1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the XCoreTargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "XCoreISelLowering.h"
14#include "XCore.h"
15#include "XCoreMachineFunctionInfo.h"
16#include "XCoreSubtarget.h"
17#include "XCoreTargetMachine.h"
18#include "XCoreTargetObjectFile.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAGISel.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/IntrinsicsXCore.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/KnownBits.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "xcore-lower"
44
45const char *XCoreTargetLowering::
46getTargetNodeName(unsigned Opcode) const
47{
48  switch ((XCoreISD::NodeType)Opcode)
49  {
50    case XCoreISD::FIRST_NUMBER      : break;
51    case XCoreISD::BL                : return "XCoreISD::BL";
52    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
53    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
54    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
55    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
56    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
57    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
58    case XCoreISD::LADD              : return "XCoreISD::LADD";
59    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
60    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
61    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
62    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
63    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
64    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
65    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
66    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
67    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
68    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
69  }
70  return nullptr;
71}
72
73XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
74                                         const XCoreSubtarget &Subtarget)
75    : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
76
77  // Set up the register classes.
78  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
79
80  // Compute derived properties from the register classes
81  computeRegisterProperties(Subtarget.getRegisterInfo());
82
83  setStackPointerRegisterToSaveRestore(XCore::SP);
84
85  setSchedulingPreference(Sched::Source);
86
87  // Use i32 for setcc operations results (slt, sgt, ...).
88  setBooleanContents(ZeroOrOneBooleanContent);
89  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
90
91  // XCore does not have the NodeTypes below.
92  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
93  setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
94
95  // 64bit
96  setOperationAction(ISD::ADD, MVT::i64, Custom);
97  setOperationAction(ISD::SUB, MVT::i64, Custom);
98  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
99  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
100  setOperationAction(ISD::MULHS, MVT::i32, Expand);
101  setOperationAction(ISD::MULHU, MVT::i32, Expand);
102  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
103  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
104  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
105
106  // Bit Manipulation
107  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
108  setOperationAction(ISD::ROTL , MVT::i32, Expand);
109  setOperationAction(ISD::ROTR , MVT::i32, Expand);
110  setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
111
112  setOperationAction(ISD::TRAP, MVT::Other, Legal);
113
114  // Jump tables.
115  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
116
117  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
118  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
119
120  // Conversion of i64 -> double produces constantpool nodes
121  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
122
123  // Loads
124  for (MVT VT : MVT::integer_valuetypes()) {
125    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
126    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
127    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
128
129    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
130    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
131  }
132
133  // Custom expand misaligned loads / stores.
134  setOperationAction(ISD::LOAD, MVT::i32, Custom);
135  setOperationAction(ISD::STORE, MVT::i32, Custom);
136
137  // Varargs
138  setOperationAction(ISD::VAEND, MVT::Other, Expand);
139  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
140  setOperationAction(ISD::VAARG, MVT::Other, Custom);
141  setOperationAction(ISD::VASTART, MVT::Other, Custom);
142
143  // Dynamic stack
144  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
145  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
146  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
147
148  // Exception handling
149  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
150  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
151
152  // Atomic operations
153  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
154  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
155  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
156  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
157  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
158
159  // TRAMPOLINE is custom lowered.
160  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
161  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
162
163  // We want to custom lower some of our intrinsics.
164  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
165
166  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
167  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
168    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
169
170  // We have target-specific dag combine patterns for the following nodes:
171  setTargetDAGCombine(ISD::STORE);
172  setTargetDAGCombine(ISD::ADD);
173  setTargetDAGCombine(ISD::INTRINSIC_VOID);
174  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
175
176  setMinFunctionAlignment(Align(2));
177  setPrefFunctionAlignment(Align(4));
178}
179
180bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
181  if (Val.getOpcode() != ISD::LOAD)
182    return false;
183
184  EVT VT1 = Val.getValueType();
185  if (!VT1.isSimple() || !VT1.isInteger() ||
186      !VT2.isSimple() || !VT2.isInteger())
187    return false;
188
189  switch (VT1.getSimpleVT().SimpleTy) {
190  default: break;
191  case MVT::i8:
192    return true;
193  }
194
195  return false;
196}
197
198SDValue XCoreTargetLowering::
199LowerOperation(SDValue Op, SelectionDAG &DAG) const {
200  switch (Op.getOpcode())
201  {
202  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
203  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
204  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
205  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
206  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
207  case ISD::LOAD:               return LowerLOAD(Op, DAG);
208  case ISD::STORE:              return LowerSTORE(Op, DAG);
209  case ISD::VAARG:              return LowerVAARG(Op, DAG);
210  case ISD::VASTART:            return LowerVASTART(Op, DAG);
211  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
212  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
213  // FIXME: Remove these when LegalizeDAGTypes lands.
214  case ISD::ADD:
215  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
216  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
217  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
218  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
219  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
220  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
221  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
222  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
223  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
224  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
225  default:
226    llvm_unreachable("unimplemented operand");
227  }
228}
229
230/// ReplaceNodeResults - Replace the results of node with an illegal result
231/// type with new values built out of custom code.
232void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
233                                             SmallVectorImpl<SDValue>&Results,
234                                             SelectionDAG &DAG) const {
235  switch (N->getOpcode()) {
236  default:
237    llvm_unreachable("Don't know how to custom expand this!");
238  case ISD::ADD:
239  case ISD::SUB:
240    Results.push_back(ExpandADDSUB(N, DAG));
241    return;
242  }
243}
244
245//===----------------------------------------------------------------------===//
246//  Misc Lower Operation implementation
247//===----------------------------------------------------------------------===//
248
249SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
250                                                     const GlobalValue *GV,
251                                                     SelectionDAG &DAG) const {
252  // FIXME there is no actual debug info here
253  SDLoc dl(GA);
254
255  if (GV->getValueType()->isFunctionTy())
256    return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
257
258  const auto *GVar = dyn_cast<GlobalVariable>(GV);
259  if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
260      (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
261    return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
262
263  return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
264}
265
266static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
267  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
268    return true;
269
270  Type *ObjType = GV->getValueType();
271  if (!ObjType->isSized())
272    return false;
273
274  auto &DL = GV->getParent()->getDataLayout();
275  unsigned ObjSize = DL.getTypeAllocSize(ObjType);
276  return ObjSize < CodeModelLargeSize && ObjSize != 0;
277}
278
279SDValue XCoreTargetLowering::
280LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
281{
282  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
283  const GlobalValue *GV = GN->getGlobal();
284  SDLoc DL(GN);
285  int64_t Offset = GN->getOffset();
286  if (IsSmallObject(GV, *this)) {
287    // We can only fold positive offsets that are a multiple of the word size.
288    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
289    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
290    GA = getGlobalAddressWrapper(GA, GV, DAG);
291    // Handle the rest of the offset.
292    if (Offset != FoldedOffset) {
293      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
294      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
295    }
296    return GA;
297  } else {
298    // Ideally we would not fold in offset with an index <= 11.
