1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the X86MCCodeEmitter class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "MCTargetDesc/X86BaseInfo.h"
14#include "MCTargetDesc/X86FixupKinds.h"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/MC/MCCodeEmitter.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCFixup.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCInstrDesc.h"
23#include "llvm/MC/MCInstrInfo.h"
24#include "llvm/MC/MCRegisterInfo.h"
25#include "llvm/MC/MCSubtargetInfo.h"
26#include "llvm/MC/MCSymbol.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30#include <cstdint>
31#include <cstdlib>
32
33using namespace llvm;
34
35#define DEBUG_TYPE "mccodeemitter"
36
37namespace {
38
39class X86MCCodeEmitter : public MCCodeEmitter {
40  const MCInstrInfo &MCII;
41  MCContext &Ctx;
42
43public:
44  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
45      : MCII(mcii), Ctx(ctx) {}
46  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
47  X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
48  ~X86MCCodeEmitter() override = default;
49
50  void emitPrefix(const MCInst &MI, raw_ostream &OS,
51                  const MCSubtargetInfo &STI) const override;
52
53  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
54                         SmallVectorImpl<MCFixup> &Fixups,
55                         const MCSubtargetInfo &STI) const override;
56
57private:
58  unsigned getX86RegNum(const MCOperand &MO) const;
59
60  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const;
61
62  /// \param MI a single low-level machine instruction.
63  /// \param OpNum the operand #.
64  /// \returns true if the OpNumth operand of MI  require a bit to be set in
65  /// REX prefix.
66  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const;
67
68  void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
69                     MCFixupKind FixupKind, uint64_t StartByte, raw_ostream &OS,
70                     SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
71
72  void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
73                        raw_ostream &OS) const;
74
75  void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
76                   raw_ostream &OS) const;
77
78  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
79                        uint64_t TSFlags, bool HasREX, uint64_t StartByte,
80                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
81                        const MCSubtargetInfo &STI,
82                        bool ForceSIB = false) const;
83
84  bool emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
85                      const MCSubtargetInfo &STI, raw_ostream &OS) const;
86
87  void emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
88                           raw_ostream &OS) const;
89
90  void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI,
91                                 raw_ostream &OS) const;
92
93  bool emitOpcodePrefix(int MemOperand, const MCInst &MI,
94                        const MCSubtargetInfo &STI, raw_ostream &OS) const;
95
96  bool emitREXPrefix(int MemOperand, const MCInst &MI, raw_ostream &OS) const;
97};
98
99} // end anonymous namespace
100
101static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
102  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
103  return RM | (RegOpcode << 3) | (Mod << 6);
104}
105
106static void emitByte(uint8_t C, raw_ostream &OS) { OS << static_cast<char>(C); }
107
108static void emitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) {
109  // Output the constant in little endian byte order.
110  for (unsigned i = 0; i != Size; ++i) {
111    emitByte(Val & 255, OS);
112    Val >>= 8;
113  }
114}
115
116/// \returns true if this signed displacement fits in a 8-bit sign-extended
117/// field.
118static bool isDisp8(int Value) { return Value == (int8_t)Value; }
119
120/// \returns true if this signed displacement fits in a 8-bit compressed
121/// dispacement field.
122static bool isCDisp8(uint64_t TSFlags, int Value, int &CValue) {
123  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
124         "Compressed 8-bit displacement is only valid for EVEX inst.");
125
126  unsigned CD8_Scale =
127      (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
128  if (CD8_Scale == 0) {
129    CValue = Value;
130    return isDisp8(Value);
131  }
132
133  unsigned Mask = CD8_Scale - 1;
134  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
135  if (Value & Mask) // Unaligned offset
136    return false;
137  Value /= (int)CD8_Scale;
138  bool Ret = (Value == (int8_t)Value);
139
140  if (Ret)
141    CValue = Value;
142  return Ret;
143}
144
145/// \returns the appropriate fixup kind to use for an immediate in an
146/// instruction with the specified TSFlags.
147static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
148  unsigned Size = X86II::getSizeOfImm(TSFlags);
149  bool isPCRel = X86II::isImmPCRel(TSFlags);
150
151  if (X86II::isImmSigned(TSFlags)) {
152    switch (Size) {
153    default:
154      llvm_unreachable("Unsupported signed fixup size!");
155    case 4:
156      return MCFixupKind(X86::reloc_signed_4byte);
157    }
158  }
159  return MCFixup::getKindForSize(Size, isPCRel);
160}
161
162/// \param Op operand # of the memory operand.
163///
164/// \returns true if the specified instruction has a 16-bit memory operand.
165static bool is16BitMemOperand(const MCInst &MI, unsigned Op,
166                              const MCSubtargetInfo &STI) {
167  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
168  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
169  const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
170
171  if (STI.hasFeature(X86::Mode16Bit) && BaseReg.getReg() == 0 && Disp.isImm() &&
172      Disp.getImm() < 0x10000)
173    return true;
174  if ((BaseReg.getReg() != 0 &&
175       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
176      (IndexReg.getReg() != 0 &&
177       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
178    return true;
179  return false;
180}
181
182/// \param Op operand # of the memory operand.
183///
184/// \returns true if the specified instruction has a 32-bit memory operand.
185static bool is32BitMemOperand(const MCInst &MI, unsigned Op) {
186  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
187  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
188
189  if ((BaseReg.getReg() != 0 &&
190       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
191      (IndexReg.getReg() != 0 &&
192       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
193    return true;
194  if (BaseReg.getReg() == X86::EIP) {
195    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
196    return true;
197  }
198  if (IndexReg.getReg() == X86::EIZ)
199    return true;
200  return false;
201}
202
203/// \param Op operand # of the memory operand.
204///
205/// \returns true if the specified instruction has a 64-bit memory operand.
206#ifndef NDEBUG
207static bool is64BitMemOperand(const MCInst &MI, unsigned Op) {
208  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
209  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
210
211  if ((BaseReg.getReg() != 0 &&
212       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
213      (IndexReg.getReg() != 0 &&
214       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
215    return true;
216  return false;
217}
218#endif
219
220enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };
221
222/// Check if this expression starts with  _GLOBAL_OFFSET_TABLE_ and if it is
223/// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
224/// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
225/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
226/// binary expression.
227static GlobalOffsetTableExprKind
228startsWithGlobalOffsetTable(const MCExpr *Expr) {
229  const MCExpr *RHS = nullptr;
230  if (Expr->getKind() == MCExpr::Binary) {
231    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
232    Expr = BE->getLHS();
233    RHS = BE->getRHS();
234  }
235
236  if (Expr->getKind() != MCExpr::SymbolRef)
237    return GOT_None;
238
239  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
240  const MCSymbol &S = Ref->getSymbol();
241  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
242    return GOT_None;
243  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
244    return GOT_SymDiff;
245  return GOT_Normal;
246}
247
248static bool hasSecRelSymbolRef(const MCExpr *Expr) {
249  if (Expr->getKind() == MCExpr::SymbolRef) {
250    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
251    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
252  }
253  return false;
254}
255
256static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
257  unsigned Opcode = MI.getOpcode();
258  const MCInstrDesc &Desc = MCII.get(Opcode);
259  if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 &&
260       Opcode != X86::JCC_4) ||
261      getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
262    return false;
263
264  unsigned CurOp = X86II::getOperandBias(Desc);
265  const MCOperand &Op = MI.getOperand(CurOp);
266  if (!Op.isExpr())
267    return false;
268
269  const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
270  return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
271}
272
273unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const {
274  return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
275}
276
277unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI,
278                                             unsigned OpNum) const {
279  return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg());
280}
281
282/// \param MI a single low-level machine instruction.
