1//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that Mips uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MipsISelLowering.h"
15#include "MCTargetDesc/MipsBaseInfo.h"
16#include "MCTargetDesc/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsMCTargetDesc.h"
18#include "MipsCCState.h"
19#include "MipsInstrInfo.h"
20#include "MipsMachineFunction.h"
21#include "MipsRegisterInfo.h"
22#include "MipsSubtarget.h"
23#include "MipsTargetMachine.h"
24#include "MipsTargetObjectFile.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/StringSwitch.h"
31#include "llvm/CodeGen/CallingConvLower.h"
32#include "llvm/CodeGen/FunctionLoweringInfo.h"
33#include "llvm/CodeGen/ISDOpcodes.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineInstr.h"
38#include "llvm/CodeGen/MachineInstrBuilder.h"
39#include "llvm/CodeGen/MachineJumpTableInfo.h"
40#include "llvm/CodeGen/MachineMemOperand.h"
41#include "llvm/CodeGen/MachineOperand.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/RuntimeLibcalls.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/CodeGen/SelectionDAGNodes.h"
46#include "llvm/CodeGen/TargetFrameLowering.h"
47#include "llvm/CodeGen/TargetInstrInfo.h"
48#include "llvm/CodeGen/TargetRegisterInfo.h"
49#include "llvm/CodeGen/ValueTypes.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/Constants.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/DebugLoc.h"
54#include "llvm/IR/DerivedTypes.h"
55#include "llvm/IR/Function.h"
56#include "llvm/IR/GlobalValue.h"
57#include "llvm/IR/Type.h"
58#include "llvm/IR/Value.h"
59#include "llvm/MC/MCContext.h"
60#include "llvm/MC/MCRegisterInfo.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/CodeGen.h"
63#include "llvm/Support/CommandLine.h"
64#include "llvm/Support/Compiler.h"
65#include "llvm/Support/ErrorHandling.h"
66#include "llvm/Support/MachineValueType.h"
67#include "llvm/Support/MathExtras.h"
68#include "llvm/Target/TargetMachine.h"
69#include "llvm/Target/TargetOptions.h"
70#include <algorithm>
71#include <cassert>
72#include <cctype>
73#include <cstdint>
74#include <deque>
75#include <iterator>
76#include <utility>
77#include <vector>
78
79using namespace llvm;
80
81#define DEBUG_TYPE "mips-lower"
82
83STATISTIC(NumTailCalls, "Number of tail calls");
84
85static cl::opt<bool>
86NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
87               cl::desc("MIPS: Don't trap on integer division by zero."),
88               cl::init(false));
89
90extern cl::opt<bool> EmitJalrReloc;
91
92static const MCPhysReg Mips64DPRegs[8] = {
93  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
94  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
95};
96
97// If I is a shifted mask, set the size (Size) and the first bit of the
98// mask (Pos), and return true.
99// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
100static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
101  if (!isShiftedMask_64(I))
102    return false;
103
104  Size = countPopulation(I);
105  Pos = countTrailingZeros(I);
106  return true;
107}
108
109// The MIPS MSA ABI passes vector arguments in the integer register set.
110// The number of integer registers used is dependant on the ABI used.
111MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
112                                                      CallingConv::ID CC,
113                                                      EVT VT) const {
114  if (!VT.isVector())
115    return getRegisterType(Context, VT);
116
117  return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32
118                                                           : MVT::i64;
119}
120
121unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
122                                                           CallingConv::ID CC,
123                                                           EVT VT) const {
124  if (VT.isVector())
125    return std::max(((unsigned)VT.getSizeInBits() /
126                     (Subtarget.isABI_O32() ? 32 : 64)),
127                    1U);
128  return MipsTargetLowering::getNumRegisters(Context, VT);
129}
130
131unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
132    LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
133    unsigned &NumIntermediates, MVT &RegisterVT) const {
134  // Break down vector types to either 2 i64s or 4 i32s.
135  RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
136  IntermediateVT = RegisterVT;
137  NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
138                         ? VT.getVectorNumElements()
139                         : VT.getSizeInBits() / RegisterVT.getSizeInBits();
140
141  return NumIntermediates;
142}
143
144SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
145  MachineFunction &MF = DAG.getMachineFunction();
146  MipsFunctionInfo *FI = MF.getInfo<MipsFunctionInfo>();
147  return DAG.getRegister(FI->getGlobalBaseReg(MF), Ty);
148}
149
150SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
151                                          SelectionDAG &DAG,
152                                          unsigned Flag) const {
153  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
154}
155
156SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
157                                          SelectionDAG &DAG,
158                                          unsigned Flag) const {
159  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
160}
161
162SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
163                                          SelectionDAG &DAG,
164                                          unsigned Flag) const {
165  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
166}
167
168SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
169                                          SelectionDAG &DAG,
170                                          unsigned Flag) const {
171  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
172}
173
174SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
175                                          SelectionDAG &DAG,
176                                          unsigned Flag) const {
177  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
178                                   N->getOffset(), Flag);
179}
180
181const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
182  switch ((MipsISD::NodeType)Opcode) {
183  case MipsISD::FIRST_NUMBER:      break;
184  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
185  case MipsISD::TailCall:          return "MipsISD::TailCall";
186  case MipsISD::Highest:           return "MipsISD::Highest";
187  case MipsISD::Higher:            return "MipsISD::Higher";
188  case MipsISD::Hi:                return "MipsISD::Hi";
189  case MipsISD::Lo:                return "MipsISD::Lo";
190  case MipsISD::GotHi:             return "MipsISD::GotHi";
191  case MipsISD::TlsHi:             return "MipsISD::TlsHi";
192  case MipsISD::GPRel:             return "MipsISD::GPRel";
193  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
194  case MipsISD::Ret:               return "MipsISD::Ret";
195  case MipsISD::ERet:              return "MipsISD::ERet";
196  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
197  case MipsISD::FMS:               return "MipsISD::FMS";
198  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
199  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
200  case MipsISD::FSELECT:           return "MipsISD::FSELECT";
201  case MipsISD::MTC1_D64:          return "MipsISD::MTC1_D64";
202  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
203  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
204  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
205  case MipsISD::MFHI:              return "MipsISD::MFHI";
206  case MipsISD::MFLO:              return "MipsISD::MFLO";
207  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
208  case MipsISD::Mult:              return "MipsISD::Mult";
209  case MipsISD::Multu:             return "MipsISD::Multu";
210  case MipsISD::MAdd:              return "MipsISD::MAdd";
211  case MipsISD::MAddu:             return "MipsISD::MAddu";
212  case MipsISD::MSub:              return "MipsISD::MSub";
213  case MipsISD::MSubu:             return "MipsISD::MSubu";
214  case MipsISD::DivRem:            return "MipsISD::DivRem";
215  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
216  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
217  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
218  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
219  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
220  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
221  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
222  case MipsISD::Sync:              return "MipsISD::Sync";
223  case MipsISD::Ext:               return "MipsISD::Ext";
224  case MipsISD::Ins:               return "MipsISD::Ins";
225  case MipsISD::CIns:              return "MipsISD::CIns";
226  case MipsISD::LWL:               return "MipsISD::LWL";
227  case MipsISD::LWR:               return "MipsISD::LWR";
228  case MipsISD::SWL:               return "MipsISD::SWL";
229  case MipsISD::SWR:               return "MipsISD::SWR";
230  case MipsISD::LDL:               return "MipsISD::LDL";
231  case MipsISD::LDR:               return "MipsISD::LDR";
232  case MipsISD::SDL:               return "MipsISD::SDL";
233  case MipsISD::SDR:               return "MipsISD::SDR";
234  case MipsISD::EXTP:              return "MipsISD::EXTP";
235  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
236  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
237  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
238  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
239  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
240  case MipsISD::SHILO:             return "MipsISD::SHILO";
241  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
242  case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
243  case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
244  case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
245  case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
246  case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
247  case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
248  case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
249  case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
250  case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
251  case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
252  case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
253  case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
254  case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
255  case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
256  case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
257  case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
258  case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
259  case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
260  case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
261  case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
262  case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
263  case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
264  case MipsISD::MULT:              return "MipsISD::MULT";
265  case MipsISD::MULTU:             return "MipsISD::MULTU";
266  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
267  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
268  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
269  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
270  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
271  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
272  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
273  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
274  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
275  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
276  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
277  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
278  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
279  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
280  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
281  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
282  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
283  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
284  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
285  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
286  case MipsISD::VNOR:              return "MipsISD::VNOR";
287  case MipsISD::VSHF:              return "MipsISD::VSHF";
288  case MipsISD::SHF:               return "MipsISD::SHF";
289  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
290  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
291  case MipsISD::ILVL:              return "MipsISD::ILVL";
292  case MipsISD::ILVR:              return "MipsISD::ILVR";
293  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
294  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
295  case MipsISD::INSVE:             return "MipsISD::INSVE";
296  }
297  return nullptr;
298}
299
300MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
301                                       const MipsSubtarget &STI)
302    : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
303  // Mips does not have i1 type, so use i32 for
304  // setcc operations results (slt, sgt, ...).
305  setBooleanContents(ZeroOrOneBooleanContent);
306  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
307  // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
308  // does. Integer booleans still use 0 and 1.
309  if (Subtarget.hasMips32r6())
310    setBooleanContents(ZeroOrOneBooleanContent,
311                       ZeroOrNegativeOneBooleanContent);
312
313  // Load extented operations for i1 types must be promoted
314  for (MVT VT : MVT::integer_valuetypes()) {
315    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
316    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
317    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
318  }
319
320  // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
321  // for f32, f16
322  for (MVT VT : MVT::fp_valuetypes()) {
323    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
324    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
325  }
326
327  // Set LoadExtAction for f16 vectors to Expand
328  for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
329    MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
330    if (F16VT.isValid())
331      setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
332  }
333
334  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
335  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
336
337  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
338
339  // Used by legalize types to correctly generate the setcc result.
340  // Without this, every float setcc comes with a AND/OR with the result,
341  // we don't want this, since the fpcmp result goes to a flag register,
342  // which is used implicitly by brcond and select operations.
343  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
344
345  // Mips Custom Operations
346  setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
347  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
348  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
349  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
350  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
351  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
352  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
353  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
354  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
355  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
356  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
357  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
358  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
359  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
360  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
361
362  if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
363    setOperationAction(ISD::FABS, MVT::f32, Custom);
364    setOperationAction(ISD::FABS, MVT::f64, Custom);
365  }
366
367  if (Subtarget.isGP64bit()) {
368    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
369    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
370    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
371    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
372    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
373    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
374    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
375    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
376    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
377    setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
378    setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
379    setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
380  }
381
382  if (!Subtarget.isGP64bit()) {
383    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
384    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
385    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
386  }
387
388  setOperationAction(ISD::EH_DWARF_CFA,         MVT::i32,   Custom);
389  if (Subtarget.isGP64bit())
390    setOperationAction(ISD::EH_DWARF_CFA,       MVT::i64,   Custom);
391
392  setOperationAction(ISD::SDIV, MVT::i32, Expand);
393  setOperationAction(ISD::SREM, MVT::i32, Expand);
394  setOperationAction(ISD::UDIV, MVT::i32, Expand);
395  setOperationAction(ISD::UREM, MVT::i32, Expand);
396  setOperationAction(ISD::SDIV, MVT::i64, Expand);
397  setOperationAction(ISD::SREM, MVT::i64, Expand);
398  setOperationAction(ISD::UDIV, MVT::i64, Expand);
399  setOperationAction(ISD::UREM, MVT::i64, Expand);
400
401  // Operations not directly supported by Mips.
402  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
403  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
404  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
405  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
406  setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
407  setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
408  setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
409  setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
410  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
411  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
412  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
413  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
414  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
415  if (Subtarget.hasCnMips()) {
416    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
417    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
418  } else {
419    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
420    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
421  }
422  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
423  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
424  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
425  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
426  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
427  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
428
429  if (!Subtarget.hasMips32r2())
430    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
431
432  if (!Subtarget.hasMips64r2())
433    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
434
435  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
436  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
437  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
438  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
439  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
440  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
441  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
442  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
443  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
444  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
445  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
446  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
447  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
448  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
449  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
450  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
451
452  // Lower f16 conversion operations into library calls
453  setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
454  setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
455  setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
456  setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
457
458  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
459
460  setOperationAction(ISD::VASTART,           MVT::Other, Custom);
461  setOperationAction(ISD::VAARG,             MVT::Other, Custom);
462  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
463  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
464
465  // Use the default for now
466  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
467  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
468
469  if (!Subtarget.isGP64bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
471    setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
472  }
473
474  if (!Subtarget.hasMips32r2()) {
475    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
476    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
477  }
478
479  // MIPS16 lacks MIPS32's clz and clo instructions.
480  if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
481    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
482  if (!Subtarget.hasMips64())
483    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
484
485  if (!Subtarget.hasMips32r2())
486    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
487  if (!Subtarget.hasMips64r2())
488    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
489
490  if (Subtarget.isGP64bit()) {
491    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
492    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
493    setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
494    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
495  }
496
497  setOperationAction(ISD::TRAP, MVT::Other, Legal);
498
499  setTargetDAGCombine(ISD::SDIVREM);
500  setTargetDAGCombine(ISD::UDIVREM);
501  setTargetDAGCombine(ISD::SELECT);
502  setTargetDAGCombine(ISD::AND);
503  setTargetDAGCombine(ISD::OR);
504  setTargetDAGCombine(ISD::ADD);
505  setTargetDAGCombine(ISD::SUB);
506  setTargetDAGCombine(ISD::AssertZext);
507  setTargetDAGCombine(ISD::SHL);
508
509  if (ABI.IsO32()) {
510    // These libcalls are not available in 32-bit.
511    setLibcallName(RTLIB::SHL_I128, nullptr);
512    setLibcallName(RTLIB::SRL_I128, nullptr);
513    setLibcallName(RTLIB::SRA_I128, nullptr);
514  }
515
516  setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4));
517
518  // The arguments on the stack are defined in terms of 4-byte slots on O32
519  // and 8-byte slots on N32/N64.
520  setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8)
521                                                            : Align(4));
522
523  setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
524
525  MaxStoresPerMemcpy = 16;
526
527  isMicroMips = Subtarget.inMicroMipsMode();
528}
529
530const MipsTargetLowering *
531MipsTargetLowering::create(const MipsTargetMachine &TM,
532                           const MipsSubtarget &STI) {
533  if (STI.inMips16Mode())
534    return createMips16TargetLowering(TM, STI);
535
536  return createMipsSETargetLowering(TM, STI);
537}
538
539// Create a fast isel object.
540FastISel *
541MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
542                                  const TargetLibraryInfo *libInfo) const {
543  const MipsTargetMachine &TM =
544      static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
545
546  // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
547  bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
548                     !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
549                     !Subtarget.inMicroMipsMode();
550
551  // Disable if either of the following is true:
552  // We do not generate PIC, the ABI is not O32, XGOT is being used.
553  if (!TM.isPositionIndependent() || !TM.getABI().IsO32() ||
554      Subtarget.useXGOT())
555    UseFastISel = false;
556
557  return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
558}
559
560EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
561                                           EVT VT) const {
562  if (!VT.isVector())
563    return MVT::i32;
564  return VT.changeVectorElementTypeToInteger();
565}
566
567static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
568                                    TargetLowering::DAGCombinerInfo &DCI,
569                                    const MipsSubtarget &Subtarget) {
570  if (DCI.isBeforeLegalizeOps())
571    return SDValue();
572
573  EVT Ty = N->getValueType(0);
574  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
575  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
576  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
577                                                  MipsISD::DivRemU16;
578  SDLoc DL(N);
579
580  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
581                               N->getOperand(0), N->getOperand(1));
582  SDValue InChain = DAG.getEntryNode();
583  SDValue InGlue = DivRem;
584
585  // insert MFLO
586  if (N->hasAnyUseOfValue(0)) {
587    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
588                                            InGlue);
589    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
590    InChain = CopyFromLo.getValue(1);
591    InGlue = CopyFromLo.getValue(2);
592  }
593
594  // insert MFHI
595  if (N->hasAnyUseOfValue(1)) {
596    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
597                                            HI, Ty, InGlue);
598    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
599  }
600
601  return SDValue();
602}
603
604static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
605  switch (CC) {
606  default: llvm_unreachable("Unknown fp condition code!");
607  case ISD::SETEQ:
608  case ISD::SETOEQ: return Mips::FCOND_OEQ;
609  case ISD::SETUNE: return Mips::FCOND_UNE;
610  case ISD::SETLT:
611  case ISD::SETOLT: return Mips::FCOND_OLT;
612  case ISD::SETGT:
613  case ISD::SETOGT: return Mips::FCOND_OGT;
614  case ISD::SETLE:
615  case ISD::SETOLE: return Mips::FCOND_OLE;
616  case ISD::SETGE:
617  case ISD::SETOGE: return Mips::FCOND_OGE;
618  case ISD::SETULT: return Mips::FCOND_ULT;
619  case ISD::SETULE: return Mips::FCOND_ULE;
620  case ISD::SETUGT: return Mips::FCOND_UGT;
621  case ISD::SETUGE: return Mips::FCOND_UGE;
622  case ISD::SETUO:  return Mips::FCOND_UN;
623  case ISD::SETO:   return Mips::FCOND_OR;
624  case ISD::SETNE:
625  case ISD::SETONE: return Mips::FCOND_ONE;
626  case ISD::SETUEQ: return Mips::FCOND_UEQ;
627  }
628}
629
630/// This function returns true if the floating point conditional branches and
631/// conditional moves which use condition code CC should be inverted.
632static bool invertFPCondCodeUser(Mips::CondCode CC) {
633  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
634    return false;
635
636  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
637         "Illegal Condition Code");
638
639  return true;
640}
641
642// Creates and returns an FPCmp node from a setcc node.
643// Returns Op if setcc is not a floating point comparison.
644static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
645  // must be a SETCC node
646  if (Op.getOpcode() != ISD::SETCC)
647    return Op;
648
649  SDValue LHS = Op.getOperand(0);
650
651  if (!LHS.getValueType().isFloatingPoint())
652    return Op;
653
654  SDValue RHS = Op.getOperand(1);
655  SDLoc DL(Op);
656
657  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
658  // node if necessary.
659  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
660
661  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
662                     DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
663}
664
665// Creates and returns a CMovFPT/F node.
666static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
667                            SDValue False, const SDLoc &DL) {
668  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
669  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
670  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
671
672  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
673                     True.getValueType(), True, FCC0, False, Cond);
674}
675
676static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
677                                    TargetLowering::DAGCombinerInfo &DCI,
678                                    const MipsSubtarget &Subtarget) {
679  if (DCI.isBeforeLegalizeOps())
680    return SDValue();
681
682  SDValue SetCC = N->getOperand(0);
683
684  if ((SetCC.getOpcode() != ISD::SETCC) ||
685      !SetCC.getOperand(0).getValueType().isInteger())
686    return SDValue();
687
688  SDValue False = N->getOperand(2);
689  EVT FalseTy = False.getValueType();
690
691  if (!FalseTy.isInteger())
692    return SDValue();
693
694  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
695
696  // If the RHS (False) is 0, we swap the order of the operands
697  // of ISD::SELECT (obviously also inverting the condition) so that we can
698  // take advantage of conditional moves using the $0 register.
699  // Example:
700  //   return (a != 0) ? x : 0;
701  //     load $reg, x
702  //     movz $reg, $0, a
703  if (!FalseC)
704    return SDValue();
705
706  const SDLoc DL(N);
707
708  if (!FalseC->getZExtValue()) {
709    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
710    SDValue True = N->getOperand(1);
711
712    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
713                         SetCC.getOperand(1),
714                         ISD::getSetCCInverse(CC, SetCC.getValueType()));
715
716    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
717  }
718
719  // If both operands are integer constants there's a possibility that we
720  // can do some interesting optimizations.