299    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
300    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
301    Ty = Type::getInt32Ty(*DAG.getContext());
302    Constant *Idx = ConstantInt::get(Ty, Offset);
303    Constant *GAI = ConstantExpr::getGetElementPtr(
304        Type::getInt8Ty(*DAG.getContext()), GA, Idx);
305    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
306    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
307                       DAG.getEntryNode(), CP, MachinePointerInfo());
308  }
309}
310
311SDValue XCoreTargetLowering::
312LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
313{
314  SDLoc DL(Op);
315  auto PtrVT = getPointerTy(DAG.getDataLayout());
316  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
317  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
318
319  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
320}
321
322SDValue XCoreTargetLowering::
323LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
324{
325  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
326  // FIXME there isn't really debug info here
327  SDLoc dl(CP);
328  EVT PtrVT = Op.getValueType();
329  SDValue Res;
330  if (CP->isMachineConstantPoolEntry()) {
331    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
332                                    CP->getAlign(), CP->getOffset());
333  } else {
334    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
335                                    CP->getOffset());
336  }
337  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
338}
339
340unsigned XCoreTargetLowering::getJumpTableEncoding() const {
341  return MachineJumpTableInfo::EK_Inline;
342}
343
344SDValue XCoreTargetLowering::
345LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
346{
347  SDValue Chain = Op.getOperand(0);
348  SDValue Table = Op.getOperand(1);
349  SDValue Index = Op.getOperand(2);
350  SDLoc dl(Op);
351  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
352  unsigned JTI = JT->getIndex();
353  MachineFunction &MF = DAG.getMachineFunction();
354  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
355  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
356
357  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
358  if (NumEntries <= 32) {
359    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
360  }
361  assert((NumEntries >> 31) == 0);
362  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
363                                    DAG.getConstant(1, dl, MVT::i32));
364  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
365                     ScaledIndex);
366}
367
368SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
369    const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
370    SelectionDAG &DAG) const {
371  auto PtrVT = getPointerTy(DAG.getDataLayout());
372  if ((Offset & 0x3) == 0) {
373    return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
374  }
375  // Lower to pair of consecutive word aligned loads plus some bit shifting.
376  int32_t HighOffset = alignTo(Offset, 4);
377  int32_t LowOffset = HighOffset - 4;
378  SDValue LowAddr, HighAddr;
379  if (GlobalAddressSDNode *GASD =
380        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
381    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
382                                   LowOffset);
383    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
384                                    HighOffset);
385  } else {
386    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
387                          DAG.getConstant(LowOffset, DL, MVT::i32));
388    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
389                           DAG.getConstant(HighOffset, DL, MVT::i32));
390  }
391  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
392  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
393
394  SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
395  SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
396  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
397  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
398  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
399  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
400                      High.getValue(1));
401  SDValue Ops[] = { Result, Chain };
402  return DAG.getMergeValues(Ops, DL);
403}
404
405static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
406{
407  KnownBits Known = DAG.computeKnownBits(Value);
408  return Known.countMinTrailingZeros() >= 2;
409}
410
411SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
412  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
413  LLVMContext &Context = *DAG.getContext();
414  LoadSDNode *LD = cast<LoadSDNode>(Op);
415  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
416         "Unexpected extension type");
417  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
418
419  if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
420                                     LD->getMemoryVT(), *LD->getMemOperand()))
421    return SDValue();
422
423  SDValue Chain = LD->getChain();
424  SDValue BasePtr = LD->getBasePtr();
425  SDLoc DL(Op);
426
427  if (!LD->isVolatile()) {
428    const GlobalValue *GV;
429    int64_t Offset = 0;
430    if (DAG.isBaseWithConstantOffset(BasePtr) &&
431        isWordAligned(BasePtr->getOperand(0), DAG)) {
432      SDValue NewBasePtr = BasePtr->getOperand(0);
433      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
434      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
435                                                    Offset, DAG);
436    }
437    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
438        GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
439      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
440                                                BasePtr->getValueType(0));
441      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
442                                                    Offset, DAG);
443    }
444  }
445
446  if (LD->getAlignment() == 2) {
447    SDValue Low =
448        DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
449                       LD->getPointerInfo(), MVT::i16,
450                       /* Alignment = */ 2, LD->getMemOperand()->getFlags());
451    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
452                                   DAG.getConstant(2, DL, MVT::i32));
453    SDValue High =
454        DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
455                       LD->getPointerInfo().getWithOffset(2), MVT::i16,
456                       /* Alignment = */ 2, LD->getMemOperand()->getFlags());
457    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
458                                      DAG.getConstant(16, DL, MVT::i32));
459    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
460    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
461                             High.getValue(1));
462    SDValue Ops[] = { Result, Chain };
463    return DAG.getMergeValues(Ops, DL);
464  }
465
466  // Lower to a call to __misaligned_load(BasePtr).
467  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
468  TargetLowering::ArgListTy Args;
469  TargetLowering::ArgListEntry Entry;
470
471  Entry.Ty = IntPtrTy;
472  Entry.Node = BasePtr;
473  Args.push_back(Entry);
474
475  TargetLowering::CallLoweringInfo CLI(DAG);
476  CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
477      CallingConv::C, IntPtrTy,
478      DAG.getExternalSymbol("__misaligned_load",
479                            getPointerTy(DAG.getDataLayout())),
480      std::move(Args));
481
482  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
483  SDValue Ops[] = { CallResult.first, CallResult.second };
484  return DAG.getMergeValues(Ops, DL);
485}
486
487SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
488  LLVMContext &Context = *DAG.getContext();
489  StoreSDNode *ST = cast<StoreSDNode>(Op);
490  assert(!ST->isTruncatingStore() && "Unexpected store type");
491  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
492
493  if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
494                                     ST->getMemoryVT(), *ST->getMemOperand()))
495    return SDValue();
496
497  SDValue Chain = ST->getChain();
498  SDValue BasePtr = ST->getBasePtr();
499  SDValue Value = ST->getValue();
500  SDLoc dl(Op);
501
502  if (ST->getAlignment() == 2) {
503    SDValue Low = Value;
504    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
505                               DAG.getConstant(16, dl, MVT::i32));
506    SDValue StoreLow = DAG.getTruncStore(
507        Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16,
508        /* Alignment = */ 2, ST->getMemOperand()->getFlags());
509    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
510                                   DAG.getConstant(2, dl, MVT::i32));
511    SDValue StoreHigh = DAG.getTruncStore(
512        Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
513        MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags());
514    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
515  }
516
517  // Lower to a call to __misaligned_store(BasePtr, Value).
518  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
519  TargetLowering::ArgListTy Args;
520  TargetLowering::ArgListEntry Entry;
521
522  Entry.Ty = IntPtrTy;
523  Entry.Node = BasePtr;
524  Args.push_back(Entry);
525
526  Entry.Node = Value;
527  Args.push_back(Entry);
528
529  TargetLowering::CallLoweringInfo CLI(DAG);
530  CLI.setDebugLoc(dl).setChain(Chain).setCallee(
531      CallingConv::C, Type::getVoidTy(Context),
532      DAG.getExternalSymbol("__misaligned_store",
533                            getPointerTy(DAG.getDataLayout())),
534      std::move(Args));
535
536  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
537  return CallResult.second;
538}
539
540SDValue XCoreTargetLowering::
541LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
542{
543  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
544         "Unexpected operand to lower!");
545  SDLoc dl(Op);
546  SDValue LHS = Op.getOperand(0);
547  SDValue RHS = Op.getOperand(1);
548  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
549  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
550                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
551                           LHS, RHS);
552  SDValue Lo(Hi.getNode(), 1);
553  SDValue Ops[] = { Lo, Hi };
554  return DAG.getMergeValues(Ops, dl);
555}
556
557SDValue XCoreTargetLowering::
558LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
559{
560  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
561         "Unexpected operand to lower!");
562  SDLoc dl(Op);
563  SDValue LHS = Op.getOperand(0);
564  SDValue RHS = Op.getOperand(1);
565  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
566  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
567                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
568                           Zero, Zero);
569  SDValue Lo(Hi.getNode(), 1);
570  SDValue Ops[] = { Lo, Hi };
571  return DAG.getMergeValues(Ops, dl);
572}
573
574/// isADDADDMUL - Return whether Op is in a form that is equivalent to
575/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
576/// each intermediate result in the calculation must also have a single use.
