1//===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// SI Machine Scheduler interface
11//
12//===----------------------------------------------------------------------===//
13
14#include "SIMachineScheduler.h"
15#include "AMDGPU.h"
16#include "SIInstrInfo.h"
17#include "SIRegisterInfo.h"
18#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/CodeGen/LiveInterval.h"
22#include "llvm/CodeGen/LiveIntervals.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/MachineScheduler.h"
26#include "llvm/CodeGen/RegisterPressure.h"
27#include "llvm/CodeGen/SlotIndexes.h"
28#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cassert>
34#include <map>
35#include <set>
36#include <utility>
37#include <vector>
38
39using namespace llvm;
40
41#define DEBUG_TYPE "machine-scheduler"
42
43// This scheduler implements a different scheduling algorithm than
44// GenericScheduler.
45//
46// There are several specific architecture behaviours that can't be modelled
47// for GenericScheduler:
48// . When accessing the result of an SGPR load instruction, you have to wait
49// for all the SGPR load instructions before your current instruction to
50// have finished.
51// . When accessing the result of an VGPR load instruction, you have to wait
52// for all the VGPR load instructions previous to the VGPR load instruction
53// you are interested in to finish.
54// . The less the register pressure, the best load latencies are hidden
55//
56// Moreover some specifities (like the fact a lot of instructions in the shader
57// have few dependencies) makes the generic scheduler have some unpredictable
58// behaviours. For example when register pressure becomes high, it can either
59// manage to prevent register pressure from going too high, or it can
60// increase register pressure even more than if it hadn't taken register
61// pressure into account.
62//
63// Also some other bad behaviours are generated, like loading at the beginning
64// of the shader a constant in VGPR you won't need until the end of the shader.
65//
66// The scheduling problem for SI can distinguish three main parts:
67// . Hiding high latencies (texture sampling, etc)
68// . Hiding low latencies (SGPR constant loading, etc)
69// . Keeping register usage low for better latency hiding and general
70//   performance
71//
72// Some other things can also affect performance, but are hard to predict
73// (cache usage, the fact the HW can issue several instructions from different
74// wavefronts if different types, etc)
75//
76// This scheduler tries to solve the scheduling problem by dividing it into
77// simpler sub-problems. It divides the instructions into blocks, schedules
78// locally inside the blocks where it takes care of low latencies, and then
79// chooses the order of the blocks by taking care of high latencies.
80// Dividing the instructions into blocks helps control keeping register
81// usage low.
82//
83// First the instructions are put into blocks.
84//   We want the blocks help control register usage and hide high latencies
85//   later. To help control register usage, we typically want all local
86//   computations, when for example you create a result that can be comsummed
87//   right away, to be contained in a block. Block inputs and outputs would
88//   typically be important results that are needed in several locations of
89//   the shader. Since we do want blocks to help hide high latencies, we want
90//   the instructions inside the block to have a minimal set of dependencies
91//   on high latencies. It will make it easy to pick blocks to hide specific
92//   high latencies.
93//   The block creation algorithm is divided into several steps, and several
94//   variants can be tried during the scheduling process.
95//
96// Second the order of the instructions inside the blocks is chosen.
97//   At that step we do take into account only register usage and hiding
98//   low latency instructions
99//
100// Third the block order is chosen, there we try to hide high latencies
101// and keep register usage low.
102//
103// After the third step, a pass is done to improve the hiding of low
104// latencies.
105//
106// Actually when talking about 'low latency' or 'high latency' it includes
107// both the latency to get the cache (or global mem) data go to the register,
108// and the bandwidth limitations.
109// Increasing the number of active wavefronts helps hide the former, but it
110// doesn't solve the latter, thus why even if wavefront count is high, we have
111// to try have as many instructions hiding high latencies as possible.
112// The OpenCL doc says for example latency of 400 cycles for a global mem access,
113// which is hidden by 10 instructions if the wavefront count is 10.
114
115// Some figures taken from AMD docs:
116// Both texture and constant L1 caches are 4-way associative with 64 bytes
117// lines.
118// Constant cache is shared with 4 CUs.
119// For texture sampling, the address generation unit receives 4 texture
120// addresses per cycle, thus we could expect texture sampling latency to be
121// equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
122// instructions in a wavefront group are executed every 4 cycles),
123// or 16 instructions if the other wavefronts associated to the 3 other VALUs
124// of the CU do texture sampling too. (Don't take these figures too seriously,
125// as I'm not 100% sure of the computation)
126// Data exports should get similar latency.
127// For constant loading, the cache is shader with 4 CUs.
128// The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
129// I guess if the other CU don't read the cache, it can go up to 64B/cycle.
130// It means a simple s_buffer_load should take one instruction to hide, as
131// well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
132// cache line.
133//
134// As of today the driver doesn't preload the constants in cache, thus the
135// first loads get extra latency. The doc says global memory access can be
136// 300-600 cycles. We do not specially take that into account when scheduling
137// As we expect the driver to be able to preload the constants soon.
