1//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 Register file, defining the registers themselves,
10// aliases between the registers, and the register classes built out of the
11// registers.
12//
13//===----------------------------------------------------------------------===//
14
15class X86Reg<string n, bits<16> Enc, list<Register> subregs = []> : Register<n> {
16  let Namespace = "X86";
17  let HWEncoding = Enc;
18  let SubRegs = subregs;
19}
20
21// Subregister indices.
22let Namespace = "X86" in {
23  def sub_8bit     : SubRegIndex<8>;
24  def sub_8bit_hi  : SubRegIndex<8, 8>;
25  def sub_8bit_hi_phony  : SubRegIndex<8, 8>;
26  def sub_16bit    : SubRegIndex<16>;
27  def sub_16bit_hi : SubRegIndex<16, 16>;
28  def sub_32bit    : SubRegIndex<32>;
29  def sub_xmm      : SubRegIndex<128>;
30  def sub_ymm      : SubRegIndex<256>;
31  def sub_mask_0   : SubRegIndex<-1>;
32  def sub_mask_1   : SubRegIndex<-1, -1>;
33}
34
35//===----------------------------------------------------------------------===//
36//  Register definitions...
37//
38
39// In the register alias definitions below, we define which registers alias
40// which others.  We only specify which registers the small registers alias,
41// because the register file generator is smart enough to figure out that
42// AL aliases AX if we tell it that AX aliased AL (for example).
43
44// Dwarf numbering is different for 32-bit and 64-bit, and there are
45// variations by target as well. Currently the first entry is for X86-64,
46// second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
47// and debug information on X86-32/Darwin)
48
49// 8-bit registers
50// Low registers
51def AL : X86Reg<"al", 0>;
52def DL : X86Reg<"dl", 2>;
53def CL : X86Reg<"cl", 1>;
54def BL : X86Reg<"bl", 3>;
55
56// High registers. On x86-64, these cannot be used in any instruction
57// with a REX prefix.
58def AH : X86Reg<"ah", 4>;
59def DH : X86Reg<"dh", 6>;
60def CH : X86Reg<"ch", 5>;
61def BH : X86Reg<"bh", 7>;
62
63// X86-64 only, requires REX.
64let CostPerUse = 1 in {
65def SIL  : X86Reg<"sil",   6>;
66def DIL  : X86Reg<"dil",   7>;
67def BPL  : X86Reg<"bpl",   5>;
68def SPL  : X86Reg<"spl",   4>;
69def R8B  : X86Reg<"r8b",   8>;
70def R9B  : X86Reg<"r9b",   9>;
71def R10B : X86Reg<"r10b", 10>;
72def R11B : X86Reg<"r11b", 11>;
73def R12B : X86Reg<"r12b", 12>;
74def R13B : X86Reg<"r13b", 13>;
75def R14B : X86Reg<"r14b", 14>;
76def R15B : X86Reg<"r15b", 15>;
77}
78
79let isArtificial = 1 in {
80// High byte of the low 16 bits of the super-register:
81def SIH   : X86Reg<"", -1>;
82def DIH   : X86Reg<"", -1>;
83def BPH   : X86Reg<"", -1>;
84def SPH   : X86Reg<"", -1>;
85def R8BH  : X86Reg<"", -1>;
86def R9BH  : X86Reg<"", -1>;
87def R10BH : X86Reg<"", -1>;
88def R11BH : X86Reg<"", -1>;
89def R12BH : X86Reg<"", -1>;
90def R13BH : X86Reg<"", -1>;
91def R14BH : X86Reg<"", -1>;
92def R15BH : X86Reg<"", -1>;
93// High word of the low 32 bits of the super-register:
94def HAX   : X86Reg<"", -1>;
95def HDX   : X86Reg<"", -1>;
96def HCX   : X86Reg<"", -1>;
97def HBX   : X86Reg<"", -1>;
98def HSI   : X86Reg<"", -1>;
99def HDI   : X86Reg<"", -1>;
100def HBP   : X86Reg<"", -1>;
101def HSP   : X86Reg<"", -1>;
102def HIP   : X86Reg<"", -1>;
103def R8WH  : X86Reg<"", -1>;
104def R9WH  : X86Reg<"", -1>;
105def R10WH : X86Reg<"", -1>;
106def R11WH : X86Reg<"", -1>;
107def R12WH : X86Reg<"", -1>;
108def R13WH : X86Reg<"", -1>;
109def R14WH : X86Reg<"", -1>;
110def R15WH : X86Reg<"", -1>;
111}
112
113// 16-bit registers
114let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
115def AX : X86Reg<"ax", 0, [AL,AH]>;
116def DX : X86Reg<"dx", 2, [DL,DH]>;
117def CX : X86Reg<"cx", 1, [CL,CH]>;
118def BX : X86Reg<"bx", 3, [BL,BH]>;
119}
120let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CoveredBySubRegs = 1 in {
121def SI : X86Reg<"si", 6, [SIL,SIH]>;
122def DI : X86Reg<"di", 7, [DIL,DIH]>;
123def BP : X86Reg<"bp", 5, [BPL,BPH]>;
124def SP : X86Reg<"sp", 4, [SPL,SPH]>;
125}
126def IP : X86Reg<"ip", 0>;
127
128// X86-64 only, requires REX.
