &F) -> OptimizationRemarkEmitter & {
725    ORE.reset(new OptimizationRemarkEmitter(&F));
726    return *ORE.get();
727  };
728
729  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
730
731  if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
732    return PreservedAnalyses::none();
733  return PreservedAnalyses::all();
734}
735
736char HotColdSplittingLegacyPass::ID = 0;
737INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
738                      "Hot Cold Splitting", false, false)
739INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
740INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
741INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
742                    "Hot Cold Splitting", false, false)
743
744ModulePass *llvm::createHotColdSplittingPass() {
745  return new HotColdSplittingLegacyPass();
746}
747