138
139// common code //
140
141#ifndef NDEBUG
142
143static const char *getReasonStr(SIScheduleCandReason Reason) {
144  switch (Reason) {
145  case NoCand:         return "NOCAND";
146  case RegUsage:       return "REGUSAGE";
147  case Latency:        return "LATENCY";
148  case Successor:      return "SUCCESSOR";
149  case Depth:          return "DEPTH";
150  case NodeOrder:      return "ORDER";
151  }
152  llvm_unreachable("Unknown reason!");
153}
154
155#endif
156
157namespace llvm {
158namespace SISched {
159static bool tryLess(int TryVal, int CandVal,
160                    SISchedulerCandidate &TryCand,
161                    SISchedulerCandidate &Cand,
162                    SIScheduleCandReason Reason) {
163  if (TryVal < CandVal) {
164    TryCand.Reason = Reason;
165    return true;
166  }
167  if (TryVal > CandVal) {
168    if (Cand.Reason > Reason)
169      Cand.Reason = Reason;
170    return true;
171  }
172  Cand.setRepeat(Reason);
173  return false;
174}
175
176static bool tryGreater(int TryVal, int CandVal,
177                       SISchedulerCandidate &TryCand,
178                       SISchedulerCandidate &Cand,
179                       SIScheduleCandReason Reason) {
180  if (TryVal > CandVal) {
181    TryCand.Reason = Reason;
182    return true;
183  }
184  if (TryVal < CandVal) {
185    if (Cand.Reason > Reason)
186      Cand.Reason = Reason;
187    return true;
188  }
189  Cand.setRepeat(Reason);
190  return false;
191}
192} // end namespace SISched
193} // end namespace llvm
194
195// SIScheduleBlock //
196
197void SIScheduleBlock::addUnit(SUnit *SU) {
198  NodeNum2Index[SU->NodeNum] = SUnits.size();
199  SUnits.push_back(SU);
200}
201
202#ifndef NDEBUG
203void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
204
205  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
206  dbgs() << '\n';
207}
208#endif
209
210void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
211                                          SISchedCandidate &TryCand) {
212  // Initialize the candidate if needed.
213  if (!Cand.isValid()) {
214    TryCand.Reason = NodeOrder;
215    return;
216  }
217
218  if (Cand.SGPRUsage > 60 &&
219      SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
220                       TryCand, Cand, RegUsage))
221    return;
222
223  // Schedule low latency instructions as top as possible.
224  // Order of priority is:
225  // . Low latency instructions which do not depend on other low latency
226  //   instructions we haven't waited for
227  // . Other instructions which do not depend on low latency instructions
228  //   we haven't waited for
229  // . Low latencies
230  // . All other instructions
231  // Goal is to get: low latency instructions - independent instructions
232  //     - (eventually some more low latency instructions)
233  //     - instructions that depend on the first low latency instructions.
234  // If in the block there is a lot of constant loads, the SGPR usage
235  // could go quite high, thus above the arbitrary limit of 60 will encourage
236  // use the already loaded constants (in order to release some SGPRs) before
237  // loading more.
238  if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
239                       Cand.HasLowLatencyNonWaitedParent,
240                       TryCand, Cand, SIScheduleCandReason::Depth))
241    return;
242
243  if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
244                          TryCand, Cand, SIScheduleCandReason::Depth))
245    return;
246
247  if (TryCand.IsLowLatency &&
248      SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
249                       TryCand, Cand, SIScheduleCandReason::Depth))
250    return;
251
252  if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
253                       TryCand, Cand, RegUsage))
254    return;
255
256  // Fall through to original instruction order.
257  if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
258    TryCand.Reason = NodeOrder;
259  }
260}
261
262SUnit* SIScheduleBlock::pickNode() {
263  SISchedCandidate TopCand;
264
265  for (SUnit* SU : TopReadySUs) {
266    SISchedCandidate TryCand;
267    std::vector<unsigned> pressure;
268    std::vector<unsigned> MaxPressure;
269    // Predict register usage after this instruction.
270    TryCand.SU = SU;
271    TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
272    TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32];
273    TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32];
274    TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
275    TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
276    TryCand.HasLowLatencyNonWaitedParent =
277      HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
278    tryCandidateTopDown(TopCand, TryCand);
279    if (TryCand.Reason != NoCand)
280      TopCand.setBest(TryCand);
281  }
282
283  return TopCand.SU;
284}
285
286
287// Schedule something valid.
288void SIScheduleBlock::fastSchedule() {
289  TopReadySUs.clear();
290  if (Scheduled)
291    undoSchedule();
292
293  for (SUnit* SU : SUnits) {
294    if (!SU->NumPredsLeft)
295      TopReadySUs.push_back(SU);
296  }
297
298  while (!TopReadySUs.empty()) {
299    SUnit *SU = TopReadySUs[0];
300    ScheduledSUnits.push_back(SU);
301    nodeScheduled(SU);
302  }
303
304  Scheduled = true;
305}
306
307// Returns if the register was set between first and last.
308static bool isDefBetween(unsigned Reg,
309                           SlotIndex First, SlotIndex Last,
310                           const MachineRegisterInfo *MRI,
311                           const LiveIntervals *LIS) {
312  for (MachineRegisterInfo::def_instr_iterator
313       UI = MRI->def_instr_begin(Reg),
314       UE = MRI->def_instr_end(); UI != UE; ++UI) {
315    const MachineInstr* MI = &*UI;
316    if (MI->isDebugValue())
317      continue;
318    SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
319    if (InstSlot >= First && InstSlot <= Last)
320      return true;
321  }
322  return false;
323}
324
325void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
326                                      MachineBasicBlock::iterator EndBlock) {
327  IntervalPressure Pressure, BotPressure;
328  RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
329  LiveIntervals *LIS = DAG->getLIS();
330  MachineRegisterInfo *MRI = DAG->getMRI();
331  DAG->initRPTracker(TopRPTracker);
332  DAG->initRPTracker(BotRPTracker);
333  DAG->initRPTracker(RPTracker);
334
335  // Goes though all SU. RPTracker captures what had to be alive for the SUs
336  // to execute, and what is still alive at the end.
337  for (SUnit* SU : ScheduledSUnits) {
338    RPTracker.setPos(SU->getInstr());
339    RPTracker.advance();
340  }
341
342  // Close the RPTracker to finalize live ins/outs.
343  RPTracker.closeRegion();
344
345  // Initialize the live ins and live outs.
346  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
347  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
348
349  // Do not Track Physical Registers, because it messes up.