721  SDValue True = N->getOperand(1);
722  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
723
724  if (!TrueC || !True.getValueType().isInteger())
725    return SDValue();
726
727  // We'll also ignore MVT::i64 operands as this optimizations proves
728  // to be ineffective because of the required sign extensions as the result
729  // of a SETCC operator is always MVT::i32 for non-vector types.
730  if (True.getValueType() == MVT::i64)
731    return SDValue();
732
733  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
734
735  // 1)  (a < x) ? y : y-1
736  //  slti $reg1, a, x
737  //  addiu $reg2, $reg1, y-1
738  if (Diff == 1)
739    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
740
741  // 2)  (a < x) ? y-1 : y
742  //  slti $reg1, a, x
743  //  xor $reg1, $reg1, 1
744  //  addiu $reg2, $reg1, y-1
745  if (Diff == -1) {
746    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
747    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
748                         SetCC.getOperand(1),
749                         ISD::getSetCCInverse(CC, SetCC.getValueType()));
750    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
751  }
752
753  // Could not optimize.
754  return SDValue();
755}
756
757static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
758                                    TargetLowering::DAGCombinerInfo &DCI,
759                                    const MipsSubtarget &Subtarget) {
760  if (DCI.isBeforeLegalizeOps())
761    return SDValue();
762
763  SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
764
765  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
766  if (!FalseC || FalseC->getZExtValue())
767    return SDValue();
768
769  // Since RHS (False) is 0, we swap the order of the True/False operands
770  // (obviously also inverting the condition) so that we can
771  // take advantage of conditional moves using the $0 register.
772  // Example:
773  //   return (a != 0) ? x : 0;
774  //     load $reg, x
775  //     movz $reg, $0, a
776  unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
777                                                         MipsISD::CMovFP_T;
778
779  SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
780  return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
781                     ValueIfFalse, FCC, ValueIfTrue, Glue);
782}
783
784static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
785                                 TargetLowering::DAGCombinerInfo &DCI,
786                                 const MipsSubtarget &Subtarget) {
787  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
788    return SDValue();
789
790  SDValue FirstOperand = N->getOperand(0);
791  unsigned FirstOperandOpc = FirstOperand.getOpcode();
792  SDValue Mask = N->getOperand(1);
793  EVT ValTy = N->getValueType(0);
794  SDLoc DL(N);
795
796  uint64_t Pos = 0, SMPos, SMSize;
797  ConstantSDNode *CN;
798  SDValue NewOperand;
799  unsigned Opc;
800
801  // Op's second operand must be a shifted mask.
802  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
803      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
804    return SDValue();
805
806  if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
807    // Pattern match EXT.
808    //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
809    //  => ext $dst, $src, pos, size
810
811    // The second operand of the shift must be an immediate.
812    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
813      return SDValue();
814
815    Pos = CN->getZExtValue();
816
817    // Return if the shifted mask does not start at bit 0 or the sum of its size
818    // and Pos exceeds the word's size.
819    if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
820      return SDValue();
821
822    Opc = MipsISD::Ext;
823    NewOperand = FirstOperand.getOperand(0);
824  } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
825    // Pattern match CINS.
826    //  $dst = and (shl $src , pos), mask
827    //  => cins $dst, $src, pos, size
828    // mask is a shifted mask with consecutive 1's, pos = shift amount,
829    // size = population count.
830
831    // The second operand of the shift must be an immediate.
832    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
833      return SDValue();
834
835    Pos = CN->getZExtValue();
836
837    if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
838        Pos + SMSize > ValTy.getSizeInBits())
839      return SDValue();
840
841    NewOperand = FirstOperand.getOperand(0);
842    // SMSize is 'location' (position) in this case, not size.
843    SMSize--;
844    Opc = MipsISD::CIns;
845  } else {
846    // Pattern match EXT.
847    //  $dst = and $src, (2**size - 1) , if size > 16
848    //  => ext $dst, $src, pos, size , pos = 0
849
850    // If the mask is <= 0xffff, andi can be used instead.
851    if (CN->getZExtValue() <= 0xffff)
852      return SDValue();
853
854    // Return if the mask doesn't start at position 0.
855    if (SMPos)
856      return SDValue();
857
858    Opc = MipsISD::Ext;
859    NewOperand = FirstOperand;
860  }
861  return DAG.getNode(Opc, DL, ValTy, NewOperand,
862                     DAG.getConstant(Pos, DL, MVT::i32),
863                     DAG.getConstant(SMSize, DL, MVT::i32));
864}
865
866static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
867                                TargetLowering::DAGCombinerInfo &DCI,
868                                const MipsSubtarget &Subtarget) {
869  // Pattern match INS.
870  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
871  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
872  //  => ins $dst, $src, size, pos, $src1
873  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
874    return SDValue();
875
876  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
877  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
878  ConstantSDNode *CN, *CN1;
879
880  // See if Op's first operand matches (and $src1 , mask0).
881  if (And0.getOpcode() != ISD::AND)
882    return SDValue();
883
884  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
885      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
886    return SDValue();
887
888  // See if Op's second operand matches (and (shl $src, pos), mask1).
889  if (And1.getOpcode() == ISD::AND &&
890      And1.getOperand(0).getOpcode() == ISD::SHL) {
891
892    if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
893        !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
894      return SDValue();
895
896    // The shift masks must have the same position and size.
897    if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
898      return SDValue();
899
900    SDValue Shl = And1.getOperand(0);
901
902    if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
903      return SDValue();
904
905    unsigned Shamt = CN->getZExtValue();
906
907    // Return if the shift amount and the first bit position of mask are not the
908    // same.
909    EVT ValTy = N->getValueType(0);
910    if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
911      return SDValue();
912
913    SDLoc DL(N);
914    return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
915                       DAG.getConstant(SMPos0, DL, MVT::i32),
916                       DAG.getConstant(SMSize0, DL, MVT::i32),
917                       And0.getOperand(0));
918  } else {
919    // Pattern match DINS.
920    //  $dst = or (and $src, mask0), mask1
921    //  where mask0 = ((1 << SMSize0) -1) << SMPos0
922    //  => dins $dst, $src, pos, size
923    if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
924        ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
925         (SMSize0 + SMPos0 <= 32))) {
926      // Check if AND instruction has constant as argument
927      bool isConstCase = And1.getOpcode() != ISD::AND;
928      if (And1.getOpcode() == ISD::AND) {
929        if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
930          return SDValue();
931      } else {
932        if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
933          return SDValue();
934      }
935      // Don't generate INS if constant OR operand doesn't fit into bits
936      // cleared by constant AND operand.
937      if (CN->getSExtValue() & CN1->getSExtValue())
938        return SDValue();
939
940      SDLoc DL(N);
941      EVT ValTy = N->getOperand(0)->getValueType(0);
942      SDValue Const1;
943      SDValue SrlX;
944      if (!isConstCase) {
945        Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
946        SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
947      }
948      return DAG.getNode(
949          MipsISD::Ins, DL, N->getValueType(0),
950          isConstCase
951              ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
952              : SrlX,
953          DAG.getConstant(SMPos0, DL, MVT::i32),
954          DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
955                                                        : SMSize0,
956                          DL, MVT::i32),
957          And0->getOperand(0));
958
959    }
960    return SDValue();
961  }
962}
963
964static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
965                                       const MipsSubtarget &Subtarget) {
966  // ROOTNode must have a multiplication as an operand for the match to be
967  // successful.
968  if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
969      ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
970    return SDValue();
971
972  // We don't handle vector types here.
973  if (ROOTNode->getValueType(0).isVector())
974    return SDValue();
975
976  // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
977  // arithmetic. E.g.
978  // (add (mul a b) c) =>
979  //   let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
980  //   MIPS64:   (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
981  //   or
982  //   MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
983  //
984  // The overhead of setting up the Hi/Lo registers and reassembling the
985  // result makes this a dubious optimzation for MIPS64. The core of the
986  // problem is that Hi/Lo contain the upper and lower 32 bits of the
987  // operand and result.
988  //
989  // It requires a chain of 4 add/mul for MIPS64R2 to get better code
990  // density than doing it naively, 5 for MIPS64. Additionally, using
991  // madd/msub on MIPS64 requires the operands actually be 32 bit sign
992  // extended operands, not true 64 bit values.
993  //
994  // FIXME: For the moment, disable this completely for MIPS64.
995  if (Subtarget.hasMips64())
996    return SDValue();
997
998  SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
999                     ? ROOTNode->getOperand(0)
1000                     : ROOTNode->getOperand(1);
1001
1002  SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1003                     ? ROOTNode->getOperand(1)
1004                     : ROOTNode->getOperand(0);
1005
1006  // Transform this to a MADD only if the user of this node is the add.
1007  // If there are other users of the mul, this function returns here.
1008  if (!Mult.hasOneUse())
1009    return SDValue();
1010
1011  // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1012  // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1013  // of the multiply must have 32 or more sign bits, otherwise we cannot
1014  // perform this optimization. We have to check this here as we're performing
1015  // this optimization pre-legalization.
1016  SDValue MultLHS = Mult->getOperand(0);
1017  SDValue MultRHS = Mult->getOperand(1);
1018
1019  bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1020                  MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1021  bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1022                    MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1023
1024  if (!IsSigned && !IsUnsigned)
1025    return SDValue();
1026
1027  // Initialize accumulator.
1028  SDLoc DL(ROOTNode);
1029  SDValue TopHalf;
1030  SDValue BottomHalf;
1031  BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1032                              CurDAG.getIntPtrConstant(0, DL));
1033
1034  TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1035                           CurDAG.getIntPtrConstant(1, DL));
1036  SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1037                                  BottomHalf,
1038                                  TopHalf);
1039
1040  // Create MipsMAdd(u) / MipsMSub(u) node.
1041  bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1042  unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1043                          : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1044  SDValue MAddOps[3] = {
1045      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1046      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1047  EVT VTs[2] = {MVT::i32, MVT::i32};
1048  SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1049
1050  SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1051  SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1052  SDValue Combined =
1053      CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1054  return Combined;
1055}
1056
1057static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1058                                 TargetLowering::DAGCombinerInfo &DCI,
1059                                 const MipsSubtarget &Subtarget) {
1060  // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1061  if (DCI.isBeforeLegalizeOps()) {
1062    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1063        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1064      return performMADD_MSUBCombine(N, DAG, Subtarget);
1065
1066    return SDValue();
1067  }
1068
1069  return SDValue();
1070}
1071
1072static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1073                                 TargetLowering::DAGCombinerInfo &DCI,
1074                                 const MipsSubtarget &Subtarget) {
1075  // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1076  if (DCI.isBeforeLegalizeOps()) {
1077    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1078        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1079      return performMADD_MSUBCombine(N, DAG, Subtarget);
1080
1081    return SDValue();
1082  }
1083
1084  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1085  SDValue Add = N->getOperand(1);
1086
1087  if (Add.getOpcode() != ISD::ADD)
1088    return SDValue();
1089
1090  SDValue Lo = Add.getOperand(1);
1091
1092  if ((Lo.getOpcode() != MipsISD::Lo) ||
1093      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1094    return SDValue();
1095
1096  EVT ValTy = N->getValueType(0);
1097  SDLoc DL(N);
1098
1099  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1100                             Add.getOperand(0));
1101  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1102}
1103
1104static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1105                                 TargetLowering::DAGCombinerInfo &DCI,
1106                                 const MipsSubtarget &Subtarget) {
1107  // Pattern match CINS.
1108  //  $dst = shl (and $src , imm), pos
1109  //  => cins $dst, $src, pos, size
1110
1111  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1112    return SDValue();
1113
1114  SDValue FirstOperand = N->getOperand(0);
1115  unsigned FirstOperandOpc = FirstOperand.getOpcode();
1116  SDValue SecondOperand = N->getOperand(1);
1117  EVT ValTy = N->getValueType(0);
1118  SDLoc DL(N);
1119
1120  uint64_t Pos = 0, SMPos, SMSize;
1121  ConstantSDNode *CN;
1122  SDValue NewOperand;
1123
1124  // The second operand of the shift must be an immediate.
1125  if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1126    return SDValue();
1127
1128  Pos = CN->getZExtValue();
1129
1130  if (Pos >= ValTy.getSizeInBits())
1131    return SDValue();
1132
1133  if (FirstOperandOpc != ISD::AND)
1134    return SDValue();
1135
1136  // AND's second operand must be a shifted mask.
1137  if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1138      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1139    return SDValue();
1140
1141  // Return if the shifted mask does not start at bit 0 or the sum of its size
1142  // and Pos exceeds the word's size.
1143  if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1144    return SDValue();
1145
1146  NewOperand = FirstOperand.getOperand(0);
1147  // SMSize is 'location' (position) in this case, not size.
1148  SMSize--;
1149
1150  return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1151                     DAG.getConstant(Pos, DL, MVT::i32),
1152                     DAG.getConstant(SMSize, DL, MVT::i32));
1153}
1154
1155SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1156  const {
1157  SelectionDAG &DAG = DCI.DAG;
1158  unsigned Opc = N->getOpcode();
1159
1160  switch (Opc) {
1161  default: break;
1162  case ISD::SDIVREM:
1163  case ISD::UDIVREM:
1164    return performDivRemCombine(N, DAG, DCI, Subtarget);
1165  case ISD::SELECT:
1166    return performSELECTCombine(N, DAG, DCI, Subtarget);
1167  case MipsISD::CMovFP_F:
1168  case MipsISD::CMovFP_T:
1169    return performCMovFPCombine(N, DAG, DCI, Subtarget);
1170  case ISD::AND:
1171    return performANDCombine(N, DAG, DCI, Subtarget);
1172  case ISD::OR:
1173    return performORCombine(N, DAG, DCI, Subtarget);
1174  case ISD::ADD:
1175    return performADDCombine(N, DAG, DCI, Subtarget);
1176  case ISD::SHL:
1177    return performSHLCombine(N, DAG, DCI, Subtarget);
1178  case ISD::SUB:
1179    return performSUBCombine(N, DAG, DCI, Subtarget);
1180  }
1181
1182  return SDValue();
1183}
1184
1185bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1186  return Subtarget.hasMips32();
1187}
1188
1189bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1190  return Subtarget.hasMips32();
1191}
1192
1193bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1194    const SDNode *N, CombineLevel Level) const {
1195  if (N->getOperand(0).getValueType().isVector())
1196    return false;
1197  return true;
1198}
1199
1200void
1201MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1202                                          SmallVectorImpl<SDValue> &Results,
1203                                          SelectionDAG &DAG) const {
1204  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1205
1206  if (Res)
1207    for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1208      Results.push_back(Res.getValue(I));
1209}
1210
1211void
1212MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1213                                       SmallVectorImpl<SDValue> &Results,
1214                                       SelectionDAG &DAG) const {
1215  return LowerOperationWrapper(N, Results, DAG);
1216}
1217
1218SDValue MipsTargetLowering::
1219LowerOperation(SDValue Op, SelectionDAG &DAG) const
1220{
1221  switch (Op.getOpcode())
1222  {
1223  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
1224  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
1225  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
1226  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
1227  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
1228  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
1229  case ISD::SELECT:             return lowerSELECT(Op, DAG);
1230  case ISD::SETCC:              return lowerSETCC(Op, DAG);
1231  case ISD::VASTART:            return lowerVASTART(Op, DAG);
1232  case ISD::VAARG:              return lowerVAARG(Op, DAG);
1233  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
1234  case ISD::FABS:               return lowerFABS(Op, DAG);
1235  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
1236  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
1237  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
1238  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
1239  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
1240  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
1241  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
1242  case ISD::LOAD:               return lowerLOAD(Op, DAG);
1243  case ISD::STORE:              return lowerSTORE(Op, DAG);
1244  case ISD::EH_DWARF_CFA:       return lowerEH_DWARF_CFA(Op, DAG);
1245  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
1246  }
1247  return SDValue();
1248}
1249
1250//===----------------------------------------------------------------------===//
1251//  Lower helper functions
1252//===----------------------------------------------------------------------===//
1253
1254// addLiveIn - This helper function adds the specified physical register to the
1255// MachineFunction as a live in value.  It also creates a corresponding
1256// virtual register for it.
1257static unsigned
1258addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1259{
1260  Register VReg = MF.getRegInfo().createVirtualRegister(RC);
1261  MF.getRegInfo().addLiveIn(PReg, VReg);
1262  return VReg;
1263}
1264
1265static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1266                                              MachineBasicBlock &MBB,
1267                                              const TargetInstrInfo &TII,
1268                                              bool Is64Bit, bool IsMicroMips) {
1269  if (NoZeroDivCheck)
1270    return &MBB;
1271
1272  // Insert instruction "teq $divisor_reg, $zero, 7".
1273  MachineBasicBlock::iterator I(MI);
1274  MachineInstrBuilder MIB;
1275  MachineOperand &Divisor = MI.getOperand(2);
1276  MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1277                TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1278            .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1279            .addReg(Mips::ZERO)
1280            .addImm(7);
1281
1282  // Use the 32-bit sub-register if this is a 64-bit division.
1283  if (Is64Bit)
1284    MIB->getOperand(0).setSubReg(Mips::sub_32);
1285
1286  // Clear Divisor's kill flag.
1287  Divisor.setIsKill(false);
1288
1289  // We would normally delete the original instruction here but in this case
1290  // we only needed to inject an additional instruction rather than replace it.