283/// \param OpNum the operand #.
284/// \returns true if the OpNumth operand of MI  require a bit to be set in
285/// REX prefix.
286bool X86MCCodeEmitter::isREXExtendedReg(const MCInst &MI,
287                                        unsigned OpNum) const {
288  return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
289}
290
291void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
292                                     unsigned Size, MCFixupKind FixupKind,
293                                     uint64_t StartByte, raw_ostream &OS,
294                                     SmallVectorImpl<MCFixup> &Fixups,
295                                     int ImmOffset) const {
296  const MCExpr *Expr = nullptr;
297  if (DispOp.isImm()) {
298    // If this is a simple integer displacement that doesn't require a
299    // relocation, emit it now.
300    if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
301        FixupKind != FK_PCRel_4) {
302      emitConstant(DispOp.getImm() + ImmOffset, Size, OS);
303      return;
304    }
305    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
306  } else {
307    Expr = DispOp.getExpr();
308  }
309
310  // If we have an immoffset, add it to the expression.
311  if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
312       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
313    GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
314    if (Kind != GOT_None) {
315      assert(ImmOffset == 0);
316
317      if (Size == 8) {
318        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
319      } else {
320        assert(Size == 4);
321        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
322      }
323
324      if (Kind == GOT_Normal)
325        ImmOffset = static_cast<int>(OS.tell() - StartByte);
326    } else if (Expr->getKind() == MCExpr::SymbolRef) {
327      if (hasSecRelSymbolRef(Expr)) {
328        FixupKind = MCFixupKind(FK_SecRel_4);
329      }
330    } else if (Expr->getKind() == MCExpr::Binary) {
331      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
332      if (hasSecRelSymbolRef(Bin->getLHS()) ||
333          hasSecRelSymbolRef(Bin->getRHS())) {
334        FixupKind = MCFixupKind(FK_SecRel_4);
335      }
336    }
337  }
338
339  // If the fixup is pc-relative, we need to bias the value to be relative to
340  // the start of the field, not the end of the field.
341  if (FixupKind == FK_PCRel_4 ||
342      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
343      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
344      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
345      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
346      FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
347    ImmOffset -= 4;
348    // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
349    // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
350    // this needs to be a GOTPC32 relocation.
351    if (startsWithGlobalOffsetTable(Expr) != GOT_None)
352      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
353  }
354  if (FixupKind == FK_PCRel_2)
355    ImmOffset -= 2;
356  if (FixupKind == FK_PCRel_1)
357    ImmOffset -= 1;
358
359  if (ImmOffset)
360    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
361                                   Ctx);
362
363  // Emit a symbolic constant as a fixup and 4 zeros.
364  Fixups.push_back(MCFixup::create(static_cast<uint32_t>(OS.tell() - StartByte),
365                                   Expr, FixupKind, Loc));
366  emitConstant(0, Size, OS);
367}
368
369void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg,
370                                        unsigned RegOpcodeFld,
371                                        raw_ostream &OS) const {
372  emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), OS);
373}
374
375void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
376                                   raw_ostream &OS) const {
377  // SIB byte is in the same format as the modRMByte.
378  emitByte(modRMByte(SS, Index, Base), OS);
379}
380
381void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
382                                        unsigned RegOpcodeField,
383                                        uint64_t TSFlags, bool HasREX,
384                                        uint64_t StartByte, raw_ostream &OS,
385                                        SmallVectorImpl<MCFixup> &Fixups,
386                                        const MCSubtargetInfo &STI,
387                                        bool ForceSIB) const {
388  const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
389  const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
390  const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
391  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
392  unsigned BaseReg = Base.getReg();
393  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
394
395  // Handle %rip relative addressing.
396  if (BaseReg == X86::RIP ||
397      BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
398    assert(STI.hasFeature(X86::Mode64Bit) &&
399           "Rip-relative addressing requires 64-bit mode");
400    assert(IndexReg.getReg() == 0 && !ForceSIB &&
401           "Invalid rip-relative address");
402    emitByte(modRMByte(0, RegOpcodeField, 5), OS);
403
404    unsigned Opcode = MI.getOpcode();
405    // movq loads are handled with a special relocation form which allows the
406    // linker to eliminate some loads for GOT references which end up in the
407    // same linkage unit.
408    unsigned FixupKind = [=]() {
409      switch (Opcode) {
410      default:
411        return X86::reloc_riprel_4byte;
412      case X86::MOV64rm:
413        assert(HasREX);
414        return X86::reloc_riprel_4byte_movq_load;
415      case X86::CALL64m:
416      case X86::JMP64m:
417      case X86::TAILJMPm64:
418      case X86::TEST64mr:
419      case X86::ADC64rm:
420      case X86::ADD64rm:
421      case X86::AND64rm:
422      case X86::CMP64rm:
423      case X86::OR64rm:
424      case X86::SBB64rm:
425      case X86::SUB64rm:
426      case X86::XOR64rm:
427        return HasREX ? X86::reloc_riprel_4byte_relax_rex
428                      : X86::reloc_riprel_4byte_relax;
429      }
430    }();
431
432    // rip-relative addressing is actually relative to the *next* instruction.
433    // Since an immediate can follow the mod/rm byte for an instruction, this
434    // means that we need to bias the displacement field of the instruction with
435    // the size of the immediate field. If we have this case, add it into the
436    // expression to emit.
437    // Note: rip-relative addressing using immediate displacement values should
438    // not be adjusted, assuming it was the user's intent.
439    int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
440                      ? X86II::getSizeOfImm(TSFlags)
441                      : 0;
442
443    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
444                  Fixups, -ImmSize);
445    return;
446  }
447
448  unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
449
450  // 16-bit addressing forms of the ModR/M byte have a different encoding for
451  // the R/M field and are far more limited in which registers can be used.
452  if (is16BitMemOperand(MI, Op, STI)) {
453    if (BaseReg) {
454      // For 32-bit addressing, the row and column values in Table 2-2 are
455      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
456      // some special cases. And getX86RegNum reflects that numbering.
457      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
458      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
459      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
460      // while values 0-3 indicate the allowed combinations (base+index) of
461      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
462      //
463      // R16Table[] is a lookup from the normal RegNo, to the row values from
464      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
465      static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
466      unsigned RMfield = R16Table[BaseRegNo];
467
468      assert(RMfield && "invalid 16-bit base register");
469
470      if (IndexReg.getReg()) {
471        unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
472
473        assert(IndexReg16 && "invalid 16-bit index register");
474        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
475        assert(((IndexReg16 ^ RMfield) & 2) &&
476               "invalid 16-bit base/index register combination");
477        assert(Scale.getImm() == 1 &&
478               "invalid scale for 16-bit memory reference");
479
480        // Allow base/index to appear in either order (although GAS doesn't).
481        if (IndexReg16 & 2)
482          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
483        else
484          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
485      }
486
487      if (Disp.isImm() && isDisp8(Disp.getImm())) {
488        if (Disp.getImm() == 0 && RMfield != 6) {
489          // There is no displacement; just the register.
490          emitByte(modRMByte(0, RegOpcodeField, RMfield), OS);
491          return;
492        }
493        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
494        emitByte(modRMByte(1, RegOpcodeField, RMfield), OS);
495        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups);
496        return;
497      }
498      // This is the [REG]+disp16 case.
499      emitByte(modRMByte(2, RegOpcodeField, RMfield), OS);
500    } else {
501      // There is no BaseReg; this is the plain [disp16] case.
502      emitByte(modRMByte(0, RegOpcodeField, 6), OS);
503    }
504
505    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
506    emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, OS, Fixups);
507    return;
508  }
509
510  // Determine whether a SIB byte is needed.