350  for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
351    if (Register::isVirtualRegister(RegMaskPair.RegUnit))
352      LiveInRegs.insert(RegMaskPair.RegUnit);
353  }
354  LiveOutRegs.clear();
355  // There is several possibilities to distinguish:
356  // 1) Reg is not input to any instruction in the block, but is output of one
357  // 2) 1) + read in the block and not needed after it
358  // 3) 1) + read in the block but needed in another block
359  // 4) Reg is input of an instruction but another block will read it too
360  // 5) Reg is input of an instruction and then rewritten in the block.
361  //    result is not read in the block (implies used in another block)
362  // 6) Reg is input of an instruction and then rewritten in the block.
363  //    result is read in the block and not needed in another block
364  // 7) Reg is input of an instruction and then rewritten in the block.
365  //    result is read in the block but also needed in another block
366  // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
367  // We want LiveOutRegs to contain only Regs whose content will be read after
368  // in another block, and whose content was written in the current block,
369  // that is we want it to get 1, 3, 5, 7
370  // Since we made the MIs of a block to be packed all together before
371  // scheduling, then the LiveIntervals were correct, and the RPTracker was
372  // able to correctly handle 5 vs 6, 2 vs 3.
373  // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
374  // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
375  // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
376  // The use of findDefBetween removes the case 4.
377  for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
378    unsigned Reg = RegMaskPair.RegUnit;
379    if (Register::isVirtualRegister(Reg) &&
380        isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
381                     LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
382                     LIS)) {
383      LiveOutRegs.insert(Reg);
384    }
385  }
386
387  // Pressure = sum_alive_registers register size
388  // Internally llvm will represent some registers as big 128 bits registers
389  // for example, but they actually correspond to 4 actual 32 bits registers.
390  // Thus Pressure is not equal to num_alive_registers * constant.
391  LiveInPressure = TopPressure.MaxSetPressure;
392  LiveOutPressure = BotPressure.MaxSetPressure;
393
394  // Prepares TopRPTracker for top down scheduling.
395  TopRPTracker.closeTop();
396}
397
398void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
399                               MachineBasicBlock::iterator EndBlock) {
400  if (!Scheduled)
401    fastSchedule();
402
403  // PreScheduling phase to set LiveIn and LiveOut.
404  initRegPressure(BeginBlock, EndBlock);
405  undoSchedule();
406
407  // Schedule for real now.
408
409  TopReadySUs.clear();
410
411  for (SUnit* SU : SUnits) {
412    if (!SU->NumPredsLeft)
413      TopReadySUs.push_back(SU);
414  }
415
416  while (!TopReadySUs.empty()) {
417    SUnit *SU = pickNode();
418    ScheduledSUnits.push_back(SU);
419    TopRPTracker.setPos(SU->getInstr());
420    TopRPTracker.advance();
421    nodeScheduled(SU);
422  }
423
424  // TODO: compute InternalAdditionnalPressure.
425  InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
426
427  // Check everything is right.
428#ifndef NDEBUG
429  assert(SUnits.size() == ScheduledSUnits.size() &&
430            TopReadySUs.empty());
431  for (SUnit* SU : SUnits) {
432    assert(SU->isScheduled &&
433              SU->NumPredsLeft == 0);
434  }
435#endif
436
437  Scheduled = true;
438}
439
440void SIScheduleBlock::undoSchedule() {
441  for (SUnit* SU : SUnits) {
442    SU->isScheduled = false;
443    for (SDep& Succ : SU->Succs) {
444      if (BC->isSUInBlock(Succ.getSUnit(), ID))
445        undoReleaseSucc(SU, &Succ);
446    }
447  }
448  HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
449  ScheduledSUnits.clear();
450  Scheduled = false;
451}
452
453void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
454  SUnit *SuccSU = SuccEdge->getSUnit();
455
456  if (SuccEdge->isWeak()) {
457    ++SuccSU->WeakPredsLeft;
458    return;
459  }
460  ++SuccSU->NumPredsLeft;
461}
462
463void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
464  SUnit *SuccSU = SuccEdge->getSUnit();
465
466  if (SuccEdge->isWeak()) {
467    --SuccSU->WeakPredsLeft;
468    return;
469  }
470#ifndef NDEBUG
471  if (SuccSU->NumPredsLeft == 0) {
472    dbgs() << "*** Scheduling failed! ***\n";
473    DAG->dumpNode(*SuccSU);
474    dbgs() << " has been released too many times!\n";
475    llvm_unreachable(nullptr);
476  }
477#endif
478
479  --SuccSU->NumPredsLeft;
480}
481
482/// Release Successors of the SU that are in the block or not.
483void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
484  for (SDep& Succ : SU->Succs) {
485    SUnit *SuccSU = Succ.getSUnit();
486
487    if (SuccSU->NodeNum >= DAG->SUnits.size())
488        continue;
489
490    if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
491      continue;
492
493    releaseSucc(SU, &Succ);
494    if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
495      TopReadySUs.push_back(SuccSU);
496  }
497}
498
499void SIScheduleBlock::nodeScheduled(SUnit *SU) {
500  // Is in TopReadySUs
501  assert (!SU->NumPredsLeft);
502  std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
503  if (I == TopReadySUs.end()) {
504    dbgs() << "Data Structure Bug in SI Scheduler\n";
505    llvm_unreachable(nullptr);
506  }
507  TopReadySUs.erase(I);
508
509  releaseSuccessors(SU, true);
510  // Scheduling this node will trigger a wait,
511  // thus propagate to other instructions that they do not need to wait either.
512  if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
513    HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
514
515  if (DAG->IsLowLatencySU[SU->NodeNum]) {
516     for (SDep& Succ : SU->Succs) {
517      std::map<unsigned, unsigned>::iterator I =
518        NodeNum2Index.find(Succ.getSUnit()->NodeNum);
519      if (I != NodeNum2Index.end())
520        HasLowLatencyNonWaitedParent[I->second] = 1;
521    }
522  }
523  SU->isScheduled = true;
524}
525
526void SIScheduleBlock::finalizeUnits() {
527  // We remove links from outside blocks to enable scheduling inside the block.