1291
1292  return &MBB;
1293}
1294
1295MachineBasicBlock *
1296MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1297                                                MachineBasicBlock *BB) const {
1298  switch (MI.getOpcode()) {
1299  default:
1300    llvm_unreachable("Unexpected instr type to insert");
1301  case Mips::ATOMIC_LOAD_ADD_I8:
1302    return emitAtomicBinaryPartword(MI, BB, 1);
1303  case Mips::ATOMIC_LOAD_ADD_I16:
1304    return emitAtomicBinaryPartword(MI, BB, 2);
1305  case Mips::ATOMIC_LOAD_ADD_I32:
1306    return emitAtomicBinary(MI, BB);
1307  case Mips::ATOMIC_LOAD_ADD_I64:
1308    return emitAtomicBinary(MI, BB);
1309
1310  case Mips::ATOMIC_LOAD_AND_I8:
1311    return emitAtomicBinaryPartword(MI, BB, 1);
1312  case Mips::ATOMIC_LOAD_AND_I16:
1313    return emitAtomicBinaryPartword(MI, BB, 2);
1314  case Mips::ATOMIC_LOAD_AND_I32:
1315    return emitAtomicBinary(MI, BB);
1316  case Mips::ATOMIC_LOAD_AND_I64:
1317    return emitAtomicBinary(MI, BB);
1318
1319  case Mips::ATOMIC_LOAD_OR_I8:
1320    return emitAtomicBinaryPartword(MI, BB, 1);
1321  case Mips::ATOMIC_LOAD_OR_I16:
1322    return emitAtomicBinaryPartword(MI, BB, 2);
1323  case Mips::ATOMIC_LOAD_OR_I32:
1324    return emitAtomicBinary(MI, BB);
1325  case Mips::ATOMIC_LOAD_OR_I64:
1326    return emitAtomicBinary(MI, BB);
1327
1328  case Mips::ATOMIC_LOAD_XOR_I8:
1329    return emitAtomicBinaryPartword(MI, BB, 1);
1330  case Mips::ATOMIC_LOAD_XOR_I16:
1331    return emitAtomicBinaryPartword(MI, BB, 2);
1332  case Mips::ATOMIC_LOAD_XOR_I32:
1333    return emitAtomicBinary(MI, BB);
1334  case Mips::ATOMIC_LOAD_XOR_I64:
1335    return emitAtomicBinary(MI, BB);
1336
1337  case Mips::ATOMIC_LOAD_NAND_I8:
1338    return emitAtomicBinaryPartword(MI, BB, 1);
1339  case Mips::ATOMIC_LOAD_NAND_I16:
1340    return emitAtomicBinaryPartword(MI, BB, 2);
1341  case Mips::ATOMIC_LOAD_NAND_I32:
1342    return emitAtomicBinary(MI, BB);
1343  case Mips::ATOMIC_LOAD_NAND_I64:
1344    return emitAtomicBinary(MI, BB);
1345
1346  case Mips::ATOMIC_LOAD_SUB_I8:
1347    return emitAtomicBinaryPartword(MI, BB, 1);
1348  case Mips::ATOMIC_LOAD_SUB_I16:
1349    return emitAtomicBinaryPartword(MI, BB, 2);
1350  case Mips::ATOMIC_LOAD_SUB_I32:
1351    return emitAtomicBinary(MI, BB);
1352  case Mips::ATOMIC_LOAD_SUB_I64:
1353    return emitAtomicBinary(MI, BB);
1354
1355  case Mips::ATOMIC_SWAP_I8:
1356    return emitAtomicBinaryPartword(MI, BB, 1);
1357  case Mips::ATOMIC_SWAP_I16:
1358    return emitAtomicBinaryPartword(MI, BB, 2);
1359  case Mips::ATOMIC_SWAP_I32:
1360    return emitAtomicBinary(MI, BB);
1361  case Mips::ATOMIC_SWAP_I64:
1362    return emitAtomicBinary(MI, BB);
1363
1364  case Mips::ATOMIC_CMP_SWAP_I8:
1365    return emitAtomicCmpSwapPartword(MI, BB, 1);
1366  case Mips::ATOMIC_CMP_SWAP_I16:
1367    return emitAtomicCmpSwapPartword(MI, BB, 2);
1368  case Mips::ATOMIC_CMP_SWAP_I32:
1369    return emitAtomicCmpSwap(MI, BB);
1370  case Mips::ATOMIC_CMP_SWAP_I64:
1371    return emitAtomicCmpSwap(MI, BB);
1372
1373  case Mips::ATOMIC_LOAD_MIN_I8:
1374    return emitAtomicBinaryPartword(MI, BB, 1);
1375  case Mips::ATOMIC_LOAD_MIN_I16:
1376    return emitAtomicBinaryPartword(MI, BB, 2);
1377  case Mips::ATOMIC_LOAD_MIN_I32:
1378    return emitAtomicBinary(MI, BB);
1379  case Mips::ATOMIC_LOAD_MIN_I64:
1380    return emitAtomicBinary(MI, BB);
1381
1382  case Mips::ATOMIC_LOAD_MAX_I8:
1383    return emitAtomicBinaryPartword(MI, BB, 1);
1384  case Mips::ATOMIC_LOAD_MAX_I16:
1385    return emitAtomicBinaryPartword(MI, BB, 2);
1386  case Mips::ATOMIC_LOAD_MAX_I32:
1387    return emitAtomicBinary(MI, BB);
1388  case Mips::ATOMIC_LOAD_MAX_I64:
1389    return emitAtomicBinary(MI, BB);
1390
1391  case Mips::ATOMIC_LOAD_UMIN_I8:
1392    return emitAtomicBinaryPartword(MI, BB, 1);
1393  case Mips::ATOMIC_LOAD_UMIN_I16:
1394    return emitAtomicBinaryPartword(MI, BB, 2);
1395  case Mips::ATOMIC_LOAD_UMIN_I32:
1396    return emitAtomicBinary(MI, BB);
1397  case Mips::ATOMIC_LOAD_UMIN_I64:
1398    return emitAtomicBinary(MI, BB);
1399
1400  case Mips::ATOMIC_LOAD_UMAX_I8:
1401    return emitAtomicBinaryPartword(MI, BB, 1);
1402  case Mips::ATOMIC_LOAD_UMAX_I16:
1403    return emitAtomicBinaryPartword(MI, BB, 2);
1404  case Mips::ATOMIC_LOAD_UMAX_I32:
1405    return emitAtomicBinary(MI, BB);
1406  case Mips::ATOMIC_LOAD_UMAX_I64:
1407    return emitAtomicBinary(MI, BB);
1408
1409  case Mips::PseudoSDIV:
1410  case Mips::PseudoUDIV:
1411  case Mips::DIV:
1412  case Mips::DIVU:
1413  case Mips::MOD:
1414  case Mips::MODU:
1415    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1416                               false);
1417  case Mips::SDIV_MM_Pseudo:
1418  case Mips::UDIV_MM_Pseudo:
1419  case Mips::SDIV_MM:
1420  case Mips::UDIV_MM:
1421  case Mips::DIV_MMR6:
1422  case Mips::DIVU_MMR6:
1423  case Mips::MOD_MMR6:
1424  case Mips::MODU_MMR6:
1425    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1426  case Mips::PseudoDSDIV:
1427  case Mips::PseudoDUDIV:
1428  case Mips::DDIV:
1429  case Mips::DDIVU:
1430  case Mips::DMOD:
1431  case Mips::DMODU:
1432    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1433
1434  case Mips::PseudoSELECT_I:
1435  case Mips::PseudoSELECT_I64:
1436  case Mips::PseudoSELECT_S:
1437  case Mips::PseudoSELECT_D32:
1438  case Mips::PseudoSELECT_D64:
1439    return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1440  case Mips::PseudoSELECTFP_F_I:
1441  case Mips::PseudoSELECTFP_F_I64:
1442  case Mips::PseudoSELECTFP_F_S:
1443  case Mips::PseudoSELECTFP_F_D32:
1444  case Mips::PseudoSELECTFP_F_D64:
1445    return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1446  case Mips::PseudoSELECTFP_T_I:
1447  case Mips::PseudoSELECTFP_T_I64:
1448  case Mips::PseudoSELECTFP_T_S:
1449  case Mips::PseudoSELECTFP_T_D32:
1450  case Mips::PseudoSELECTFP_T_D64:
1451    return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1452  case Mips::PseudoD_SELECT_I:
1453  case Mips::PseudoD_SELECT_I64:
1454    return emitPseudoD_SELECT(MI, BB);
1455  case Mips::LDR_W:
1456    return emitLDR_W(MI, BB);
1457  case Mips::LDR_D:
1458    return emitLDR_D(MI, BB);
1459  case Mips::STR_W:
1460    return emitSTR_W(MI, BB);
1461  case Mips::STR_D:
1462    return emitSTR_D(MI, BB);
1463  }
1464}
1465
1466// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1467// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1468MachineBasicBlock *
1469MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1470                                     MachineBasicBlock *BB) const {
1471
1472  MachineFunction *MF = BB->getParent();
1473  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1474  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1475  DebugLoc DL = MI.getDebugLoc();
1476
1477  unsigned AtomicOp;
1478  bool NeedsAdditionalReg = false;
1479  switch (MI.getOpcode()) {
1480  case Mips::ATOMIC_LOAD_ADD_I32:
1481    AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1482    break;
1483  case Mips::ATOMIC_LOAD_SUB_I32:
1484    AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1485    break;
1486  case Mips::ATOMIC_LOAD_AND_I32:
1487    AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1488    break;
1489  case Mips::ATOMIC_LOAD_OR_I32:
1490    AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1491    break;
1492  case Mips::ATOMIC_LOAD_XOR_I32:
1493    AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1494    break;
1495  case Mips::ATOMIC_LOAD_NAND_I32:
1496    AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1497    break;
1498  case Mips::ATOMIC_SWAP_I32:
1499    AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1500    break;
1501  case Mips::ATOMIC_LOAD_ADD_I64:
1502    AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1503    break;
1504  case Mips::ATOMIC_LOAD_SUB_I64:
1505    AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1506    break;
1507  case Mips::ATOMIC_LOAD_AND_I64:
1508    AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1509    break;
1510  case Mips::ATOMIC_LOAD_OR_I64:
1511    AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1512    break;
1513  case Mips::ATOMIC_LOAD_XOR_I64:
1514    AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1515    break;
1516  case Mips::ATOMIC_LOAD_NAND_I64:
1517    AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1518    break;
1519  case Mips::ATOMIC_SWAP_I64:
1520    AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1521    break;
1522  case Mips::ATOMIC_LOAD_MIN_I32:
1523    AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA;
1524    NeedsAdditionalReg = true;
1525    break;
1526  case Mips::ATOMIC_LOAD_MAX_I32:
1527    AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA;
1528    NeedsAdditionalReg = true;
1529    break;
1530  case Mips::ATOMIC_LOAD_UMIN_I32:
1531    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA;
1532    NeedsAdditionalReg = true;
1533    break;
1534  case Mips::ATOMIC_LOAD_UMAX_I32:
1535    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA;
1536    NeedsAdditionalReg = true;
1537    break;
1538  case Mips::ATOMIC_LOAD_MIN_I64:
1539    AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA;
1540    NeedsAdditionalReg = true;
1541    break;
1542  case Mips::ATOMIC_LOAD_MAX_I64:
1543    AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA;
1544    NeedsAdditionalReg = true;
1545    break;
1546  case Mips::ATOMIC_LOAD_UMIN_I64:
1547    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA;
1548    NeedsAdditionalReg = true;
1549    break;
1550  case Mips::ATOMIC_LOAD_UMAX_I64:
1551    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA;
1552    NeedsAdditionalReg = true;
1553    break;
1554  default:
1555    llvm_unreachable("Unknown pseudo atomic for replacement!");
1556  }
1557
1558  Register OldVal = MI.getOperand(0).getReg();
1559  Register Ptr = MI.getOperand(1).getReg();
1560  Register Incr = MI.getOperand(2).getReg();
1561  Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1562
1563  MachineBasicBlock::iterator II(MI);
1564
1565  // The scratch registers here with the EarlyClobber | Define | Implicit
1566  // flags is used to persuade the register allocator and the machine
1567  // verifier to accept the usage of this register. This has to be a real
1568  // register which has an UNDEF value but is dead after the instruction which
1569  // is unique among the registers chosen for the instruction.
1570
1571  // The EarlyClobber flag has the semantic properties that the operand it is
1572  // attached to is clobbered before the rest of the inputs are read. Hence it
1573  // must be unique among the operands to the instruction.
1574  // The Define flag is needed to coerce the machine verifier that an Undef
1575  // value isn't a problem.
1576  // The Dead flag is needed as the value in scratch isn't used by any other
1577  // instruction. Kill isn't used as Dead is more precise.
1578  // The implicit flag is here due to the interaction between the other flags
1579  // and the machine verifier.
1580
1581  // For correctness purpose, a new pseudo is introduced here. We need this
1582  // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1583  // that is spread over >1 basic blocks. A register allocator which
1584  // introduces (or any codegen infact) a store, can violate the expectations
1585  // of the hardware.
1586  //
1587  // An atomic read-modify-write sequence starts with a linked load
1588  // instruction and ends with a store conditional instruction. The atomic
1589  // read-modify-write sequence fails if any of the following conditions
1590  // occur between the execution of ll and sc:
1591  //   * A coherent store is completed by another process or coherent I/O
1592  //     module into the block of synchronizable physical memory containing
1593  //     the word. The size and alignment of the block is
1594  //     implementation-dependent.
1595  //   * A coherent store is executed between an LL and SC sequence on the
1596  //     same processor to the block of synchornizable physical memory
1597  //     containing the word.
1598  //
1599
1600  Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1601  Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1602
1603  BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1604  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1605
1606  MachineInstrBuilder MIB =
1607      BuildMI(*BB, II, DL, TII->get(AtomicOp))
1608          .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1609          .addReg(PtrCopy)
1610          .addReg(IncrCopy)
1611          .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1612                               RegState::Implicit | RegState::Dead);
1613  if (NeedsAdditionalReg) {
1614    Register Scratch2 =
1615        RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1616    MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber |
1617                             RegState::Implicit | RegState::Dead);
1618  }
1619
1620  MI.eraseFromParent();
1621
1622  return BB;
1623}
1624
1625MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1626    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1627    unsigned SrcReg) const {
1628  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1629  const DebugLoc &DL = MI.getDebugLoc();
1630
1631  if (Subtarget.hasMips32r2() && Size == 1) {
1632    BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1633    return BB;
1634  }
1635
1636  if (Subtarget.hasMips32r2() && Size == 2) {
1637    BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1638    return BB;
1639  }
1640
1641  MachineFunction *MF = BB->getParent();
1642  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1643  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1644  Register ScrReg = RegInfo.createVirtualRegister(RC);
1645
1646  assert(Size < 32);
1647  int64_t ShiftImm = 32 - (Size * 8);
1648
1649  BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1650  BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1651
1652  return BB;
1653}
1654
1655MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1656    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1657  assert((Size == 1 || Size == 2) &&
1658         "Unsupported size for EmitAtomicBinaryPartial.");
1659
1660  MachineFunction *MF = BB->getParent();
1661  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1662  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1663  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1664  const TargetRegisterClass *RCp =
1665    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1666  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1667  DebugLoc DL = MI.getDebugLoc();
1668
1669  Register Dest = MI.getOperand(0).getReg();
1670  Register Ptr = MI.getOperand(1).getReg();
1671  Register Incr = MI.getOperand(2).getReg();
1672
1673  Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1674  Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1675  Register Mask = RegInfo.createVirtualRegister(RC);
1676  Register Mask2 = RegInfo.createVirtualRegister(RC);
1677  Register Incr2 = RegInfo.createVirtualRegister(RC);
1678  Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1679  Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1680  Register MaskUpper = RegInfo.createVirtualRegister(RC);
1681  Register Scratch = RegInfo.createVirtualRegister(RC);
1682  Register Scratch2 = RegInfo.createVirtualRegister(RC);
1683  Register Scratch3 = RegInfo.createVirtualRegister(RC);
1684
1685  unsigned AtomicOp = 0;
1686  bool NeedsAdditionalReg = false;
1687  switch (MI.getOpcode()) {
1688  case Mips::ATOMIC_LOAD_NAND_I8:
1689    AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1690    break;
1691  case Mips::ATOMIC_LOAD_NAND_I16:
1692    AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1693    break;
1694  case Mips::ATOMIC_SWAP_I8:
1695    AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1696    break;
1697  case Mips::ATOMIC_SWAP_I16:
1698    AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1699    break;
1700  case Mips::ATOMIC_LOAD_ADD_I8:
1701    AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1702    break;
1703  case Mips::ATOMIC_LOAD_ADD_I16:
1704    AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1705    break;
1706  case Mips::ATOMIC_LOAD_SUB_I8:
1707    AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1708    break;
1709  case Mips::ATOMIC_LOAD_SUB_I16:
1710    AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1711    break;
1712  case Mips::ATOMIC_LOAD_AND_I8:
1713    AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1714    break;
1715  case Mips::ATOMIC_LOAD_AND_I16:
1716    AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1717    break;
1718  case Mips::ATOMIC_LOAD_OR_I8:
1719    AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1720    break;
1721  case Mips::ATOMIC_LOAD_OR_I16:
1722    AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1723    break;
1724  case Mips::ATOMIC_LOAD_XOR_I8:
1725    AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1726    break;
1727  case Mips::ATOMIC_LOAD_XOR_I16:
1728    AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1729    break;
1730  case Mips::ATOMIC_LOAD_MIN_I8:
1731    AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA;
1732    NeedsAdditionalReg = true;
1733    break;
1734  case Mips::ATOMIC_LOAD_MIN_I16:
1735    AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA;
1736    NeedsAdditionalReg = true;
1737    break;
1738  case Mips::ATOMIC_LOAD_MAX_I8:
1739    AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA;
1740    NeedsAdditionalReg = true;
1741    break;
1742  case Mips::ATOMIC_LOAD_MAX_I16:
1743    AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA;
1744    NeedsAdditionalReg = true;
1745    break;
1746  case Mips::ATOMIC_LOAD_UMIN_I8:
1747    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA;
1748    NeedsAdditionalReg = true;
1749    break;
1750  case Mips::ATOMIC_LOAD_UMIN_I16:
1751    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA;
1752    NeedsAdditionalReg = true;
1753    break;
1754  case Mips::ATOMIC_LOAD_UMAX_I8:
1755    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA;
1756    NeedsAdditionalReg = true;
1757    break;
1758  case Mips::ATOMIC_LOAD_UMAX_I16:
1759    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA;
1760    NeedsAdditionalReg = true;
1761    break;
1762  default:
1763    llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1764  }
1765
1766  // insert new blocks after the current block
1767  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1768  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1769  MachineFunction::iterator It = ++BB->getIterator();
1770  MF->insert(It, exitMBB);
1771
1772  // Transfer the remainder of BB and its successor edges to exitMBB.
1773  exitMBB->splice(exitMBB->begin(), BB,
1774                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1775  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1776
1777  BB->addSuccessor(exitMBB, BranchProbability::getOne());
1778
1779  //  thisMBB:
1780  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1781  //    and     alignedaddr,ptr,masklsb2
1782  //    andi    ptrlsb2,ptr,3
1783  //    sll     shiftamt,ptrlsb2,3
1784  //    ori     maskupper,$0,255               # 0xff
1785  //    sll     mask,maskupper,shiftamt
1786  //    nor     mask2,$0,mask
1787  //    sll     incr2,incr,shiftamt
1788
1789  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1790  BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1791    .addReg(ABI.GetNullPtr()).addImm(-4);
1792  BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1793    .addReg(Ptr).addReg(MaskLSB2);
1794  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1795      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1796  if (Subtarget.isLittle()) {
1797    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1798  } else {
1799    Register Off = RegInfo.createVirtualRegister(RC);
1800    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1801      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1802    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1803  }
1804  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1805    .addReg(Mips::ZERO).addImm(MaskImm);
1806  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1807    .addReg(MaskUpper).addReg(ShiftAmt);
1808  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1809  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1810
1811
1812  // The purposes of the flags on the scratch registers is explained in
1813  // emitAtomicBinary. In summary, we need a scratch register which is going to
1814  // be undef, that is unique among registers chosen for the instruction.
1815
1816  MachineInstrBuilder MIB =
1817      BuildMI(BB, DL, TII->get(AtomicOp))
1818          .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1819          .addReg(AlignedAddr)
1820          .addReg(Incr2)
1821          .addReg(Mask)
1822          .addReg(Mask2)
1823          .addReg(ShiftAmt)
1824          .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1825                               RegState::Dead | RegState::Implicit)
1826          .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1827                                RegState::Dead | RegState::Implicit)
1828          .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1829                                RegState::Dead | RegState::Implicit);
1830  if (NeedsAdditionalReg) {
1831    Register Scratch4 = RegInfo.createVirtualRegister(RC);
1832    MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define |
1833                             RegState::Dead | RegState::Implicit);
1834  }
1835
1836  MI.eraseFromParent(); // The instruction is gone now.
1837
1838  return exitMBB;
1839}
1840
1841// Lower atomic compare and swap to a pseudo instruction, taking care to
1842// define a scratch register for the pseudo instruction's expansion. The
1843// instruction is expanded after the register allocator as to prevent
1844// the insertion of stores between the linked load and the store conditional.
