1//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains small standalone helper functions and enum definitions for
10// the X86 target useful for the compiler back-end and the MC libraries.
11// As such, it deliberately does not include references to LLVM core
12// code gen types, passes, etc..
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18
19#include "X86MCTargetDesc.h"
20#include "llvm/MC/MCInstrDesc.h"
21#include "llvm/Support/DataTypes.h"
22#include "llvm/Support/ErrorHandling.h"
23
24namespace llvm {
25
26namespace X86 {
27  // Enums for memory operand decoding.  Each memory operand is represented with
28  // a 5 operand sequence in the form:
29  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30  // These enums help decode this.
31  enum {
32    AddrBaseReg = 0,
33    AddrScaleAmt = 1,
34    AddrIndexReg = 2,
35    AddrDisp = 3,
36
37    /// AddrSegmentReg - The operand # of the segment in the memory operand.
38    AddrSegmentReg = 4,
39
40    /// AddrNumOperands - Total number of operands in a memory reference.
41    AddrNumOperands = 5
42  };
43
44  /// AVX512 static rounding constants.  These need to match the values in
45  /// avx512fintrin.h.
46  enum STATIC_ROUNDING {
47    TO_NEAREST_INT = 0,
48    TO_NEG_INF = 1,
49    TO_POS_INF = 2,
50    TO_ZERO = 3,
51    CUR_DIRECTION = 4,
52    NO_EXC = 8
53  };
54
55  /// The constants to describe instr prefixes if there are
56  enum IPREFIXES {
57    IP_NO_PREFIX = 0,
58    IP_HAS_OP_SIZE = 1,
59    IP_HAS_AD_SIZE = 2,
60    IP_HAS_REPEAT_NE = 4,
61    IP_HAS_REPEAT = 8,
62    IP_HAS_LOCK = 16,
63    IP_HAS_NOTRACK = 32,
64    IP_USE_VEX3 = 64,
65  };
66
67  enum OperandType : unsigned {
68    /// AVX512 embedded rounding control. This should only have values 0-3.
69    OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
70    OPERAND_COND_CODE,
71  };
72
73  // X86 specific condition code. These correspond to X86_*_COND in
74  // X86InstrInfo.td. They must be kept in synch.
75  enum CondCode {
76    COND_O = 0,
77    COND_NO = 1,
78    COND_B = 2,
79    COND_AE = 3,
80    COND_E = 4,
81    COND_NE = 5,
82    COND_BE = 6,
83    COND_A = 7,
84    COND_S = 8,
85    COND_NS = 9,
86    COND_P = 10,
87    COND_NP = 11,
88    COND_L = 12,
89    COND_GE = 13,
90    COND_LE = 14,
91    COND_G = 15,
92    LAST_VALID_COND = COND_G,
93
94    // Artificial condition codes. These are used by analyzeBranch
95    // to indicate a block terminated with two conditional branches that together
96    // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
97    // which can't be represented on x86 with a single condition. These
98    // are never used in MachineInstrs and are inverses of one another.
99    COND_NE_OR_P,
100    COND_E_AND_NP,
101
102    COND_INVALID
103  };
104
105  // The classification for the first instruction in macro fusion.
106  enum class FirstMacroFusionInstKind {
107    // TEST
108    Test,
109    // CMP
110    Cmp,
111    // AND
112    And,
113    // ADD, SUB
114    AddSub,
115    // INC, DEC
116    IncDec,
117    // Not valid as a first macro fusion instruction
118    Invalid
119  };
120
121  enum class SecondMacroFusionInstKind {
122    // JA, JB and variants.
123    AB,
124    // JE, JL, JG and variants.
125    ELG,
126    // JS, JP, JO and variants
127    SPO,
128    // Not a fusible jump.
129    Invalid,
130  };
131
132  /// \returns the type of the first instruction in macro-fusion.