511  // If no BaseReg, issue a RIP relative instruction only if the MCE can
512  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
513  // 2-7) and absolute references.
514
515  if ( // The SIB byte must be used if there is an index register.
516      !ForceSIB && IndexReg.getReg() == 0 &&
517      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
518      // encode to an R/M value of 4, which indicates that a SIB byte is
519      // present.
520      BaseRegNo != N86::ESP &&
521      // If there is no base register and we're in 64-bit mode, we need a SIB
522      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
523      (!STI.hasFeature(X86::Mode64Bit) || BaseReg != 0)) {
524
525    if (BaseReg == 0) { // [disp32]     in X86-32 mode
526      emitByte(modRMByte(0, RegOpcodeField, 5), OS);
527      emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, OS, Fixups);
528      return;
529    }
530
531    // If the base is not EBP/ESP and there is no displacement, use simple
532    // indirect register encoding, this handles addresses like [EAX].  The
533    // encoding for [EBP] with no displacement means [disp32] so we handle it
534    // by emitting a displacement of 0 below.
535    if (BaseRegNo != N86::EBP) {
536      if (Disp.isImm() && Disp.getImm() == 0) {
537        emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
538        return;
539      }
540
541      // If the displacement is @tlscall, treat it as a zero.
542      if (Disp.isExpr()) {
543        auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
544        if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
545          // This is exclusively used by call *a@tlscall(base). The relocation
546          // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
547          Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
548          emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
549          return;
550        }
551      }
552    }
553
554    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
555    if (Disp.isImm()) {
556      if (!HasEVEX && isDisp8(Disp.getImm())) {
557        emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), OS);
558        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups);
559        return;
560      }
561      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
562      // 32-bit displacement.
563      int CDisp8 = 0;
564      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
565        emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), OS);
566        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
567                      CDisp8 - Disp.getImm());
568        return;
569      }
570    }
571
572    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
573    emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), OS);
574    unsigned Opcode = MI.getOpcode();
575    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
576                                                : X86::reloc_signed_4byte;
577    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
578                  Fixups);
579    return;
580  }
581
582  // We need a SIB byte, so start by outputting the ModR/M byte first
583  assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
584         "Cannot use ESP as index reg!");
585
586  bool ForceDisp32 = false;
587  bool ForceDisp8 = false;
588  int CDisp8 = 0;
589  int ImmOffset = 0;
590  if (BaseReg == 0) {
591    // If there is no base register, we emit the special case SIB byte with
592    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
593    emitByte(modRMByte(0, RegOpcodeField, 4), OS);
594    ForceDisp32 = true;
595  } else if (!Disp.isImm()) {
596    // Emit the normal disp32 encoding.
597    emitByte(modRMByte(2, RegOpcodeField, 4), OS);
598    ForceDisp32 = true;
599  } else if (Disp.getImm() == 0 &&
600             // Base reg can't be anything that ends up with '5' as the base
601             // reg, it is the magic [*] nomenclature that indicates no base.
602             BaseRegNo != N86::EBP) {
603    // Emit no displacement ModR/M byte
604    emitByte(modRMByte(0, RegOpcodeField, 4), OS);
605  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
606    // Emit the disp8 encoding.
607    emitByte(modRMByte(1, RegOpcodeField, 4), OS);
608    ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
609  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
610    // Emit the disp8 encoding.
611    emitByte(modRMByte(1, RegOpcodeField, 4), OS);
612    ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
613    ImmOffset = CDisp8 - Disp.getImm();
614  } else {
615    // Emit the normal disp32 encoding.
616    emitByte(modRMByte(2, RegOpcodeField, 4), OS);
617  }
618
619  // Calculate what the SS field value should be...
620  static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
621  unsigned SS = SSTable[Scale.getImm()];
622
623  if (BaseReg == 0) {
624    // Handle the SIB byte for the case where there is no base, see Intel
625    // Manual 2A, table 2-7. The displacement has already been output.
626    unsigned IndexRegNo;
627    if (IndexReg.getReg())
628      IndexRegNo = getX86RegNum(IndexReg);
629    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
630      IndexRegNo = 4;
631    emitSIBByte(SS, IndexRegNo, 5, OS);
632  } else {
633    unsigned IndexRegNo;
634    if (IndexReg.getReg())
635      IndexRegNo = getX86RegNum(IndexReg);
636    else
637      IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
638    emitSIBByte(SS, IndexRegNo, getX86RegNum(Base), OS);
639  }
640
641  // Do we need to output a displacement?
642  if (ForceDisp8)
643    emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
644                  ImmOffset);
645  else if (ForceDisp32 || Disp.getImm() != 0)
646    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
647                  StartByte, OS, Fixups);
648}
649
650/// Emit all instruction prefixes.
651///
652/// \returns true if REX prefix is used, otherwise returns false.
653bool X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
654                                      const MCSubtargetInfo &STI,
655                                      raw_ostream &OS) const {
656  uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags;
657  // Determine where the memory operand starts, if present.
658  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
659  // Emit segment override opcode prefix as needed.
660  if (MemoryOperand != -1) {
661    MemoryOperand += CurOp;
662    emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, OS);
663  }
664
665  // Emit the repeat opcode prefix as needed.
666  unsigned Flags = MI.getFlags();
667  if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
668    emitByte(0xF3, OS);
669  if (Flags & X86::IP_HAS_REPEAT_NE)
670    emitByte(0xF2, OS);
671
672  // Emit the address size opcode prefix as needed.
673  bool NeedAddressOverride;
674  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
675  if ((STI.hasFeature(X86::Mode16Bit) && AdSize == X86II::AdSize32) ||
676      (STI.hasFeature(X86::Mode32Bit) && AdSize == X86II::AdSize16) ||
677      (STI.hasFeature(X86::Mode64Bit) && AdSize == X86II::AdSize32)) {
678    NeedAddressOverride = true;
679  } else if (MemoryOperand < 0) {
680    NeedAddressOverride = false;
681  } else if (STI.hasFeature(X86::Mode64Bit)) {
682    assert(!is16BitMemOperand(MI, MemoryOperand, STI));
683    NeedAddressOverride = is32BitMemOperand(MI, MemoryOperand);
684  } else if (STI.hasFeature(X86::Mode32Bit)) {
685    assert(!is64BitMemOperand(MI, MemoryOperand));
686    NeedAddressOverride = is16BitMemOperand(MI, MemoryOperand, STI);
687  } else {
688    assert(STI.hasFeature(X86::Mode16Bit));
689    assert(!is64BitMemOperand(MI, MemoryOperand));
690    NeedAddressOverride = !is16BitMemOperand(MI, MemoryOperand, STI);
691  }
692
693  if (NeedAddressOverride)
694    emitByte(0x67, OS);
695
696  // Encoding type for this instruction.
697  uint64_t Encoding = TSFlags & X86II::EncodingMask;
698  bool HasREX = false;
699  if (Encoding)
700    emitVEXOpcodePrefix(MemoryOperand, MI, OS);
701  else
702    HasREX = emitOpcodePrefix(MemoryOperand, MI, STI, OS);
703
704  uint64_t Form = TSFlags & X86II::FormMask;
705  switch (Form) {
706  default:
707    break;
708  case X86II::RawFrmDstSrc: {
709    unsigned siReg = MI.getOperand(1).getReg();
710    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
711            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
712            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
713           "SI and DI register sizes do not match");
714    // Emit segment override opcode prefix as needed (not for %ds).
715    if (MI.getOperand(2).getReg() != X86::DS)
716      emitSegmentOverridePrefix(2, MI, OS);
717    // Emit AdSize prefix as needed.