129let SubRegIndices = [sub_8bit, sub_8bit_hi_phony], CostPerUse = 1,
130    CoveredBySubRegs = 1 in {
131def R8W  : X86Reg<"r8w",   8, [R8B,R8BH]>;
132def R9W  : X86Reg<"r9w",   9, [R9B,R9BH]>;
133def R10W : X86Reg<"r10w", 10, [R10B,R10BH]>;
134def R11W : X86Reg<"r11w", 11, [R11B,R11BH]>;
135def R12W : X86Reg<"r12w", 12, [R12B,R12BH]>;
136def R13W : X86Reg<"r13w", 13, [R13B,R13BH]>;
137def R14W : X86Reg<"r14w", 14, [R14B,R14BH]>;
138def R15W : X86Reg<"r15w", 15, [R15B,R15BH]>;
139}
140
141// 32-bit registers
142let SubRegIndices = [sub_16bit, sub_16bit_hi], CoveredBySubRegs = 1 in {
143def EAX : X86Reg<"eax", 0, [AX, HAX]>, DwarfRegNum<[-2, 0, 0]>;
144def EDX : X86Reg<"edx", 2, [DX, HDX]>, DwarfRegNum<[-2, 2, 2]>;
145def ECX : X86Reg<"ecx", 1, [CX, HCX]>, DwarfRegNum<[-2, 1, 1]>;
146def EBX : X86Reg<"ebx", 3, [BX, HBX]>, DwarfRegNum<[-2, 3, 3]>;
147def ESI : X86Reg<"esi", 6, [SI, HSI]>, DwarfRegNum<[-2, 6, 6]>;
148def EDI : X86Reg<"edi", 7, [DI, HDI]>, DwarfRegNum<[-2, 7, 7]>;
149def EBP : X86Reg<"ebp", 5, [BP, HBP]>, DwarfRegNum<[-2, 4, 5]>;
150def ESP : X86Reg<"esp", 4, [SP, HSP]>, DwarfRegNum<[-2, 5, 4]>;
151def EIP : X86Reg<"eip", 0, [IP, HIP]>, DwarfRegNum<[-2, 8, 8]>;
152}
153
154// X86-64 only, requires REX
155let SubRegIndices = [sub_16bit, sub_16bit_hi], CostPerUse = 1,
156    CoveredBySubRegs = 1 in {
157def R8D  : X86Reg<"r8d",   8, [R8W,R8WH]>;
158def R9D  : X86Reg<"r9d",   9, [R9W,R9WH]>;
159def R10D : X86Reg<"r10d", 10, [R10W,R10WH]>;
160def R11D : X86Reg<"r11d", 11, [R11W,R11WH]>;
161def R12D : X86Reg<"r12d", 12, [R12W,R12WH]>;
162def R13D : X86Reg<"r13d", 13, [R13W,R13WH]>;
163def R14D : X86Reg<"r14d", 14, [R14W,R14WH]>;
164def R15D : X86Reg<"r15d", 15, [R15W,R15WH]>;
165}
166
167// 64-bit registers, X86-64 only
168let SubRegIndices = [sub_32bit] in {
169def RAX : X86Reg<"rax", 0, [EAX]>, DwarfRegNum<[0, -2, -2]>;
170def RDX : X86Reg<"rdx", 2, [EDX]>, DwarfRegNum<[1, -2, -2]>;
171def RCX : X86Reg<"rcx", 1, [ECX]>, DwarfRegNum<[2, -2, -2]>;
172def RBX : X86Reg<"rbx", 3, [EBX]>, DwarfRegNum<[3, -2, -2]>;
173def RSI : X86Reg<"rsi", 6, [ESI]>, DwarfRegNum<[4, -2, -2]>;
174def RDI : X86Reg<"rdi", 7, [EDI]>, DwarfRegNum<[5, -2, -2]>;
175def RBP : X86Reg<"rbp", 5, [EBP]>, DwarfRegNum<[6, -2, -2]>;
176def RSP : X86Reg<"rsp", 4, [ESP]>, DwarfRegNum<[7, -2, -2]>;
177
178// These also require REX.