577/// If the Op is in the correct form the constituent parts are written to Mul0,
578/// Mul1, Addend0 and Addend1.
579static bool
580isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
581            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
582{
583  if (Op.getOpcode() != ISD::ADD)
584    return false;
585  SDValue N0 = Op.getOperand(0);
586  SDValue N1 = Op.getOperand(1);
587  SDValue AddOp;
588  SDValue OtherOp;
589  if (N0.getOpcode() == ISD::ADD) {
590    AddOp = N0;
591    OtherOp = N1;
592  } else if (N1.getOpcode() == ISD::ADD) {
593    AddOp = N1;
594    OtherOp = N0;
595  } else {
596    return false;
597  }
598  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
599    return false;
600  if (OtherOp.getOpcode() == ISD::MUL) {
601    // add(add(a,b),mul(x,y))
602    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
603      return false;
604    Mul0 = OtherOp.getOperand(0);
605    Mul1 = OtherOp.getOperand(1);
606    Addend0 = AddOp.getOperand(0);
607    Addend1 = AddOp.getOperand(1);
608    return true;
609  }
610  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
611    // add(add(mul(x,y),a),b)
612    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
613      return false;
614    Mul0 = AddOp.getOperand(0).getOperand(0);
615    Mul1 = AddOp.getOperand(0).getOperand(1);
616    Addend0 = AddOp.getOperand(1);
617    Addend1 = OtherOp;
618    return true;
619  }
620  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
621    // add(add(a,mul(x,y)),b)
622    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
623      return false;
624    Mul0 = AddOp.getOperand(1).getOperand(0);
625    Mul1 = AddOp.getOperand(1).getOperand(1);
626    Addend0 = AddOp.getOperand(0);
627    Addend1 = OtherOp;
628    return true;
629  }
630  return false;
631}
632
633SDValue XCoreTargetLowering::
634TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
635{
636  SDValue Mul;
637  SDValue Other;
638  if (N->getOperand(0).getOpcode() == ISD::MUL) {
639    Mul = N->getOperand(0);
640    Other = N->getOperand(1);
641  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
642    Mul = N->getOperand(1);
643    Other = N->getOperand(0);
644  } else {
645    return SDValue();
646  }
647  SDLoc dl(N);
648  SDValue LL, RL, AddendL, AddendH;
649  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
650                   Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
651  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
652                   Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
653  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
654                        Other, DAG.getConstant(0, dl, MVT::i32));
655  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
656                        Other, DAG.getConstant(1, dl, MVT::i32));
657  APInt HighMask = APInt::getHighBitsSet(64, 32);
658  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
659  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
660  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
661      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
662    // The inputs are both zero-extended.
663    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
664                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
665                             AddendL, LL, RL);
666    SDValue Lo(Hi.getNode(), 1);
667    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
668  }
669  if (LHSSB > 32 && RHSSB > 32) {
670    // The inputs are both sign-extended.
671    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
672                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
673                             AddendL, LL, RL);
674    SDValue Lo(Hi.getNode(), 1);
675    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
676  }
677  SDValue LH, RH;
678  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
679                   Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
680  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
681                   Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
682  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
683                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
684                           AddendL, LL, RL);
685  SDValue Lo(Hi.getNode(), 1);
686  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
687  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
688  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
689  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
690  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
691}
692
693SDValue XCoreTargetLowering::
694ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
695{
696  assert(N->getValueType(0) == MVT::i64 &&
697         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
698        "Unknown operand to lower!");
699
700  if (N->getOpcode() == ISD::ADD)
701    if (SDValue Result = TryExpandADDWithMul(N, DAG))
702      return Result;
703
704  SDLoc dl(N);
705
706  // Extract components
707  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
708                             N->getOperand(0),
709                             DAG.getConstant(0, dl, MVT::i32));
710  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
711                             N->getOperand(0),
712                             DAG.getConstant(1, dl, MVT::i32));
713  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
714                             N->getOperand(1),
715                             DAG.getConstant(0, dl, MVT::i32));
716  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
717                             N->getOperand(1),
718                             DAG.getConstant(1, dl, MVT::i32));
719
720  // Expand
721  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
722                                                   XCoreISD::LSUB;
723  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
724  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
725                           LHSL, RHSL, Zero);
726  SDValue Carry(Lo.getNode(), 1);
727
728  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
729                           LHSH, RHSH, Carry);
730  SDValue Ignored(Hi.getNode(), 1);
731  // Merge the pieces
732  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
733}
734
735SDValue XCoreTargetLowering::
736LowerVAARG(SDValue Op, SelectionDAG &DAG) const
737{
738  // Whist llvm does not support aggregate varargs we can ignore
739  // the possibility of the ValueType being an implicit byVal vararg.
740  SDNode *Node = Op.getNode();
741  EVT VT = Node->getValueType(0); // not an aggregate
742  SDValue InChain = Node->getOperand(0);
743  SDValue VAListPtr = Node->getOperand(1);
744  EVT PtrVT = VAListPtr.getValueType();
745  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
746  SDLoc dl(Node);
747  SDValue VAList =
748      DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
749  // Increment the pointer, VAList, to the next vararg
750  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
751                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
752                                                      dl));
753  // Store the incremented VAList to the legalized pointer
754  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
755                         MachinePointerInfo(SV));
756  // Load the actual argument out of the pointer VAList
757  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
758}
759
760SDValue XCoreTargetLowering::
761LowerVASTART(SDValue Op, SelectionDAG &DAG) const
762{
763  SDLoc dl(Op);
764  // vastart stores the address of the VarArgsFrameIndex slot into the
765  // memory location argument
766  MachineFunction &MF = DAG.getMachineFunction();
767  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
768  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
769  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
770                      MachinePointerInfo());
771}
772
773SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
774                                            SelectionDAG &DAG) const {
775  // This nodes represent llvm.frameaddress on the DAG.
776  // It takes one operand, the index of the frame address to return.
777  // An index of zero corresponds to the current function's frame address.
778  // An index of one to the parent's frame address, and so on.
779  // Depths > 0 not supported yet!
780  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
781    return SDValue();
782
783  MachineFunction &MF = DAG.getMachineFunction();
784  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
785  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
786                            RegInfo->getFrameRegister(MF), MVT::i32);
787}
788
789SDValue XCoreTargetLowering::
790LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
791  // This nodes represent llvm.returnaddress on the DAG.
792  // It takes one operand, the index of the return address to return.
793  // An index of zero corresponds to the current function's return address.
794  // An index of one to the parent's return address, and so on.
795  // Depths > 0 not supported yet!