1845
1846MachineBasicBlock *
1847MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1848                                      MachineBasicBlock *BB) const {
1849
1850  assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1851          MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1852         "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1853
1854  const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1855
1856  MachineFunction *MF = BB->getParent();
1857  MachineRegisterInfo &MRI = MF->getRegInfo();
1858  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1859  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1860  DebugLoc DL = MI.getDebugLoc();
1861
1862  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1863                          ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1864                          : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1865  Register Dest = MI.getOperand(0).getReg();
1866  Register Ptr = MI.getOperand(1).getReg();
1867  Register OldVal = MI.getOperand(2).getReg();
1868  Register NewVal = MI.getOperand(3).getReg();
1869
1870  Register Scratch = MRI.createVirtualRegister(RC);
1871  MachineBasicBlock::iterator II(MI);
1872
1873  // We need to create copies of the various registers and kill them at the
1874  // atomic pseudo. If the copies are not made, when the atomic is expanded
1875  // after fast register allocation, the spills will end up outside of the
1876  // blocks that their values are defined in, causing livein errors.
1877
1878  Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1879  Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1880  Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1881
1882  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1883  BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1884  BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1885
1886  // The purposes of the flags on the scratch registers is explained in
1887  // emitAtomicBinary. In summary, we need a scratch register which is going to
1888  // be undef, that is unique among registers chosen for the instruction.
1889
1890  BuildMI(*BB, II, DL, TII->get(AtomicOp))
1891      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1892      .addReg(PtrCopy, RegState::Kill)
1893      .addReg(OldValCopy, RegState::Kill)
1894      .addReg(NewValCopy, RegState::Kill)
1895      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1896                           RegState::Dead | RegState::Implicit);
1897
1898  MI.eraseFromParent(); // The instruction is gone now.
1899
1900  return BB;
1901}
1902
1903MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1904    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1905  assert((Size == 1 || Size == 2) &&
1906      "Unsupported size for EmitAtomicCmpSwapPartial.");
1907
1908  MachineFunction *MF = BB->getParent();
1909  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1910  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1911  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1912  const TargetRegisterClass *RCp =
1913    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1914  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1915  DebugLoc DL = MI.getDebugLoc();
1916
1917  Register Dest = MI.getOperand(0).getReg();
1918  Register Ptr = MI.getOperand(1).getReg();
1919  Register CmpVal = MI.getOperand(2).getReg();
1920  Register NewVal = MI.getOperand(3).getReg();
1921
1922  Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1923  Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1924  Register Mask = RegInfo.createVirtualRegister(RC);
1925  Register Mask2 = RegInfo.createVirtualRegister(RC);
1926  Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1927  Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1928  Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1929  Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1930  Register MaskUpper = RegInfo.createVirtualRegister(RC);
1931  Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1932  Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
1933  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1934                          ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1935                          : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1936
1937  // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1938  // flags are used to coerce the register allocator and the machine verifier to
1939  // accept the usage of these registers.
1940  // The EarlyClobber flag has the semantic properties that the operand it is
1941  // attached to is clobbered before the rest of the inputs are read. Hence it
1942  // must be unique among the operands to the instruction.
1943  // The Define flag is needed to coerce the machine verifier that an Undef
1944  // value isn't a problem.
1945  // The Dead flag is needed as the value in scratch isn't used by any other
1946  // instruction. Kill isn't used as Dead is more precise.
1947  Register Scratch = RegInfo.createVirtualRegister(RC);
1948  Register Scratch2 = RegInfo.createVirtualRegister(RC);
1949
1950  // insert new blocks after the current block
1951  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1952  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1953  MachineFunction::iterator It = ++BB->getIterator();
1954  MF->insert(It, exitMBB);
1955
1956  // Transfer the remainder of BB and its successor edges to exitMBB.
1957  exitMBB->splice(exitMBB->begin(), BB,
1958                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1959  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1960
1961  BB->addSuccessor(exitMBB, BranchProbability::getOne());
1962
1963  //  thisMBB:
1964  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1965  //    and     alignedaddr,ptr,masklsb2
1966  //    andi    ptrlsb2,ptr,3
1967  //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
1968  //    sll     shiftamt,ptrlsb2,3
1969  //    ori     maskupper,$0,255               # 0xff
1970  //    sll     mask,maskupper,shiftamt
1971  //    nor     mask2,$0,mask
1972  //    andi    maskedcmpval,cmpval,255
1973  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1974  //    andi    maskednewval,newval,255
1975  //    sll     shiftednewval,maskednewval,shiftamt
1976  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1977  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1978    .addReg(ABI.GetNullPtr()).addImm(-4);
1979  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1980    .addReg(Ptr).addReg(MaskLSB2);
1981  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1982      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1983  if (Subtarget.isLittle()) {
1984    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1985  } else {
1986    Register Off = RegInfo.createVirtualRegister(RC);
1987    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1988      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1989    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1990  }
1991  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1992    .addReg(Mips::ZERO).addImm(MaskImm);
1993  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1994    .addReg(MaskUpper).addReg(ShiftAmt);
1995  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1996  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1997    .addReg(CmpVal).addImm(MaskImm);
1998  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1999    .addReg(MaskedCmpVal).addReg(ShiftAmt);
2000  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
2001    .addReg(NewVal).addImm(MaskImm);
2002  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
2003    .addReg(MaskedNewVal).addReg(ShiftAmt);
2004
2005  // The purposes of the flags on the scratch registers are explained in
2006  // emitAtomicBinary. In summary, we need a scratch register which is going to
2007  // be undef, that is unique among the register chosen for the instruction.
2008
2009  BuildMI(BB, DL, TII->get(AtomicOp))
2010      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
2011      .addReg(AlignedAddr)
2012      .addReg(Mask)
2013      .addReg(ShiftedCmpVal)
2014      .addReg(Mask2)
2015      .addReg(ShiftedNewVal)
2016      .addReg(ShiftAmt)
2017      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
2018                           RegState::Dead | RegState::Implicit)
2019      .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
2020                            RegState::Dead | RegState::Implicit);
2021
2022  MI.eraseFromParent(); // The instruction is gone now.
2023
2024  return exitMBB;
2025}
2026
2027SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2028  // The first operand is the chain, the second is the condition, the third is
2029  // the block to branch to if the condition is true.
2030  SDValue Chain = Op.getOperand(0);
2031  SDValue Dest = Op.getOperand(2);
2032  SDLoc DL(Op);
2033
2034  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2035  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
2036
2037  // Return if flag is not set by a floating point comparison.
2038  if (CondRes.getOpcode() != MipsISD::FPCmp)
2039    return Op;
2040
2041  SDValue CCNode  = CondRes.getOperand(2);
2042  Mips::CondCode CC =
2043    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
2044  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
2045  SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
2046  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
2047  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
2048                     FCC0, Dest, CondRes);
2049}
2050
2051SDValue MipsTargetLowering::
2052lowerSELECT(SDValue Op, SelectionDAG &DAG) const
2053{
2054  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2055  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
2056
2057  // Return if flag is not set by a floating point comparison.
2058  if (Cond.getOpcode() != MipsISD::FPCmp)
2059    return Op;
2060
2061  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2062                      SDLoc(Op));
2063}
2064
2065SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2066  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2067  SDValue Cond = createFPCmp(DAG, Op);
2068
2069  assert(Cond.getOpcode() == MipsISD::FPCmp &&
2070         "Floating point operand expected.");
2071
2072  SDLoc DL(Op);
2073  SDValue True  = DAG.getConstant(1, DL, MVT::i32);
2074  SDValue False = DAG.getConstant(0, DL, MVT::i32);
2075
2076  return createCMovFP(DAG, Cond, True, False, DL);
2077}
2078
2079SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
2080                                               SelectionDAG &DAG) const {
2081  EVT Ty = Op.getValueType();
2082  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2083  const GlobalValue *GV = N->getGlobal();
2084
2085  if (!isPositionIndependent()) {
2086    const MipsTargetObjectFile *TLOF =
2087        static_cast<const MipsTargetObjectFile *>(
2088            getTargetMachine().getObjFileLowering());
2089    const GlobalObject *GO = GV->getBaseObject();
2090    if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
2091      // %gp_rel relocation
2092      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2093
2094                                // %hi/%lo relocation
2095    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2096                                // %highest/%higher/%hi/%lo relocation
2097                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2098  }
2099
2100  // Every other architecture would use shouldAssumeDSOLocal in here, but
2101  // mips is special.
2102  // * In PIC code mips requires got loads even for local statics!
2103  // * To save on got entries, for local statics the got entry contains the
2104  //   page and an additional add instruction takes care of the low bits.
2105  // * It is legal to access a hidden symbol with a non hidden undefined,
2106  //   so one cannot guarantee that all access to a hidden symbol will know
2107  //   it is hidden.
2108  // * Mips linkers don't support creating a page and a full got entry for
2109  //   the same symbol.
2110  // * Given all that, we have to use a full got entry for hidden symbols :-(
2111  if (GV->hasLocalLinkage())
2112    return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2113
2114  if (Subtarget.useXGOT())
2115    return getAddrGlobalLargeGOT(
2116        N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
2117        DAG.getEntryNode(),
2118        MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2119
2120  return getAddrGlobal(
2121      N, SDLoc(N), Ty, DAG,
2122      (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
2123      DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2124}
2125
2126SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2127                                              SelectionDAG &DAG) const {
2128  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2129  EVT Ty = Op.getValueType();
2130
2131  if (!isPositionIndependent())
2132    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2133                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2134
2135  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2136}
2137
2138SDValue MipsTargetLowering::
2139lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2140{
2141  // If the relocation model is PIC, use the General Dynamic TLS Model or
2142  // Local Dynamic TLS model, otherwise use the Initial Exec or
2143  // Local Exec TLS Model.
2144
2145  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2146  if (DAG.getTarget().useEmulatedTLS())
2147    return LowerToTLSEmulatedModel(GA, DAG);
2148
2149  SDLoc DL(GA);
2150  const GlobalValue *GV = GA->getGlobal();
2151  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2152
2153  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2154
2155  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2156    // General Dynamic and Local Dynamic TLS Model.
2157    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2158                                                      : MipsII::MO_TLSGD;
2159
2160    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2161    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2162                                   getGlobalReg(DAG, PtrVT), TGA);
2163    unsigned PtrSize = PtrVT.getSizeInBits();
2164    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2165
2166    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2167
2168    ArgListTy Args;
2169    ArgListEntry Entry;
2170    Entry.Node = Argument;
2171    Entry.Ty = PtrTy;
2172    Args.push_back(Entry);
2173
2174    TargetLowering::CallLoweringInfo CLI(DAG);
2175    CLI.setDebugLoc(DL)
2176        .setChain(DAG.getEntryNode())
2177        .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2178    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2179
2180    SDValue Ret = CallResult.first;
2181
2182    if (model != TLSModel::LocalDynamic)
2183      return Ret;
2184
2185    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2186                                               MipsII::MO_DTPREL_HI);
2187    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2188    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2189                                               MipsII::MO_DTPREL_LO);
2190    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2191    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2192    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2193  }
2194
2195  SDValue Offset;
2196  if (model == TLSModel::InitialExec) {
2197    // Initial Exec TLS Model
2198    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2199                                             MipsII::MO_GOTTPREL);
2200    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2201                      TGA);
2202    Offset =
2203        DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2204  } else {
2205    // Local Exec TLS Model
2206    assert(model == TLSModel::LocalExec);
2207    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2208                                               MipsII::MO_TPREL_HI);
2209    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2210                                               MipsII::MO_TPREL_LO);
2211    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2212    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2213    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2214  }
2215
2216  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2217  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2218}
2219
2220SDValue MipsTargetLowering::
2221lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2222{
2223  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2224  EVT Ty = Op.getValueType();
2225
2226  if (!isPositionIndependent())
2227    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2228                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2229
2230  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2231}
2232
2233SDValue MipsTargetLowering::
2234lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2235{
2236  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2237  EVT Ty = Op.getValueType();
2238
2239  if (!isPositionIndependent()) {
2240    const MipsTargetObjectFile *TLOF =
2241        static_cast<const MipsTargetObjectFile *>(
2242            getTargetMachine().getObjFileLowering());
2243
2244    if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2245                                       getTargetMachine()))
2246      // %gp_rel relocation
2247      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2248
2249    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2250                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2251  }
2252
2253 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2254}
2255
2256SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2257  MachineFunction &MF = DAG.getMachineFunction();
2258  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2259
2260  SDLoc DL(Op);
2261  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2262                                 getPointerTy(MF.getDataLayout()));
2263
2264  // vastart just stores the address of the VarArgsFrameIndex slot into the
2265  // memory location argument.
2266  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2267  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2268                      MachinePointerInfo(SV));
2269}
2270
2271SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2272  SDNode *Node = Op.getNode();
2273  EVT VT = Node->getValueType(0);
2274  SDValue Chain = Node->getOperand(0);
2275  SDValue VAListPtr = Node->getOperand(1);
2276  const Align Align =
2277      llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
2278  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2279  SDLoc DL(Node);
2280  unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2281
2282  SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2283                                   VAListPtr, MachinePointerInfo(SV));
2284  SDValue VAList = VAListLoad;
2285
2286  // Re-align the pointer if necessary.
2287  // It should only ever be necessary for 64-bit types on O32 since the minimum
2288  // argument alignment is the same as the maximum type alignment for N32/N64.
2289  //
2290  // FIXME: We currently align too often. The code generator doesn't notice
2291  //        when the pointer is still aligned from the last va_arg (or pair of
2292  //        va_args for the i64 on O32 case).
2293  if (Align > getMinStackArgumentAlignment()) {
2294    VAList = DAG.getNode(
2295        ISD::ADD, DL, VAList.getValueType(), VAList,
2296        DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));
2297
2298    VAList = DAG.getNode(
2299        ISD::AND, DL, VAList.getValueType(), VAList,
2300        DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
2301  }
2302
2303  // Increment the pointer, VAList, to the next vaarg.
2304  auto &TD = DAG.getDataLayout();
2305  unsigned ArgSizeInBytes =
2306      TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2307  SDValue Tmp3 =
2308      DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2309                  DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2310                                  DL, VAList.getValueType()));
2311  // Store the incremented VAList to the legalized pointer
2312  Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2313                       MachinePointerInfo(SV));
2314
2315  // In big-endian mode we must adjust the pointer when the load size is smaller
2316  // than the argument slot size. We must also reduce the known alignment to
2317  // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2318  // the correct half of the slot, and reduce the alignment from 8 (slot
2319  // alignment) down to 4 (type alignment).
2320  if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2321    unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2322    VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2323                         DAG.getIntPtrConstant(Adjustment, DL));
2324  }
2325  // Load the actual argument out of the pointer VAList
2326  return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2327}
2328
2329static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2330                                bool HasExtractInsert) {
2331  EVT TyX = Op.getOperand(0).getValueType();
2332  EVT TyY = Op.getOperand(1).getValueType();
2333  SDLoc DL(Op);
2334  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2335  SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2336  SDValue Res;
2337
2338  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2339  // to i32.
2340  SDValue X = (TyX == MVT::f32) ?
2341    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2342    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2343                Const1);
2344  SDValue Y = (TyY == MVT::f32) ?
2345    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2346    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2347                Const1);
2348
2349  if (HasExtractInsert) {
2350    // ext  E, Y, 31, 1  ; extract bit31 of Y
2351    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2352    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2353    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2354  } else {
2355    // sll SllX, X, 1
2356    // srl SrlX, SllX, 1
2357    // srl SrlY, Y, 31
2358    // sll SllY, SrlX, 31
2359    // or  Or, SrlX, SllY
2360    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2361    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2362    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2363    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2364    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2365  }
2366
2367  if (TyX == MVT::f32)
2368    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2369
2370  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2371                             Op.getOperand(0),
2372                             DAG.getConstant(0, DL, MVT::i32));
2373  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2374}
2375
2376static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2377                                bool HasExtractInsert) {
2378  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2379  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2380  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2381  SDLoc DL(Op);
2382  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2383
2384  // Bitcast to integer nodes.
2385  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2386  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2387
2388  if (HasExtractInsert) {
2389    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2390    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2391    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2392                            DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2393
2394    if (WidthX > WidthY)
2395      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2396    else if (WidthY > WidthX)
2397      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2398
2399    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2400                            DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2401                            X);
2402    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2403  }
2404
2405  // (d)sll SllX, X, 1
2406  // (d)srl SrlX, SllX, 1
2407  // (d)srl SrlY, Y, width(Y)-1
2408  // (d)sll SllY, SrlX, width(Y)-1
2409  // or     Or, SrlX, SllY
2410  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2411  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2412  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2413                             DAG.getConstant(WidthY - 1, DL, MVT::i32));
2414
2415  if (WidthX > WidthY)
2416    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2417  else if (WidthY > WidthX)
2418    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2419
2420  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2421                             DAG.getConstant(WidthX - 1, DL, MVT::i32));
2422  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2423  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2424}
2425
2426SDValue
2427MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2428  if (Subtarget.isGP64bit())
2429    return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2430
2431  return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2432}
2433
2434static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
2435                           bool HasExtractInsert) {
2436  SDLoc DL(Op);
2437  SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2438
2439  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2440  // to i32.
2441  SDValue X = (Op.getValueType() == MVT::f32)
2442                  ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2443                  : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2444                                Op.getOperand(0), Const1);
2445
2446  // Clear MSB.
2447  if (HasExtractInsert)
2448    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2449                      DAG.getRegister(Mips::ZERO, MVT::i32),
2450                      DAG.getConstant(31, DL, MVT::i32), Const1, X);
2451  else {
2452    // TODO: Provide DAG patterns which transform (and x, cst)
2453    // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2454    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2455    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2456  }
2457
2458  if (Op.getValueType() == MVT::f32)
2459    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2460
2461  // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2462  // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2463  // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2464  // place.
2465  SDValue LowX =
2466      DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2467                  DAG.getConstant(0, DL, MVT::i32));
2468  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2469}
2470
2471static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
2472                           bool HasExtractInsert) {
2473  SDLoc DL(Op);
2474  SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2475
2476  // Bitcast to integer node.
2477  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2478
2479  // Clear MSB.
2480  if (HasExtractInsert)
2481    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2482                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2483                      DAG.getConstant(63, DL, MVT::i32), Const1, X);
2484  else {
2485    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2486    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2487  }
2488
2489  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2490}
2491
2492SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2493  if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2494    return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2495
2496  return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2497}
2498
2499SDValue MipsTargetLowering::
2500lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2501  // check the depth
2502  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2503    DAG.getContext()->emitError(
2504        "return address can be determined only for current frame");
2505    return SDValue();
2506  }
2507
2508  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2509  MFI.setFrameAddressIsTaken(true);
2510  EVT VT = Op.getValueType();
2511  SDLoc DL(Op);
2512  SDValue FrameAddr = DAG.getCopyFromReg(
2513      DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2514  return FrameAddr;
2515}
2516
2517SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2518                                            SelectionDAG &DAG) const {
2519  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2520    return SDValue();
2521
2522  // check the depth
2523  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2524    DAG.getContext()->emitError(
2525        "return address can be determined only for current frame");
2526    return SDValue();
2527  }
2528
2529  MachineFunction &MF = DAG.getMachineFunction();
2530  MachineFrameInfo &MFI = MF.getFrameInfo();
2531  MVT VT = Op.getSimpleValueType();
2532  unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2533  MFI.setReturnAddressIsTaken(true);
2534
2535  // Return RA, which contains the return address. Mark it an implicit live-in.
2536  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2537  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2538}
2539
2540// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2541// generated from __builtin_eh_return (offset, handler)
2542// The effect of this is to adjust the stack pointer by "offset"
2543// and then branch to "handler".