179let CostPerUse = 1 in {
180def R8  : X86Reg<"r8",   8, [R8D]>,  DwarfRegNum<[ 8, -2, -2]>;
181def R9  : X86Reg<"r9",   9, [R9D]>,  DwarfRegNum<[ 9, -2, -2]>;
182def R10 : X86Reg<"r10", 10, [R10D]>, DwarfRegNum<[10, -2, -2]>;
183def R11 : X86Reg<"r11", 11, [R11D]>, DwarfRegNum<[11, -2, -2]>;
184def R12 : X86Reg<"r12", 12, [R12D]>, DwarfRegNum<[12, -2, -2]>;
185def R13 : X86Reg<"r13", 13, [R13D]>, DwarfRegNum<[13, -2, -2]>;
186def R14 : X86Reg<"r14", 14, [R14D]>, DwarfRegNum<[14, -2, -2]>;
187def R15 : X86Reg<"r15", 15, [R15D]>, DwarfRegNum<[15, -2, -2]>;
188def RIP : X86Reg<"rip",  0, [EIP]>,  DwarfRegNum<[16, -2, -2]>;
189}}
190
191// MMX Registers. These are actually aliased to ST0 .. ST7
192def MM0 : X86Reg<"mm0", 0>, DwarfRegNum<[41, 29, 29]>;
193def MM1 : X86Reg<"mm1", 1>, DwarfRegNum<[42, 30, 30]>;
194def MM2 : X86Reg<"mm2", 2>, DwarfRegNum<[43, 31, 31]>;
195def MM3 : X86Reg<"mm3", 3>, DwarfRegNum<[44, 32, 32]>;
196def MM4 : X86Reg<"mm4", 4>, DwarfRegNum<[45, 33, 33]>;
197def MM5 : X86Reg<"mm5", 5>, DwarfRegNum<[46, 34, 34]>;
198def MM6 : X86Reg<"mm6", 6>, DwarfRegNum<[47, 35, 35]>;
199def MM7 : X86Reg<"mm7", 7>, DwarfRegNum<[48, 36, 36]>;
200
201// Pseudo Floating Point registers
202def FP0 : X86Reg<"fp0", 0>;
203def FP1 : X86Reg<"fp1", 0>;
204def FP2 : X86Reg<"fp2", 0>;
205def FP3 : X86Reg<"fp3", 0>;
206def FP4 : X86Reg<"fp4", 0>;
207def FP5 : X86Reg<"fp5", 0>;
208def FP6 : X86Reg<"fp6", 0>;
209def FP7 : X86Reg<"fp7", 0>;
210
211// XMM Registers, used by the various SSE instruction set extensions.