718    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
719        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
720      emitByte(0x67, OS);
721    CurOp += 3; // Consume operands.
722    break;
723  }
724  case X86II::RawFrmSrc: {
725    unsigned siReg = MI.getOperand(0).getReg();
726    // Emit segment override opcode prefix as needed (not for %ds).
727    if (MI.getOperand(1).getReg() != X86::DS)
728      emitSegmentOverridePrefix(1, MI, OS);
729    // Emit AdSize prefix as needed.
730    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
731        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
732      emitByte(0x67, OS);
733    CurOp += 2; // Consume operands.
734    break;
735  }
736  case X86II::RawFrmDst: {
737    unsigned siReg = MI.getOperand(0).getReg();
738    // Emit AdSize prefix as needed.
739    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::EDI) ||
740        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::DI))
741      emitByte(0x67, OS);
742    ++CurOp; // Consume operand.
743    break;
744  }
745  case X86II::RawFrmMemOffs: {
746    // Emit segment override opcode prefix as needed.
747    emitSegmentOverridePrefix(1, MI, OS);
748    break;
749  }
750  }
751
752  return HasREX;
753}
754
755/// AVX instructions are encoded using a opcode prefix called VEX.
756void X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
757                                           raw_ostream &OS) const {
758  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
759  uint64_t TSFlags = Desc.TSFlags;
760
761  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
762
763  uint64_t Encoding = TSFlags & X86II::EncodingMask;
764  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
765  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
766  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
767
768  // VEX_R: opcode externsion equivalent to REX.R in
769  // 1's complement (inverted) form
770  //
771  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
772  //  0: Same as REX_R=1 (64 bit mode only)
773  //
774  uint8_t VEX_R = 0x1;
775  uint8_t EVEX_R2 = 0x1;
776
777  // VEX_X: equivalent to REX.X, only used when a
778  // register is used for index in SIB Byte.
779  //
780  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
781  //  0: Same as REX.X=1 (64-bit mode only)
782  uint8_t VEX_X = 0x1;
783
784  // VEX_B:
785  //
786  //  1: Same as REX_B=0 (ignored in 32-bit mode)
787  //  0: Same as REX_B=1 (64 bit mode only)
788  //
789  uint8_t VEX_B = 0x1;
790
791  // VEX_W: opcode specific (use like REX.W, or used for
792  // opcode extension, or ignored, depending on the opcode byte)
793  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
794
795  // VEX_5M (VEX m-mmmmm field):
796  //
797  //  0b00000: Reserved for future use
798  //  0b00001: implied 0F leading opcode
799  //  0b00010: implied 0F 38 leading opcode bytes
800  //  0b00011: implied 0F 3A leading opcode bytes
801  //  0b00100-0b11111: Reserved for future use
802  //  0b01000: XOP map select - 08h instructions with imm byte
803  //  0b01001: XOP map select - 09h instructions with no imm byte
804  //  0b01010: XOP map select - 0Ah instructions with imm dword
805  uint8_t VEX_5M;
806  switch (TSFlags & X86II::OpMapMask) {
807  default:
808    llvm_unreachable("Invalid prefix!");
809  case X86II::TB:
810    VEX_5M = 0x1;
811    break; // 0F
812  case X86II::T8:
813    VEX_5M = 0x2;
814    break; // 0F 38
815  case X86II::TA:
816    VEX_5M = 0x3;
817    break; // 0F 3A
818  case X86II::XOP8:
819    VEX_5M = 0x8;
820    break;
821  case X86II::XOP9:
822    VEX_5M = 0x9;
823    break;
824  case X86II::XOPA:
825    VEX_5M = 0xA;
826    break;
827  }
828
829  // VEX_4V (VEX vvvv field): a register specifier
830  // (in 1's complement form) or 1111 if unused.
831  uint8_t VEX_4V = 0xf;
832  uint8_t EVEX_V2 = 0x1;
833
834  // EVEX_L2/VEX_L (Vector Length):
835  //
836  // L2 L
837  //  0 0: scalar or 128-bit vector
838  //  0 1: 256-bit vector
839  //  1 0: 512-bit vector
840  //
841  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
842  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
843
844  // VEX_PP: opcode extension providing equivalent
845  // functionality of a SIMD prefix
846  //
847  //  0b00: None
848  //  0b01: 66
849  //  0b10: F3
850  //  0b11: F2
851  //
852  uint8_t VEX_PP = 0;
853  switch (TSFlags & X86II::OpPrefixMask) {
854  case X86II::PD:
855    VEX_PP = 0x1;
856    break; // 66
857  case X86II::XS:
858    VEX_PP = 0x2;
859    break; // F3
860  case X86II::XD:
861    VEX_PP = 0x3;
862    break; // F2
863  }
864
865  // EVEX_U
866  uint8_t EVEX_U = 1; // Always '1' so far
867
868  // EVEX_z
869  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
870
871  // EVEX_b
872  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
873
874  // EVEX_rc
875  uint8_t EVEX_rc = 0;
876
877  // EVEX_aaa
878  uint8_t EVEX_aaa = 0;
879
880  bool EncodeRC = false;
881
882  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
883  unsigned NumOps = Desc.getNumOperands();
884  unsigned CurOp = X86II::getOperandBias(Desc);
885
886  switch (TSFlags & X86II::FormMask) {
887  default:
888    llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
889  case X86II::MRM_C0:
890  case X86II::RawFrm:
891  case X86II::PrefixByte:
892    break;
893  case X86II::MRMDestMemFSIB:
894  case X86II::MRMDestMem: {
895    // MRMDestMem instructions forms:
896    //  MemAddr, src1(ModR/M)
897    //  MemAddr, src1(VEX_4V), src2(ModR/M)
898    //  MemAddr, src1(ModR/M), imm8
899    //
900    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
901    VEX_B = ~(BaseRegEnc >> 3) & 1;
902    unsigned IndexRegEnc =
903        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
904    VEX_X = ~(IndexRegEnc >> 3) & 1;
905    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
906      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
907
908    CurOp += X86::AddrNumOperands;
909
910    if (HasEVEX_K)
911      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
912
913    if (HasVEX_4V) {
914      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
915      VEX_4V = ~VRegEnc & 0xf;
916      EVEX_V2 = ~(VRegEnc >> 4) & 1;
917    }
918
919    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
920    VEX_R = ~(RegEnc >> 3) & 1;
921    EVEX_R2 = ~(RegEnc >> 4) & 1;
922    break;
923  }
924  case X86II::MRMSrcMemFSIB:
925  case X86II::MRMSrcMem: {
926    // MRMSrcMem instructions forms:
927    //  src1(ModR/M), MemAddr
928    //  src1(ModR/M), src2(VEX_4V), MemAddr
929    //  src1(ModR/M), MemAddr, imm8
930    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
931    //
932    //  FMA4:
933    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
934    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
935    VEX_R = ~(RegEnc >> 3) & 1;
936    EVEX_R2 = ~(RegEnc >> 4) & 1;
937
938    if (HasEVEX_K)
939      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
940
941    if (HasVEX_4V) {
942      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
943      VEX_4V = ~VRegEnc & 0xf;
944      EVEX_V2 = ~(VRegEnc >> 4) & 1;
945    }
946
947    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
948    VEX_B = ~(BaseRegEnc >> 3) & 1;
949    unsigned IndexRegEnc =
950        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
951    VEX_X = ~(IndexRegEnc >> 3) & 1;
952    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
953      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
954
955    break;
956  }
957  case X86II::MRMSrcMem4VOp3: {
958    // Instruction format for 4VOp3:
959    //   src1(ModR/M), MemAddr, src3(VEX_4V)
960    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
961    VEX_R = ~(RegEnc >> 3) & 1;
962
963    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
964    VEX_B = ~(BaseRegEnc >> 3) & 1;
965    unsigned IndexRegEnc =
966        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