133  inline FirstMacroFusionInstKind
134  classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
135    switch (Opcode) {
136    default:
137      return FirstMacroFusionInstKind::Invalid;
138    // TEST
139    case X86::TEST16i16:
140    case X86::TEST16mr:
141    case X86::TEST16ri:
142    case X86::TEST16rr:
143    case X86::TEST32i32:
144    case X86::TEST32mr:
145    case X86::TEST32ri:
146    case X86::TEST32rr:
147    case X86::TEST64i32:
148    case X86::TEST64mr:
149    case X86::TEST64ri32:
150    case X86::TEST64rr:
151    case X86::TEST8i8:
152    case X86::TEST8mr:
153    case X86::TEST8ri:
154    case X86::TEST8rr:
155      return FirstMacroFusionInstKind::Test;
156    case X86::AND16i16:
157    case X86::AND16ri:
158    case X86::AND16ri8:
159    case X86::AND16rm:
160    case X86::AND16rr:
161    case X86::AND16rr_REV:
162    case X86::AND32i32:
163    case X86::AND32ri:
164    case X86::AND32ri8:
165    case X86::AND32rm:
166    case X86::AND32rr:
167    case X86::AND32rr_REV:
168    case X86::AND64i32:
169    case X86::AND64ri32:
170    case X86::AND64ri8:
171    case X86::AND64rm:
172    case X86::AND64rr:
173    case X86::AND64rr_REV:
174    case X86::AND8i8:
175    case X86::AND8ri:
176    case X86::AND8ri8:
177    case X86::AND8rm:
178    case X86::AND8rr:
179    case X86::AND8rr_REV:
180      return FirstMacroFusionInstKind::And;
181    // CMP
182    case X86::CMP16i16:
183    case X86::CMP16mr:
184    case X86::CMP16ri:
185    case X86::CMP16ri8:
186    case X86::CMP16rm:
187    case X86::CMP16rr:
188    case X86::CMP16rr_REV:
189    case X86::CMP32i32:
190    case X86::CMP32mr:
191    case X86::CMP32ri:
192    case X86::CMP32ri8:
193    case X86::CMP32rm:
194    case X86::CMP32rr:
195    case X86::CMP32rr_REV:
196    case X86::CMP64i32:
197    case X86::CMP64mr:
198    case X86::CMP64ri32:
199    case X86::CMP64ri8:
200    case X86::CMP64rm:
201    case X86::CMP64rr:
202    case X86::CMP64rr_REV:
203    case X86::CMP8i8:
204    case X86::CMP8mr:
205    case X86::CMP8ri:
206    case X86::CMP8ri8:
207    case X86::CMP8rm:
208    case X86::CMP8rr:
209    case X86::CMP8rr_REV:
210      return FirstMacroFusionInstKind::Cmp;
211    // ADD
212    case X86::ADD16i16:
213    case X86::ADD16ri:
214    case X86::ADD16ri8:
215    case X86::ADD16rm:
216    case X86::ADD16rr:
217    case X86::ADD16rr_REV:
218    case X86::ADD32i32:
219    case X86::ADD32ri:
220    case X86::ADD32ri8:
221    case X86::ADD32rm:
222    case X86::ADD32rr:
223    case X86::ADD32rr_REV:
224    case X86::ADD64i32:
225    case X86::ADD64ri32:
226    case X86::ADD64ri8:
227    case X86::ADD64rm:
228    case X86::ADD64rr:
229    case X86::ADD64rr_REV:
230    case X86::ADD8i8:
231    case X86::ADD8ri:
232    case X86::ADD8ri8:
233    case X86::ADD8rm:
234    case X86::ADD8rr:
235    case X86::ADD8rr_REV:
236    // SUB
237    case X86::SUB16i16:
238    case X86::SUB16ri:
239    case X86::SUB16ri8:
240    case X86::SUB16rm:
241    case X86::SUB16rr:
242    case X86::SUB16rr_REV:
243    case X86::SUB32i32:
244    case X86::SUB32ri:
245    case X86::SUB32ri8:
246    case X86::SUB32rm:
247    case X86::SUB32rr:
248    case X86::SUB32rr_REV:
249    case X86::SUB64i32:
250    case X86::SUB64ri32:
251    case X86::SUB64ri8:
252    case X86::SUB64rm:
253    case X86::SUB64rr:
254    case X86::SUB64rr_REV:
255    case X86::SUB8i8:
256    case X86::SUB8ri:
257    case X86::SUB8ri8:
258    case X86::SUB8rm:
259    case X86::SUB8rr:
260    case X86::SUB8rr_REV:
261      return FirstMacroFusionInstKind::AddSub;
262    // INC
263    case X86::INC16r:
264    case X86::INC16r_alt:
265    case X86::INC32r:
266    case X86::INC32r_alt:
267    case X86::INC64r:
268    case X86::INC8r:
269    // DEC
270    case X86::DEC16r:
271    case X86::DEC16r_alt:
272    case X86::DEC32r:
273    case X86::DEC32r_alt:
274    case X86::DEC64r:
275    case X86::DEC8r:
276      return FirstMacroFusionInstKind::IncDec;
277    }
278  }
279
280  /// \returns the type of the second instruction in macro-fusion.
281  inline SecondMacroFusionInstKind
282  classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
283    if (CC == X86::COND_INVALID)
284      return SecondMacroFusionInstKind::Invalid;
285
286    switch (CC) {
287    default:
288      return SecondMacroFusionInstKind::Invalid;
289    // JE,JZ
290    case X86::COND_E:
291    // JNE,JNZ
292    case X86::COND_NE:
293    // JL,JNGE
294    case X86::COND_L:
295    // JLE,JNG
296    case X86::COND_LE:
297    // JG,JNLE
298    case X86::COND_G:
299    // JGE,JNL
300    case X86::COND_GE:
301      return SecondMacroFusionInstKind::ELG;
302    // JB,JC
303    case X86::COND_B:
304    // JNA,JBE
305    case X86::COND_BE:
306    // JA,JNBE
307    case X86::COND_A:
308    // JAE,JNC,JNB
309    case X86::COND_AE:
310      return SecondMacroFusionInstKind::AB;
311    // JS
312    case X86::COND_S:
313    // JNS
314    case X86::COND_NS:
315    // JP,JPE
316    case X86::COND_P:
317    // JNP,JPO
318    case X86::COND_NP:
319    // JO
320    case X86::COND_O:
321    // JNO
322    case X86::COND_NO:
323      return SecondMacroFusionInstKind::SPO;
324    }
325  }
326
327  /// \param FirstKind kind of the first instruction in macro fusion.