796  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
797    return SDValue();
798
799  MachineFunction &MF = DAG.getMachineFunction();
800  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
801  int FI = XFI->createLRSpillSlot(MF);
802  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
803  return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
804                     DAG.getEntryNode(), FIN,
805                     MachinePointerInfo::getFixedStack(MF, FI));
806}
807
808SDValue XCoreTargetLowering::
809LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
810  // This node represents offset from frame pointer to first on-stack argument.
811  // This is needed for correct stack adjustment during unwind.
812  // However, we don't know the offset until after the frame has be finalised.
813  // This is done during the XCoreFTAOElim pass.
814  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
815}
816
817SDValue XCoreTargetLowering::
818LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
819  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
820  // This node represents 'eh_return' gcc dwarf builtin, which is used to
821  // return from exception. The general meaning is: adjust stack by OFFSET and
822  // pass execution to HANDLER.
823  MachineFunction &MF = DAG.getMachineFunction();
824  SDValue Chain     = Op.getOperand(0);
825  SDValue Offset    = Op.getOperand(1);
826  SDValue Handler   = Op.getOperand(2);
827  SDLoc dl(Op);
828
829  // Absolute SP = (FP + FrameToArgs) + Offset
830  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
831  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
832                            RegInfo->getFrameRegister(MF), MVT::i32);
833  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
834                                    MVT::i32);
835  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
836  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
837
838  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
839  // which leaves 2 caller saved registers, R2 & R3 for us to use.
840  unsigned StackReg = XCore::R2;
841  unsigned HandlerReg = XCore::R3;
842
843  SDValue OutChains[] = {
844    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
845    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
846  };
847
848  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
849
850  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
851                     DAG.getRegister(StackReg, MVT::i32),
852                     DAG.getRegister(HandlerReg, MVT::i32));
853
854}
855
856SDValue XCoreTargetLowering::
857LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
858  return Op.getOperand(0);
859}
860
861SDValue XCoreTargetLowering::
862LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
863  SDValue Chain = Op.getOperand(0);
864  SDValue Trmp = Op.getOperand(1); // trampoline
865  SDValue FPtr = Op.getOperand(2); // nested function
866  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
867
868  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
869
870  // .align 4
871  // LDAPF_u10 r11, nest
872  // LDW_2rus r11, r11[0]
873  // STWSP_ru6 r11, sp[0]
874  // LDAPF_u10 r11, fptr
875  // LDW_2rus r11, r11[0]
876  // BAU_1r r11
877  // nest:
878  // .word nest
879  // fptr:
880  // .word fptr
881  SDValue OutChains[5];
882
883  SDValue Addr = Trmp;
884
885  SDLoc dl(Op);
886  OutChains[0] =
887      DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
888                   MachinePointerInfo(TrmpAddr));
889
890  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
891                     DAG.getConstant(4, dl, MVT::i32));
892  OutChains[1] =
893      DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
894                   MachinePointerInfo(TrmpAddr, 4));
895
896  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
897                     DAG.getConstant(8, dl, MVT::i32));
898  OutChains[2] =
899      DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
900                   MachinePointerInfo(TrmpAddr, 8));
901
902  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
903                     DAG.getConstant(12, dl, MVT::i32));
904  OutChains[3] =
905      DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
906
907  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
908                     DAG.getConstant(16, dl, MVT::i32));
909  OutChains[4] =
910      DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
911
912  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
913}
914
915SDValue XCoreTargetLowering::
916LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
917  SDLoc DL(Op);
918  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
919  switch (IntNo) {
920    case Intrinsic::xcore_crc8:
921      EVT VT = Op.getValueType();
922      SDValue Data =
923        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
924                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
925      SDValue Crc(Data.getNode(), 1);
926      SDValue Results[] = { Crc, Data };
927      return DAG.getMergeValues(Results, DL);
928  }
929  return SDValue();
930}
931
932SDValue XCoreTargetLowering::
933LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
934  SDLoc DL(Op);
935  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
936}
937
938SDValue XCoreTargetLowering::
939LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
940  AtomicSDNode *N = cast<AtomicSDNode>(Op);
941  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
942  assert((N->getOrdering() == AtomicOrdering::Unordered ||
943          N->getOrdering() == AtomicOrdering::Monotonic) &&
944         "setInsertFencesForAtomic(true) expects unordered / monotonic");
945  if (N->getMemoryVT() == MVT::i32) {
946    if (N->getAlignment() < 4)
947      report_fatal_error("atomic load must be aligned");
948    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
949                       N->getChain(), N->getBasePtr(), N->getPointerInfo(),
950                       N->getAlignment(), N->getMemOperand()->getFlags(),
951                       N->getAAInfo(), N->getRanges());
952  }
953  if (N->getMemoryVT() == MVT::i16) {
954    if (N->getAlignment() < 2)
955      report_fatal_error("atomic load must be aligned");
956    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
957                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
958                          N->getAlignment(), N->getMemOperand()->getFlags(),
959                          N->getAAInfo());
960  }
961  if (N->getMemoryVT() == MVT::i8)
962    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
963                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
964                          N->getAlignment(), N->getMemOperand()->getFlags(),
965                          N->getAAInfo());
966  return SDValue();
967}
968
969SDValue XCoreTargetLowering::
970LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
971  AtomicSDNode *N = cast<AtomicSDNode>(Op);
972  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
973  assert((N->getOrdering() == AtomicOrdering::Unordered ||
974          N->getOrdering() == AtomicOrdering::Monotonic) &&
975         "setInsertFencesForAtomic(true) expects unordered / monotonic");
976  if (N->getMemoryVT() == MVT::i32) {
977    if (N->getAlignment() < 4)
978      report_fatal_error("atomic store must be aligned");
979    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
980                        N->getPointerInfo(), N->getAlignment(),
981                        N->getMemOperand()->getFlags(), N->getAAInfo());
982  }
983  if (N->getMemoryVT() == MVT::i16) {
984    if (N->getAlignment() < 2)
985      report_fatal_error("atomic store must be aligned");
986    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
987                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
988                             N->getAlignment(), N->getMemOperand()->getFlags(),
989                             N->getAAInfo());
990  }
991  if (N->getMemoryVT() == MVT::i8)
992    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
993                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
994                             N->getAlignment(), N->getMemOperand()->getFlags(),
995                             N->getAAInfo());
996  return SDValue();
997}
998
999MachineMemOperand::Flags
1000XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
1001  // Because of how we convert atomic_load and atomic_store to normal loads and
1002  // stores in the DAG, we need to ensure that the MMOs are marked volatile
1003  // since DAGCombine hasn't been updated to account for atomic, but non
1004  // volatile loads.  (See D57601)
1005  if (auto *SI = dyn_cast<StoreInst>(&I))
1006    if (SI->isAtomic())
1007      return MachineMemOperand::MOVolatile;
1008  if (auto *LI = dyn_cast<LoadInst>(&I))
1009    if (LI->isAtomic())
1010      return MachineMemOperand::MOVolatile;
1011  if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1012    if (AI->isAtomic())
1013      return MachineMemOperand::MOVolatile;
1014  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1015    if (AI->isAtomic())
1016      return MachineMemOperand::MOVolatile;
1017  return MachineMemOperand::MONone;
1018}
1019
1020//===----------------------------------------------------------------------===//
1021//                      Calling Convention Implementation
1022//===----------------------------------------------------------------------===//
1023
1024#include "XCoreGenCallingConv.inc"
1025
1026//===----------------------------------------------------------------------===//
1027//                  Call Calling Convention Implementation
1028//===----------------------------------------------------------------------===//
1029
1030/// XCore call implementation
1031SDValue
1032XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1033                               SmallVectorImpl<SDValue> &InVals) const {
1034  SelectionDAG &DAG                     = CLI.DAG;
1035  SDLoc &dl                             = CLI.DL;
1036  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1037  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1038  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1039  SDValue Chain                         = CLI.Chain;
1040  SDValue Callee                        = CLI.Callee;
1041  bool &isTailCall                      = CLI.IsTailCall;
1042  CallingConv::ID CallConv              = CLI.CallConv;
1043  bool isVarArg                         = CLI.IsVarArg;
1044
1045  // XCore target does not yet support tail call optimization.