2544SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2545                                                                     const {
2546  MachineFunction &MF = DAG.getMachineFunction();
2547  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2548
2549  MipsFI->setCallsEhReturn();
2550  SDValue Chain     = Op.getOperand(0);
2551  SDValue Offset    = Op.getOperand(1);
2552  SDValue Handler   = Op.getOperand(2);
2553  SDLoc DL(Op);
2554  EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2555
2556  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2557  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2558  unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2559  unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2560  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2561  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2562  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2563                     DAG.getRegister(OffsetReg, Ty),
2564                     DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2565                     Chain.getValue(1));
2566}
2567
2568SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2569                                              SelectionDAG &DAG) const {
2570  // FIXME: Need pseudo-fence for 'singlethread' fences
2571  // FIXME: Set SType for weaker fences where supported/appropriate.
2572  unsigned SType = 0;
2573  SDLoc DL(Op);
2574  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2575                     DAG.getConstant(SType, DL, MVT::i32));
2576}
2577
2578SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2579                                                SelectionDAG &DAG) const {
2580  SDLoc DL(Op);
2581  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2582
2583  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2584  SDValue Shamt = Op.getOperand(2);
2585  // if shamt < (VT.bits):
2586  //  lo = (shl lo, shamt)
2587  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2588  // else:
2589  //  lo = 0
2590  //  hi = (shl lo, shamt[4:0])
2591  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2592                            DAG.getConstant(-1, DL, MVT::i32));
2593  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2594                                      DAG.getConstant(1, DL, VT));
2595  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2596  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2597  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2598  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2599  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2600                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2601  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2602                   DAG.getConstant(0, DL, VT), ShiftLeftLo);
2603  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2604
2605  SDValue Ops[2] = {Lo, Hi};
2606  return DAG.getMergeValues(Ops, DL);
2607}
2608
2609SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2610                                                 bool IsSRA) const {
2611  SDLoc DL(Op);
2612  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2613  SDValue Shamt = Op.getOperand(2);
2614  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2615
2616  // if shamt < (VT.bits):
2617  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2618  //  if isSRA:
2619  //    hi = (sra hi, shamt)
2620  //  else:
2621  //    hi = (srl hi, shamt)
2622  // else:
2623  //  if isSRA:
2624  //   lo = (sra hi, shamt[4:0])
2625  //   hi = (sra hi, 31)
2626  //  else:
2627  //   lo = (srl hi, shamt[4:0])
2628  //   hi = 0
2629  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2630                            DAG.getConstant(-1, DL, MVT::i32));
2631  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2632                                     DAG.getConstant(1, DL, VT));
2633  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2634  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2635  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2636  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2637                                     DL, VT, Hi, Shamt);
2638  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2639                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2640  SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2641                            DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2642
2643  if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2644    SDVTList VTList = DAG.getVTList(VT, VT);
2645    return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2646                                             : Mips::PseudoD_SELECT_I,
2647                       DL, VTList, Cond, ShiftRightHi,
2648                       IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2649                       ShiftRightHi);
2650  }
2651
2652  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2653  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2654                   IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2655
2656  SDValue Ops[2] = {Lo, Hi};
2657  return DAG.getMergeValues(Ops, DL);
2658}
2659
2660static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2661                            SDValue Chain, SDValue Src, unsigned Offset) {
2662  SDValue Ptr = LD->getBasePtr();
2663  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2664  EVT BasePtrVT = Ptr.getValueType();
2665  SDLoc DL(LD);
2666  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2667
2668  if (Offset)
2669    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2670                      DAG.getConstant(Offset, DL, BasePtrVT));
2671
2672  SDValue Ops[] = { Chain, Ptr, Src };
2673  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2674                                 LD->getMemOperand());
2675}
2676
2677// Expand an unaligned 32 or 64-bit integer load node.
2678SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2679  LoadSDNode *LD = cast<LoadSDNode>(Op);
2680  EVT MemVT = LD->getMemoryVT();
2681
2682  if (Subtarget.systemSupportsUnalignedAccess())
2683    return Op;
2684
2685  // Return if load is aligned or if MemVT is neither i32 nor i64.
2686  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2687      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2688    return SDValue();
2689
2690  bool IsLittle = Subtarget.isLittle();
2691  EVT VT = Op.getValueType();
2692  ISD::LoadExtType ExtType = LD->getExtensionType();
2693  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2694
2695  assert((VT == MVT::i32) || (VT == MVT::i64));
2696
2697  // Expand
2698  //  (set dst, (i64 (load baseptr)))
2699  // to
2700  //  (set tmp, (ldl (add baseptr, 7), undef))
2701  //  (set dst, (ldr baseptr, tmp))
2702  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2703    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2704                               IsLittle ? 7 : 0);
2705    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2706                        IsLittle ? 0 : 7);
2707  }
2708
2709  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2710                             IsLittle ? 3 : 0);
2711  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2712                             IsLittle ? 0 : 3);
2713
2714  // Expand
2715  //  (set dst, (i32 (load baseptr))) or
2716  //  (set dst, (i64 (sextload baseptr))) or
2717  //  (set dst, (i64 (extload baseptr)))
2718  // to
2719  //  (set tmp, (lwl (add baseptr, 3), undef))
2720  //  (set dst, (lwr baseptr, tmp))
2721  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2722      (ExtType == ISD::EXTLOAD))
2723    return LWR;
2724
2725  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2726
2727  // Expand
2728  //  (set dst, (i64 (zextload baseptr)))
2729  // to
2730  //  (set tmp0, (lwl (add baseptr, 3), undef))
2731  //  (set tmp1, (lwr baseptr, tmp0))
2732  //  (set tmp2, (shl tmp1, 32))
2733  //  (set dst, (srl tmp2, 32))
2734  SDLoc DL(LD);
2735  SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2736  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2737  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2738  SDValue Ops[] = { SRL, LWR.getValue(1) };
2739  return DAG.getMergeValues(Ops, DL);
2740}
2741
2742static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2743                             SDValue Chain, unsigned Offset) {
2744  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2745  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2746  SDLoc DL(SD);
2747  SDVTList VTList = DAG.getVTList(MVT::Other);
2748
2749  if (Offset)
2750    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2751                      DAG.getConstant(Offset, DL, BasePtrVT));
2752
2753  SDValue Ops[] = { Chain, Value, Ptr };
2754  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2755                                 SD->getMemOperand());
2756}
2757
2758// Expand an unaligned 32 or 64-bit integer store node.
2759static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2760                                      bool IsLittle) {
2761  SDValue Value = SD->getValue(), Chain = SD->getChain();
2762  EVT VT = Value.getValueType();
2763
2764  // Expand
2765  //  (store val, baseptr) or
2766  //  (truncstore val, baseptr)
2767  // to
2768  //  (swl val, (add baseptr, 3))
2769  //  (swr val, baseptr)
2770  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2771    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2772                                IsLittle ? 3 : 0);
2773    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2774  }
2775
2776  assert(VT == MVT::i64);
2777
2778  // Expand
2779  //  (store val, baseptr)
2780  // to
2781  //  (sdl val, (add baseptr, 7))
2782  //  (sdr val, baseptr)
2783  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2784  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2785}
2786
2787// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2788static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2789                                     bool SingleFloat) {
2790  SDValue Val = SD->getValue();
2791
2792  if (Val.getOpcode() != ISD::FP_TO_SINT ||
2793      (Val.getValueSizeInBits() > 32 && SingleFloat))
2794    return SDValue();
2795
2796  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2797  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2798                           Val.getOperand(0));
2799  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2800                      SD->getPointerInfo(), SD->getAlignment(),
2801                      SD->getMemOperand()->getFlags());
2802}
2803
2804SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2805  StoreSDNode *SD = cast<StoreSDNode>(Op);
2806  EVT MemVT = SD->getMemoryVT();
2807
2808  // Lower unaligned integer stores.
2809  if (!Subtarget.systemSupportsUnalignedAccess() &&
2810      (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2811      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2812    return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2813
2814  return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2815}
2816
2817SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2818                                              SelectionDAG &DAG) const {
2819
2820  // Return a fixed StackObject with offset 0 which points to the old stack
2821  // pointer.
2822  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2823  EVT ValTy = Op->getValueType(0);
2824  int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2825  return DAG.getFrameIndex(FI, ValTy);
2826}
2827
2828SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2829                                            SelectionDAG &DAG) const {
2830  if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2831    return SDValue();
2832
2833  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2834  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2835                              Op.getOperand(0));
2836  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2837}
2838
2839//===----------------------------------------------------------------------===//
2840//                      Calling Convention Implementation
2841//===----------------------------------------------------------------------===//
2842
2843//===----------------------------------------------------------------------===//
2844// TODO: Implement a generic logic using tblgen that can support this.
2845// Mips O32 ABI rules:
2846// ---
2847// i32 - Passed in A0, A1, A2, A3 and stack
2848// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2849//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2850// f64 - Only passed in two aliased f32 registers if no int reg has been used
2851//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2852//       not used, it must be shadowed. If only A3 is available, shadow it and
2853//       go to stack.
2854// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2855// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2856//         with the remainder spilled to the stack.
2857// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2858//         spilling the remainder to the stack.
2859//
2860//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2861//===----------------------------------------------------------------------===//
2862
2863static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2864                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2865                       CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2866  const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2867      State.getMachineFunction().getSubtarget());
2868
2869  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2870
2871  const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2872
2873  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2874
2875  static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2876
2877  // Do not process byval args here.
2878  if (ArgFlags.isByVal())
2879    return true;
2880
2881  // Promote i8 and i16
2882  if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2883    if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2884      LocVT = MVT::i32;
2885      if (ArgFlags.isSExt())
2886        LocInfo = CCValAssign::SExtUpper;
2887      else if (ArgFlags.isZExt())
2888        LocInfo = CCValAssign::ZExtUpper;
2889      else
2890        LocInfo = CCValAssign::AExtUpper;
2891    }
2892  }
2893
2894  // Promote i8 and i16
2895  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2896    LocVT = MVT::i32;
2897    if (ArgFlags.isSExt())
2898      LocInfo = CCValAssign::SExt;
2899    else if (ArgFlags.isZExt())
2900      LocInfo = CCValAssign::ZExt;
2901    else
2902      LocInfo = CCValAssign::AExt;
2903  }
2904
2905  unsigned Reg;
2906
2907  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2908  // is true: function is vararg, argument is 3rd or higher, there is previous
2909  // argument which is not f32 or f64.
2910  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2911                                State.getFirstUnallocated(F32Regs) != ValNo;
2912  Align OrigAlign = ArgFlags.getNonZeroOrigAlign();
2913  bool isI64 = (ValVT == MVT::i32 && OrigAlign == Align(8));
2914  bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2915
2916  // The MIPS vector ABI for floats passes them in a pair of registers
2917  if (ValVT == MVT::i32 && isVectorFloat) {
2918    // This is the start of an vector that was scalarized into an unknown number
2919    // of components. It doesn't matter how many there are. Allocate one of the
2920    // notional 8 byte aligned registers which map onto the argument stack, and
2921    // shadow the register lost to alignment requirements.
2922    if (ArgFlags.isSplit()) {
2923      Reg = State.AllocateReg(FloatVectorIntRegs);
2924      if (Reg == Mips::A2)
2925        State.AllocateReg(Mips::A1);
2926      else if (Reg == 0)
2927        State.AllocateReg(Mips::A3);
2928    } else {
2929      // If we're an intermediate component of the split, we can just attempt to
2930      // allocate a register directly.
2931      Reg = State.AllocateReg(IntRegs);
2932    }
2933  } else if (ValVT == MVT::i32 ||
2934             (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2935    Reg = State.AllocateReg(IntRegs);
2936    // If this is the first part of an i64 arg,
2937    // the allocated register must be either A0 or A2.
2938    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2939      Reg = State.AllocateReg(IntRegs);
2940    LocVT = MVT::i32;
2941  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2942    // Allocate int register and shadow next int register. If first
2943    // available register is Mips::A1 or Mips::A3, shadow it too.
2944    Reg = State.AllocateReg(IntRegs);
2945    if (Reg == Mips::A1 || Reg == Mips::A3)
2946      Reg = State.AllocateReg(IntRegs);
2947    State.AllocateReg(IntRegs);
2948    LocVT = MVT::i32;
2949  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2950    // we are guaranteed to find an available float register
2951    if (ValVT == MVT::f32) {
2952      Reg = State.AllocateReg(F32Regs);
2953      // Shadow int register
2954      State.AllocateReg(IntRegs);
2955    } else {
2956      Reg = State.AllocateReg(F64Regs);
2957      // Shadow int registers
2958      unsigned Reg2 = State.AllocateReg(IntRegs);
2959      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2960        State.AllocateReg(IntRegs);
2961      State.AllocateReg(IntRegs);
2962    }
2963  } else
2964    llvm_unreachable("Cannot handle this ValVT.");
2965
2966  if (!Reg) {
2967    unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2968    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2969  } else
2970    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2971
2972  return false;
2973}
2974
2975static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2976                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2977                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2978  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2979
2980  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2981}
2982
2983static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2984                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2985                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2986  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2987
2988  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2989}
2990
2991static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2992                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2993                       CCState &State) LLVM_ATTRIBUTE_UNUSED;
2994
2995#include "MipsGenCallingConv.inc"
2996
2997 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2998   return CC_Mips_FixedArg;
2999 }
3000
3001 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
3002   return RetCC_Mips;
3003 }
3004//===----------------------------------------------------------------------===//
3005//                  Call Calling Convention Implementation
3006//===----------------------------------------------------------------------===//
3007
3008// Return next O32 integer argument register.
3009static unsigned getNextIntArgReg(unsigned Reg) {
3010  assert((Reg == Mips::A0) || (Reg == Mips::A2));
3011  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
3012}
3013
3014SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3015                                           SDValue Chain, SDValue Arg,
3016                                           const SDLoc &DL, bool IsTailCall,
3017                                           SelectionDAG &DAG) const {
3018  if (!IsTailCall) {
3019    SDValue PtrOff =
3020        DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
3021                    DAG.getIntPtrConstant(Offset, DL));
3022    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
3023  }
3024
3025  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3026  int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3027  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3028  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
3029                      /* Alignment = */ 0, MachineMemOperand::MOVolatile);
3030}
3031
3032void MipsTargetLowering::
3033getOpndList(SmallVectorImpl<SDValue> &Ops,
3034            std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3035            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
3036            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
3037            SDValue Chain) const {
3038  // Insert node "GP copy globalreg" before call to function.
3039  //
3040  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3041  // in PIC mode) allow symbols to be resolved via lazy binding.
3042  // The lazy binding stub requires GP to point to the GOT.
3043  // Note that we don't need GP to point to the GOT for indirect calls
3044  // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3045  // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3046  // used for the function (that is, Mips linker doesn't generate lazy binding
3047  // stub for a function whose address is taken in the program).
3048  if (IsPICCall && !InternalLinkage && IsCallReloc) {
3049    unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
3050    EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
3051    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
3052  }
3053
3054  // Build a sequence of copy-to-reg nodes chained together with token
3055  // chain and flag operands which copy the outgoing args into registers.
3056  // The InFlag in necessary since all emitted instructions must be
3057  // stuck together.
3058  SDValue InFlag;
3059
3060  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3061    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
3062                                 RegsToPass[i].second, InFlag);
3063    InFlag = Chain.getValue(1);
3064  }
3065
3066  // Add argument registers to the end of the list so that they are
3067  // known live into the call.
3068  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3069    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
3070                                      RegsToPass[i].second.getValueType()));
3071
3072  // Add a register mask operand representing the call-preserved registers.
3073  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3074  const uint32_t *Mask =
3075      TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
3076  assert(Mask && "Missing call preserved mask for calling convention");
3077  if (Subtarget.inMips16HardFloat()) {
3078    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
3079      StringRef Sym = G->getGlobal()->getName();
3080      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3081      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
3082        Mask = MipsRegisterInfo::getMips16RetHelperMask();
3083      }
3084    }
3085  }
3086  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
3087
3088  if (InFlag.getNode())
3089    Ops.push_back(InFlag);
3090}
3091
3092void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3093                                                       SDNode *Node) const {
3094  switch (MI.getOpcode()) {
3095    default:
3096      return;
3097    case Mips::JALR:
3098    case Mips::JALRPseudo:
3099    case Mips::JALR64:
3100    case Mips::JALR64Pseudo:
3101    case Mips::JALR16_MM:
3102    case Mips::JALRC16_MMR6:
3103    case Mips::TAILCALLREG:
3104    case Mips::TAILCALLREG64:
3105    case Mips::TAILCALLR6REG:
3106    case Mips::TAILCALL64R6REG:
3107    case Mips::TAILCALLREG_MM:
3108    case Mips::TAILCALLREG_MMR6: {
3109      if (!EmitJalrReloc ||
3110          Subtarget.inMips16Mode() ||
3111          !isPositionIndependent() ||
3112          Node->getNumOperands() < 1 ||
3113          Node->getOperand(0).getNumOperands() < 2) {
3114        return;
3115      }
3116      // We are after the callee address, set by LowerCall().
3117      // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3118      // symbol.
3119      const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
3120      StringRef Sym;
3121      if (const GlobalAddressSDNode *G =
3122              dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
3123        // We must not emit the R_MIPS_JALR relocation against data symbols
3124        // since this will cause run-time crashes if the linker replaces the
3125        // call instruction with a relative branch to the data symbol.
3126        if (!isa<Function>(G->getGlobal())) {
3127          LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3128                            << G->getGlobal()->getName() << "\n");
3129          return;
3130        }
3131        Sym = G->getGlobal()->getName();
3132      }
3133      else if (const ExternalSymbolSDNode *ES =
3134                   dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3135        Sym = ES->getSymbol();
3136      }
3137
3138      if (Sym.empty())
3139        return;
3140
3141      MachineFunction *MF = MI.getParent()->getParent();
3142      MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3143      LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n");
3144      MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3145    }
3146  }
3147}
3148
3149/// LowerCall - functions arguments are copied from virtual regs to
3150/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3151SDValue
3152MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3153                              SmallVectorImpl<SDValue> &InVals) const {
3154  SelectionDAG &DAG                     = CLI.DAG;
3155  SDLoc DL                              = CLI.DL;
3156  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3157  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3158  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3159  SDValue Chain                         = CLI.Chain;
3160  SDValue Callee                        = CLI.Callee;
3161  bool &IsTailCall                      = CLI.IsTailCall;
3162  CallingConv::ID CallConv              = CLI.CallConv;
3163  bool IsVarArg                         = CLI.IsVarArg;
3164
3165  MachineFunction &MF = DAG.getMachineFunction();
3166  MachineFrameInfo &MFI = MF.getFrameInfo();
3167  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3168  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3169  bool IsPIC = isPositionIndependent();
3170
3171  // Analyze operands of the call, assigning locations to each operand.
3172  SmallVector<CCValAssign, 16> ArgLocs;
3173  MipsCCState CCInfo(
3174      CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3175      MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3176
3177  const ExternalSymbolSDNode *ES =
3178      dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3179
3180  // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3181  // is during the lowering of a call with a byval argument which produces
3182  // a call to memcpy. For the O32 case, this causes the caller to allocate
3183  // stack space for the reserved argument area for the callee, then recursively
3184  // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3185  // ABIs mandate that the callee allocates the reserved argument area. We do
3186  // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3187  //
3188  // If the callee has a byval argument and memcpy is used, we are mandated
3189  // to already have produced a reserved argument area for the callee for O32.
3190  // Therefore, the reserved argument area can be reused for both calls.
3191  //
3192  // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3193  // present, as we have yet to hook that node onto the chain.
3194  //
3195  // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3196  // case. GCC does a similar trick, in that wherever possible, it calculates
3197  // the maximum out going argument area (including the reserved area), and
3198  // preallocates the stack space on entrance to the caller.