328  /// \param SecondKind kind of the second instruction in macro fusion.
329  ///
330  /// \returns true if the two instruction can be macro fused.
331  inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
332                           SecondMacroFusionInstKind SecondKind) {
333    switch (FirstKind) {
334    case X86::FirstMacroFusionInstKind::Test:
335    case X86::FirstMacroFusionInstKind::And:
336      return true;
337    case X86::FirstMacroFusionInstKind::Cmp:
338    case X86::FirstMacroFusionInstKind::AddSub:
339      return SecondKind == X86::SecondMacroFusionInstKind::AB ||
340             SecondKind == X86::SecondMacroFusionInstKind::ELG;
341    case X86::FirstMacroFusionInstKind::IncDec:
342      return SecondKind == X86::SecondMacroFusionInstKind::ELG;
343    case X86::FirstMacroFusionInstKind::Invalid:
344      return false;
345    }
346    llvm_unreachable("unknown fusion type");
347  }
348
349  /// Defines the possible values of the branch boundary alignment mask.
350  enum AlignBranchBoundaryKind : uint8_t {
351    AlignBranchNone = 0,
352    AlignBranchFused = 1U << 0,
353    AlignBranchJcc = 1U << 1,
354    AlignBranchJmp = 1U << 2,
355    AlignBranchCall = 1U << 3,
356    AlignBranchRet = 1U << 4,
357    AlignBranchIndirect = 1U << 5
358  };
359
360  /// Defines the encoding values for segment override prefix.
361  enum EncodingOfSegmentOverridePrefix : uint8_t {
362    CS_Encoding = 0x2E,
363    DS_Encoding = 0x3E,
364    ES_Encoding = 0x26,
365    FS_Encoding = 0x64,
366    GS_Encoding = 0x65,
367    SS_Encoding = 0x36
368  };
369
370  /// Given a segment register, return the encoding of the segment override
371  /// prefix for it.
372  inline EncodingOfSegmentOverridePrefix
373  getSegmentOverridePrefixForReg(unsigned Reg) {
374    switch (Reg) {
375    default:
376      llvm_unreachable("Unknown segment register!");
377    case X86::CS:
378      return CS_Encoding;
379    case X86::DS:
380      return DS_Encoding;
381    case X86::ES:
382      return ES_Encoding;
383    case X86::FS:
384      return FS_Encoding;
385    case X86::GS:
386      return GS_Encoding;
387    case X86::SS:
388      return SS_Encoding;
389    }
390  }
391
392} // end namespace X86;
393
394/// X86II - This namespace holds all of the target specific flags that
395/// instruction info tracks.
396///
397namespace X86II {
398  /// Target Operand Flag enum.
399  enum TOF {
400    //===------------------------------------------------------------------===//
401    // X86 Specific MachineOperand flags.
402
403    MO_NO_FLAG,
404
405    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
406    /// relocation of:
407    ///    SYMBOL_LABEL + [. - PICBASELABEL]
408    MO_GOT_ABSOLUTE_ADDRESS,
409
410    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
411    /// immediate should get the value of the symbol minus the PIC base label:
412    ///    SYMBOL_LABEL - PICBASELABEL
413    MO_PIC_BASE_OFFSET,
414
415    /// MO_GOT - On a symbol operand this indicates that the immediate is the
416    /// offset to the GOT entry for the symbol name from the base of the GOT.
417    ///
418    /// See the X86-64 ELF ABI supplement for more details.
419    ///    SYMBOL_LABEL @GOT
420    MO_GOT,
421
422    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
423    /// the offset to the location of the symbol name from the base of the GOT.
424    ///
425    /// See the X86-64 ELF ABI supplement for more details.
426    ///    SYMBOL_LABEL @GOTOFF
427    MO_GOTOFF,
428
429    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
430    /// offset to the GOT entry for the symbol name from the current code
431    /// location.
432    ///
433    /// See the X86-64 ELF ABI supplement for more details.
434    ///    SYMBOL_LABEL @GOTPCREL
435    MO_GOTPCREL,
436
437    /// MO_PLT - On a symbol operand this indicates that the immediate is
438    /// offset to the PLT entry of symbol name from the current code location.
439    ///
440    /// See the X86-64 ELF ABI supplement for more details.
441    ///    SYMBOL_LABEL @PLT
442    MO_PLT,
443
444    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
445    /// the offset of the GOT entry with the TLS index structure that contains
446    /// the module number and variable offset for the symbol. Used in the
447    /// general dynamic TLS access model.
448    ///
449    /// See 'ELF Handling for Thread-Local Storage' for more details.
450    ///    SYMBOL_LABEL @TLSGD
451    MO_TLSGD,
452
453    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
454    /// the offset of the GOT entry with the TLS index for the module that
455    /// contains the symbol. When this index is passed to a call to
456    /// __tls_get_addr, the function will return the base address of the TLS
457    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
458    ///
459    /// See 'ELF Handling for Thread-Local Storage' for more details.