967    VEX_X = ~(IndexRegEnc >> 3) & 1;
968
969    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
970    break;
971  }
972  case X86II::MRMSrcMemOp4: {
973    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
974    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
975    VEX_R = ~(RegEnc >> 3) & 1;
976
977    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
978    VEX_4V = ~VRegEnc & 0xf;
979
980    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
981    VEX_B = ~(BaseRegEnc >> 3) & 1;
982    unsigned IndexRegEnc =
983        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
984    VEX_X = ~(IndexRegEnc >> 3) & 1;
985    break;
986  }
987  case X86II::MRM0m:
988  case X86II::MRM1m:
989  case X86II::MRM2m:
990  case X86II::MRM3m:
991  case X86II::MRM4m:
992  case X86II::MRM5m:
993  case X86II::MRM6m:
994  case X86II::MRM7m: {
995    // MRM[0-9]m instructions forms:
996    //  MemAddr
997    //  src1(VEX_4V), MemAddr
998    if (HasVEX_4V) {
999      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1000      VEX_4V = ~VRegEnc & 0xf;
1001      EVEX_V2 = ~(VRegEnc >> 4) & 1;
1002    }
1003
1004    if (HasEVEX_K)
1005      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1006
1007    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
1008    VEX_B = ~(BaseRegEnc >> 3) & 1;
1009    unsigned IndexRegEnc =
1010        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
1011    VEX_X = ~(IndexRegEnc >> 3) & 1;
1012    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
1013      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
1014
1015    break;
1016  }
1017  case X86II::MRMSrcReg: {
1018    // MRMSrcReg instructions forms:
1019    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
1020    //  dst(ModR/M), src1(ModR/M)
1021    //  dst(ModR/M), src1(ModR/M), imm8
1022    //
1023    //  FMA4:
1024    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1025    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1026    VEX_R = ~(RegEnc >> 3) & 1;
1027    EVEX_R2 = ~(RegEnc >> 4) & 1;
1028
1029    if (HasEVEX_K)
1030      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1031
1032    if (HasVEX_4V) {
1033      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1034      VEX_4V = ~VRegEnc & 0xf;
1035      EVEX_V2 = ~(VRegEnc >> 4) & 1;
1036    }
1037
1038    RegEnc = getX86RegEncoding(MI, CurOp++);
1039    VEX_B = ~(RegEnc >> 3) & 1;
1040    VEX_X = ~(RegEnc >> 4) & 1;
1041
1042    if (EVEX_b) {
1043      if (HasEVEX_RC) {
1044        unsigned RcOperand = NumOps - 1;
1045        assert(RcOperand >= CurOp);
1046        EVEX_rc = MI.getOperand(RcOperand).getImm();
1047        assert(EVEX_rc <= 3 && "Invalid rounding control!");
1048      }
1049      EncodeRC = true;
1050    }
1051    break;
1052  }
1053  case X86II::MRMSrcReg4VOp3: {
1054    // Instruction format for 4VOp3:
1055    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
1056    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1057    VEX_R = ~(RegEnc >> 3) & 1;
1058
1059    RegEnc = getX86RegEncoding(MI, CurOp++);
1060    VEX_B = ~(RegEnc >> 3) & 1;
1061
1062    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
1063    break;
1064  }
1065  case X86II::MRMSrcRegOp4: {
1066    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1067    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1068    VEX_R = ~(RegEnc >> 3) & 1;
1069
1070    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1071    VEX_4V = ~VRegEnc & 0xf;
1072
1073    // Skip second register source (encoded in Imm[7:4])
1074    ++CurOp;
1075
1076    RegEnc = getX86RegEncoding(MI, CurOp++);
1077    VEX_B = ~(RegEnc >> 3) & 1;
1078    VEX_X = ~(RegEnc >> 4) & 1;
1079    break;
1080  }
1081  case X86II::MRMDestReg: {
1082    // MRMDestReg instructions forms:
1083    //  dst(ModR/M), src(ModR/M)
1084    //  dst(ModR/M), src(ModR/M), imm8
1085    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
1086    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1087    VEX_B = ~(RegEnc >> 3) & 1;
1088    VEX_X = ~(RegEnc >> 4) & 1;
1089
1090    if (HasEVEX_K)
1091      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1092
1093    if (HasVEX_4V) {
1094      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1095      VEX_4V = ~VRegEnc & 0xf;
1096      EVEX_V2 = ~(VRegEnc >> 4) & 1;
1097    }
1098
1099    RegEnc = getX86RegEncoding(MI, CurOp++);
1100    VEX_R = ~(RegEnc >> 3) & 1;
1101    EVEX_R2 = ~(RegEnc >> 4) & 1;
1102    if (EVEX_b)
1103      EncodeRC = true;
1104    break;
1105  }
1106  case X86II::MRMr0: {
1107    // MRMr0 instructions forms:
1108    //  11:rrr:000
1109    //  dst(ModR/M)
1110    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1111    VEX_R = ~(RegEnc >> 3) & 1;
1112    EVEX_R2 = ~(RegEnc >> 4) & 1;
1113    break;
1114  }
1115  case X86II::MRM0r:
1116  case X86II::MRM1r:
1117  case X86II::MRM2r:
1118  case X86II::MRM3r:
1119  case X86II::MRM4r:
1120  case X86II::MRM5r:
1121  case X86II::MRM6r:
1122  case X86II::MRM7r: {
1123    // MRM0r-MRM7r instructions forms:
1124    //  dst(VEX_4V), src(ModR/M), imm8
1125    if (HasVEX_4V) {
1126      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1127      VEX_4V = ~VRegEnc & 0xf;
1128      EVEX_V2 = ~(VRegEnc >> 4) & 1;
1129    }
1130    if (HasEVEX_K)
1131      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1132
1133    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1134    VEX_B = ~(RegEnc >> 3) & 1;
1135    VEX_X = ~(RegEnc >> 4) & 1;
1136    break;
1137  }
1138  }
1139
1140  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
1141    // VEX opcode prefix can have 2 or 3 bytes
1142    //
1143    //  3 bytes:
1144    //    +-----+ +--------------+ +-------------------+
1145    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
1146    //    +-----+ +--------------+ +-------------------+
1147    //  2 bytes:
1148    //    +-----+ +-------------------+
1149    //    | C5h | | R | vvvv | L | pp |
1150    //    +-----+ +-------------------+
1151    //
1152    //  XOP uses a similar prefix:
1153    //    +-----+ +--------------+ +-------------------+
1154    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
1155    //    +-----+ +--------------+ +-------------------+
1156    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
1157
1158    // Can we use the 2 byte VEX prefix?
1159    if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX &&
1160        VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
1161      emitByte(0xC5, OS);
1162      emitByte(LastByte | (VEX_R << 7), OS);
1163      return;
1164    }
1165
1166    // 3 byte VEX prefix
1167    emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, OS);
1168    emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, OS);
1169    emitByte(LastByte | (VEX_W << 7), OS);
1170  } else {
1171    assert(Encoding == X86II::EVEX && "unknown encoding!");
1172    // EVEX opcode prefix can have 4 bytes
1173    //
1174    // +-----+ +--------------+ +-------------------+ +------------------------+
1175    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
1176    // +-----+ +--------------+ +-------------------+ +------------------------+
1177    assert((VEX_5M & 0x3) == VEX_5M &&
1178           "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
1179
1180    emitByte(0x62, OS);
1181    emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) |
1182                 VEX_5M,
1183             OS);
1184    emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, OS);
1185    if (EncodeRC)
1186      emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) |
1187                   EVEX_aaa,
1188               OS);
1189    else
1190      emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) |
1191                   (EVEX_V2 << 3) | EVEX_aaa,
1192               OS);
1193  }
1194}
1195
1196/// Emit REX prefix which specifies
1197///   1) 64-bit instructions,
1198///   2) non-default operand size, and
1199///   3) use of X86-64 extended registers.