3199  //
3200  // FIXME: We should do the same for efficiency and space.
3201
3202  // Note: The check on the calling convention below must match
3203  //       MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3204  bool MemcpyInByVal = ES &&
3205                       StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3206                       CallConv != CallingConv::Fast &&
3207                       Chain.getOpcode() == ISD::CALLSEQ_START;
3208
3209  // Allocate the reserved argument area. It seems strange to do this from the
3210  // caller side but removing it breaks the frame size calculation.
3211  unsigned ReservedArgArea =
3212      MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3213  CCInfo.AllocateStack(ReservedArgArea, Align(1));
3214
3215  CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3216                             ES ? ES->getSymbol() : nullptr);
3217
3218  // Get a count of how many bytes are to be pushed on the stack.
3219  unsigned NextStackOffset = CCInfo.getNextStackOffset();
3220
3221  // Call site info for function parameters tracking.
3222  MachineFunction::CallSiteInfo CSInfo;
3223
3224  // Check if it's really possible to do a tail call. Restrict it to functions
3225  // that are part of this compilation unit.
3226  bool InternalLinkage = false;
3227  if (IsTailCall) {
3228    IsTailCall = isEligibleForTailCallOptimization(
3229        CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
3230     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3231      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3232      IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3233                     G->getGlobal()->hasPrivateLinkage() ||
3234                     G->getGlobal()->hasHiddenVisibility() ||
3235                     G->getGlobal()->hasProtectedVisibility());
3236     }
3237  }
3238  if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
3239    report_fatal_error("failed to perform tail call elimination on a call "
3240                       "site marked musttail");
3241
3242  if (IsTailCall)
3243    ++NumTailCalls;
3244
3245  // Chain is the output chain of the last Load/Store or CopyToReg node.
3246  // ByValChain is the output chain of the last Memcpy node created for copying
3247  // byval arguments to the stack.
3248  unsigned StackAlignment = TFL->getStackAlignment();
3249  NextStackOffset = alignTo(NextStackOffset, StackAlignment);
3250  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
3251
3252  if (!(IsTailCall || MemcpyInByVal))
3253    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
3254
3255  SDValue StackPtr =
3256      DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3257                         getPointerTy(DAG.getDataLayout()));
3258
3259  std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3260  SmallVector<SDValue, 8> MemOpChains;
3261
3262  CCInfo.rewindByValRegsInfo();
3263
3264  // Walk the register/memloc assignments, inserting copies/loads.
3265  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3266    SDValue Arg = OutVals[i];
3267    CCValAssign &VA = ArgLocs[i];
3268    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3269    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3270    bool UseUpperBits = false;
3271
3272    // ByVal Arg.
3273    if (Flags.isByVal()) {
3274      unsigned FirstByValReg, LastByValReg;
3275      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3276      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3277
3278      assert(Flags.getByValSize() &&
3279             "ByVal args of size 0 should have been ignored by front-end.");
3280      assert(ByValIdx < CCInfo.getInRegsParamsCount());
3281      assert(!IsTailCall &&
3282             "Do not tail-call optimize if there is a byval argument.");
3283      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3284                   FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3285                   VA);
3286      CCInfo.nextInRegsParam();
3287      continue;
3288    }
3289
3290    // Promote the value if needed.
3291    switch (VA.getLocInfo()) {
3292    default:
3293      llvm_unreachable("Unknown loc info!");
3294    case CCValAssign::Full:
3295      if (VA.isRegLoc()) {
3296        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3297            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3298            (ValVT == MVT::i64 && LocVT == MVT::f64))
3299          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3300        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3301          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3302                                   Arg, DAG.getConstant(0, DL, MVT::i32));
3303          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3304                                   Arg, DAG.getConstant(1, DL, MVT::i32));
3305          if (!Subtarget.isLittle())
3306            std::swap(Lo, Hi);
3307          Register LocRegLo = VA.getLocReg();
3308          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3309          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3310          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3311          continue;
3312        }
3313      }
3314      break;
3315    case CCValAssign::BCvt:
3316      Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3317      break;
3318    case CCValAssign::SExtUpper:
3319      UseUpperBits = true;
3320      LLVM_FALLTHROUGH;
3321    case CCValAssign::SExt:
3322      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3323      break;
3324    case CCValAssign::ZExtUpper:
3325      UseUpperBits = true;
3326      LLVM_FALLTHROUGH;
3327    case CCValAssign::ZExt:
3328      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3329      break;
3330    case CCValAssign::AExtUpper:
3331      UseUpperBits = true;
3332      LLVM_FALLTHROUGH;
3333    case CCValAssign::AExt:
3334      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3335      break;
3336    }
3337
3338    if (UseUpperBits) {
3339      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3340      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3341      Arg = DAG.getNode(
3342          ISD::SHL, DL, VA.getLocVT(), Arg,
3343          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3344    }
3345
3346    // Arguments that can be passed on register must be kept at
3347    // RegsToPass vector
3348    if (VA.isRegLoc()) {
3349      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3350
3351      // If the parameter is passed through reg $D, which splits into
3352      // two physical registers, avoid creating call site info.
3353      if (Mips::AFGR64RegClass.contains(VA.getLocReg()))
3354        continue;
3355
3356      // Collect CSInfo about which register passes which parameter.
3357      const TargetOptions &Options = DAG.getTarget().Options;
3358      if (Options.SupportsDebugEntryValues)
3359        CSInfo.emplace_back(VA.getLocReg(), i);
3360
3361      continue;
3362    }
3363
3364    // Register can't get to this point...
3365    assert(VA.isMemLoc());
3366
3367    // emit ISD::STORE whichs stores the
3368    // parameter value to a stack Location
3369    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3370                                         Chain, Arg, DL, IsTailCall, DAG));
3371  }
3372
3373  // Transform all store nodes into one single node because all store
3374  // nodes are independent of each other.
3375  if (!MemOpChains.empty())
3376    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3377
3378  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3379  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3380  // node so that legalize doesn't hack it.
3381
3382  EVT Ty = Callee.getValueType();
3383  bool GlobalOrExternal = false, IsCallReloc = false;
3384
3385  // The long-calls feature is ignored in case of PIC.
3386  // While we do not support -mshared / -mno-shared properly,
3387  // ignore long-calls in case of -mabicalls too.
3388  if (!Subtarget.isABICalls() && !IsPIC) {
3389    // If the function should be called using "long call",
3390    // get its address into a register to prevent using
3391    // of the `jal` instruction for the direct call.
3392    if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3393      if (Subtarget.useLongCalls())
3394        Callee = Subtarget.hasSym32()
3395                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3396                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3397    } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3398      bool UseLongCalls = Subtarget.useLongCalls();
3399      // If the function has long-call/far/near attribute
3400      // it overrides command line switch pased to the backend.
3401      if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3402        if (F->hasFnAttribute("long-call"))
3403          UseLongCalls = true;
3404        else if (F->hasFnAttribute("short-call"))
3405          UseLongCalls = false;
3406      }
3407      if (UseLongCalls)
3408        Callee = Subtarget.hasSym32()
3409                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3410                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3411    }
3412  }
3413
3414  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3415    if (IsPIC) {
3416      const GlobalValue *Val = G->getGlobal();
3417      InternalLinkage = Val->hasInternalLinkage();
3418
3419      if (InternalLinkage)
3420        Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3421      else if (Subtarget.useXGOT()) {
3422        Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3423                                       MipsII::MO_CALL_LO16, Chain,
3424                                       FuncInfo->callPtrInfo(MF, Val));
3425        IsCallReloc = true;
3426      } else {
3427        Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3428                               FuncInfo->callPtrInfo(MF, Val));
3429        IsCallReloc = true;
3430      }
3431    } else
3432      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3433                                          getPointerTy(DAG.getDataLayout()), 0,
3434                                          MipsII::MO_NO_FLAG);
3435    GlobalOrExternal = true;
3436  }
3437  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3438    const char *Sym = S->getSymbol();
3439
3440    if (!IsPIC) // static
3441      Callee = DAG.getTargetExternalSymbol(
3442          Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3443    else if (Subtarget.useXGOT()) {
3444      Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3445                                     MipsII::MO_CALL_LO16, Chain,
3446                                     FuncInfo->callPtrInfo(MF, Sym));
3447      IsCallReloc = true;
3448    } else { // PIC
3449      Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3450                             FuncInfo->callPtrInfo(MF, Sym));
3451      IsCallReloc = true;
3452    }
3453
3454    GlobalOrExternal = true;
3455  }
3456
3457  SmallVector<SDValue, 8> Ops(1, Chain);
3458  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3459
3460  getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3461              IsCallReloc, CLI, Callee, Chain);
3462
3463  if (IsTailCall) {
3464    MF.getFrameInfo().setHasTailCall();
3465    SDValue Ret = DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3466    DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
3467    return Ret;
3468  }
3469
3470  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3471  SDValue InFlag = Chain.getValue(1);
3472
3473  DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
3474
3475  // Create the CALLSEQ_END node in the case of where it is not a call to
3476  // memcpy.
3477  if (!(MemcpyInByVal)) {
3478    Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3479                               DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3480    InFlag = Chain.getValue(1);
3481  }
3482
3483  // Handle result values, copying them out of physregs into vregs that we
3484  // return.
3485  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3486                         InVals, CLI);
3487}
3488
3489/// LowerCallResult - Lower the result values of a call into the
3490/// appropriate copies out of appropriate physical registers.
3491SDValue MipsTargetLowering::LowerCallResult(
3492    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3493    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3494    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3495    TargetLowering::CallLoweringInfo &CLI) const {
3496  // Assign locations to each value returned by this call.
3497  SmallVector<CCValAssign, 16> RVLocs;
3498  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3499                     *DAG.getContext());
3500
3501  const ExternalSymbolSDNode *ES =
3502      dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3503  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3504                           ES ? ES->getSymbol() : nullptr);
3505
3506  // Copy all of the result registers out of their specified physreg.
3507  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3508    CCValAssign &VA = RVLocs[i];
3509    assert(VA.isRegLoc() && "Can only return in registers!");
3510
3511    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3512                                     RVLocs[i].getLocVT(), InFlag);
3513    Chain = Val.getValue(1);
3514    InFlag = Val.getValue(2);
3515
3516    if (VA.isUpperBitsInLoc()) {
3517      unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3518      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3519      unsigned Shift =
3520          VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3521      Val = DAG.getNode(
3522          Shift, DL, VA.getLocVT(), Val,
3523          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3524    }
3525
3526    switch (VA.getLocInfo()) {
3527    default:
3528      llvm_unreachable("Unknown loc info!");
3529    case CCValAssign::Full:
3530      break;
3531    case CCValAssign::BCvt:
3532      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3533      break;
3534    case CCValAssign::AExt:
3535    case CCValAssign::AExtUpper:
3536      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3537      break;
3538    case CCValAssign::ZExt:
3539    case CCValAssign::ZExtUpper:
3540      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3541                        DAG.getValueType(VA.getValVT()));
3542      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3543      break;
3544    case CCValAssign::SExt:
3545    case CCValAssign::SExtUpper:
3546      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3547                        DAG.getValueType(VA.getValVT()));
3548      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3549      break;
3550    }
3551
3552    InVals.push_back(Val);
3553  }
3554
3555  return Chain;
3556}
3557
3558static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3559                                      EVT ArgVT, const SDLoc &DL,
3560                                      SelectionDAG &DAG) {
3561  MVT LocVT = VA.getLocVT();
3562  EVT ValVT = VA.getValVT();
3563
3564  // Shift into the upper bits if necessary.
3565  switch (VA.getLocInfo()) {
3566  default:
3567    break;
3568  case CCValAssign::AExtUpper:
3569  case CCValAssign::SExtUpper:
3570  case CCValAssign::ZExtUpper: {
3571    unsigned ValSizeInBits = ArgVT.getSizeInBits();
3572    unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3573    unsigned Opcode =
3574        VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3575    Val = DAG.getNode(
3576        Opcode, DL, VA.getLocVT(), Val,
3577        DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3578    break;
3579  }
3580  }
3581
3582  // If this is an value smaller than the argument slot size (32-bit for O32,
3583  // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3584  // size. Extract the value and insert any appropriate assertions regarding
3585  // sign/zero extension.
3586  switch (VA.getLocInfo()) {
3587  default:
3588    llvm_unreachable("Unknown loc info!");
3589  case CCValAssign::Full:
3590    break;
3591  case CCValAssign::AExtUpper:
3592  case CCValAssign::AExt:
3593    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3594    break;
3595  case CCValAssign::SExtUpper:
3596  case CCValAssign::SExt:
3597    Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3598    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3599    break;
3600  case CCValAssign::ZExtUpper:
3601  case CCValAssign::ZExt:
3602    Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3603    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3604    break;
3605  case CCValAssign::BCvt:
3606    Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3607    break;
3608  }
3609
3610  return Val;
3611}
3612
3613//===----------------------------------------------------------------------===//
3614//             Formal Arguments Calling Convention Implementation
3615//===----------------------------------------------------------------------===//
3616/// LowerFormalArguments - transform physical registers into virtual registers
3617/// and generate load operations for arguments places on the stack.
3618SDValue MipsTargetLowering::LowerFormalArguments(
3619    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3620    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3621    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3622  MachineFunction &MF = DAG.getMachineFunction();
3623  MachineFrameInfo &MFI = MF.getFrameInfo();
3624  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3625
3626  MipsFI->setVarArgsFrameIndex(0);
3627
3628  // Used with vargs to acumulate store chains.
3629  std::vector<SDValue> OutChains;
3630
3631  // Assign locations to all of the incoming arguments.
3632  SmallVector<CCValAssign, 16> ArgLocs;
3633  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3634                     *DAG.getContext());
3635  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), Align(1));
3636  const Function &Func = DAG.getMachineFunction().getFunction();
3637  Function::const_arg_iterator FuncArg = Func.arg_begin();
3638
3639  if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3640    report_fatal_error(
3641        "Functions with the interrupt attribute cannot have arguments!");
3642
3643  CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3644  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3645                           CCInfo.getInRegsParamsCount() > 0);
3646
3647  unsigned CurArgIdx = 0;
3648  CCInfo.rewindByValRegsInfo();
3649
3650  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3651    CCValAssign &VA = ArgLocs[i];
3652    if (Ins[i].isOrigArg()) {
3653      std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3654      CurArgIdx = Ins[i].getOrigArgIndex();
3655    }
3656    EVT ValVT = VA.getValVT();
3657    ISD::ArgFlagsTy Flags = Ins[i].Flags;
3658    bool IsRegLoc = VA.isRegLoc();
3659
3660    if (Flags.isByVal()) {
3661      assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
3662      unsigned FirstByValReg, LastByValReg;
3663      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3664      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3665
3666      assert(Flags.getByValSize() &&
3667             "ByVal args of size 0 should have been ignored by front-end.");
3668      assert(ByValIdx < CCInfo.getInRegsParamsCount());
3669      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3670                    FirstByValReg, LastByValReg, VA, CCInfo);
3671      CCInfo.nextInRegsParam();
3672      continue;
3673    }
3674
3675    // Arguments stored on registers
3676    if (IsRegLoc) {
3677      MVT RegVT = VA.getLocVT();
3678      Register ArgReg = VA.getLocReg();
3679      const TargetRegisterClass *RC = getRegClassFor(RegVT);
3680
3681      // Transform the arguments stored on
3682      // physical registers into virtual ones
3683      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3684      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3685
3686      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3687
3688      // Handle floating point arguments passed in integer registers and
3689      // long double arguments passed in floating point registers.
3690      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3691          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3692          (RegVT == MVT::f64 && ValVT == MVT::i64))
3693        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3694      else if (ABI.IsO32() && RegVT == MVT::i32 &&
3695               ValVT == MVT::f64) {
3696        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
3697                                  getNextIntArgReg(ArgReg), RC);
3698        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3699        if (!Subtarget.isLittle())
3700          std::swap(ArgValue, ArgValue2);
3701        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3702                               ArgValue, ArgValue2);
3703      }
3704
3705      InVals.push_back(ArgValue);
3706    } else { // VA.isRegLoc()
3707      MVT LocVT = VA.getLocVT();
3708
3709      if (ABI.IsO32()) {
3710        // We ought to be able to use LocVT directly but O32 sets it to i32
3711        // when allocating floating point values to integer registers.
3712        // This shouldn't influence how we load the value into registers unless
3713        // we are targeting softfloat.
3714        if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3715          LocVT = VA.getValVT();
3716      }
3717
3718      // sanity check
3719      assert(VA.isMemLoc());
3720
3721      // The stack pointer offset is relative to the caller stack frame.
3722      int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3723                                     VA.getLocMemOffset(), true);
3724
3725      // Create load nodes to retrieve arguments from the stack
3726      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3727      SDValue ArgValue = DAG.getLoad(
3728          LocVT, DL, Chain, FIN,
3729          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3730      OutChains.push_back(ArgValue.getValue(1));
3731
3732      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3733
3734      InVals.push_back(ArgValue);
3735    }
3736  }
3737
3738  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3739    // The mips ABIs for returning structs by value requires that we copy
3740    // the sret argument into $v0 for the return. Save the argument into
3741    // a virtual register so that we can access it from the return points.
3742    if (Ins[i].Flags.isSRet()) {
3743      unsigned Reg = MipsFI->getSRetReturnReg();
3744      if (!Reg) {
3745        Reg = MF.getRegInfo().createVirtualRegister(
3746            getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3747        MipsFI->setSRetReturnReg(Reg);
3748      }
3749      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3750      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3751      break;
3752    }
3753  }
3754
3755  if (IsVarArg)
3756    writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3757
3758  // All stores are grouped in one node to allow the matching between
3759  // the size of Ins and InVals. This only happens when on varg functions
3760  if (!OutChains.empty()) {
3761    OutChains.push_back(Chain);
3762    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3763  }
3764
3765  return Chain;
3766}
3767
3768//===----------------------------------------------------------------------===//
3769//               Return Value Calling Convention Implementation
3770//===----------------------------------------------------------------------===//
3771
3772bool
3773MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3774                                   MachineFunction &MF, bool IsVarArg,
3775                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3776                                   LLVMContext &Context) const {
3777  SmallVector<CCValAssign, 16> RVLocs;
3778  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3779  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3780}
3781
3782bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type,
3783                                                       bool IsSigned) const {
3784  if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3785      return true;
3786
3787  return IsSigned;
3788}
3789
3790SDValue
3791MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3792                                         const SDLoc &DL,
3793                                         SelectionDAG &DAG) const {
3794  MachineFunction &MF = DAG.getMachineFunction();
3795  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3796
3797  MipsFI->setISR();
3798
3799  return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3800}
3801
3802SDValue
3803MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3804                                bool IsVarArg,
3805                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3806                                const SmallVectorImpl<SDValue> &OutVals,
3807                                const SDLoc &DL, SelectionDAG &DAG) const {
3808  // CCValAssign - represent the assignment of
3809  // the return value to a location
3810  SmallVector<CCValAssign, 16> RVLocs;
3811  MachineFunction &MF = DAG.getMachineFunction();
3812
3813  // CCState - Info about the registers and stack slot.
3814  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3815
3816  // Analyze return values.
3817  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3818
3819  SDValue Flag;
3820  SmallVector<SDValue, 4> RetOps(1, Chain);
3821
3822  // Copy the result values into the output registers.