460    ///    SYMBOL_LABEL @TLSLD
461    MO_TLSLD,
462
463    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
464    /// the offset of the GOT entry with the TLS index for the module that
465    /// contains the symbol. When this index is passed to a call to
466    /// ___tls_get_addr, the function will return the base address of the TLS
467    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
468    ///
469    /// See 'ELF Handling for Thread-Local Storage' for more details.
470    ///    SYMBOL_LABEL @TLSLDM
471    MO_TLSLDM,
472
473    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
474    /// the offset of the GOT entry with the thread-pointer offset for the
475    /// symbol. Used in the x86-64 initial exec TLS access model.
476    ///
477    /// See 'ELF Handling for Thread-Local Storage' for more details.
478    ///    SYMBOL_LABEL @GOTTPOFF
479    MO_GOTTPOFF,
480
481    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
482    /// the absolute address of the GOT entry with the negative thread-pointer
483    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
484    /// model.
485    ///
486    /// See 'ELF Handling for Thread-Local Storage' for more details.
487    ///    SYMBOL_LABEL @INDNTPOFF
488    MO_INDNTPOFF,
489
490    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
491    /// the thread-pointer offset for the symbol. Used in the x86-64 local
492    /// exec TLS access model.
493    ///
494    /// See 'ELF Handling for Thread-Local Storage' for more details.
495    ///    SYMBOL_LABEL @TPOFF
496    MO_TPOFF,
497
498    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
499    /// the offset of the GOT entry with the TLS offset of the symbol. Used
500    /// in the local dynamic TLS access model.
501    ///
502    /// See 'ELF Handling for Thread-Local Storage' for more details.
503    ///    SYMBOL_LABEL @DTPOFF
504    MO_DTPOFF,
505
506    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
507    /// the negative thread-pointer offset for the symbol. Used in the IA32
508    /// local exec TLS access model.
509    ///
510    /// See 'ELF Handling for Thread-Local Storage' for more details.
511    ///    SYMBOL_LABEL @NTPOFF
512    MO_NTPOFF,
513
514    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
515    /// the offset of the GOT entry with the negative thread-pointer offset for
516    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
517    ///
518    /// See 'ELF Handling for Thread-Local Storage' for more details.
519    ///    SYMBOL_LABEL @GOTNTPOFF
520    MO_GOTNTPOFF,
521
522    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
523    /// reference is actually to the "__imp_FOO" symbol.  This is used for
524    /// dllimport linkage on windows.
525    MO_DLLIMPORT,
526
527    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
528    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
529    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
530    MO_DARWIN_NONLAZY,
531
532    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
533    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
534    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
535    MO_DARWIN_NONLAZY_PIC_BASE,
536
537    /// MO_TLVP - On a symbol operand this indicates that the immediate is
538    /// some TLS offset.
539    ///
540    /// This is the TLS offset for the Darwin TLS mechanism.
541    MO_TLVP,
542
543    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
544    /// is some TLS offset from the picbase.
545    ///
546    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
547    MO_TLVP_PIC_BASE,
548
549    /// MO_SECREL - On a symbol operand this indicates that the immediate is
550    /// the offset from beginning of section.
551    ///
552    /// This is the TLS offset for the COFF/Windows TLS mechanism.
553    MO_SECREL,
554
555    /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
556    /// to be an absolute symbol in range [0,128), so we can use the @ABS8
557    /// symbol modifier.
558    MO_ABS8,
559
560    /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
561    /// reference is actually to the ".refptr.FOO" symbol.  This is used for
562    /// stub symbols on windows.
563    MO_COFFSTUB,
564  };
565
566  enum : uint64_t {
567    //===------------------------------------------------------------------===//
568    // Instruction encodings.  These are the standard/most common forms for X86
569    // instructions.
570    //
571
572    // PseudoFrm - This represents an instruction that is a pseudo instruction
573    // or one that has not been implemented yet.  It is illegal to code generate
574    // it, but tolerated for intermediate implementation stages.
575    Pseudo         = 0,
576
577    /// Raw - This form is for instructions that don't have any operands, so
578    /// they are just a fixed opcode value, like 'leave'.
579    RawFrm         = 1,
580
581    /// AddRegFrm - This form is used for instructions like 'push r32' that have
582    /// their one register operand added to their opcode.
583    AddRegFrm      = 2,
584
585    /// RawFrmMemOffs - This form is for instructions that store an absolute
586    /// memory offset as an immediate with a possible segment override.
587    RawFrmMemOffs  = 3,
588
589    /// RawFrmSrc - This form is for instructions that use the source index
590    /// register SI/ESI/RSI with a possible segment override.
591    RawFrmSrc      = 4,
592
593    /// RawFrmDst - This form is for instructions that use the destination index
594    /// register DI/EDI/RDI.
595    RawFrmDst      = 5,
596
597    /// RawFrmDstSrc - This form is for instructions that use the source index
598    /// register SI/ESI/RSI with a possible segment override, and also the
599    /// destination index register DI/EDI/RDI.
600    RawFrmDstSrc   = 6,
601
602    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
603    /// immediates, the first of which is a 16-bit immediate (specified by
604    /// the imm encoding) and the second is a 8-bit fixed value.