1200///
1201/// \returns true if REX prefix is used, otherwise returns false.
1202bool X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI,
1203                                     raw_ostream &OS) const {
1204  uint8_t REX = [&, MemOperand]() {
1205    uint8_t REX = 0;
1206    bool UsesHighByteReg = false;
1207
1208    const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1209    uint64_t TSFlags = Desc.TSFlags;
1210
1211    if (TSFlags & X86II::REX_W)
1212      REX |= 1 << 3; // set REX.W
1213
1214    if (MI.getNumOperands() == 0)
1215      return REX;
1216
1217    unsigned NumOps = MI.getNumOperands();
1218    unsigned CurOp = X86II::getOperandBias(Desc);
1219
1220    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1221    for (unsigned i = CurOp; i != NumOps; ++i) {
1222      const MCOperand &MO = MI.getOperand(i);
1223      if (!MO.isReg())
1224        continue;
1225      unsigned Reg = MO.getReg();
1226      if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1227        UsesHighByteReg = true;
1228      if (X86II::isX86_64NonExtLowByteReg(Reg))
1229        // FIXME: The caller of determineREXPrefix slaps this prefix onto
1230        // anything that returns non-zero.
1231        REX |= 0x40; // REX fixed encoding prefix
1232    }
1233
1234    switch (TSFlags & X86II::FormMask) {
1235    case X86II::AddRegFrm:
1236      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1237      break;
1238    case X86II::MRMSrcReg:
1239    case X86II::MRMSrcRegCC:
1240      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1241      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1242      break;
1243    case X86II::MRMSrcMem:
1244    case X86II::MRMSrcMemCC:
1245      REX |= isREXExtendedReg(MI, CurOp++) << 2;                        // REX.R
1246      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1247      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1248      CurOp += X86::AddrNumOperands;
1249      break;
1250    case X86II::MRMDestReg:
1251      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1252      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1253      break;
1254    case X86II::MRMDestMem:
1255      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1256      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1257      CurOp += X86::AddrNumOperands;
1258      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1259      break;
1260    case X86II::MRMXmCC:
1261    case X86II::MRMXm:
1262    case X86II::MRM0m:
1263    case X86II::MRM1m:
1264    case X86II::MRM2m:
1265    case X86II::MRM3m:
1266    case X86II::MRM4m:
1267    case X86II::MRM5m:
1268    case X86II::MRM6m:
1269    case X86II::MRM7m:
1270      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1271      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1272      break;
1273    case X86II::MRMXrCC:
1274    case X86II::MRMXr:
1275    case X86II::MRM0r:
1276    case X86II::MRM1r:
1277    case X86II::MRM2r:
1278    case X86II::MRM3r:
1279    case X86II::MRM4r:
1280    case X86II::MRM5r:
1281    case X86II::MRM6r:
1282    case X86II::MRM7r:
1283      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1284      break;
1285    case X86II::MRMr0:
1286      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1287      break;
1288    case X86II::MRMDestMemFSIB:
1289      llvm_unreachable("FSIB format never need REX prefix!");
1290    }
1291    if (REX && UsesHighByteReg)
1292      report_fatal_error(
1293          "Cannot encode high byte register in REX-prefixed instruction");
1294    return REX;
1295  }();
1296
1297  if (!REX)
1298    return false;
1299
1300  emitByte(0x40 | REX, OS);
1301  return true;
1302}
1303
1304/// Emit segment override opcode prefix as needed.
1305void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned SegOperand,
1306                                                 const MCInst &MI,
1307                                                 raw_ostream &OS) const {
1308  // Check for explicit segment override on memory operand.
1309  if (unsigned Reg = MI.getOperand(SegOperand).getReg())
1310    emitByte(X86::getSegmentOverridePrefixForReg(Reg), OS);
1311}
1312
1313/// Emit all instruction prefixes prior to the opcode.
1314///
1315/// \param MemOperand the operand # of the start of a memory operand if present.
1316/// If not present, it is -1.
1317///
1318/// \returns true if REX prefix is used, otherwise returns false.
1319bool X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI,
1320                                        const MCSubtargetInfo &STI,
1321                                        raw_ostream &OS) const {
1322  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1323  uint64_t TSFlags = Desc.TSFlags;
1324
1325  // Emit the operand size opcode prefix as needed.
1326  if ((TSFlags & X86II::OpSizeMask) ==
1327      (STI.hasFeature(X86::Mode16Bit) ? X86II::OpSize32 : X86II::OpSize16))
1328    emitByte(0x66, OS);
1329
1330  // Emit the LOCK opcode prefix.
1331  if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
1332    emitByte(0xF0, OS);
1333
1334  // Emit the NOTRACK opcode prefix.
1335  if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
1336    emitByte(0x3E, OS);
1337
1338  switch (TSFlags & X86II::OpPrefixMask) {
1339  case X86II::PD: // 66
1340    emitByte(0x66, OS);
1341    break;
1342  case X86II::XS: // F3
1343    emitByte(0xF3, OS);
1344    break;
1345  case X86II::XD: // F2
1346    emitByte(0xF2, OS);
1347    break;
1348  }
1349
1350  // Handle REX prefix.
1351  assert((STI.hasFeature(X86::Mode64Bit) || !(TSFlags & X86II::REX_W)) &&
1352         "REX.W requires 64bit mode.");
1353  bool HasREX = STI.hasFeature(X86::Mode64Bit)
1354                    ? emitREXPrefix(MemOperand, MI, OS)
1355                    : false;
1356
1357  // 0x0F escape code must be emitted just before the opcode.
1358  switch (TSFlags & X86II::OpMapMask) {
1359  case X86II::TB:        // Two-byte opcode map
1360  case X86II::T8:        // 0F 38
1361  case X86II::TA:        // 0F 3A
1362  case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
1363    emitByte(0x0F, OS);
1364    break;
1365  }
1366
1367  switch (TSFlags & X86II::OpMapMask) {
1368  case X86II::T8: // 0F 38
1369    emitByte(0x38, OS);
1370    break;
1371  case X86II::TA: // 0F 3A
1372    emitByte(0x3A, OS);
1373    break;
1374  }
1375
1376  return HasREX;
1377}
1378
1379void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS,
1380                                  const MCSubtargetInfo &STI) const {
1381  unsigned Opcode = MI.getOpcode();
1382  const MCInstrDesc &Desc = MCII.get(Opcode);
1383  uint64_t TSFlags = Desc.TSFlags;
1384
1385  // Pseudo instructions don't get encoded.
1386  if (X86II::isPseudo(TSFlags))
1387    return;
1388
1389  unsigned CurOp = X86II::getOperandBias(Desc);
1390
1391  emitPrefixImpl(CurOp, MI, STI, OS);
1392}
1393
1394void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
1395                                         SmallVectorImpl<MCFixup> &Fixups,
1396                                         const MCSubtargetInfo &STI) const {
1397  unsigned Opcode = MI.getOpcode();
1398  const MCInstrDesc &Desc = MCII.get(Opcode);
1399  uint64_t TSFlags = Desc.TSFlags;
1400
1401  // Pseudo instructions don't get encoded.