1046  isTailCall = false;
1047
1048  // For now, only CallingConv::C implemented
1049  switch (CallConv)
1050  {
1051    default:
1052      report_fatal_error("Unsupported calling convention");
1053    case CallingConv::Fast:
1054    case CallingConv::C:
1055      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1056                            Outs, OutVals, Ins, dl, DAG, InVals);
1057  }
1058}
1059
1060/// LowerCallResult - Lower the result values of a call into the
1061/// appropriate copies out of appropriate physical registers / memory locations.
1062static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1063                               const SmallVectorImpl<CCValAssign> &RVLocs,
1064                               const SDLoc &dl, SelectionDAG &DAG,
1065                               SmallVectorImpl<SDValue> &InVals) {
1066  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1067  // Copy results out of physical registers.
1068  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1069    const CCValAssign &VA = RVLocs[i];
1070    if (VA.isRegLoc()) {
1071      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1072                                 InFlag).getValue(1);
1073      InFlag = Chain.getValue(2);
1074      InVals.push_back(Chain.getValue(0));
1075    } else {
1076      assert(VA.isMemLoc());
1077      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1078                                             InVals.size()));
1079      // Reserve space for this result.
1080      InVals.push_back(SDValue());
1081    }
1082  }
1083
1084  // Copy results out of memory.
1085  SmallVector<SDValue, 4> MemOpChains;
1086  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1087    int offset = ResultMemLocs[i].first;
1088    unsigned index = ResultMemLocs[i].second;
1089    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1090    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1091    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1092    InVals[index] = load;
1093    MemOpChains.push_back(load.getValue(1));
1094  }
1095
1096  // Transform all loads nodes into one single node because
1097  // all load nodes are independent of each other.
1098  if (!MemOpChains.empty())
1099    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1100
1101  return Chain;
1102}
1103
1104/// LowerCCCCallTo - functions arguments are copied from virtual
1105/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1106/// CALLSEQ_END are emitted.
1107/// TODO: isTailCall, sret.
1108SDValue XCoreTargetLowering::LowerCCCCallTo(
1109    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1110    bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1111    const SmallVectorImpl<SDValue> &OutVals,
1112    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1113    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1114
1115  // Analyze operands of the call, assigning locations to each operand.
1116  SmallVector<CCValAssign, 16> ArgLocs;
1117  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1118                 *DAG.getContext());
1119
1120  // The ABI dictates there should be one stack slot available to the callee
1121  // on function entry (for saving lr).
1122  CCInfo.AllocateStack(4, Align(4));
1123
1124  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1125
1126  SmallVector<CCValAssign, 16> RVLocs;
1127  // Analyze return values to determine the number of bytes of stack required.
1128  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1129                    *DAG.getContext());
1130  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
1131  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1132
1133  // Get a count of how many bytes are to be pushed on the stack.
1134  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1135  auto PtrVT = getPointerTy(DAG.getDataLayout());
1136
1137  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1138
1139  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1140  SmallVector<SDValue, 12> MemOpChains;
1141
1142  // Walk the register/memloc assignments, inserting copies/loads.
1143  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1144    CCValAssign &VA = ArgLocs[i];
1145    SDValue Arg = OutVals[i];
1146
1147    // Promote the value if needed.
1148    switch (VA.getLocInfo()) {
1149      default: llvm_unreachable("Unknown loc info!");
1150      case CCValAssign::Full: break;
1151      case CCValAssign::SExt:
1152        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1153        break;
1154      case CCValAssign::ZExt:
1155        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1156        break;
1157      case CCValAssign::AExt:
1158        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1159        break;
1160    }
1161
1162    // Arguments that can be passed on register must be kept at
1163    // RegsToPass vector
1164    if (VA.isRegLoc()) {
1165      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1166    } else {
1167      assert(VA.isMemLoc());
1168
1169      int Offset = VA.getLocMemOffset();
1170
1171      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1172                                        Chain, Arg,
1173                                        DAG.getConstant(Offset/4, dl,
1174                                                        MVT::i32)));
1175    }
1176  }
1177
1178  // Transform all store nodes into one single node because
1179  // all store nodes are independent of each other.
1180  if (!MemOpChains.empty())
1181    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1182
1183  // Build a sequence of copy-to-reg nodes chained together with token
1184  // chain and flag operands which copy the outgoing args into registers.
1185  // The InFlag in necessary since all emitted instructions must be
1186  // stuck together.
1187  SDValue InFlag;
1188  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1189    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1190                             RegsToPass[i].second, InFlag);
1191    InFlag = Chain.getValue(1);
1192  }
1193
1194  // If the callee is a GlobalAddress node (quite common, every direct call is)
1195  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1196  // Likewise ExternalSymbol -> TargetExternalSymbol.
1197  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1198    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1199  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1200    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1201
1202  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1203  //             = Chain, Callee, Reg#1, Reg#2, ...
1204  //
1205  // Returns a chain & a flag for retval copy to use.
1206  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1207  SmallVector<SDValue, 8> Ops;
1208  Ops.push_back(Chain);
1209  Ops.push_back(Callee);
1210
1211  // Add argument registers to the end of the list so that they are
1212  // known live into the call.
1213  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1214    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1215                                  RegsToPass[i].second.getValueType()));
1216
1217  if (InFlag.getNode())
1218    Ops.push_back(InFlag);
1219
1220  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1221  InFlag = Chain.getValue(1);
1222
1223  // Create the CALLSEQ_END node.
1224  Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1225                             DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1226  InFlag = Chain.getValue(1);
1227
1228  // Handle result values, copying them out of physregs into vregs that we
1229  // return.
1230  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1231}
1232
1233//===----------------------------------------------------------------------===//
1234//             Formal Arguments Calling Convention Implementation
1235//===----------------------------------------------------------------------===//
1236
1237namespace {
1238  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1239}
1240
1241/// XCore formal arguments implementation
1242SDValue XCoreTargetLowering::LowerFormalArguments(
1243    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1244    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1245    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1246  switch (CallConv)
1247  {
1248    default:
1249      report_fatal_error("Unsupported calling convention");
1250    case CallingConv::C:
1251    case CallingConv::Fast:
1252      return LowerCCCArguments(Chain, CallConv, isVarArg,
1253                               Ins, dl, DAG, InVals);
1254  }
1255}
1256
1257/// LowerCCCArguments - transform physical registers into
1258/// virtual registers and generate load operations for
1259/// arguments places on the stack.