605    RawFrmImm8 = 7,
606
607    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
608    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
609    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
610    /// manual, this operand is described as pntr16:32 and pntr16:16
611    RawFrmImm16 = 8,
612
613    /// AddCCFrm - This form is used for Jcc that encode the condition code
614    /// in the lower 4 bits of the opcode.
615    AddCCFrm = 9,
616
617    /// PrefixByte - This form is used for instructions that represent a prefix
618    /// byte like data16 or rep.
619    PrefixByte = 10,
620
621    /// MRM[0-7][rm] - These forms are used to represent instructions that use
622    /// a Mod/RM byte, and use the middle field to hold extended opcode
623    /// information.  In the intel manual these are represented as /0, /1, ...
624    ///
625
626    // Instructions operate on a register Reg/Opcode operand not the r/m field.
627    MRMr0 = 21,
628
629    /// MRMSrcMem - But force to use the SIB field.
630    MRMSrcMemFSIB  = 22,
631
632    /// MRMDestMem - But force to use the SIB field.
633    MRMDestMemFSIB = 23,
634
635    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
636    /// to specify a destination, which in this case is memory.
637    ///
638    MRMDestMem     = 24,
639
640    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
641    /// to specify a source, which in this case is memory.
642    ///
643    MRMSrcMem      = 25,
644
645    /// MRMSrcMem4VOp3 - This form is used for instructions that encode
646    /// operand 3 with VEX.VVVV and load from memory.
647    ///
648    MRMSrcMem4VOp3 = 26,
649
650    /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
651    /// byte to specify the fourth source, which in this case is memory.
652    ///
653    MRMSrcMemOp4   = 27,
654
655    /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
656    /// byte to specify the operands and also encodes a condition code.
657    ///
658    MRMSrcMemCC    = 28,
659
660    /// MRMXm - This form is used for instructions that use the Mod/RM byte
661    /// to specify a memory source, but doesn't use the middle field. And has
662    /// a condition code.
663    ///
664    MRMXmCC = 30,
665
666    /// MRMXm - This form is used for instructions that use the Mod/RM byte
667    /// to specify a memory source, but doesn't use the middle field.
668    ///
669    MRMXm = 31,
670
671    // Next, instructions that operate on a memory r/m operand...
672    MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
673    MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7
674
675    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
676    /// to specify a destination, which in this case is a register.
677    ///
678    MRMDestReg     = 40,
679
680    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
681    /// to specify a source, which in this case is a register.
682    ///
683    MRMSrcReg      = 41,
684
685    /// MRMSrcReg4VOp3 - This form is used for instructions that encode
686    /// operand 3 with VEX.VVVV and do not load from memory.
687    ///
688    MRMSrcReg4VOp3 = 42,
689
690    /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
691    /// byte to specify the fourth source, which in this case is a register.
692    ///
693    MRMSrcRegOp4   = 43,
694
695    /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
696    /// byte to specify the operands and also encodes a condition code
697    ///
698    MRMSrcRegCC    = 44,
699
700    /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
701    /// to specify a register source, but doesn't use the middle field. And has
702    /// a condition code.
703    ///
704    MRMXrCC = 46,
705
706    /// MRMXr - This form is used for instructions that use the Mod/RM byte
707    /// to specify a register source, but doesn't use the middle field.
708    ///
709    MRMXr = 47,
710
711    // Instructions that operate on a register r/m operand...
712    MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
713    MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7
714
715    // Instructions that operate that have mod=11 and an opcode but ignore r/m.
716    MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
717    MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7
718
719    /// MRM_XX - A mod/rm byte of exactly 0xXX.
720    MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
721    MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
722    MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
723    MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
724    MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
725    MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
726    MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
727    MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
728    MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
729    MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
730    MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
731    MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
732    MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
733    MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
734    MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
735    MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
736
737    FormMask       = 127,
738
739    //===------------------------------------------------------------------===//
740    // Actual flags...
741
742    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
743    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
744    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
745    // prefix in 16-bit mode.
746    OpSizeShift = 7,
747    OpSizeMask = 0x3 << OpSizeShift,
748
749    OpSizeFixed  = 0 << OpSizeShift,
750    OpSize16     = 1 << OpSizeShift,
751    OpSize32     = 2 << OpSizeShift,
752
753    // AsSize - AdSizeX implies this instruction determines its need of 0x67
754    // prefix from a normal ModRM memory operand. The other types indicate that
755    // an operand is encoded with a specific width and a prefix is needed if
756    // it differs from the current mode.
757    AdSizeShift = OpSizeShift + 2,
758    AdSizeMask  = 0x3 << AdSizeShift,
759
760    AdSizeX  = 0 << AdSizeShift,
761    AdSize16 = 1 << AdSizeShift,
762    AdSize32 = 2 << AdSizeShift,
763    AdSize64 = 3 << AdSizeShift,
764
765    //===------------------------------------------------------------------===//
766    // OpPrefix - There are several prefix bytes that are used as opcode
767    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
768    // no prefix.
769    //
770    OpPrefixShift = AdSizeShift + 2,
771    OpPrefixMask  = 0x3 << OpPrefixShift,
772
773    // PD - Prefix code for packed double precision vector floating point
774    // operations performed in the SSE registers.