212def XMM0: X86Reg<"xmm0", 0>, DwarfRegNum<[17, 21, 21]>;
213def XMM1: X86Reg<"xmm1", 1>, DwarfRegNum<[18, 22, 22]>;
214def XMM2: X86Reg<"xmm2", 2>, DwarfRegNum<[19, 23, 23]>;
215def XMM3: X86Reg<"xmm3", 3>, DwarfRegNum<[20, 24, 24]>;
216def XMM4: X86Reg<"xmm4", 4>, DwarfRegNum<[21, 25, 25]>;
217def XMM5: X86Reg<"xmm5", 5>, DwarfRegNum<[22, 26, 26]>;
218def XMM6: X86Reg<"xmm6", 6>, DwarfRegNum<[23, 27, 27]>;
219def XMM7: X86Reg<"xmm7", 7>, DwarfRegNum<[24, 28, 28]>;
220
221// X86-64 only
222let CostPerUse = 1 in {
223def XMM8:  X86Reg<"xmm8",   8>, DwarfRegNum<[25, -2, -2]>;
224def XMM9:  X86Reg<"xmm9",   9>, DwarfRegNum<[26, -2, -2]>;
225def XMM10: X86Reg<"xmm10", 10>, DwarfRegNum<[27, -2, -2]>;
226def XMM11: X86Reg<"xmm11", 11>, DwarfRegNum<[28, -2, -2]>;
227def XMM12: X86Reg<"xmm12", 12>, DwarfRegNum<[29, -2, -2]>;
228def XMM13: X86Reg<"xmm13", 13>, DwarfRegNum<[30, -2, -2]>;
229def XMM14: X86Reg<"xmm14", 14>, DwarfRegNum<[31, -2, -2]>;
230def XMM15: X86Reg<"xmm15", 15>, DwarfRegNum<[32, -2, -2]>;
231
232def XMM16:  X86Reg<"xmm16", 16>, DwarfRegNum<[67, -2, -2]>;
233def XMM17:  X86Reg<"xmm17", 17>, DwarfRegNum<[68, -2, -2]>;
234def XMM18:  X86Reg<"xmm18", 18>, DwarfRegNum<[69, -2, -2]>;
235def XMM19:  X86Reg<"xmm19", 19>, DwarfRegNum<[70, -2, -2]>;
236def XMM20:  X86Reg<"xmm20", 20>, DwarfRegNum<[71, -2, -2]>;
237def XMM21:  X86Reg<"xmm21", 21>, DwarfRegNum<[72, -2, -2]>;
238def XMM22:  X86Reg<"xmm22", 22>, DwarfRegNum<[73, -2, -2]>;
239def XMM23:  X86Reg<"xmm23", 23>, DwarfRegNum<[74, -2, -2]>;
240def XMM24:  X86Reg<"xmm24", 24>, DwarfRegNum<[75, -2, -2]>;
241def XMM25:  X86Reg<"xmm25", 25>, DwarfRegNum<[76, -2, -2]>;
242def XMM26:  X86Reg<"xmm26", 26>, DwarfRegNum<[77, -2, -2]>;
243def XMM27:  X86Reg<"xmm27", 27>, DwarfRegNum<[78, -2, -2]>;
244def XMM28:  X86Reg<"xmm28", 28>, DwarfRegNum<[79, -2, -2]>;
245def XMM29:  X86Reg<"xmm29", 29>, DwarfRegNum<[80, -2, -2]>;
246def XMM30:  X86Reg<"xmm30", 30>, DwarfRegNum<[81, -2, -2]>;
247def XMM31:  X86Reg<"xmm31", 31>, DwarfRegNum<[82, -2, -2]>;
248
249} // CostPerUse
250
251// YMM0-15 registers, used by AVX instructions and
252// YMM16-31 registers, used by AVX-512 instructions.
253let SubRegIndices = [sub_xmm] in {
254  foreach  Index = 0-31 in {
255    def YMM#Index : X86Reg<"ymm"#Index, Index, [!cast<X86Reg>("XMM"#Index)]>,
256                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
257  }
258}
259
260// ZMM Registers, used by AVX-512 instructions.
261let SubRegIndices = [sub_ymm] in {
262  foreach  Index = 0-31 in {
263    def ZMM#Index : X86Reg<"zmm"#Index, Index, [!cast<X86Reg>("YMM"#Index)]>,
264                    DwarfRegAlias<!cast<X86Reg>("XMM"#Index)>;
265  }
266}
267
268// Tile "registers".
269def TMM0:  X86Reg<"tmm0",   0>;
270def TMM1:  X86Reg<"tmm1",   1>;
271def TMM2:  X86Reg<"tmm2",   2>;
272def TMM3:  X86Reg<"tmm3",   3>;
273def TMM4:  X86Reg<"tmm4",   4>;
274def TMM5:  X86Reg<"tmm5",   5>;
275def TMM6:  X86Reg<"tmm6",   6>;
276def TMM7:  X86Reg<"tmm7",   7>;
277
278// Mask Registers, used by AVX-512 instructions.