3823  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3824    SDValue Val = OutVals[i];
3825    CCValAssign &VA = RVLocs[i];
3826    assert(VA.isRegLoc() && "Can only return in registers!");
3827    bool UseUpperBits = false;
3828
3829    switch (VA.getLocInfo()) {
3830    default:
3831      llvm_unreachable("Unknown loc info!");
3832    case CCValAssign::Full:
3833      break;
3834    case CCValAssign::BCvt:
3835      Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3836      break;
3837    case CCValAssign::AExtUpper:
3838      UseUpperBits = true;
3839      LLVM_FALLTHROUGH;
3840    case CCValAssign::AExt:
3841      Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3842      break;
3843    case CCValAssign::ZExtUpper:
3844      UseUpperBits = true;
3845      LLVM_FALLTHROUGH;
3846    case CCValAssign::ZExt:
3847      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3848      break;
3849    case CCValAssign::SExtUpper:
3850      UseUpperBits = true;
3851      LLVM_FALLTHROUGH;
3852    case CCValAssign::SExt:
3853      Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3854      break;
3855    }
3856
3857    if (UseUpperBits) {
3858      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3859      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3860      Val = DAG.getNode(
3861          ISD::SHL, DL, VA.getLocVT(), Val,
3862          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3863    }
3864
3865    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3866
3867    // Guarantee that all emitted copies are stuck together with flags.
3868    Flag = Chain.getValue(1);
3869    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3870  }
3871
3872  // The mips ABIs for returning structs by value requires that we copy
3873  // the sret argument into $v0 for the return. We saved the argument into
3874  // a virtual register in the entry block, so now we copy the value out
3875  // and into $v0.
3876  if (MF.getFunction().hasStructRetAttr()) {
3877    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3878    unsigned Reg = MipsFI->getSRetReturnReg();
3879
3880    if (!Reg)
3881      llvm_unreachable("sret virtual register not created in the entry block");
3882    SDValue Val =
3883        DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3884    unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3885
3886    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3887    Flag = Chain.getValue(1);
3888    RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3889  }
3890
3891  RetOps[0] = Chain;  // Update chain.
3892
3893  // Add the flag if we have it.
3894  if (Flag.getNode())
3895    RetOps.push_back(Flag);
3896
3897  // ISRs must use "eret".
3898  if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3899    return LowerInterruptReturn(RetOps, DL, DAG);
3900
3901  // Standard return on Mips is a "jr $ra"
3902  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3903}
3904
3905//===----------------------------------------------------------------------===//
3906//                           Mips Inline Assembly Support
3907//===----------------------------------------------------------------------===//
3908
3909/// getConstraintType - Given a constraint letter, return the type of
3910/// constraint it is for this target.
3911MipsTargetLowering::ConstraintType
3912MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3913  // Mips specific constraints
3914  // GCC config/mips/constraints.md
3915  //
3916  // 'd' : An address register. Equivalent to r
3917  //       unless generating MIPS16 code.
3918  // 'y' : Equivalent to r; retained for
3919  //       backwards compatibility.
3920  // 'c' : A register suitable for use in an indirect
3921  //       jump. This will always be $25 for -mabicalls.
3922  // 'l' : The lo register. 1 word storage.
3923  // 'x' : The hilo register pair. Double word storage.
3924  if (Constraint.size() == 1) {
3925    switch (Constraint[0]) {
3926      default : break;
3927      case 'd':
3928      case 'y':
3929      case 'f':
3930      case 'c':
3931      case 'l':
3932      case 'x':
3933        return C_RegisterClass;
3934      case 'R':
3935        return C_Memory;
3936    }
3937  }
3938
3939  if (Constraint == "ZC")
3940    return C_Memory;
3941
3942  return TargetLowering::getConstraintType(Constraint);
3943}
3944
3945/// Examine constraint type and operand type and determine a weight value.
3946/// This object must already have been set up with the operand type
3947/// and the current alternative constraint selected.
3948TargetLowering::ConstraintWeight
3949MipsTargetLowering::getSingleConstraintMatchWeight(
3950    AsmOperandInfo &info, const char *constraint) const {
3951  ConstraintWeight weight = CW_Invalid;
3952  Value *CallOperandVal = info.CallOperandVal;
3953    // If we don't have a value, we can't do a match,
3954    // but allow it at the lowest weight.
3955  if (!CallOperandVal)
3956    return CW_Default;
3957  Type *type = CallOperandVal->getType();
3958  // Look at the constraint type.
3959  switch (*constraint) {
3960  default:
3961    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3962    break;
3963  case 'd':
3964  case 'y':
3965    if (type->isIntegerTy())
3966      weight = CW_Register;
3967    break;
3968  case 'f': // FPU or MSA register
3969    if (Subtarget.hasMSA() && type->isVectorTy() &&
3970        type->getPrimitiveSizeInBits().getFixedSize() == 128)
3971      weight = CW_Register;
3972    else if (type->isFloatTy())
3973      weight = CW_Register;
3974    break;
3975  case 'c': // $25 for indirect jumps
3976  case 'l': // lo register
3977  case 'x': // hilo register pair
3978    if (type->isIntegerTy())
3979      weight = CW_SpecificReg;
3980    break;
3981  case 'I': // signed 16 bit immediate
3982  case 'J': // integer zero
3983  case 'K': // unsigned 16 bit immediate
3984  case 'L': // signed 32 bit immediate where lower 16 bits are 0
3985  case 'N': // immediate in the range of -65535 to -1 (inclusive)
3986  case 'O': // signed 15 bit immediate (+- 16383)
3987  case 'P': // immediate in the range of 65535 to 1 (inclusive)
3988    if (isa<ConstantInt>(CallOperandVal))
3989      weight = CW_Constant;
3990    break;
3991  case 'R':
3992    weight = CW_Memory;
3993    break;
3994  }
3995  return weight;
3996}
3997
3998/// This is a helper function to parse a physical register string and split it
3999/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
4000/// that is returned indicates whether parsing was successful. The second flag
4001/// is true if the numeric part exists.
4002static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
4003                                              unsigned long long &Reg) {
4004  if (C.front() != '{' || C.back() != '}')
4005    return std::make_pair(false, false);
4006
4007  // Search for the first numeric character.
4008  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
4009  I = std::find_if(B, E, isdigit);
4010
4011  Prefix = StringRef(B, I - B);
4012
4013  // The second flag is set to false if no numeric characters were found.
4014  if (I == E)
4015    return std::make_pair(true, false);
4016
4017  // Parse the numeric characters.
4018  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
4019                        true);
4020}
4021
4022EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
4023                                            ISD::NodeType) const {
4024  bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
4025  EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
4026  return VT.bitsLT(MinVT) ? MinVT : VT;
4027}
4028
4029std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
4030parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
4031  const TargetRegisterInfo *TRI =
4032      Subtarget.getRegisterInfo();
4033  const TargetRegisterClass *RC;
4034  StringRef Prefix;
4035  unsigned long long Reg;
4036
4037  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
4038
4039  if (!R.first)
4040    return std::make_pair(0U, nullptr);
4041
4042  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
4043    // No numeric characters follow "hi" or "lo".
4044    if (R.second)
4045      return std::make_pair(0U, nullptr);
4046
4047    RC = TRI->getRegClass(Prefix == "hi" ?
4048                          Mips::HI32RegClassID : Mips::LO32RegClassID);
4049    return std::make_pair(*(RC->begin()), RC);
4050  } else if (Prefix.startswith("$msa")) {
4051    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4052
4053    // No numeric characters follow the name.
4054    if (R.second)
4055      return std::make_pair(0U, nullptr);
4056
4057    Reg = StringSwitch<unsigned long long>(Prefix)
4058              .Case("$msair", Mips::MSAIR)
4059              .Case("$msacsr", Mips::MSACSR)
4060              .Case("$msaaccess", Mips::MSAAccess)
4061              .Case("$msasave", Mips::MSASave)
4062              .Case("$msamodify", Mips::MSAModify)
4063              .Case("$msarequest", Mips::MSARequest)
4064              .Case("$msamap", Mips::MSAMap)
4065              .Case("$msaunmap", Mips::MSAUnmap)
4066              .Default(0);
4067
4068    if (!Reg)
4069      return std::make_pair(0U, nullptr);
4070
4071    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
4072    return std::make_pair(Reg, RC);
4073  }
4074
4075  if (!R.second)
4076    return std::make_pair(0U, nullptr);
4077
4078  if (Prefix == "$f") { // Parse $f0-$f31.
4079    // If the size of FP registers is 64-bit or Reg is an even number, select
4080    // the 64-bit register class. Otherwise, select the 32-bit register class.
4081    if (VT == MVT::Other)
4082      VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
4083
4084    RC = getRegClassFor(VT);
4085
4086    if (RC == &Mips::AFGR64RegClass) {
4087      assert(Reg % 2 == 0);
4088      Reg >>= 1;
4089    }
4090  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
4091    RC = TRI->getRegClass(Mips::FCCRegClassID);
4092  else if (Prefix == "$w") { // Parse $w0-$w31.
4093    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
4094  } else { // Parse $0-$31.
4095    assert(Prefix == "$");
4096    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
4097  }
4098
4099  assert(Reg < RC->getNumRegs());
4100  return std::make_pair(*(RC->begin() + Reg), RC);
4101}
4102
4103/// Given a register class constraint, like 'r', if this corresponds directly
4104/// to an LLVM register class, return a register of 0 and the register class
4105/// pointer.
4106std::pair<unsigned, const TargetRegisterClass *>
4107MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4108                                                 StringRef Constraint,
4109                                                 MVT VT) const {
4110  if (Constraint.size() == 1) {
4111    switch (Constraint[0]) {
4112    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4113    case 'y': // Same as 'r'. Exists for compatibility.
4114    case 'r':
4115      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
4116        if (Subtarget.inMips16Mode())
4117          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
4118        return std::make_pair(0U, &Mips::GPR32RegClass);
4119      }
4120      if (VT == MVT::i64 && !Subtarget.isGP64bit())
4121        return std::make_pair(0U, &Mips::GPR32RegClass);
4122      if (VT == MVT::i64 && Subtarget.isGP64bit())
4123        return std::make_pair(0U, &Mips::GPR64RegClass);
4124      // This will generate an error message
4125      return std::make_pair(0U, nullptr);
4126    case 'f': // FPU or MSA register
4127      if (VT == MVT::v16i8)
4128        return std::make_pair(0U, &Mips::MSA128BRegClass);
4129      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
4130        return std::make_pair(0U, &Mips::MSA128HRegClass);
4131      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
4132        return std::make_pair(0U, &Mips::MSA128WRegClass);
4133      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
4134        return std::make_pair(0U, &Mips::MSA128DRegClass);
4135      else if (VT == MVT::f32)
4136        return std::make_pair(0U, &Mips::FGR32RegClass);
4137      else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
4138        if (Subtarget.isFP64bit())
4139          return std::make_pair(0U, &Mips::FGR64RegClass);
4140        return std::make_pair(0U, &Mips::AFGR64RegClass);
4141      }
4142      break;
4143    case 'c': // register suitable for indirect jump
4144      if (VT == MVT::i32)
4145        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
4146      if (VT == MVT::i64)
4147        return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
4148      // This will generate an error message
4149      return std::make_pair(0U, nullptr);
4150    case 'l': // use the `lo` register to store values
4151              // that are no bigger than a word
4152      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4153        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4154      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4155    case 'x': // use the concatenated `hi` and `lo` registers
4156              // to store doubleword values
4157      // Fixme: Not triggering the use of both hi and low
4158      // This will generate an error message
4159      return std::make_pair(0U, nullptr);
4160    }
4161  }
4162
4163  if (!Constraint.empty()) {
4164    std::pair<unsigned, const TargetRegisterClass *> R;
4165    R = parseRegForInlineAsmConstraint(Constraint, VT);
4166
4167    if (R.second)
4168      return R;
4169  }
4170
4171  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4172}
4173
4174/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4175/// vector.  If it is invalid, don't add anything to Ops.
4176void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4177                                                     std::string &Constraint,
4178                                                     std::vector<SDValue>&Ops,
4179                                                     SelectionDAG &DAG) const {
4180  SDLoc DL(Op);
4181  SDValue Result;
4182
4183  // Only support length 1 constraints for now.
4184  if (Constraint.length() > 1) return;
4185
4186  char ConstraintLetter = Constraint[0];
4187  switch (ConstraintLetter) {
4188  default: break; // This will fall through to the generic implementation
4189  case 'I': // Signed 16 bit constant
4190    // If this fails, the parent routine will give an error
4191    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4192      EVT Type = Op.getValueType();
4193      int64_t Val = C->getSExtValue();
4194      if (isInt<16>(Val)) {
4195        Result = DAG.getTargetConstant(Val, DL, Type);
4196        break;
4197      }
4198    }
4199    return;
4200  case 'J': // integer zero
4201    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4202      EVT Type = Op.getValueType();
4203      int64_t Val = C->getZExtValue();
4204      if (Val == 0) {
4205        Result = DAG.getTargetConstant(0, DL, Type);
4206        break;
4207      }
4208    }
4209    return;
4210  case 'K': // unsigned 16 bit immediate
4211    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4212      EVT Type = Op.getValueType();
4213      uint64_t Val = (uint64_t)C->getZExtValue();
4214      if (isUInt<16>(Val)) {
4215        Result = DAG.getTargetConstant(Val, DL, Type);
4216        break;
4217      }
4218    }
4219    return;
4220  case 'L': // signed 32 bit immediate where lower 16 bits are 0
4221    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4222      EVT Type = Op.getValueType();
4223      int64_t Val = C->getSExtValue();
4224      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4225        Result = DAG.getTargetConstant(Val, DL, Type);
4226        break;
4227      }
4228    }
4229    return;
4230  case 'N': // immediate in the range of -65535 to -1 (inclusive)
4231    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4232      EVT Type = Op.getValueType();
4233      int64_t Val = C->getSExtValue();
4234      if ((Val >= -65535) && (Val <= -1)) {
4235        Result = DAG.getTargetConstant(Val, DL, Type);
4236        break;
4237      }
4238    }
4239    return;
4240  case 'O': // signed 15 bit immediate
4241    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4242      EVT Type = Op.getValueType();
4243      int64_t Val = C->getSExtValue();
4244      if ((isInt<15>(Val))) {
4245        Result = DAG.getTargetConstant(Val, DL, Type);
4246        break;
4247      }
4248    }
4249    return;
4250  case 'P': // immediate in the range of 1 to 65535 (inclusive)
4251    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4252      EVT Type = Op.getValueType();
4253      int64_t Val = C->getSExtValue();
4254      if ((Val <= 65535) && (Val >= 1)) {
4255        Result = DAG.getTargetConstant(Val, DL, Type);
4256        break;
4257      }
4258    }
4259    return;
4260  }
4261
4262  if (Result.getNode()) {
4263    Ops.push_back(Result);
4264    return;
4265  }
4266
4267  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4268}
4269
4270bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4271                                               const AddrMode &AM, Type *Ty,
4272                                               unsigned AS,
4273                                               Instruction *I) const {
4274  // No global is ever allowed as a base.
4275  if (AM.BaseGV)
4276    return false;
4277
4278  switch (AM.Scale) {
4279  case 0: // "r+i" or just "i", depending on HasBaseReg.
4280    break;
4281  case 1:
4282    if (!AM.HasBaseReg) // allow "r+i".
4283      break;
4284    return false; // disallow "r+r" or "r+r+i".
4285  default:
4286    return false;
4287  }
4288
4289  return true;
4290}
4291
4292bool
4293MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4294  // The Mips target isn't yet aware of offsets.
4295  return false;
4296}
4297
4298EVT MipsTargetLowering::getOptimalMemOpType(
4299    const MemOp &Op, const AttributeList &FuncAttributes) const {
4300  if (Subtarget.hasMips64())
4301    return MVT::i64;
4302
4303  return MVT::i32;
4304}
4305
4306bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4307                                      bool ForCodeSize) const {
4308  if (VT != MVT::f32 && VT != MVT::f64)
4309    return false;
4310  if (Imm.isNegZero())
4311    return false;
4312  return Imm.isZero();
4313}
4314
4315unsigned MipsTargetLowering::getJumpTableEncoding() const {
4316
4317  // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4318  if (ABI.IsN64() && isPositionIndependent())
4319    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4320
4321  return TargetLowering::getJumpTableEncoding();
4322}
4323
4324bool MipsTargetLowering::useSoftFloat() const {
4325  return Subtarget.useSoftFloat();
4326}
4327
4328void MipsTargetLowering::copyByValRegs(
4329    SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4330    SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4331    SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4332    unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4333    MipsCCState &State) const {
4334  MachineFunction &MF = DAG.getMachineFunction();
4335  MachineFrameInfo &MFI = MF.getFrameInfo();
4336  unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4337  unsigned NumRegs = LastReg - FirstReg;
4338  unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4339  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4340  int FrameObjOffset;
4341  ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4342
4343  if (RegAreaSize)
4344    FrameObjOffset =
4345        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4346        (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4347  else
4348    FrameObjOffset = VA.getLocMemOffset();
4349
4350  // Create frame object.
4351  EVT PtrTy = getPointerTy(DAG.getDataLayout());
4352  // Make the fixed object stored to mutable so that the load instructions
4353  // referencing it have their memory dependencies added.
4354  // Set the frame object as isAliased which clears the underlying objects
4355  // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4356  // stores as dependencies for loads referencing this fixed object.
4357  int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4358  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4359  InVals.push_back(FIN);
4360
4361  if (!NumRegs)
4362    return;
4363
4364  // Copy arg registers.
4365  MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4366  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4367
4368  for (unsigned I = 0; I < NumRegs; ++I) {
4369    unsigned ArgReg = ByValArgRegs[FirstReg + I];
4370    unsigned VReg = addLiveIn(MF, ArgReg, RC);
4371    unsigned Offset = I * GPRSizeInBytes;
4372    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4373                                   DAG.getConstant(Offset, DL, PtrTy));
4374    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4375                                 StorePtr, MachinePointerInfo(FuncArg, Offset));
4376    OutChains.push_back(Store);
4377  }
4378}
4379
4380// Copy byVal arg to registers and stack.
4381void MipsTargetLowering::passByValArg(
4382    SDValue Chain, const SDLoc &DL,
4383    std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4384    SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4385    MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4386    unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4387    const CCValAssign &VA) const {
4388  unsigned ByValSizeInBytes = Flags.getByValSize();
4389  unsigned OffsetInBytes = 0; // From beginning of struct
4390  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4391  Align Alignment =
4392      std::min(Flags.getNonZeroByValAlign(), Align(RegSizeInBytes));
4393  EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4394      RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4395  unsigned NumRegs = LastReg - FirstReg;
4396
4397  if (NumRegs) {
4398    ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4399    bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4400    unsigned I = 0;
4401
4402    // Copy words to registers.
4403    for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4404      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4405                                    DAG.getConstant(OffsetInBytes, DL, PtrTy));
4406      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4407                                    MachinePointerInfo(), Alignment.value());
4408      MemOpChains.push_back(LoadVal.getValue(1));
4409      unsigned ArgReg = ArgRegs[FirstReg + I];
4410      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4411    }
4412
4413    // Return if the struct has been fully copied.
4414    if (ByValSizeInBytes == OffsetInBytes)
4415      return;
4416
4417    // Copy the remainder of the byval argument with sub-word loads and shifts.
4418    if (LeftoverBytes) {
4419      SDValue Val;
4420
4421      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4422           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4423        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4424
4425        if (RemainingSizeInBytes < LoadSizeInBytes)
4426          continue;
4427
4428        // Load subword.
4429        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4430                                      DAG.getConstant(OffsetInBytes, DL,
4431                                                      PtrTy));
4432        SDValue LoadVal = DAG.getExtLoad(
4433            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4434            MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment.value());
4435        MemOpChains.push_back(LoadVal.getValue(1));
4436
4437        // Shift the loaded value.