528  for (SUnit* SU : SUnits) {
529    releaseSuccessors(SU, false);
530    if (DAG->IsHighLatencySU[SU->NodeNum])
531      HighLatencyBlock = true;
532  }
533  HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
534}
535
536// we maintain ascending order of IDs
537void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
538  unsigned PredID = Pred->getID();
539
540  // Check if not already predecessor.
541  for (SIScheduleBlock* P : Preds) {
542    if (PredID == P->getID())
543      return;
544  }
545  Preds.push_back(Pred);
546
547  assert(none_of(Succs,
548                 [=](std::pair<SIScheduleBlock*,
549                     SIScheduleBlockLinkKind> S) {
550                   return PredID == S.first->getID();
551                    }) &&
552         "Loop in the Block Graph!");
553}
554
555void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
556                              SIScheduleBlockLinkKind Kind) {
557  unsigned SuccID = Succ->getID();
558
559  // Check if not already predecessor.
560  for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
561    if (SuccID == S.first->getID()) {
562      if (S.second == SIScheduleBlockLinkKind::NoData &&
563          Kind == SIScheduleBlockLinkKind::Data)
564        S.second = Kind;
565      return;
566    }
567  }
568  if (Succ->isHighLatencyBlock())
569    ++NumHighLatencySuccessors;
570  Succs.push_back(std::make_pair(Succ, Kind));
571
572  assert(none_of(Preds,
573                 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
574         "Loop in the Block Graph!");
575}
576
577#ifndef NDEBUG
578void SIScheduleBlock::printDebug(bool full) {
579  dbgs() << "Block (" << ID << ")\n";
580  if (!full)
581    return;
582
583  dbgs() << "\nContains High Latency Instruction: "
584         << HighLatencyBlock << '\n';
585  dbgs() << "\nDepends On:\n";
586  for (SIScheduleBlock* P : Preds) {
587    P->printDebug(false);
588  }
589
590  dbgs() << "\nSuccessors:\n";
591  for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
592    if (S.second == SIScheduleBlockLinkKind::Data)
593      dbgs() << "(Data Dep) ";
594    S.first->printDebug(false);
595  }
596
597  if (Scheduled) {
598    dbgs() << "LiveInPressure "
599           << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
600           << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n';
601    dbgs() << "LiveOutPressure "
602           << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
603           << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n";
604    dbgs() << "LiveIns:\n";
605    for (unsigned Reg : LiveInRegs)
606      dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
607
608    dbgs() << "\nLiveOuts:\n";
609    for (unsigned Reg : LiveOutRegs)
610      dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
611  }
612
613  dbgs() << "\nInstructions:\n";
614  for (const SUnit* SU : SUnits)
615      DAG->dumpNode(*SU);
616
617  dbgs() << "///////////////////////\n";
618}
619#endif
620
621// SIScheduleBlockCreator //
622
623SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG)
624    : DAG(DAG) {}
625
626SIScheduleBlocks
627SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
628  std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
629    Blocks.find(BlockVariant);
630  if (B == Blocks.end()) {
631    SIScheduleBlocks Res;
632    createBlocksForVariant(BlockVariant);
633    topologicalSort();
634    scheduleInsideBlocks();
635    fillStats();
636    Res.Blocks = CurrentBlocks;
637    Res.TopDownIndex2Block = TopDownIndex2Block;
638    Res.TopDownBlock2Index = TopDownBlock2Index;
639    Blocks[BlockVariant] = Res;
640    return Res;
641  } else {
642    return B->second;
643  }
644}
645
646bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
647  if (SU->NodeNum >= DAG->SUnits.size())
648    return false;
649  return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
650}
651
652void SIScheduleBlockCreator::colorHighLatenciesAlone() {
653  unsigned DAGSize = DAG->SUnits.size();
654
655  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
656    SUnit *SU = &DAG->SUnits[i];
657    if (DAG->IsHighLatencySU[SU->NodeNum]) {
658      CurrentColoring[SU->NodeNum] = NextReservedID++;
659    }
660  }
661}
662
663static bool
664hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
665  for (const auto &PredDep : SU.Preds) {
666    if (PredDep.getSUnit() == &FromSU &&
667        PredDep.getKind() == llvm::SDep::Data)
668      return true;
669  }
670  return false;
671}
672
673void SIScheduleBlockCreator::colorHighLatenciesGroups() {
674  unsigned DAGSize = DAG->SUnits.size();
675  unsigned NumHighLatencies = 0;
676  unsigned GroupSize;
677  int Color = NextReservedID;
678  unsigned Count = 0;
679  std::set<unsigned> FormingGroup;
680
681  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
682    SUnit *SU = &DAG->SUnits[i];
683    if (DAG->IsHighLatencySU[SU->NodeNum])
684      ++NumHighLatencies;
685  }
686
687  if (NumHighLatencies == 0)
688    return;
689
690  if (NumHighLatencies <= 6)
691    GroupSize = 2;
692  else if (NumHighLatencies <= 12)
693    GroupSize = 3;
694  else
695    GroupSize = 4;
696
697  for (unsigned SUNum : DAG->TopDownIndex2SU) {
698    const SUnit &SU = DAG->SUnits[SUNum];
699    if (DAG->IsHighLatencySU[SU.NodeNum]) {
700      unsigned CompatibleGroup = true;
701      int ProposedColor = Color;
702      std::vector<int> AdditionalElements;
703
704      // We don't want to put in the same block
705      // two high latency instructions that depend
706      // on each other.
707      // One way would be to check canAddEdge
708      // in both directions, but that currently is not
709      // enough because there the high latency order is
710      // enforced (via links).
711      // Instead, look at the dependencies between the
712      // high latency instructions and deduce if it is
713      // a data dependency or not.