279def K0 : X86Reg<"k0", 0>, DwarfRegNum<[118,  93,  93]>;
280def K1 : X86Reg<"k1", 1>, DwarfRegNum<[119,  94,  94]>;
281def K2 : X86Reg<"k2", 2>, DwarfRegNum<[120,  95,  95]>;
282def K3 : X86Reg<"k3", 3>, DwarfRegNum<[121,  96,  96]>;
283def K4 : X86Reg<"k4", 4>, DwarfRegNum<[122,  97,  97]>;
284def K5 : X86Reg<"k5", 5>, DwarfRegNum<[123,  98,  98]>;
285def K6 : X86Reg<"k6", 6>, DwarfRegNum<[124,  99,  99]>;
286def K7 : X86Reg<"k7", 7>, DwarfRegNum<[125, 100, 100]>;
287
288// Floating point stack registers. These don't map one-to-one to the FP
289// pseudo registers, but we still mark them as aliasing FP registers. That
290// way both kinds can be live without exceeding the stack depth. ST registers
291// are only live around inline assembly.
292def ST0 : X86Reg<"st", 0>, DwarfRegNum<[33, 12, 11]>;
293def ST1 : X86Reg<"st(1)", 1>, DwarfRegNum<[34, 13, 12]>;
294def ST2 : X86Reg<"st(2)", 2>, DwarfRegNum<[35, 14, 13]>;
295def ST3 : X86Reg<"st(3)", 3>, DwarfRegNum<[36, 15, 14]>;
296def ST4 : X86Reg<"st(4)", 4>, DwarfRegNum<[37, 16, 15]>;
297def ST5 : X86Reg<"st(5)", 5>, DwarfRegNum<[38, 17, 16]>;
298def ST6 : X86Reg<"st(6)", 6>, DwarfRegNum<[39, 18, 17]>;
299def ST7 : X86Reg<"st(7)", 7>, DwarfRegNum<[40, 19, 18]>;
300
301// Floating-point status word
302def FPSW : X86Reg<"fpsr", 0>;
303
304// Floating-point control word
305def FPCW : X86Reg<"fpcr", 0>;
306
307// SIMD Floating-point control register.
308// Note: We only model the "Uses" of the control bits: current rounding modes,
309// DAZ, FTZ and exception masks. We don't model the "Defs" of flag bits.
310def MXCSR : X86Reg<"mxcsr", 0>;
311
312// Status flags register.
313//
314// Note that some flags that are commonly thought of as part of the status
315// flags register are modeled separately. Typically this is due to instructions
316// reading and updating those flags independently of all the others. We don't
317// want to create false dependencies between these instructions and so we use
318// a separate register to model them.
319def EFLAGS : X86Reg<"flags", 0>;
320
321// The direction flag.
322def DF : X86Reg<"dirflag", 0>;
323
324
325// Segment registers
326def CS : X86Reg<"cs", 1>;
327def DS : X86Reg<"ds", 3>;
328def SS : X86Reg<"ss", 2>;
329def ES : X86Reg<"es", 0>;
330def FS : X86Reg<"fs", 4>;
331def GS : X86Reg<"gs", 5>;
332
333// Debug registers
334def DR0  : X86Reg<"dr0",   0>;
335def DR1  : X86Reg<"dr1",   1>;
336def DR2  : X86Reg<"dr2",   2>;
337def DR3  : X86Reg<"dr3",   3>;
338def DR4  : X86Reg<"dr4",   4>;
339def DR5  : X86Reg<"dr5",   5>;
340def DR6  : X86Reg<"dr6",   6>;
341def DR7  : X86Reg<"dr7",   7>;
342def DR8  : X86Reg<"dr8",   8>;
343def DR9  : X86Reg<"dr9",   9>;
344def DR10 : X86Reg<"dr10", 10>;
345def DR11 : X86Reg<"dr11", 11>;
346def DR12 : X86Reg<"dr12", 12>;
347def DR13 : X86Reg<"dr13", 13>;
348def DR14 : X86Reg<"dr14", 14>;
349def DR15 : X86Reg<"dr15", 15>;
350
351// Control registers
352def CR0  : X86Reg<"cr0",   0>;
353def CR1  : X86Reg<"cr1",   1>;
354def CR2  : X86Reg<"cr2",   2>;
355def CR3  : X86Reg<"cr3",   3>;
356def CR4  : X86Reg<"cr4",   4>;
357def CR5  : X86Reg<"cr5",   5>;
358def CR6  : X86Reg<"cr6",   6>;
359def CR7  : X86Reg<"cr7",   7>;
360def CR8  : X86Reg<"cr8",   8>;
361def CR9  : X86Reg<"cr9",   9>;
362def CR10 : X86Reg<"cr10", 10>;
363def CR11 : X86Reg<"cr11", 11>;
364def CR12 : X86Reg<"cr12", 12>;
365def CR13 : X86Reg<"cr13", 13>;
366def CR14 : X86Reg<"cr14", 14>;
367def CR15 : X86Reg<"cr15", 15>;
368
369// Pseudo index registers
370def EIZ : X86Reg<"eiz", 4>;
371def RIZ : X86Reg<"riz", 4>;
372
373// Bound registers, used in MPX instructions
374def BND0 : X86Reg<"bnd0",   0>;
375def BND1 : X86Reg<"bnd1",   1>;
376def BND2 : X86Reg<"bnd2",   2>;
377def BND3 : X86Reg<"bnd3",   3>;
378
379// CET registers - Shadow Stack Pointer
380def SSP : X86Reg<"ssp", 0>;
381
382//===----------------------------------------------------------------------===//
383// Register Class Definitions... now that we have all of the pieces, define the
384// top-level register classes.  The order specified in the register list is