4438        unsigned Shamt;
4439
4440        if (isLittle)
4441          Shamt = TotalBytesLoaded * 8;
4442        else
4443          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4444
4445        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4446                                    DAG.getConstant(Shamt, DL, MVT::i32));
4447
4448        if (Val.getNode())
4449          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4450        else
4451          Val = Shift;
4452
4453        OffsetInBytes += LoadSizeInBytes;
4454        TotalBytesLoaded += LoadSizeInBytes;
4455        Alignment = std::min(Alignment, Align(LoadSizeInBytes));
4456      }
4457
4458      unsigned ArgReg = ArgRegs[FirstReg + I];
4459      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4460      return;
4461    }
4462  }
4463
4464  // Copy remainder of byval arg to it with memcpy.
4465  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4466  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4467                            DAG.getConstant(OffsetInBytes, DL, PtrTy));
4468  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4469                            DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4470  Chain = DAG.getMemcpy(
4471      Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, DL, PtrTy),
4472      Align(Alignment), /*isVolatile=*/false, /*AlwaysInline=*/false,
4473      /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
4474  MemOpChains.push_back(Chain);
4475}
4476
4477void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4478                                         SDValue Chain, const SDLoc &DL,
4479                                         SelectionDAG &DAG,
4480                                         CCState &State) const {
4481  ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4482  unsigned Idx = State.getFirstUnallocated(ArgRegs);
4483  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4484  MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4485  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4486  MachineFunction &MF = DAG.getMachineFunction();
4487  MachineFrameInfo &MFI = MF.getFrameInfo();
4488  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4489
4490  // Offset of the first variable argument from stack pointer.
4491  int VaArgOffset;
4492
4493  if (ArgRegs.size() == Idx)
4494    VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4495  else {
4496    VaArgOffset =
4497        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4498        (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4499  }
4500
4501  // Record the frame index of the first variable argument
4502  // which is a value necessary to VASTART.
4503  int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4504  MipsFI->setVarArgsFrameIndex(FI);
4505
4506  // Copy the integer registers that have not been used for argument passing
4507  // to the argument register save area. For O32, the save area is allocated
4508  // in the caller's stack frame, while for N32/64, it is allocated in the
4509  // callee's stack frame.
4510  for (unsigned I = Idx; I < ArgRegs.size();
4511       ++I, VaArgOffset += RegSizeInBytes) {
4512    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4513    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4514    FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4515    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4516    SDValue Store =
4517        DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4518    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4519        (Value *)nullptr);
4520    OutChains.push_back(Store);
4521  }
4522}
4523
4524void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4525                                     Align Alignment) const {
4526  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4527
4528  assert(Size && "Byval argument's size shouldn't be 0.");
4529
4530  Alignment = std::min(Alignment, TFL->getStackAlign());
4531
4532  unsigned FirstReg = 0;
4533  unsigned NumRegs = 0;
4534
4535  if (State->getCallingConv() != CallingConv::Fast) {
4536    unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4537    ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4538    // FIXME: The O32 case actually describes no shadow registers.
4539    const MCPhysReg *ShadowRegs =
4540        ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4541
4542    // We used to check the size as well but we can't do that anymore since
4543    // CCState::HandleByVal() rounds up the size after calling this function.
4544    assert(
4545        Alignment >= Align(RegSizeInBytes) &&
4546        "Byval argument's alignment should be a multiple of RegSizeInBytes.");
4547
4548    FirstReg = State->getFirstUnallocated(IntArgRegs);
4549
4550    // If Alignment > RegSizeInBytes, the first arg register must be even.
4551    // FIXME: This condition happens to do the right thing but it's not the
4552    //        right way to test it. We want to check that the stack frame offset
4553    //        of the register is aligned.
4554    if ((Alignment > RegSizeInBytes) && (FirstReg % 2)) {
4555      State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4556      ++FirstReg;
4557    }
4558
4559    // Mark the registers allocated.
4560    Size = alignTo(Size, RegSizeInBytes);
4561    for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4562         Size -= RegSizeInBytes, ++I, ++NumRegs)
4563      State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4564  }
4565
4566  State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4567}
4568
4569MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4570                                                        MachineBasicBlock *BB,
4571                                                        bool isFPCmp,
4572                                                        unsigned Opc) const {
4573  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4574         "Subtarget already supports SELECT nodes with the use of"
4575         "conditional-move instructions.");
4576
4577  const TargetInstrInfo *TII =
4578      Subtarget.getInstrInfo();
4579  DebugLoc DL = MI.getDebugLoc();
4580
4581  // To "insert" a SELECT instruction, we actually have to insert the
4582  // diamond control-flow pattern.  The incoming instruction knows the
4583  // destination vreg to set, the condition code register to branch on, the
4584  // true/false values to select between, and a branch opcode to use.
4585  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4586  MachineFunction::iterator It = ++BB->getIterator();
4587
4588  //  thisMBB:
4589  //  ...
4590  //   TrueVal = ...
4591  //   setcc r1, r2, r3
4592  //   bNE   r1, r0, copy1MBB
4593  //   fallthrough --> copy0MBB
4594  MachineBasicBlock *thisMBB  = BB;
4595  MachineFunction *F = BB->getParent();
4596  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4597  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4598  F->insert(It, copy0MBB);
4599  F->insert(It, sinkMBB);
4600
4601  // Transfer the remainder of BB and its successor edges to sinkMBB.
4602  sinkMBB->splice(sinkMBB->begin(), BB,
4603                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
4604  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4605
4606  // Next, add the true and fallthrough blocks as its successors.
4607  BB->addSuccessor(copy0MBB);
4608  BB->addSuccessor(sinkMBB);
4609
4610  if (isFPCmp) {
4611    // bc1[tf] cc, sinkMBB
4612    BuildMI(BB, DL, TII->get(Opc))
4613        .addReg(MI.getOperand(1).getReg())
4614        .addMBB(sinkMBB);
4615  } else {
4616    // bne rs, $0, sinkMBB
4617    BuildMI(BB, DL, TII->get(Opc))
4618        .addReg(MI.getOperand(1).getReg())
4619        .addReg(Mips::ZERO)
4620        .addMBB(sinkMBB);
4621  }
4622
4623  //  copy0MBB:
4624  //   %FalseValue = ...
4625  //   # fallthrough to sinkMBB
4626  BB = copy0MBB;
4627
4628  // Update machine-CFG edges
4629  BB->addSuccessor(sinkMBB);
4630
4631  //  sinkMBB:
4632  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4633  //  ...
4634  BB = sinkMBB;
4635
4636  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4637      .addReg(MI.getOperand(2).getReg())
4638      .addMBB(thisMBB)
4639      .addReg(MI.getOperand(3).getReg())
4640      .addMBB(copy0MBB);
4641
4642  MI.eraseFromParent(); // The pseudo instruction is gone now.
4643
4644  return BB;
4645}
4646
4647MachineBasicBlock *
4648MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4649                                       MachineBasicBlock *BB) const {
4650  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4651         "Subtarget already supports SELECT nodes with the use of"
4652         "conditional-move instructions.");
4653
4654  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4655  DebugLoc DL = MI.getDebugLoc();
4656
4657  // D_SELECT substitutes two SELECT nodes that goes one after another and
4658  // have the same condition operand. On machines which don't have
4659  // conditional-move instruction, it reduces unnecessary branch instructions
4660  // which are result of using two diamond patterns that are result of two
4661  // SELECT pseudo instructions.
4662  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4663  MachineFunction::iterator It = ++BB->getIterator();
4664
4665  //  thisMBB:
4666  //  ...
4667  //   TrueVal = ...
4668  //   setcc r1, r2, r3
4669  //   bNE   r1, r0, copy1MBB
4670  //   fallthrough --> copy0MBB
4671  MachineBasicBlock *thisMBB = BB;
4672  MachineFunction *F = BB->getParent();
4673  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4674  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4675  F->insert(It, copy0MBB);
4676  F->insert(It, sinkMBB);
4677
4678  // Transfer the remainder of BB and its successor edges to sinkMBB.
4679  sinkMBB->splice(sinkMBB->begin(), BB,
4680                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
4681  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4682
4683  // Next, add the true and fallthrough blocks as its successors.
4684  BB->addSuccessor(copy0MBB);
4685  BB->addSuccessor(sinkMBB);
4686
4687  // bne rs, $0, sinkMBB
4688  BuildMI(BB, DL, TII->get(Mips::BNE))
4689      .addReg(MI.getOperand(2).getReg())
4690      .addReg(Mips::ZERO)
4691      .addMBB(sinkMBB);
4692
4693  //  copy0MBB:
4694  //   %FalseValue = ...
4695  //   # fallthrough to sinkMBB
4696  BB = copy0MBB;
4697
4698  // Update machine-CFG edges
4699  BB->addSuccessor(sinkMBB);
4700
4701  //  sinkMBB:
4702  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4703  //  ...
4704  BB = sinkMBB;
4705
4706  // Use two PHI nodes to select two reults
4707  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4708      .addReg(MI.getOperand(3).getReg())
4709      .addMBB(thisMBB)
4710      .addReg(MI.getOperand(5).getReg())
4711      .addMBB(copy0MBB);
4712  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4713      .addReg(MI.getOperand(4).getReg())
4714      .addMBB(thisMBB)
4715      .addReg(MI.getOperand(6).getReg())
4716      .addMBB(copy0MBB);
4717
4718  MI.eraseFromParent(); // The pseudo instruction is gone now.
4719
4720  return BB;
4721}
4722
4723// FIXME? Maybe this could be a TableGen attribute on some registers and
4724// this table could be generated automatically from RegInfo.
4725Register
4726MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT,
4727                                      const MachineFunction &MF) const {
4728  // Named registers is expected to be fairly rare. For now, just support $28
4729  // since the linux kernel uses it.
4730  if (Subtarget.isGP64bit()) {
4731    Register Reg = StringSwitch<Register>(RegName)
4732                         .Case("$28", Mips::GP_64)
4733                         .Default(Register());
4734    if (Reg)
4735      return Reg;
4736  } else {
4737    Register Reg = StringSwitch<Register>(RegName)
4738                         .Case("$28", Mips::GP)
4739                         .Default(Register());
4740    if (Reg)
4741      return Reg;
4742  }
4743  report_fatal_error("Invalid register name global variable");
4744}
4745
4746MachineBasicBlock *MipsTargetLowering::emitLDR_W(MachineInstr &MI,
4747                                                 MachineBasicBlock *BB) const {
4748  MachineFunction *MF = BB->getParent();
4749  MachineRegisterInfo &MRI = MF->getRegInfo();
4750  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4751  const bool IsLittle = Subtarget.isLittle();
4752  DebugLoc DL = MI.getDebugLoc();
4753
4754  Register Dest = MI.getOperand(0).getReg();
4755  Register Address = MI.getOperand(1).getReg();
4756  unsigned Imm = MI.getOperand(2).getImm();
4757
4758  MachineBasicBlock::iterator I(MI);
4759
4760  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4761    // Mips release 6 can load from adress that is not naturally-aligned.
4762    Register Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4763    BuildMI(*BB, I, DL, TII->get(Mips::LW))
4764        .addDef(Temp)
4765        .addUse(Address)
4766        .addImm(Imm);
4767    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(Temp);
4768  } else {
4769    // Mips release 5 needs to use instructions that can load from an unaligned
4770    // memory address.
4771    Register LoadHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4772    Register LoadFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4773    Register Undef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4774    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(Undef);
4775    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4776        .addDef(LoadHalf)
4777        .addUse(Address)
4778        .addImm(Imm + (IsLittle ? 0 : 3))
4779        .addUse(Undef);
4780    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4781        .addDef(LoadFull)
4782        .addUse(Address)
4783        .addImm(Imm + (IsLittle ? 3 : 0))
4784        .addUse(LoadHalf);
4785    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(LoadFull);
4786  }
4787
4788  MI.eraseFromParent();
4789  return BB;
4790}
4791
4792MachineBasicBlock *MipsTargetLowering::emitLDR_D(MachineInstr &MI,
4793                                                 MachineBasicBlock *BB) const {
4794  MachineFunction *MF = BB->getParent();
4795  MachineRegisterInfo &MRI = MF->getRegInfo();
4796  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4797  const bool IsLittle = Subtarget.isLittle();
4798  DebugLoc DL = MI.getDebugLoc();
4799
4800  Register Dest = MI.getOperand(0).getReg();
4801  Register Address = MI.getOperand(1).getReg();
4802  unsigned Imm = MI.getOperand(2).getImm();
4803
4804  MachineBasicBlock::iterator I(MI);
4805
4806  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4807    // Mips release 6 can load from adress that is not naturally-aligned.
4808    if (Subtarget.isGP64bit()) {
4809      Register Temp = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4810      BuildMI(*BB, I, DL, TII->get(Mips::LD))
4811          .addDef(Temp)
4812          .addUse(Address)
4813          .addImm(Imm);
4814      BuildMI(*BB, I, DL, TII->get(Mips::FILL_D)).addDef(Dest).addUse(Temp);
4815    } else {
4816      Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4817      Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4818      Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4819      BuildMI(*BB, I, DL, TII->get(Mips::LW))
4820          .addDef(Lo)
4821          .addUse(Address)
4822          .addImm(Imm + (IsLittle ? 0 : 4));
4823      BuildMI(*BB, I, DL, TII->get(Mips::LW))
4824          .addDef(Hi)
4825          .addUse(Address)
4826          .addImm(Imm + (IsLittle ? 4 : 0));
4827      BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(Lo);
4828      BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4829          .addUse(Wtemp)
4830          .addUse(Hi)
4831          .addImm(1);
4832    }
4833  } else {
4834    // Mips release 5 needs to use instructions that can load from an unaligned
4835    // memory address.
4836    Register LoHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4837    Register LoFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4838    Register LoUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4839    Register HiHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4840    Register HiFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4841    Register HiUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4842    Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4843    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(LoUndef);
4844    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4845        .addDef(LoHalf)
4846        .addUse(Address)
4847        .addImm(Imm + (IsLittle ? 0 : 7))
4848        .addUse(LoUndef);
4849    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4850        .addDef(LoFull)
4851        .addUse(Address)
4852        .addImm(Imm + (IsLittle ? 3 : 4))
4853        .addUse(LoHalf);
4854    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(HiUndef);
4855    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4856        .addDef(HiHalf)
4857        .addUse(Address)
4858        .addImm(Imm + (IsLittle ? 4 : 3))
4859        .addUse(HiUndef);
4860    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4861        .addDef(HiFull)
4862        .addUse(Address)
4863        .addImm(Imm + (IsLittle ? 7 : 0))
4864        .addUse(HiHalf);
4865    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(LoFull);
4866    BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4867        .addUse(Wtemp)
4868        .addUse(HiFull)
4869        .addImm(1);
4870  }
4871
4872  MI.eraseFromParent();
4873  return BB;
4874}
4875
4876MachineBasicBlock *MipsTargetLowering::emitSTR_W(MachineInstr &MI,
4877                                                 MachineBasicBlock *BB) const {
4878  MachineFunction *MF = BB->getParent();
4879  MachineRegisterInfo &MRI = MF->getRegInfo();
4880  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4881  const bool IsLittle = Subtarget.isLittle();
4882  DebugLoc DL = MI.getDebugLoc();
4883
4884  Register StoreVal = MI.getOperand(0).getReg();
4885  Register Address = MI.getOperand(1).getReg();
4886  unsigned Imm = MI.getOperand(2).getImm();
4887
4888  MachineBasicBlock::iterator I(MI);
4889
4890  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4891    // Mips release 6 can store to adress that is not naturally-aligned.
4892    Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4893    Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4894    BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(BitcastW).addUse(StoreVal);
4895    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4896        .addDef(Tmp)
4897        .addUse(BitcastW)
4898        .addImm(0);
4899    BuildMI(*BB, I, DL, TII->get(Mips::SW))
4900        .addUse(Tmp)
4901        .addUse(Address)
4902        .addImm(Imm);
4903  } else {
4904    // Mips release 5 needs to use instructions that can store to an unaligned
4905    // memory address.
4906    Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4907    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4908        .addDef(Tmp)
4909        .addUse(StoreVal)
4910        .addImm(0);
4911    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
4912        .addUse(Tmp)
4913        .addUse(Address)
4914        .addImm(Imm + (IsLittle ? 0 : 3));
4915    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
4916        .addUse(Tmp)
4917        .addUse(Address)
4918        .addImm(Imm + (IsLittle ? 3 : 0));
4919  }
4920
4921  MI.eraseFromParent();
4922
4923  return BB;
4924}
4925
4926MachineBasicBlock *MipsTargetLowering::emitSTR_D(MachineInstr &MI,
4927                                                 MachineBasicBlock *BB) const {
4928  MachineFunction *MF = BB->getParent();
4929  MachineRegisterInfo &MRI = MF->getRegInfo();
4930  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4931  const bool IsLittle = Subtarget.isLittle();
4932  DebugLoc DL = MI.getDebugLoc();
4933
4934  Register StoreVal = MI.getOperand(0).getReg();
4935  Register Address = MI.getOperand(1).getReg();
4936  unsigned Imm = MI.getOperand(2).getImm();
4937
4938  MachineBasicBlock::iterator I(MI);
4939
4940  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4941    // Mips release 6 can store to adress that is not naturally-aligned.
4942    if (Subtarget.isGP64bit()) {
4943      Register BitcastD = MRI.createVirtualRegister(&Mips::MSA128DRegClass);
4944      Register Lo = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4945      BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4946          .addDef(BitcastD)
4947          .addUse(StoreVal);
4948      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_D))
4949          .addDef(Lo)
4950          .addUse(BitcastD)
4951          .addImm(0);
4952      BuildMI(*BB, I, DL, TII->get(Mips::SD))
4953          .addUse(Lo)
4954          .addUse(Address)
4955          .addImm(Imm);
4956    } else {
4957      Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4958      Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4959      Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4960      BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4961          .addDef(BitcastW)
4962          .addUse(StoreVal);
4963      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4964          .addDef(Lo)
4965          .addUse(BitcastW)
4966          .addImm(0);
4967      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4968          .addDef(Hi)
4969          .addUse(BitcastW)
4970          .addImm(1);
4971      BuildMI(*BB, I, DL, TII->get(Mips::SW))
4972          .addUse(Lo)
4973          .addUse(Address)
4974          .addImm(Imm + (IsLittle ? 0 : 4));
4975      BuildMI(*BB, I, DL, TII->get(Mips::SW))
4976          .addUse(Hi)
4977          .addUse(Address)
4978          .addImm(Imm + (IsLittle ? 4 : 0));
4979    }
4980  } else {
4981    // Mips release 5 needs to use instructions that can store to an unaligned
4982    // memory address.
4983    Register Bitcast = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4984    Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4985    Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4986    BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(Bitcast).addUse(StoreVal);
4987    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4988        .addDef(Lo)
4989        .addUse(Bitcast)
4990        .addImm(0);
4991    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4992        .addDef(Hi)
4993        .addUse(Bitcast)
4994        .addImm(1);
4995    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
4996        .addUse(Lo)
4997        .addUse(Address)
4998        .addImm(Imm + (IsLittle ? 0 : 3));
4999    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5000        .addUse(Lo)
5001        .addUse(Address)
5002        .addImm(Imm + (IsLittle ? 3 : 0));
5003    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
5004        .addUse(Hi)
5005        .addUse(Address)
5006        .addImm(Imm + (IsLittle ? 4 : 7));
5007    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5008        .addUse(Hi)
5009        .addUse(Address)
5010        .addImm(Imm + (IsLittle ? 7 : 4));
5011  }
5012
5013  MI.eraseFromParent();
5014  return BB;
5015}
5016