1402  if (X86II::isPseudo(TSFlags))
1403    return;
1404
1405  unsigned NumOps = Desc.getNumOperands();
1406  unsigned CurOp = X86II::getOperandBias(Desc);
1407
1408  uint64_t StartByte = OS.tell();
1409
1410  bool HasREX = emitPrefixImpl(CurOp, MI, STI, OS);
1411
1412  // It uses the VEX.VVVV field?
1413  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1414  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1415
1416  // It uses the EVEX.aaa field?
1417  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1418  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1419
1420  // Used if a register is encoded in 7:4 of immediate.
1421  unsigned I8RegNum = 0;
1422
1423  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1424
1425  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1426    BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1427
1428  unsigned OpcodeOffset = 0;
1429
1430  uint64_t Form = TSFlags & X86II::FormMask;
1431  switch (Form) {
1432  default:
1433    errs() << "FORM: " << Form << "\n";
1434    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1435  case X86II::Pseudo:
1436    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1437  case X86II::RawFrmDstSrc:
1438  case X86II::RawFrmSrc:
1439  case X86II::RawFrmDst:
1440  case X86II::PrefixByte:
1441    emitByte(BaseOpcode, OS);
1442    break;
1443  case X86II::AddCCFrm: {
1444    // This will be added to the opcode in the fallthrough.
1445    OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
1446    assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
1447    --NumOps; // Drop the operand from the end.
1448    LLVM_FALLTHROUGH;
1449  case X86II::RawFrm:
1450    emitByte(BaseOpcode + OpcodeOffset, OS);
1451
1452    if (!STI.hasFeature(X86::Mode64Bit) || !isPCRel32Branch(MI, MCII))
1453      break;
1454
1455    const MCOperand &Op = MI.getOperand(CurOp++);
1456    emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
1457                  MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, OS,
1458                  Fixups);
1459    break;
1460  }
1461  case X86II::RawFrmMemOffs:
1462    emitByte(BaseOpcode, OS);
1463    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1464                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1465                  StartByte, OS, Fixups);
1466    ++CurOp; // skip segment operand
1467    break;
1468  case X86II::RawFrmImm8:
1469    emitByte(BaseOpcode, OS);
1470    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1471                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1472                  StartByte, OS, Fixups);
1473    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte,
1474                  OS, Fixups);
1475    break;
1476  case X86II::RawFrmImm16:
1477    emitByte(BaseOpcode, OS);
1478    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1479                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1480                  StartByte, OS, Fixups);
1481    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte,
1482                  OS, Fixups);
1483    break;
1484
1485  case X86II::AddRegFrm:
1486    emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), OS);
1487    break;
1488
1489  case X86II::MRMDestReg: {
1490    emitByte(BaseOpcode, OS);
1491    unsigned SrcRegNum = CurOp + 1;
1492
1493    if (HasEVEX_K) // Skip writemask
1494      ++SrcRegNum;
1495
1496    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1497      ++SrcRegNum;
1498
1499    emitRegModRMByte(MI.getOperand(CurOp),
1500                     getX86RegNum(MI.getOperand(SrcRegNum)), OS);
1501    CurOp = SrcRegNum + 1;
1502    break;
1503  }
1504  case X86II::MRMDestMemFSIB:
1505  case X86II::MRMDestMem: {
1506    emitByte(BaseOpcode, OS);
1507    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1508
1509    if (HasEVEX_K) // Skip writemask
1510      ++SrcRegNum;
1511
1512    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1513      ++SrcRegNum;
1514
1515    bool ForceSIB = (Form == X86II::MRMDestMemFSIB);
1516    emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1517                     HasREX, StartByte, OS, Fixups, STI, ForceSIB);
1518    CurOp = SrcRegNum + 1;
1519    break;
1520  }
1521  case X86II::MRMSrcReg: {
1522    emitByte(BaseOpcode, OS);
1523    unsigned SrcRegNum = CurOp + 1;
1524
1525    if (HasEVEX_K) // Skip writemask
1526      ++SrcRegNum;
1527
1528    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1529      ++SrcRegNum;
1530
1531    emitRegModRMByte(MI.getOperand(SrcRegNum),
1532                     getX86RegNum(MI.getOperand(CurOp)), OS);
1533    CurOp = SrcRegNum + 1;
1534    if (HasVEX_I8Reg)
1535      I8RegNum = getX86RegEncoding(MI, CurOp++);
1536    // do not count the rounding control operand
1537    if (HasEVEX_RC)
1538      --NumOps;
1539    break;
1540  }
1541  case X86II::MRMSrcReg4VOp3: {
1542    emitByte(BaseOpcode, OS);
1543    unsigned SrcRegNum = CurOp + 1;
1544
1545    emitRegModRMByte(MI.getOperand(SrcRegNum),
1546                     getX86RegNum(MI.getOperand(CurOp)), OS);
1547    CurOp = SrcRegNum + 1;
1548    ++CurOp; // Encoded in VEX.VVVV
1549    break;
1550  }
1551  case X86II::MRMSrcRegOp4: {
1552    emitByte(BaseOpcode, OS);
1553    unsigned SrcRegNum = CurOp + 1;
1554
1555    // Skip 1st src (which is encoded in VEX_VVVV)
1556    ++SrcRegNum;
1557
1558    // Capture 2nd src (which is encoded in Imm[7:4])
1559    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1560    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1561
1562    emitRegModRMByte(MI.getOperand(SrcRegNum),
1563                     getX86RegNum(MI.getOperand(CurOp)), OS);
1564    CurOp = SrcRegNum + 1;
1565    break;
1566  }
1567  case X86II::MRMSrcRegCC: {
1568    unsigned FirstOp = CurOp++;
1569    unsigned SecondOp = CurOp++;
1570
1571    unsigned CC = MI.getOperand(CurOp++).getImm();
1572    emitByte(BaseOpcode + CC, OS);
1573
1574    emitRegModRMByte(MI.getOperand(SecondOp),
1575                     getX86RegNum(MI.getOperand(FirstOp)), OS);
1576    break;
1577  }
1578  case X86II::MRMSrcMemFSIB:
1579  case X86II::MRMSrcMem: {
1580    unsigned FirstMemOp = CurOp + 1;
1581
1582    if (HasEVEX_K) // Skip writemask
1583      ++FirstMemOp;
1584
1585    if (HasVEX_4V)
1586      ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1587
1588    emitByte(BaseOpcode, OS);
1589
1590    bool ForceSIB = (Form == X86II::MRMSrcMemFSIB);
1591    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1592                     TSFlags, HasREX, StartByte, OS, Fixups, STI, ForceSIB);
1593    CurOp = FirstMemOp + X86::AddrNumOperands;
1594    if (HasVEX_I8Reg)
1595      I8RegNum = getX86RegEncoding(MI, CurOp++);
1596    break;
1597  }
1598  case X86II::MRMSrcMem4VOp3: {
1599    unsigned FirstMemOp = CurOp + 1;
1600
1601    emitByte(BaseOpcode, OS);
1602
1603    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1604                     TSFlags, HasREX, StartByte, OS, Fixups, STI);
1605    CurOp = FirstMemOp + X86::AddrNumOperands;
1606    ++CurOp; // Encoded in VEX.VVVV.