385// implicitly defined to be the register allocation order.
386//
387
388// List call-clobbered registers before callee-save registers. RBX, RBP, (and
389// R12, R13, R14, and R15 for X86-64) are callee-save registers.
390// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
391// R8B, ... R15B.
392// Allocate R12 and R13 last, as these require an extra byte when
393// encoded in x86_64 instructions.
394// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
395// 64-bit mode. The main complication is that they cannot be encoded in an
396// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
397// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
398// cannot be encoded.
399def GR8 : RegisterClass<"X86", [i8],  8,
400                        (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
401                             R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
402  let AltOrders = [(sub GR8, AH, BH, CH, DH)];
403  let AltOrderSelect = [{
404    return MF.getSubtarget<X86Subtarget>().is64Bit();
405  }];
406}
407
408let isAllocatable = 0 in
409def GRH8 : RegisterClass<"X86", [i8],  8,
410                         (add SIH, DIH, BPH, SPH, R8BH, R9BH, R10BH, R11BH,
411                              R12BH, R13BH, R14BH, R15BH)>;
412
413def GR16 : RegisterClass<"X86", [i16], 16,
414                         (add AX, CX, DX, SI, DI, BX, BP, SP,
415                              R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;
416
417let isAllocatable = 0 in
418def GRH16 : RegisterClass<"X86", [i16], 16,
419                          (add HAX, HCX, HDX, HSI, HDI, HBX, HBP, HSP, HIP,
420                               R8WH, R9WH, R10WH, R11WH, R12WH, R13WH, R14WH,
421                               R15WH)>;
422
423def GR32 : RegisterClass<"X86", [i32], 32,
424                         (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
425                              R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;
426
427// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
428// RIP isn't really a register and it can't be used anywhere except in an
429// address, but it doesn't cause trouble.
430// FIXME: it *does* cause trouble - CheckBaseRegAndIndexReg() has extra
431// tests because of the inclusion of RIP in this register class.
432def GR64 : RegisterClass<"X86", [i64], 64,
433                         (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
434                              RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;
435
436// Segment registers for use by MOV instructions (and others) that have a
437//   segment register as one operand.  Always contain a 16-bit segment
438//   descriptor.
439def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
440
441// Debug registers.
442def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 15)>;
443
444// Control registers.
445def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
446
447// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
448// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
449// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
450// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
451// and GR64_ABCD are classes for registers that support 8-bit h-register
452// operations.
453def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
454def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
455def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
456def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
457def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
458def GR32_TC   : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, ESP)>;
459def GR64_TC   : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
460                                                     R8, R9, R11, RIP, RSP)>;
461def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
462                                                      R8, R9, R10, R11,
463                                                      RIP, RSP)>;
464
465// GR8_NOREX - GR8 registers which do not require a REX prefix.