775    PD = 1 << OpPrefixShift,
776
777    // XS, XD - These prefix codes are for single and double precision scalar
778    // floating point operations performed in the SSE registers.
779    XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
780
781    //===------------------------------------------------------------------===//
782    // OpMap - This field determines which opcode map this instruction
783    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
784    //
785    OpMapShift = OpPrefixShift + 2,
786    OpMapMask  = 0x7 << OpMapShift,
787
788    // OB - OneByte - Set if this instruction has a one byte opcode.
789    OB = 0 << OpMapShift,
790
791    // TB - TwoByte - Set if this instruction has a two byte opcode, which
792    // starts with a 0x0F byte before the real opcode.
793    TB = 1 << OpMapShift,
794
795    // T8, TA - Prefix after the 0x0F prefix.
796    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
797
798    // XOP8 - Prefix to include use of imm byte.
799    XOP8 = 4 << OpMapShift,
800
801    // XOP9 - Prefix to exclude use of imm byte.
802    XOP9 = 5 << OpMapShift,
803
804    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
805    XOPA = 6 << OpMapShift,
806
807    /// ThreeDNow - This indicates that the instruction uses the
808    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
809    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
810    /// storing a classifier in the imm8 field.  To simplify our implementation,
811    /// we handle this by storeing the classifier in the opcode field and using
812    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
813    ThreeDNow = 7 << OpMapShift,
814
815    //===------------------------------------------------------------------===//
816    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
817    // They are used to specify GPRs and SSE registers, 64-bit operand size,
818    // etc. We only cares about REX.W and REX.R bits and only the former is
819    // statically determined.
820    //
821    REXShift    = OpMapShift + 3,
822    REX_W       = 1 << REXShift,
823
824    //===------------------------------------------------------------------===//
825    // This three-bit field describes the size of an immediate operand.  Zero is
826    // unused so that we can tell if we forgot to set a value.
827    ImmShift = REXShift + 1,
828    ImmMask    = 15 << ImmShift,
829    Imm8       = 1 << ImmShift,
830    Imm8PCRel  = 2 << ImmShift,
831    Imm8Reg    = 3 << ImmShift,
832    Imm16      = 4 << ImmShift,
833    Imm16PCRel = 5 << ImmShift,
834    Imm32      = 6 << ImmShift,
835    Imm32PCRel = 7 << ImmShift,
836    Imm32S     = 8 << ImmShift,
837    Imm64      = 9 << ImmShift,
838
839    //===------------------------------------------------------------------===//
840    // FP Instruction Classification...  Zero is non-fp instruction.
841
842    // FPTypeMask - Mask for all of the FP types...
843    FPTypeShift = ImmShift + 4,
844    FPTypeMask  = 7 << FPTypeShift,
845
846    // NotFP - The default, set for instructions that do not use FP registers.
847    NotFP      = 0 << FPTypeShift,
848
849    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
850    ZeroArgFP  = 1 << FPTypeShift,
851
852    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
853    OneArgFP   = 2 << FPTypeShift,
854
855    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
856    // result back to ST(0).  For example, fcos, fsqrt, etc.
857    //
858    OneArgFPRW = 3 << FPTypeShift,
859
860    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
861    // explicit argument, storing the result to either ST(0) or the implicit
862    // argument.  For example: fadd, fsub, fmul, etc...
863    TwoArgFP   = 4 << FPTypeShift,
864
865    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
866    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
867    CompareFP  = 5 << FPTypeShift,
868
869    // CondMovFP - "2 operand" floating point conditional move instructions.
870    CondMovFP  = 6 << FPTypeShift,
871
872    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
873    SpecialFP  = 7 << FPTypeShift,
874
875    // Lock prefix
876    LOCKShift = FPTypeShift + 3,
877    LOCK = 1 << LOCKShift,
878
879    // REP prefix
880    REPShift = LOCKShift + 1,
881    REP = 1 << REPShift,
882
883    // Execution domain for SSE instructions.
884    // 0 means normal, non-SSE instruction.
885    SSEDomainShift = REPShift + 1,
886
887    // Encoding
888    EncodingShift = SSEDomainShift + 2,
889    EncodingMask = 0x3 << EncodingShift,
890
891    // VEX - encoding using 0xC4/0xC5
892    VEX = 1 << EncodingShift,
893
894    /// XOP - Opcode prefix used by XOP instructions.
895    XOP = 2 << EncodingShift,
896
897    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
898    // syntax support up to 32 512-bit register operands and up to 7 16-bit
899    // mask operands as well as source operand data swizzling/memory operand
900    // conversion, eviction hint, and rounding mode.
901    EVEX = 3 << EncodingShift,
902
903    // Opcode
904    OpcodeShift   = EncodingShift + 2,
905
906    /// VEX_W - Has a opcode specific functionality, but is used in the same
907    /// way as REX_W is for regular SSE instructions.
908    VEX_WShift  = OpcodeShift + 8,
909    VEX_W       = 1ULL << VEX_WShift,
910
911    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
912    /// address instructions in SSE are represented as 3 address ones in AVX
913    /// and the additional register is encoded in VEX_VVVV prefix.