1607    break;
1608  }
1609  case X86II::MRMSrcMemOp4: {
1610    unsigned FirstMemOp = CurOp + 1;
1611
1612    ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1613
1614    // Capture second register source (encoded in Imm[7:4])
1615    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1616    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1617
1618    emitByte(BaseOpcode, OS);
1619
1620    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1621                     TSFlags, HasREX, StartByte, OS, Fixups, STI);
1622    CurOp = FirstMemOp + X86::AddrNumOperands;
1623    break;
1624  }
1625  case X86II::MRMSrcMemCC: {
1626    unsigned RegOp = CurOp++;
1627    unsigned FirstMemOp = CurOp;
1628    CurOp = FirstMemOp + X86::AddrNumOperands;
1629
1630    unsigned CC = MI.getOperand(CurOp++).getImm();
1631    emitByte(BaseOpcode + CC, OS);
1632
1633    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
1634                     TSFlags, HasREX, StartByte, OS, Fixups, STI);
1635    break;
1636  }
1637
1638  case X86II::MRMXrCC: {
1639    unsigned RegOp = CurOp++;
1640
1641    unsigned CC = MI.getOperand(CurOp++).getImm();
1642    emitByte(BaseOpcode + CC, OS);
1643    emitRegModRMByte(MI.getOperand(RegOp), 0, OS);
1644    break;
1645  }
1646
1647  case X86II::MRMXr:
1648  case X86II::MRM0r:
1649  case X86II::MRM1r:
1650  case X86II::MRM2r:
1651  case X86II::MRM3r:
1652  case X86II::MRM4r:
1653  case X86II::MRM5r:
1654  case X86II::MRM6r:
1655  case X86II::MRM7r:
1656    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1657      ++CurOp;
1658    if (HasEVEX_K) // Skip writemask
1659      ++CurOp;
1660    emitByte(BaseOpcode, OS);
1661    emitRegModRMByte(MI.getOperand(CurOp++),
1662                     (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, OS);
1663    break;
1664  case X86II::MRMr0:
1665    emitByte(BaseOpcode, OS);
1666    emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)),0), OS);
1667    break;
1668
1669  case X86II::MRMXmCC: {
1670    unsigned FirstMemOp = CurOp;
1671    CurOp = FirstMemOp + X86::AddrNumOperands;
1672
1673    unsigned CC = MI.getOperand(CurOp++).getImm();
1674    emitByte(BaseOpcode + CC, OS);
1675
1676    emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, HasREX, StartByte, OS, Fixups,
1677                     STI);
1678    break;
1679  }
1680
1681  case X86II::MRMXm:
1682  case X86II::MRM0m:
1683  case X86II::MRM1m:
1684  case X86II::MRM2m:
1685  case X86II::MRM3m:
1686  case X86II::MRM4m:
1687  case X86II::MRM5m:
1688  case X86II::MRM6m:
1689  case X86II::MRM7m:
1690    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1691      ++CurOp;
1692    if (HasEVEX_K) // Skip writemask
1693      ++CurOp;
1694    emitByte(BaseOpcode, OS);
1695    emitMemModRMByte(MI, CurOp,
1696                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1697                     HasREX, StartByte, OS, Fixups, STI);
1698    CurOp += X86::AddrNumOperands;
1699    break;
1700
1701  case X86II::MRM0X:
1702  case X86II::MRM1X:
1703  case X86II::MRM2X:
1704  case X86II::MRM3X:
1705  case X86II::MRM4X:
1706  case X86II::MRM5X:
1707  case X86II::MRM6X:
1708  case X86II::MRM7X:
1709    emitByte(BaseOpcode, OS);
1710    emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), OS);
1711    break;
1712
1713  case X86II::MRM_C0:
1714  case X86II::MRM_C1:
1715  case X86II::MRM_C2:
1716  case X86II::MRM_C3:
1717  case X86II::MRM_C4:
1718  case X86II::MRM_C5:
1719  case X86II::MRM_C6:
1720  case X86II::MRM_C7:
1721  case X86II::MRM_C8:
1722  case X86II::MRM_C9:
1723  case X86II::MRM_CA:
1724  case X86II::MRM_CB:
1725  case X86II::MRM_CC:
1726  case X86II::MRM_CD:
1727  case X86II::MRM_CE:
1728  case X86II::MRM_CF:
1729  case X86II::MRM_D0:
1730  case X86II::MRM_D1:
1731  case X86II::MRM_D2:
1732  case X86II::MRM_D3:
1733  case X86II::MRM_D4:
1734  case X86II::MRM_D5:
1735  case X86II::MRM_D6:
1736  case X86II::MRM_D7:
1737  case X86II::MRM_D8:
1738  case X86II::MRM_D9:
1739  case X86II::MRM_DA:
1740  case X86II::MRM_DB:
1741  case X86II::MRM_DC:
1742  case X86II::MRM_DD:
1743  case X86II::MRM_DE:
1744  case X86II::MRM_DF:
1745  case X86II::MRM_E0:
1746  case X86II::MRM_E1:
1747  case X86II::MRM_E2:
1748  case X86II::MRM_E3:
1749  case X86II::MRM_E4:
1750  case X86II::MRM_E5:
1751  case X86II::MRM_E6:
1752  case X86II::MRM_E7:
1753  case X86II::MRM_E8:
1754  case X86II::MRM_E9:
1755  case X86II::MRM_EA:
1756  case X86II::MRM_EB:
1757  case X86II::MRM_EC:
1758  case X86II::MRM_ED:
1759  case X86II::MRM_EE:
1760  case X86II::MRM_EF:
1761  case X86II::MRM_F0:
1762  case X86II::MRM_F1:
1763  case X86II::MRM_F2:
1764  case X86II::MRM_F3:
1765  case X86II::MRM_F4:
1766  case X86II::MRM_F5:
1767  case X86II::MRM_F6:
1768  case X86II::MRM_F7:
1769  case X86II::MRM_F8:
1770  case X86II::MRM_F9:
1771  case X86II::MRM_FA:
1772  case X86II::MRM_FB:
1773  case X86II::MRM_FC:
1774  case X86II::MRM_FD:
1775  case X86II::MRM_FE:
1776  case X86II::MRM_FF:
1777    emitByte(BaseOpcode, OS);
1778    emitByte(0xC0 + Form - X86II::MRM_C0, OS);
1779    break;
1780  }
1781
1782  if (HasVEX_I8Reg) {
1783    // The last source register of a 4 operand instruction in AVX is encoded
1784    // in bits[7:4] of a immediate byte.
1785    assert(I8RegNum < 16 && "Register encoding out of range");
1786    I8RegNum <<= 4;
1787    if (CurOp != NumOps) {
1788      unsigned Val = MI.getOperand(CurOp++).getImm();
1789      assert(Val < 16 && "Immediate operand value out of range");
1790      I8RegNum |= Val;
1791    }
1792    emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1793                  StartByte, OS, Fixups);
1794  } else {
1795    // If there is a remaining operand, it must be a trailing immediate. Emit it
1796    // according to the right size for the instruction. Some instructions
1797    // (SSE4a extrq and insertq) have two trailing immediates.
1798    while (CurOp != NumOps && NumOps - CurOp <= 2) {
1799      emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1800                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1801                    StartByte, OS, Fixups);
1802    }
1803  }
1804
1805  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1806    emitByte(X86II::getBaseOpcodeFor(TSFlags), OS);
1807
1808  assert(OS.tell() - StartByte <= 15 &&
1809         "The size of instruction must be no longer than 15.");
1810#ifndef NDEBUG
1811  // FIXME: Verify.
1812  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1813    errs() << "Cannot encode all operands of: ";
1814    MI.dump();
1815    errs() << '\n';
1816    abort();
1817  }
1818#endif
1819}
1820
1821MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
1822                                            const MCRegisterInfo &MRI,
1823                                            MCContext &Ctx) {
1824  return new X86MCCodeEmitter(MCII, Ctx);
1825}
1826