714      for (unsigned j : FormingGroup) {
715        bool HasSubGraph;
716        std::vector<int> SubGraph;
717        // By construction (topological order), if SU and
718        // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
719        // in the parent graph of SU.
720#ifndef NDEBUG
721        SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
722                                               HasSubGraph);
723        assert(!HasSubGraph);
724#endif
725        SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
726                                               HasSubGraph);
727        if (!HasSubGraph)
728          continue; // No dependencies between each other
729        else if (SubGraph.size() > 5) {
730          // Too many elements would be required to be added to the block.
731          CompatibleGroup = false;
732          break;
733        }
734        else {
735          // Check the type of dependency
736          for (unsigned k : SubGraph) {
737            // If in the path to join the two instructions,
738            // there is another high latency instruction,
739            // or instructions colored for another block
740            // abort the merge.
741            if (DAG->IsHighLatencySU[k] ||
742                (CurrentColoring[k] != ProposedColor &&
743                 CurrentColoring[k] != 0)) {
744              CompatibleGroup = false;
745              break;
746            }
747            // If one of the SU in the subgraph depends on the result of SU j,
748            // there'll be a data dependency.
749            if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
750              CompatibleGroup = false;
751              break;
752            }
753          }
754          if (!CompatibleGroup)
755            break;
756          // Same check for the SU
757          if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
758            CompatibleGroup = false;
759            break;
760          }
761          // Add all the required instructions to the block
762          // These cannot live in another block (because they
763          // depend (order dependency) on one of the
764          // instruction in the block, and are required for the
765          // high latency instruction we add.
766          AdditionalElements.insert(AdditionalElements.end(),
767                                    SubGraph.begin(), SubGraph.end());
768        }
769      }
770      if (CompatibleGroup) {
771        FormingGroup.insert(SU.NodeNum);
772        for (unsigned j : AdditionalElements)
773          CurrentColoring[j] = ProposedColor;
774        CurrentColoring[SU.NodeNum] = ProposedColor;
775        ++Count;
776      }
777      // Found one incompatible instruction,
778      // or has filled a big enough group.
779      // -> start a new one.
780      if (!CompatibleGroup) {
781        FormingGroup.clear();
782        Color = ++NextReservedID;
783        ProposedColor = Color;
784        FormingGroup.insert(SU.NodeNum);
785        CurrentColoring[SU.NodeNum] = ProposedColor;
786        Count = 0;
787      } else if (Count == GroupSize) {
788        FormingGroup.clear();
789        Color = ++NextReservedID;
790        ProposedColor = Color;
791        Count = 0;
792      }
793    }
794  }
795}
796
797void SIScheduleBlockCreator::colorComputeReservedDependencies() {
798  unsigned DAGSize = DAG->SUnits.size();
799  std::map<std::set<unsigned>, unsigned> ColorCombinations;
800
801  CurrentTopDownReservedDependencyColoring.clear();
802  CurrentBottomUpReservedDependencyColoring.clear();
803
804  CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
805  CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
806
807  // Traverse TopDown, and give different colors to SUs depending
808  // on which combination of High Latencies they depend on.
809
810  for (unsigned SUNum : DAG->TopDownIndex2SU) {
811    SUnit *SU = &DAG->SUnits[SUNum];
812    std::set<unsigned> SUColors;
813
814    // Already given.
815    if (CurrentColoring[SU->NodeNum]) {
816      CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
817        CurrentColoring[SU->NodeNum];
818      continue;
819    }
820
821   for (SDep& PredDep : SU->Preds) {
822      SUnit *Pred = PredDep.getSUnit();
823      if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
824        continue;
825      if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
826        SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
827    }
828    // Color 0 by default.
829    if (SUColors.empty())
830      continue;
831    // Same color than parents.
832    if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
833      CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
834        *SUColors.begin();
835    else {
836      std::map<std::set<unsigned>, unsigned>::iterator Pos =
837        ColorCombinations.find(SUColors);
838      if (Pos != ColorCombinations.end()) {
839          CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
840      } else {
841        CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
842          NextNonReservedID;
843        ColorCombinations[SUColors] = NextNonReservedID++;
844      }
845    }
846  }
847
848  ColorCombinations.clear();
849
850  // Same as before, but BottomUp.
851
852  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
853    SUnit *SU = &DAG->SUnits[SUNum];
854    std::set<unsigned> SUColors;
855
856    // Already given.
857    if (CurrentColoring[SU->NodeNum]) {
858      CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
859        CurrentColoring[SU->NodeNum];
860      continue;
861    }
862
863    for (SDep& SuccDep : SU->Succs) {
864      SUnit *Succ = SuccDep.getSUnit();
865      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
866        continue;
867      if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
868        SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
869    }
870    // Keep color 0.
871    if (SUColors.empty())
872      continue;
873    // Same color than parents.
874    if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
875      CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
876        *SUColors.begin();
877    else {
878      std::map<std::set<unsigned>, unsigned>::iterator Pos =
879        ColorCombinations.find(SUColors);
880      if (Pos != ColorCombinations.end()) {
881        CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
882      } else {
883        CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
884          NextNonReservedID;
885        ColorCombinations[SUColors] = NextNonReservedID++;
886      }
887    }
888  }
889}
890
891void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
892  unsigned DAGSize = DAG->SUnits.size();
893  std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
894
895  // Every combination of colors given by the top down
896  // and bottom up Reserved node dependency
897
898  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
899    SUnit *SU = &DAG->SUnits[i];
900    std::pair<unsigned, unsigned> SUColors;
901
902    // High latency instructions: already given.