466def GR8_NOREX : RegisterClass<"X86", [i8], 8,
467                              (add AL, CL, DL, AH, CH, DH, BL, BH)> {
468  let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
469  let AltOrderSelect = [{
470    return MF.getSubtarget<X86Subtarget>().is64Bit();
471  }];
472}
473// GR16_NOREX - GR16 registers which do not require a REX prefix.
474def GR16_NOREX : RegisterClass<"X86", [i16], 16,
475                               (add AX, CX, DX, SI, DI, BX, BP, SP)>;
476// GR32_NOREX - GR32 registers which do not require a REX prefix.
477def GR32_NOREX : RegisterClass<"X86", [i32], 32,
478                               (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
479// GR64_NOREX - GR64 registers which do not require a REX prefix.
480def GR64_NOREX : RegisterClass<"X86", [i64], 64,
481                            (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;
482
483// GR32_NOSP - GR32 registers except ESP.
484def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
485
486// GR64_NOSP - GR64 registers except RSP (and RIP).
487def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;
488
489// GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
490// ESP.
491def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
492                                    (and GR32_NOREX, GR32_NOSP)>;
493
494// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
495def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
496                                    (and GR64_NOREX, GR64_NOSP)>;
497
498// Register classes used for ABIs that use 32-bit address accesses,
499// while using the whole x84_64 ISA.
500
501// In such cases, it is fine to use RIP as we are sure the 32 high
502// bits are not set. We do not need variants for NOSP as RIP is not
503// allowed there.
504// RIP is not spilled anywhere for now, so stick to 32-bit alignment
505// to save on memory space.
506// FIXME: We could allow all 64bit registers, but we would need
507// something to check that the 32 high bits are not set,
508// which we do not have right now.
509def LOW32_ADDR_ACCESS : RegisterClass<"X86", [i32], 32, (add GR32, RIP)>;
510
511// When RBP is used as a base pointer in a 32-bit addresses environment,
512// this is also safe to use the full register to access addresses.
513// Since RBP will never be spilled, stick to a 32 alignment to save
514// on memory consumption.
515def LOW32_ADDR_ACCESS_RBP : RegisterClass<"X86", [i32], 32,
516                                          (add LOW32_ADDR_ACCESS, RBP)>;
517
518// A class to support the 'A' assembler constraint: [ER]AX then [ER]DX.
519def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
520def GR64_AD : RegisterClass<"X86", [i64], 64, (add RAX, RDX)>;
521
522// Classes to support the 64-bit assembler constraint tied to a fixed
523// register in 32-bit mode. The second register is always the next in
524// the list. Wrap around causes an error.
525def GR32_DC : RegisterClass<"X86", [i32], 32, (add EDX, ECX)>;
526def GR32_CB : RegisterClass<"X86", [i32], 32, (add ECX, EBX)>;
527def GR32_BSI : RegisterClass<"X86", [i32], 32, (add EBX, ESI)>;
528def GR32_SIDI : RegisterClass<"X86", [i32], 32, (add ESI, EDI)>;
529def GR32_DIBP : RegisterClass<"X86", [i32], 32, (add EDI, EBP)>;
530def GR32_BPSP : RegisterClass<"X86", [i32], 32, (add EBP, ESP)>;
531
532// Scalar SSE2 floating point registers.
533def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
534
535def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
536
537
538// FIXME: This sets up the floating point register files as though they are f64
539// values, though they really are f80 values.  This will cause us to spill
540// values as 64-bit quantities instead of 80-bit quantities, which is much much
541// faster on common hardware.  In reality, this should be controlled by a
542// command line option or something.
543
544
545def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
546def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
547def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
548
549// st(7) may be is not allocatable.
550def RFP80_7 : RegisterClass<"X86",[f80], 32, (add FP7)> {
551  let isAllocatable = 0;
552}
553
554// Floating point stack registers (these are not allocatable by the
555// register allocator - the floating point stackifier is responsible
556// for transforming FPn allocations to STn registers)
557def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
558  let isAllocatable = 0;
559}
560
561// Helper to allow %st to print as %st(0) when its encoded in the instruction.
562def RSTi : RegisterOperand<RST, "printSTiRegOperand">;
563
564// Generic vector registers: VR64 and VR128.