1260/// TODO: sret
1261SDValue XCoreTargetLowering::LowerCCCArguments(
1262    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1263    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1264    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1265  MachineFunction &MF = DAG.getMachineFunction();
1266  MachineFrameInfo &MFI = MF.getFrameInfo();
1267  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1268  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1269
1270  // Assign locations to all of the incoming arguments.
1271  SmallVector<CCValAssign, 16> ArgLocs;
1272  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1273                 *DAG.getContext());
1274
1275  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1276
1277  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1278
1279  unsigned LRSaveSize = StackSlotSize;
1280
1281  if (!isVarArg)
1282    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1283
1284  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1285  // scheduler clobbering a register before it has been copied.
1286  // The stages are:
1287  // 1. CopyFromReg (and load) arg & vararg registers.
1288  // 2. Chain CopyFromReg nodes into a TokenFactor.
1289  // 3. Memcpy 'byVal' args & push final InVals.
1290  // 4. Chain mem ops nodes into a TokenFactor.
1291  SmallVector<SDValue, 4> CFRegNode;
1292  SmallVector<ArgDataPair, 4> ArgData;
1293  SmallVector<SDValue, 4> MemOps;
1294
1295  // 1a. CopyFromReg (and load) arg registers.
1296  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1297
1298    CCValAssign &VA = ArgLocs[i];
1299    SDValue ArgIn;
1300
1301    if (VA.isRegLoc()) {
1302      // Arguments passed in registers
1303      EVT RegVT = VA.getLocVT();
1304      switch (RegVT.getSimpleVT().SimpleTy) {
1305      default:
1306        {
1307#ifndef NDEBUG
1308          errs() << "LowerFormalArguments Unhandled argument type: "
1309                 << RegVT.getEVTString() << "\n";
1310#endif
1311          llvm_unreachable(nullptr);
1312        }
1313      case MVT::i32:
1314        Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1315        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1316        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1317        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1318      }
1319    } else {
1320      // sanity check
1321      assert(VA.isMemLoc());
1322      // Load the argument to a virtual register
1323      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1324      if (ObjSize > StackSlotSize) {
1325        errs() << "LowerFormalArguments Unhandled argument type: "
1326               << EVT(VA.getLocVT()).getEVTString()
1327               << "\n";
1328      }
1329      // Create the frame index object for this incoming parameter...
1330      int FI = MFI.CreateFixedObject(ObjSize,
1331                                     LRSaveSize + VA.getLocMemOffset(),
1332                                     true);
1333
1334      // Create the SelectionDAG nodes corresponding to a load
1335      //from this parameter
1336      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1337      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1338                          MachinePointerInfo::getFixedStack(MF, FI));
1339    }
1340    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1341    ArgData.push_back(ADP);
1342  }
1343
1344  // 1b. CopyFromReg vararg registers.
1345  if (isVarArg) {
1346    // Argument registers
1347    static const MCPhysReg ArgRegs[] = {
1348      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1349    };
1350    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1351    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1352    if (FirstVAReg < array_lengthof(ArgRegs)) {
1353      int offset = 0;
1354      // Save remaining registers, storing higher register numbers at a higher
1355      // address
1356      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1357        // Create a stack slot
1358        int FI = MFI.CreateFixedObject(4, offset, true);
1359        if (i == (int)FirstVAReg) {
1360          XFI->setVarArgsFrameIndex(FI);
1361        }
1362        offset -= StackSlotSize;
1363        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1364        // Move argument from phys reg -> virt reg
1365        Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1366        RegInfo.addLiveIn(ArgRegs[i], VReg);
1367        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1368        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1369        // Move argument from virt reg -> stack
1370        SDValue Store =
1371            DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1372        MemOps.push_back(Store);
1373      }
1374    } else {
1375      // This will point to the next argument passed via stack.
1376      XFI->setVarArgsFrameIndex(
1377        MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1378                              true));
1379    }
1380  }
1381
1382  // 2. chain CopyFromReg nodes into a TokenFactor.
1383  if (!CFRegNode.empty())
1384    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1385
1386  // 3. Memcpy 'byVal' args & push final InVals.
1387  // Aggregates passed "byVal" need to be copied by the callee.
1388  // The callee will use a pointer to this copy, rather than the original
1389  // pointer.
1390  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1391                                                    ArgDE = ArgData.end();
1392       ArgDI != ArgDE; ++ArgDI) {
1393    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1394      unsigned Size = ArgDI->Flags.getByValSize();
1395      Align Alignment =
1396          std::max(Align(StackSlotSize), ArgDI->Flags.getNonZeroByValAlign());
1397      // Create a new object on the stack and copy the pointee into it.
1398      int FI = MFI.CreateStackObject(Size, Alignment, false);
1399      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1400      InVals.push_back(FIN);
1401      MemOps.push_back(DAG.getMemcpy(
1402          Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, dl, MVT::i32),
1403          Alignment, false, false, false, MachinePointerInfo(),
1404          MachinePointerInfo()));
1405    } else {
1406      InVals.push_back(ArgDI->SDV);
1407    }
1408  }
1409
1410  // 4, chain mem ops nodes into a TokenFactor.
1411  if (!MemOps.empty()) {
1412    MemOps.push_back(Chain);
1413    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1414  }
1415
1416  return Chain;
1417}
1418
1419//===----------------------------------------------------------------------===//
1420//               Return Value Calling Convention Implementation
1421//===----------------------------------------------------------------------===//
1422
1423bool XCoreTargetLowering::
1424CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1425               bool isVarArg,
1426               const SmallVectorImpl<ISD::OutputArg> &Outs,
1427               LLVMContext &Context) const {
1428  SmallVector<CCValAssign, 16> RVLocs;
1429  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1430  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1431    return false;
1432  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1433    return false;
1434  return true;
1435}
1436
1437SDValue
1438XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1439                                 bool isVarArg,
1440                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1441                                 const SmallVectorImpl<SDValue> &OutVals,
1442                                 const SDLoc &dl, SelectionDAG &DAG) const {
1443
1444  XCoreFunctionInfo *XFI =
1445    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1446  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1447
1448  // CCValAssign - represent the assignment of
1449  // the return value to a location
1450  SmallVector<CCValAssign, 16> RVLocs;
1451
1452  // CCState - Info about the registers and stack slot.
1453  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1454                 *DAG.getContext());
1455
1456  // Analyze return values.
1457  if (!isVarArg)
1458    CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1459
1460  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1461
1462  SDValue Flag;
1463  SmallVector<SDValue, 4> RetOps(1, Chain);
1464
1465  // Return on XCore is always a "retsp 0"
1466  RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1467
1468  SmallVector<SDValue, 4> MemOpChains;
1469  // Handle return values that must be copied to memory.
1470  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1471    CCValAssign &VA = RVLocs[i];
1472    if (VA.isRegLoc())
1473      continue;
1474    assert(VA.isMemLoc());
1475    if (isVarArg) {
1476      report_fatal_error("Can't return value from vararg function in memory");
1477    }
1478
1479    int Offset = VA.getLocMemOffset();
1480    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1481    // Create the frame index object for the memory location.
1482    int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1483
1484    // Create a SelectionDAG node corresponding to a store
1485    // to this memory location.
1486    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1487    MemOpChains.push_back(DAG.getStore(
1488        Chain, dl, OutVals[i], FIN,
1489        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1490  }
1491
1492  // Transform all store nodes into one single node because
1493  // all stores are independent of each other.