903    if (CurrentColoring[SU->NodeNum])
904      continue;
905
906    SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
907    SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
908
909    std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
910      ColorCombinations.find(SUColors);
911    if (Pos != ColorCombinations.end()) {
912      CurrentColoring[SU->NodeNum] = Pos->second;
913    } else {
914      CurrentColoring[SU->NodeNum] = NextNonReservedID;
915      ColorCombinations[SUColors] = NextNonReservedID++;
916    }
917  }
918}
919
920void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
921  unsigned DAGSize = DAG->SUnits.size();
922  std::vector<int> PendingColoring = CurrentColoring;
923
924  assert(DAGSize >= 1 &&
925         CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
926         CurrentTopDownReservedDependencyColoring.size() == DAGSize);
927  // If there is no reserved block at all, do nothing. We don't want
928  // everything in one block.
929  if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
930                        CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
931      *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
932                        CurrentTopDownReservedDependencyColoring.end()) == 0)
933    return;
934
935  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
936    SUnit *SU = &DAG->SUnits[SUNum];
937    std::set<unsigned> SUColors;
938    std::set<unsigned> SUColorsPending;
939
940    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
941      continue;
942
943    if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
944        CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
945      continue;
946
947    for (SDep& SuccDep : SU->Succs) {
948      SUnit *Succ = SuccDep.getSUnit();
949      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
950        continue;
951      if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
952          CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
953        SUColors.insert(CurrentColoring[Succ->NodeNum]);
954      SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
955    }
956    // If there is only one child/parent block, and that block
957    // is not among the ones we are removing in this path, then
958    // merge the instruction to that block
959    if (SUColors.size() == 1 && SUColorsPending.size() == 1)
960      PendingColoring[SU->NodeNum] = *SUColors.begin();
961    else // TODO: Attribute new colors depending on color
962         // combination of children.
963      PendingColoring[SU->NodeNum] = NextNonReservedID++;
964  }
965  CurrentColoring = PendingColoring;
966}
967
968
969void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
970  unsigned DAGSize = DAG->SUnits.size();
971  unsigned PreviousColor;
972  std::set<unsigned> SeenColors;
973
974  if (DAGSize <= 1)
975    return;
976
977  PreviousColor = CurrentColoring[0];
978
979  for (unsigned i = 1, e = DAGSize; i != e; ++i) {
980    SUnit *SU = &DAG->SUnits[i];
981    unsigned CurrentColor = CurrentColoring[i];
982    unsigned PreviousColorSave = PreviousColor;
983    assert(i == SU->NodeNum);
984
985    if (CurrentColor != PreviousColor)
986      SeenColors.insert(PreviousColor);
987    PreviousColor = CurrentColor;
988
989    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
990      continue;
991
992    if (SeenColors.find(CurrentColor) == SeenColors.end())
993      continue;
994
995    if (PreviousColorSave != CurrentColor)
996      CurrentColoring[i] = NextNonReservedID++;
997    else
998      CurrentColoring[i] = CurrentColoring[i-1];
999  }
1000}
1001
1002void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
1003  unsigned DAGSize = DAG->SUnits.size();
1004
1005  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1006    SUnit *SU = &DAG->SUnits[SUNum];
1007    std::set<unsigned> SUColors;
1008
1009    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1010      continue;
1011
1012    // No predecessor: Vgpr constant loading.
1013    // Low latency instructions usually have a predecessor (the address)
1014    if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
1015      continue;
1016
1017    for (SDep& SuccDep : SU->Succs) {
1018      SUnit *Succ = SuccDep.getSUnit();
1019      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1020        continue;
1021      SUColors.insert(CurrentColoring[Succ->NodeNum]);
1022    }
1023    if (SUColors.size() == 1)
1024      CurrentColoring[SU->NodeNum] = *SUColors.begin();
1025  }
1026}
1027
1028void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
1029  unsigned DAGSize = DAG->SUnits.size();
1030
1031  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1032    SUnit *SU = &DAG->SUnits[SUNum];
1033    std::set<unsigned> SUColors;
1034
1035    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1036      continue;
1037
1038    for (SDep& SuccDep : SU->Succs) {
1039       SUnit *Succ = SuccDep.getSUnit();
1040      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1041        continue;
1042      SUColors.insert(CurrentColoring[Succ->NodeNum]);
1043    }
1044    if (SUColors.size() == 1)
1045      CurrentColoring[SU->NodeNum] = *SUColors.begin();
1046  }
1047}
1048
1049void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
1050  unsigned DAGSize = DAG->SUnits.size();
1051
1052  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1053    SUnit *SU = &DAG->SUnits[SUNum];
1054    std::set<unsigned> SUColors;
1055
1056    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1057      continue;
1058
1059    for (SDep& SuccDep : SU->Succs) {
1060       SUnit *Succ = SuccDep.getSUnit();
1061      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1062        continue;
1063      SUColors.insert(CurrentColoring[Succ->NodeNum]);
1064    }
1065    if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
1066      CurrentColoring[SU->NodeNum] = *SUColors.begin();
1067  }
1068}
1069
1070void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
1071  unsigned DAGSize = DAG->SUnits.size();
1072  std::map<unsigned, unsigned> ColorCount;
1073
1074  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1075    SUnit *SU = &DAG->SUnits[SUNum];
1076    unsigned color = CurrentColoring[SU->NodeNum];
1077     ++ColorCount[color];
1078  }
1079
1080  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1081    SUnit *SU = &DAG->SUnits[SUNum];
1082    unsigned color = CurrentColoring[SU->NodeNum];
1083    std::set<unsigned> SUColors;
1084
1085    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1086      continue;
1087
1088    if (ColorCount[color] > 1)
1089      continue;
1090
1091    for (SDep& SuccDep : SU->Succs) {
1092       SUnit *Succ = SuccDep.getSUnit();
1093      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1094        continue;
1095      SUColors.insert(CurrentColoring[Succ->NodeNum]);
1096    }
1097    if (SUColors.size() == 1 && *SUColors.begin() != color) {
1098      --ColorCount[color];
1099      CurrentColoring[SU->NodeNum] = *SUColors.begin();
1100      ++ColorCount[*SUColors.begin()];
1101    }
1102  }
1103}
1104
1105void SIScheduleBlockCreator::cutHugeBlocks() {
1106  // TODO
1107}
1108
1109void SIScheduleBlockCreator::regroupNoUserInstructions() {
1110  unsigned DAGSize = DAG->SUnits.size();
1111  int GroupID = NextNonReservedID++;
1112
1113  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1114    SUnit *SU = &DAG->SUnits[SUNum];
1115    bool hasSuccessor = false;
1116
1117    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1118      continue;
1119
1120    for (SDep& SuccDep : SU->Succs) {
1121       SUnit *Succ = SuccDep.getSUnit();
1122      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1123        continue;
1124      hasSuccessor = true;
1125    }
1126    if (!hasSuccessor)
1127      CurrentColoring[SU->NodeNum] = GroupID;
1128  }
1129}
1130
1131void SIScheduleBlockCreator::colorExports() {
1132  unsigned ExportColor = NextNonReservedID++;
1133  SmallVector<unsigned, 8> ExpGroup;
1134
1135  // Put all exports together in a block.