914    VEX_4VShift = VEX_WShift + 1,
915    VEX_4V      = 1ULL << VEX_4VShift,
916
917    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
918    /// instruction uses 256-bit wide registers. This is usually auto detected
919    /// if a VR256 register is used, but some AVX instructions also have this
920    /// field marked when using a f256 memory references.
921    VEX_LShift = VEX_4VShift + 1,
922    VEX_L       = 1ULL << VEX_LShift,
923
924    // EVEX_K - Set if this instruction requires masking
925    EVEX_KShift = VEX_LShift + 1,
926    EVEX_K      = 1ULL << EVEX_KShift,
927
928    // EVEX_Z - Set if this instruction has EVEX.Z field set.
929    EVEX_ZShift = EVEX_KShift + 1,
930    EVEX_Z      = 1ULL << EVEX_ZShift,
931
932    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
933    EVEX_L2Shift = EVEX_ZShift + 1,
934    EVEX_L2     = 1ULL << EVEX_L2Shift,
935
936    // EVEX_B - Set if this instruction has EVEX.B field set.
937    EVEX_BShift = EVEX_L2Shift + 1,
938    EVEX_B      = 1ULL << EVEX_BShift,
939
940    // The scaling factor for the AVX512's 8-bit compressed displacement.
941    CD8_Scale_Shift = EVEX_BShift + 1,
942    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
943
944    /// Explicitly specified rounding control
945    EVEX_RCShift = CD8_Scale_Shift + 7,
946    EVEX_RC = 1ULL << EVEX_RCShift,
947
948    // NOTRACK prefix
949    NoTrackShift = EVEX_RCShift + 1,
950    NOTRACK = 1ULL << NoTrackShift
951  };
952
953  /// \returns true if the instruction with given opcode is a prefix.
954  inline bool isPrefix(uint64_t TSFlags) {
955    return (TSFlags & X86II::FormMask) == PrefixByte;
956  }
957
958  /// \returns true if the instruction with given opcode is a pseudo.
959  inline bool isPseudo(uint64_t TSFlags) {
960    return (TSFlags & X86II::FormMask) == Pseudo;
961  }
962
963  /// \returns the "base" X86 opcode for the specified machine
964  /// instruction.
965  inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
966    return TSFlags >> X86II::OpcodeShift;
967  }
968
969  inline bool hasImm(uint64_t TSFlags) {
970    return (TSFlags & X86II::ImmMask) != 0;
971  }
972
973  /// Decode the "size of immediate" field from the TSFlags field of the
974  /// specified instruction.
975  inline unsigned getSizeOfImm(uint64_t TSFlags) {
976    switch (TSFlags & X86II::ImmMask) {
977    default: llvm_unreachable("Unknown immediate size");
978    case X86II::Imm8:
979    case X86II::Imm8PCRel:
980    case X86II::Imm8Reg:    return 1;
981    case X86II::Imm16:
982    case X86II::Imm16PCRel: return 2;
983    case X86II::Imm32:
984    case X86II::Imm32S:
985    case X86II::Imm32PCRel: return 4;
986    case X86II::Imm64:      return 8;
987    }
988  }
989
990  /// \returns true if the immediate of the specified instruction's TSFlags
991  /// indicates that it is pc relative.
992  inline bool isImmPCRel(uint64_t TSFlags) {
993    switch (TSFlags & X86II::ImmMask) {
994    default: llvm_unreachable("Unknown immediate size");
995    case X86II::Imm8PCRel:
996    case X86II::Imm16PCRel:
997    case X86II::Imm32PCRel:
998      return true;
999    case X86II::Imm8:
1000    case X86II::Imm8Reg:
1001    case X86II::Imm16:
1002    case X86II::Imm32:
1003    case X86II::Imm32S:
1004    case X86II::Imm64:
1005      return false;
1006    }
1007  }
1008
1009  /// \returns true if the immediate of the specified instruction's
1010  /// TSFlags indicates that it is signed.
1011  inline bool isImmSigned(uint64_t TSFlags) {
1012    switch (TSFlags & X86II::ImmMask) {
1013    default: llvm_unreachable("Unknown immediate signedness");
1014    case X86II::Imm32S:
1015      return true;
1016    case X86II::Imm8:
1017    case X86II::Imm8PCRel:
1018    case X86II::Imm8Reg:
1019    case X86II::Imm16:
1020    case X86II::Imm16PCRel:
1021    case X86II::Imm32:
1022    case X86II::Imm32PCRel:
1023    case X86II::Imm64:
1024      return false;
1025    }
1026  }
1027
1028  /// Compute whether all of the def operands are repeated in the uses and
1029  /// therefore should be skipped.
1030  /// This determines the start of the unique operand list. We need to determine
1031  /// if all of the defs have a corresponding tied operand in the uses.
1032  /// Unfortunately, the tied operand information is encoded in the uses not
1033  /// the defs so we have to use some heuristics to find which operands to
1034  /// query.
1035  inline unsigned getOperandBias(const MCInstrDesc& Desc) {
1036    unsigned NumDefs = Desc.getNumDefs();
1037    unsigned NumOps = Desc.getNumOperands();
1038    switch (NumDefs) {
1039    default: llvm_unreachable("Unexpected number of defs");
1040    case 0:
1041      return 0;
1042    case 1:
1043      // Common two addr case.