1494  if (!MemOpChains.empty())
1495    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1496
1497  // Now handle return values copied to registers.
1498  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    if (!VA.isRegLoc())
1501      continue;
1502    // Copy the result values into the output registers.
1503    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1504
1505    // guarantee that all emitted copies are
1506    // stuck together, avoiding something bad
1507    Flag = Chain.getValue(1);
1508    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1509  }
1510
1511  RetOps[0] = Chain;  // Update chain.
1512
1513  // Add the flag if we have it.
1514  if (Flag.getNode())
1515    RetOps.push_back(Flag);
1516
1517  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1518}
1519
1520//===----------------------------------------------------------------------===//
1521//  Other Lowering Code
1522//===----------------------------------------------------------------------===//
1523
1524MachineBasicBlock *
1525XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1526                                                 MachineBasicBlock *BB) const {
1527  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1528  DebugLoc dl = MI.getDebugLoc();
1529  assert((MI.getOpcode() == XCore::SELECT_CC) &&
1530         "Unexpected instr type to insert");
1531
1532  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1533  // control-flow pattern.  The incoming instruction knows the destination vreg
1534  // to set, the condition code register to branch on, the true/false values to
1535  // select between, and a branch opcode to use.
1536  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1537  MachineFunction::iterator It = ++BB->getIterator();
1538
1539  //  thisMBB:
1540  //  ...
1541  //   TrueVal = ...
1542  //   cmpTY ccX, r1, r2
1543  //   bCC copy1MBB
1544  //   fallthrough --> copy0MBB
1545  MachineBasicBlock *thisMBB = BB;
1546  MachineFunction *F = BB->getParent();
1547  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1548  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1549  F->insert(It, copy0MBB);
1550  F->insert(It, sinkMBB);
1551
1552  // Transfer the remainder of BB and its successor edges to sinkMBB.
1553  sinkMBB->splice(sinkMBB->begin(), BB,
1554                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1555  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1556
1557  // Next, add the true and fallthrough blocks as its successors.
1558  BB->addSuccessor(copy0MBB);
1559  BB->addSuccessor(sinkMBB);
1560
1561  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1562      .addReg(MI.getOperand(1).getReg())
1563      .addMBB(sinkMBB);
1564
1565  //  copy0MBB:
1566  //   %FalseValue = ...
1567  //   # fallthrough to sinkMBB
1568  BB = copy0MBB;
1569
1570  // Update machine-CFG edges
1571  BB->addSuccessor(sinkMBB);
1572
1573  //  sinkMBB:
1574  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1575  //  ...
1576  BB = sinkMBB;
1577  BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1578      .addReg(MI.getOperand(3).getReg())
1579      .addMBB(copy0MBB)
1580      .addReg(MI.getOperand(2).getReg())
1581      .addMBB(thisMBB);
1582
1583  MI.eraseFromParent(); // The pseudo instruction is gone now.
1584  return BB;
1585}
1586
1587//===----------------------------------------------------------------------===//
1588// Target Optimization Hooks
1589//===----------------------------------------------------------------------===//
1590
1591SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1592                                             DAGCombinerInfo &DCI) const {
1593  SelectionDAG &DAG = DCI.DAG;
1594  SDLoc dl(N);
1595  switch (N->getOpcode()) {
1596  default: break;
1597  case ISD::INTRINSIC_VOID:
1598    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1599    case Intrinsic::xcore_outt:
1600    case Intrinsic::xcore_outct:
1601    case Intrinsic::xcore_chkct: {
1602      SDValue OutVal = N->getOperand(3);
1603      // These instructions ignore the high bits.
1604      if (OutVal.hasOneUse()) {
1605        unsigned BitWidth = OutVal.getValueSizeInBits();
1606        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1607        KnownBits Known;
1608        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1609                                              !DCI.isBeforeLegalizeOps());
1610        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1611        if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1612            TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1613          DCI.CommitTargetLoweringOpt(TLO);
1614      }
1615      break;
1616    }
1617    case Intrinsic::xcore_setpt: {
1618      SDValue Time = N->getOperand(3);
1619      // This instruction ignores the high bits.
1620      if (Time.hasOneUse()) {
1621        unsigned BitWidth = Time.getValueSizeInBits();
1622        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1623        KnownBits Known;
1624        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1625                                              !DCI.isBeforeLegalizeOps());
1626        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1627        if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1628            TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1629          DCI.CommitTargetLoweringOpt(TLO);
1630      }
1631      break;
1632    }
1633    }
1634    break;
1635  case XCoreISD::LADD: {
1636    SDValue N0 = N->getOperand(0);
1637    SDValue N1 = N->getOperand(1);
1638    SDValue N2 = N->getOperand(2);
1639    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1640    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1641    EVT VT = N0.getValueType();
1642
1643    // canonicalize constant to RHS
1644    if (N0C && !N1C)
1645      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1646
1647    // fold (ladd 0, 0, x) -> 0, x & 1
1648    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1649      SDValue Carry = DAG.getConstant(0, dl, VT);
1650      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1651                                   DAG.getConstant(1, dl, VT));
1652      SDValue Ops[] = { Result, Carry };
1653      return DAG.getMergeValues(Ops, dl);
1654    }
1655
1656    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1657    // low bit set
1658    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1659      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1660                                         VT.getSizeInBits() - 1);
1661      KnownBits Known = DAG.computeKnownBits(N2);
1662      if ((Known.Zero & Mask) == Mask) {
1663        SDValue Carry = DAG.getConstant(0, dl, VT);
1664        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1665        SDValue Ops[] = { Result, Carry };
1666        return DAG.getMergeValues(Ops, dl);
1667      }
1668    }
1669  }
1670  break;
1671  case XCoreISD::LSUB: {
1672    SDValue N0 = N->getOperand(0);
1673    SDValue N1 = N->getOperand(1);
1674    SDValue N2 = N->getOperand(2);
1675    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1676    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1677    EVT VT = N0.getValueType();
1678
1679    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1680    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1681      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1682                                         VT.getSizeInBits() - 1);
1683      KnownBits Known = DAG.computeKnownBits(N2);
1684      if ((Known.Zero & Mask) == Mask) {
1685        SDValue Borrow = N2;
1686        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1687                                     DAG.getConstant(0, dl, VT), N2);
1688        SDValue Ops[] = { Result, Borrow };
1689        return DAG.getMergeValues(Ops, dl);
1690      }
1691    }
1692
1693    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1694    // low bit set
1695    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1696      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1697                                         VT.getSizeInBits() - 1);
1698      KnownBits Known = DAG.computeKnownBits(N2);
1699      if ((Known.Zero & Mask) == Mask) {
1700        SDValue Borrow = DAG.getConstant(0, dl, VT);
1701        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1702        SDValue Ops[] = { Result, Borrow };
1703        return DAG.getMergeValues(Ops, dl);
1704      }
1705    }
1706  }
1707  break;
1708  case XCoreISD::LMUL: {
1709    SDValue N0 = N->getOperand(0);
1710    SDValue N1 = N->getOperand(1);
1711    SDValue N2 = N->getOperand(2);
1712    SDValue N3 = N->getOperand(3);
1713    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1714    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1715    EVT VT = N0.getValueType();
1716    // Canonicalize multiplicative constant to RHS. If both multiplicative
1717    // operands are constant canonicalize smallest to RHS.