1136  // The block will naturally end up being scheduled last,
1137  // thus putting exports at the end of the schedule, which
1138  // is better for performance.
1139  // However we must ensure, for safety, the exports can be put
1140  // together in the same block without any other instruction.
1141  // This could happen, for example, when scheduling after regalloc
1142  // if reloading a spilled register from memory using the same
1143  // register than used in a previous export.
1144  // If that happens, do not regroup the exports.
1145  for (unsigned SUNum : DAG->TopDownIndex2SU) {
1146    const SUnit &SU = DAG->SUnits[SUNum];
1147    if (SIInstrInfo::isEXP(*SU.getInstr())) {
1148      // Check the EXP can be added to the group safely,
1149      // ie without needing any other instruction.
1150      // The EXP is allowed to depend on other EXP
1151      // (they will be in the same group).
1152      for (unsigned j : ExpGroup) {
1153        bool HasSubGraph;
1154        std::vector<int> SubGraph;
1155        // By construction (topological order), if SU and
1156        // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
1157        // in the parent graph of SU.
1158#ifndef NDEBUG
1159        SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
1160                                               HasSubGraph);
1161        assert(!HasSubGraph);
1162#endif
1163        SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
1164                                               HasSubGraph);
1165        if (!HasSubGraph)
1166          continue; // No dependencies between each other
1167
1168        // SubGraph contains all the instructions required
1169        // between EXP SUnits[j] and EXP SU.
1170        for (unsigned k : SubGraph) {
1171          if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
1172            // Other instructions than EXP would be required in the group.
1173            // Abort the groupping.
1174            return;
1175        }
1176      }
1177
1178      ExpGroup.push_back(SUNum);
1179    }
1180  }
1181
1182  // The group can be formed. Give the color.
1183  for (unsigned j : ExpGroup)
1184    CurrentColoring[j] = ExportColor;
1185}
1186
1187void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
1188  unsigned DAGSize = DAG->SUnits.size();
1189  std::map<unsigned,unsigned> RealID;
1190
1191  CurrentBlocks.clear();
1192  CurrentColoring.clear();
1193  CurrentColoring.resize(DAGSize, 0);
1194  Node2CurrentBlock.clear();
1195
1196  // Restore links previous scheduling variant has overridden.
1197  DAG->restoreSULinksLeft();
1198
1199  NextReservedID = 1;
1200  NextNonReservedID = DAGSize + 1;
1201
1202  LLVM_DEBUG(dbgs() << "Coloring the graph\n");
1203
1204  if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
1205    colorHighLatenciesGroups();
1206  else
1207    colorHighLatenciesAlone();
1208  colorComputeReservedDependencies();
1209  colorAccordingToReservedDependencies();
1210  colorEndsAccordingToDependencies();
1211  if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
1212    colorForceConsecutiveOrderInGroup();
1213  regroupNoUserInstructions();
1214  colorMergeConstantLoadsNextGroup();
1215  colorMergeIfPossibleNextGroupOnlyForReserved();
1216  colorExports();
1217
1218  // Put SUs of same color into same block
1219  Node2CurrentBlock.resize(DAGSize, -1);
1220  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1221    SUnit *SU = &DAG->SUnits[i];
1222    unsigned Color = CurrentColoring[SU->NodeNum];
1223    if (RealID.find(Color) == RealID.end()) {
1224      int ID = CurrentBlocks.size();
1225      BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
1226      CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
1227      RealID[Color] = ID;
1228    }
1229    CurrentBlocks[RealID[Color]]->addUnit(SU);
1230    Node2CurrentBlock[SU->NodeNum] = RealID[Color];
1231  }
1232
1233  // Build dependencies between blocks.
1234  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1235    SUnit *SU = &DAG->SUnits[i];
1236    int SUID = Node2CurrentBlock[i];
1237     for (SDep& SuccDep : SU->Succs) {
1238       SUnit *Succ = SuccDep.getSUnit();
1239      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1240        continue;
1241      if (Node2CurrentBlock[Succ->NodeNum] != SUID)
1242        CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
1243                                     SuccDep.isCtrl() ? NoData : Data);
1244    }
1245    for (SDep& PredDep : SU->Preds) {
1246      SUnit *Pred = PredDep.getSUnit();
1247      if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
1248        continue;
1249      if (Node2CurrentBlock[Pred->NodeNum] != SUID)
1250        CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
1251    }
1252  }
1253
1254  // Free root and leafs of all blocks to enable scheduling inside them.
1255  for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1256    SIScheduleBlock *Block = CurrentBlocks[i];
1257    Block->finalizeUnits();
1258  }
1259  LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
1260             for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1261               SIScheduleBlock *Block = CurrentBlocks[i];
1262               Block->printDebug(true);
1263             });
1264}
1265
1266// Two functions taken from Codegen/MachineScheduler.cpp
1267
1268/// Non-const version.