1044      if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
1045        return 1;
1046      // Check for AVX-512 scatter which has a TIED_TO in the second to last
1047      // operand.
1048      if (NumOps == 8 &&
1049          Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
1050        return 1;
1051      return 0;
1052    case 2:
1053      // XCHG/XADD have two destinations and two sources.
1054      if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1055          Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
1056        return 2;
1057      // Check for gather. AVX-512 has the second tied operand early. AVX2
1058      // has it as the last op.
1059      if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1060          (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1061           Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1062        return 2;
1063      return 0;
1064    }
1065  }
1066
1067  /// The function returns the MCInst operand # for the first field of the
1068  /// memory operand.  If the instruction doesn't have a
1069  /// memory operand, this returns -1.
1070  ///
1071  /// Note that this ignores tied operands.  If there is a tied register which
1072  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1073  /// counted as one operand.
1074  ///
1075  inline int getMemoryOperandNo(uint64_t TSFlags) {
1076    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1077    bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1078
1079    switch (TSFlags & X86II::FormMask) {
1080    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1081    case X86II::Pseudo:
1082    case X86II::RawFrm:
1083    case X86II::AddRegFrm:
1084    case X86II::RawFrmImm8:
1085    case X86II::RawFrmImm16:
1086    case X86II::RawFrmMemOffs:
1087    case X86II::RawFrmSrc:
1088    case X86II::RawFrmDst:
1089    case X86II::RawFrmDstSrc:
1090    case X86II::AddCCFrm:
1091    case X86II::PrefixByte:
1092      return -1;
1093    case X86II::MRMDestMem:
1094    case X86II::MRMDestMemFSIB:
1095      return 0;
1096    case X86II::MRMSrcMem:
1097    case X86II::MRMSrcMemFSIB:
1098      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1099      // mask register.
1100      return 1 + HasVEX_4V + HasEVEX_K;
1101    case X86II::MRMSrcMem4VOp3:
1102      // Skip registers encoded in reg.
1103      return 1 + HasEVEX_K;
1104    case X86II::MRMSrcMemOp4:
1105      // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1106      return 3;
1107    case X86II::MRMSrcMemCC:
1108      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1109      // mask register.
1110      return 1;
1111    case X86II::MRMDestReg:
1112    case X86II::MRMSrcReg:
1113    case X86II::MRMSrcReg4VOp3:
1114    case X86II::MRMSrcRegOp4:
1115    case X86II::MRMSrcRegCC:
1116    case X86II::MRMXrCC:
1117    case X86II::MRMr0:
1118    case X86II::MRMXr:
1119    case X86II::MRM0r: case X86II::MRM1r:
1120    case X86II::MRM2r: case X86II::MRM3r:
1121    case X86II::MRM4r: case X86II::MRM5r:
1122    case X86II::MRM6r: case X86II::MRM7r:
1123      return -1;
1124    case X86II::MRM0X: case X86II::MRM1X:
1125    case X86II::MRM2X: case X86II::MRM3X:
1126    case X86II::MRM4X: case X86II::MRM5X:
1127    case X86II::MRM6X: case X86II::MRM7X:
1128      return -1;
1129    case X86II::MRMXmCC:
1130    case X86II::MRMXm:
1131    case X86II::MRM0m: case X86II::MRM1m:
1132    case X86II::MRM2m: case X86II::MRM3m:
1133    case X86II::MRM4m: case X86II::MRM5m:
1134    case X86II::MRM6m: case X86II::MRM7m:
1135      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1136      return 0 + HasVEX_4V + HasEVEX_K;
1137    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1138    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1139    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1140    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1141    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1142    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1143    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1144    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1145    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1146    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1147    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1148    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1149    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1150    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1151    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1152    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1153    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1154    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1155    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1156    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1157    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1158    case X86II::MRM_FF:
1159      return -1;
1160    }
1161  }
1162
1163  /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1164  /// higher) register,  e.g. r8, xmm8, xmm13, etc.
1165  inline bool isX86_64ExtendedReg(unsigned RegNo) {
1166    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1167        (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1168        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1169      return true;
1170
1171    switch (RegNo) {
1172    default: break;
1173    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1174    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1175    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1176    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1177    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1178    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1179    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1180    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1181    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1182    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1183    case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1184    case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1185      return true;
1186    }
1187    return false;
1188  }
1189
1190  /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1191  /// registers, e.g. zmm21, etc.
1192  static inline bool is32ExtendedReg(unsigned RegNo) {
1193    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1194            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1195            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1196  }
1197
1198
1199  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1200    return (reg == X86::SPL || reg == X86::BPL ||
1201            reg == X86::SIL || reg == X86::DIL);
1202  }
1203
1204  /// \returns true if this is a masked instruction.
1205  inline bool isKMasked(uint64_t TSFlags) {
1206    return (TSFlags & X86II::EVEX_K) != 0;
1207  }
1208
1209  /// \returns true if this is a merge masked instruction.
1210  inline bool isKMergeMasked(uint64_t TSFlags) {
1211    return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1212  }
1213}
1214
1215} // end namespace llvm;
1216
1217#endif
1218