565// Ensure that float types are declared first - only float is legal on SSE1.
566def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
567def VR128 : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
568                          128, (add FR32)>;
569def VR256 : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
570                          256, (sequence "YMM%u", 0, 15)>;
571
572// Status flags registers.
573def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
574  let CopyCost = -1;  // Don't allow copying of status registers.
575  let isAllocatable = 0;
576}
577def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
578  let CopyCost = -1;  // Don't allow copying of status registers.
579  let isAllocatable = 0;
580}
581def DFCCR : RegisterClass<"X86", [i32], 32, (add DF)> {
582  let CopyCost = -1;  // Don't allow copying of status registers.
583  let isAllocatable = 0;
584}
585
586// AVX-512 vector/mask registers.
587def VR512 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
588                          512, (sequence "ZMM%u", 0, 31)>;
589
590// Represents the lower 16 registers that have VEX/legacy encodable subregs.
591def VR512_0_15 : RegisterClass<"X86", [v16f32, v8f64, v64i8, v32i16, v16i32, v8i64],
592                               512, (sequence "ZMM%u", 0, 15)>;
593
594// Scalar AVX-512 floating point registers.
595def FR32X : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 31)>;
596
597def FR64X : RegisterClass<"X86", [f64], 64, (add FR32X)>;
598
599// Extended VR128 and VR256 for AVX-512 instructions
600def VR128X : RegisterClass<"X86", [v4f32, v2f64, v16i8, v8i16, v4i32, v2i64, f128],
601                           128, (add FR32X)>;
602def VR256X : RegisterClass<"X86", [v8f32, v4f64, v32i8, v16i16, v8i32, v4i64],
603                           256, (sequence "YMM%u", 0, 31)>;
604
605// Mask registers
606def VK1     : RegisterClass<"X86", [v1i1],  16,  (sequence "K%u", 0, 7)> {let Size = 16;}
607def VK2     : RegisterClass<"X86", [v2i1],  16,  (add VK1)> {let Size = 16;}
608def VK4     : RegisterClass<"X86", [v4i1],  16,  (add VK2)> {let Size = 16;}
609def VK8     : RegisterClass<"X86", [v8i1],  16,  (add VK4)> {let Size = 16;}
610def VK16    : RegisterClass<"X86", [v16i1], 16, (add VK8)> {let Size = 16;}
611def VK32    : RegisterClass<"X86", [v32i1], 32, (add VK16)> {let Size = 32;}
612def VK64    : RegisterClass<"X86", [v64i1], 64, (add VK32)> {let Size = 64;}
613
614// Mask register pairs
615def KPAIRS : RegisterTuples<[sub_mask_0, sub_mask_1],
616                             [(add K0, K2, K4, K6), (add K1, K3, K5, K7)]>;
617
618def VK1PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
619def VK2PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
620def VK4PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
621def VK8PAIR   : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
622def VK16PAIR  : RegisterClass<"X86", [untyped], 16, (add KPAIRS)> {let Size = 32;}
623
624def VK1WM   : RegisterClass<"X86", [v1i1],  16,  (sub VK1, K0)> {let Size = 16;}
625def VK2WM   : RegisterClass<"X86", [v2i1],  16,  (sub VK2, K0)> {let Size = 16;}
626def VK4WM   : RegisterClass<"X86", [v4i1],  16,  (sub VK4, K0)> {let Size = 16;}
627def VK8WM   : RegisterClass<"X86", [v8i1],  16,  (sub VK8, K0)> {let Size = 16;}
628def VK16WM  : RegisterClass<"X86", [v16i1], 16, (add VK8WM)>   {let Size = 16;}
629def VK32WM  : RegisterClass<"X86", [v32i1], 32, (add VK16WM)> {let Size = 32;}
630def VK64WM  : RegisterClass<"X86", [v64i1], 64, (add VK32WM)> {let Size = 64;}
631
632// Bound registers
633def BNDR : RegisterClass<"X86", [v2i64], 128, (sequence "BND%u", 0, 3)>;
634
635// Tiles
636let isAllocatable = 0 in
637def TILE : RegisterClass<"X86", [untyped], 0,
638                         (sequence "TMM%u", 0, 7)> {let Size = 8192;}
639