1718    if ((N0C && !N1C) ||
1719        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1720      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1721                         N1, N0, N2, N3);
1722
1723    // lmul(x, 0, a, b)
1724    if (N1C && N1C->isNullValue()) {
1725      // If the high result is unused fold to add(a, b)
1726      if (N->hasNUsesOfValue(0, 0)) {
1727        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1728        SDValue Ops[] = { Lo, Lo };
1729        return DAG.getMergeValues(Ops, dl);
1730      }
1731      // Otherwise fold to ladd(a, b, 0)
1732      SDValue Result =
1733        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1734      SDValue Carry(Result.getNode(), 1);
1735      SDValue Ops[] = { Carry, Result };
1736      return DAG.getMergeValues(Ops, dl);
1737    }
1738  }
1739  break;
1740  case ISD::ADD: {
1741    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1742    // lmul(x, y, a, b). The high result of lmul will be ignored.
1743    // This is only profitable if the intermediate results are unused
1744    // elsewhere.
1745    SDValue Mul0, Mul1, Addend0, Addend1;
1746    if (N->getValueType(0) == MVT::i32 &&
1747        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1748      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1749                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1750                                    Mul1, Addend0, Addend1);
1751      SDValue Result(Ignored.getNode(), 1);
1752      return Result;
1753    }
1754    APInt HighMask = APInt::getHighBitsSet(64, 32);
1755    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1756    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1757    // before type legalization as it is messy to match the operands after
1758    // that.
1759    if (N->getValueType(0) == MVT::i64 &&
1760        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1761        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1762        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1763        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1764        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1765      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1766                                  Mul0, DAG.getConstant(0, dl, MVT::i32));
1767      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1768                                  Mul1, DAG.getConstant(0, dl, MVT::i32));
1769      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1770                                     Addend0, DAG.getConstant(0, dl, MVT::i32));
1771      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1772                                     Addend1, DAG.getConstant(0, dl, MVT::i32));
1773      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1774                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1775                               Addend0L, Addend1L);
1776      SDValue Lo(Hi.getNode(), 1);
1777      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1778    }
1779  }
1780  break;
1781  case ISD::STORE: {
1782    // Replace unaligned store of unaligned load with memmove.
1783    StoreSDNode *ST = cast<StoreSDNode>(N);
1784    if (!DCI.isBeforeLegalize() ||
1785        allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1786                                       ST->getMemoryVT(),
1787                                       *ST->getMemOperand()) ||
1788        ST->isVolatile() || ST->isIndexed()) {
1789      break;
1790    }
1791    SDValue Chain = ST->getChain();
1792
1793    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1794    assert((StoreBits % 8) == 0 &&
1795           "Store size in bits must be a multiple of 8");
1796    unsigned Alignment = ST->getAlignment();
1797
1798    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1799      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1800        LD->getAlignment() == Alignment &&
1801        !LD->isVolatile() && !LD->isIndexed() &&
1802        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1803        bool isTail = isInTailCallPosition(DAG, ST, Chain);
1804        return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1805                              DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1806                              Align(Alignment), false, isTail,
1807                              ST->getPointerInfo(), LD->getPointerInfo());
1808      }
1809    }
1810    break;
1811  }
1812  }
1813  return SDValue();
1814}
1815
1816void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1817                                                        KnownBits &Known,
1818                                                        const APInt &DemandedElts,
1819                                                        const SelectionDAG &DAG,
1820                                                        unsigned Depth) const {
1821  Known.resetAll();
1822  switch (Op.getOpcode()) {
1823  default: break;
1824  case XCoreISD::LADD:
1825  case XCoreISD::LSUB:
1826    if (Op.getResNo() == 1) {
1827      // Top bits of carry / borrow are clear.
1828      Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1829                                         Known.getBitWidth() - 1);
1830    }
1831    break;
1832  case ISD::INTRINSIC_W_CHAIN:
1833    {
1834      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1835      switch (IntNo) {
1836      case Intrinsic::xcore_getts:
1837        // High bits are known to be zero.
1838        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1839                                           Known.getBitWidth() - 16);
1840        break;
1841      case Intrinsic::xcore_int:
1842      case Intrinsic::xcore_inct:
1843        // High bits are known to be zero.
1844        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1845                                           Known.getBitWidth() - 8);
1846        break;
1847      case Intrinsic::xcore_testct:
1848        // Result is either 0 or 1.
1849        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1850                                           Known.getBitWidth() - 1);
1851        break;
1852      case Intrinsic::xcore_testwct:
1853        // Result is in the range 0 - 4.
1854        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1855                                           Known.getBitWidth() - 3);
1856        break;
1857      }
1858    }
1859    break;
1860  }
1861}
1862
1863//===----------------------------------------------------------------------===//
1864//  Addressing mode description hooks
1865//===----------------------------------------------------------------------===//
1866
1867static inline bool isImmUs(int64_t val)
1868{
1869  return (val >= 0 && val <= 11);
1870}
1871
1872static inline bool isImmUs2(int64_t val)
1873{
1874  return (val%2 == 0 && isImmUs(val/2));
1875}
1876
1877static inline bool isImmUs4(int64_t val)
1878{
1879  return (val%4 == 0 && isImmUs(val/4));
1880}
1881
1882/// isLegalAddressingMode - Return true if the addressing mode represented
1883/// by AM is legal for this target, for a load/store of the specified type.
1884bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1885                                                const AddrMode &AM, Type *Ty,
1886                                                unsigned AS,
1887                                                Instruction *I) const {
1888  if (Ty->getTypeID() == Type::VoidTyID)
1889    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1890
1891  unsigned Size = DL.getTypeAllocSize(Ty);
1892  if (AM.BaseGV) {
1893    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1894                 AM.BaseOffs%4 == 0;
1895  }
1896
1897  switch (Size) {
1898  case 1:
1899    // reg + imm
1900    if (AM.Scale == 0) {
1901      return isImmUs(AM.BaseOffs);
1902    }
1903    // reg + reg
1904    return AM.Scale == 1 && AM.BaseOffs == 0;
1905  case 2:
1906  case 3:
1907    // reg + imm
1908    if (AM.Scale == 0) {
1909      return isImmUs2(AM.BaseOffs);
1910    }
1911    // reg + reg<<1
1912    return AM.Scale == 2 && AM.BaseOffs == 0;
1913  default:
1914    // reg + imm
1915    if (AM.Scale == 0) {
1916      return isImmUs4(AM.BaseOffs);
1917    }
1918    // reg + reg<<2
1919    return AM.Scale == 4 && AM.BaseOffs == 0;
1920  }
1921}
1922
1923//===----------------------------------------------------------------------===//
1924//                           XCore Inline Assembly Support
1925//===----------------------------------------------------------------------===//
1926
1927std::pair<unsigned, const TargetRegisterClass *>
1928XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1929                                                  StringRef Constraint,
1930                                                  MVT VT) const {
1931  if (Constraint.size() == 1) {
1932    switch (Constraint[0]) {
1933    default : break;
1934    case 'r':
1935      return std::make_pair(0U, &XCore::GRRegsRegClass);
1936    }
1937  }
1938  // Use the default implementation in TargetLowering to convert the register
1939  // constraint into a member of a register class.
1940  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1941}
1942