1269static MachineBasicBlock::iterator
1270nextIfDebug(MachineBasicBlock::iterator I,
1271            MachineBasicBlock::const_iterator End) {
1272  for (; I != End; ++I) {
1273    if (!I->isDebugInstr())
1274      break;
1275  }
1276  return I;
1277}
1278
1279void SIScheduleBlockCreator::topologicalSort() {
1280  unsigned DAGSize = CurrentBlocks.size();
1281  std::vector<int> WorkList;
1282
1283  LLVM_DEBUG(dbgs() << "Topological Sort\n");
1284
1285  WorkList.reserve(DAGSize);
1286  TopDownIndex2Block.resize(DAGSize);
1287  TopDownBlock2Index.resize(DAGSize);
1288  BottomUpIndex2Block.resize(DAGSize);
1289
1290  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1291    SIScheduleBlock *Block = CurrentBlocks[i];
1292    unsigned Degree = Block->getSuccs().size();
1293    TopDownBlock2Index[i] = Degree;
1294    if (Degree == 0) {
1295      WorkList.push_back(i);
1296    }
1297  }
1298
1299  int Id = DAGSize;
1300  while (!WorkList.empty()) {
1301    int i = WorkList.back();
1302    SIScheduleBlock *Block = CurrentBlocks[i];
1303    WorkList.pop_back();
1304    TopDownBlock2Index[i] = --Id;
1305    TopDownIndex2Block[Id] = i;
1306    for (SIScheduleBlock* Pred : Block->getPreds()) {
1307      if (!--TopDownBlock2Index[Pred->getID()])
1308        WorkList.push_back(Pred->getID());
1309    }
1310  }
1311
1312#ifndef NDEBUG
1313  // Check correctness of the ordering.
1314  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1315    SIScheduleBlock *Block = CurrentBlocks[i];
1316    for (SIScheduleBlock* Pred : Block->getPreds()) {
1317      assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
1318      "Wrong Top Down topological sorting");
1319    }
1320  }
1321#endif
1322
1323  BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
1324                                         TopDownIndex2Block.rend());
1325}
1326
1327void SIScheduleBlockCreator::scheduleInsideBlocks() {
1328  unsigned DAGSize = CurrentBlocks.size();
1329
1330  LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
1331
1332  // We do schedule a valid scheduling such that a Block corresponds
1333  // to a range of instructions.
1334  LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
1335  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1336    SIScheduleBlock *Block = CurrentBlocks[i];
1337    Block->fastSchedule();
1338  }
1339
1340  // Note: the following code, and the part restoring previous position
1341  // is by far the most expensive operation of the Scheduler.
1342
1343  // Do not update CurrentTop.
1344  MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
1345  std::vector<MachineBasicBlock::iterator> PosOld;
1346  std::vector<MachineBasicBlock::iterator> PosNew;
1347  PosOld.reserve(DAG->SUnits.size());
1348  PosNew.reserve(DAG->SUnits.size());
1349
1350  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1351    int BlockIndice = TopDownIndex2Block[i];
1352    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1353    std::vector<SUnit*> SUs = Block->getScheduledUnits();
1354
1355    for (SUnit* SU : SUs) {
1356      MachineInstr *MI = SU->getInstr();
1357      MachineBasicBlock::iterator Pos = MI;
1358      PosOld.push_back(Pos);
1359      if (&*CurrentTopFastSched == MI) {
1360        PosNew.push_back(Pos);
1361        CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
1362                                          DAG->getCurrentBottom());
1363      } else {
1364        // Update the instruction stream.
1365        DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
1366
1367        // Update LiveIntervals.
1368        // Note: Moving all instructions and calling handleMove every time
1369        // is the most cpu intensive operation of the scheduler.
1370        // It would gain a lot if there was a way to recompute the
1371        // LiveIntervals for the entire scheduling region.
1372        DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
1373        PosNew.push_back(CurrentTopFastSched);
1374      }
1375    }
1376  }
1377
1378  // Now we have Block of SUs == Block of MI.
1379  // We do the final schedule for the instructions inside the block.
1380  // The property that all the SUs of the Block are grouped together as MI
1381  // is used for correct reg usage tracking.
1382  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1383    SIScheduleBlock *Block = CurrentBlocks[i];
1384    std::vector<SUnit*> SUs = Block->getScheduledUnits();
1385    Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
1386  }
1387
1388  LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
1389  // Restore old ordering (which prevents a LIS->handleMove bug).
1390  for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
1391    MachineBasicBlock::iterator POld = PosOld[i-1];
1392    MachineBasicBlock::iterator PNew = PosNew[i-1];
1393    if (PNew != POld) {
1394      // Update the instruction stream.
1395      DAG->getBB()->splice(POld, DAG->getBB(), PNew);
1396
1397      // Update LiveIntervals.
1398      DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
1399    }
1400  }
1401
1402  LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1403    SIScheduleBlock *Block = CurrentBlocks[i];
1404    Block->printDebug(true);
1405  });
1406}
1407
1408void SIScheduleBlockCreator::fillStats() {
1409  unsigned DAGSize = CurrentBlocks.size();
1410
1411  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1412    int BlockIndice = TopDownIndex2Block[i];
1413    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1414    if (Block->getPreds().empty())
1415      Block->Depth = 0;
1416    else {
1417      unsigned Depth = 0;
1418      for (SIScheduleBlock *Pred : Block->getPreds()) {
1419        if (Depth < Pred->Depth + Pred->getCost())
1420          Depth = Pred->Depth + Pred->getCost();
1421      }
1422      Block->Depth = Depth;
1423    }
1424  }
1425
1426  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1427    int BlockIndice = BottomUpIndex2Block[i];
1428    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1429    if (Block->getSuccs().empty())
1430      Block->Height = 0;
1431    else {
1432      unsigned Height = 0;
1433      for (const auto &Succ : Block->getSuccs())
1434        Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
1435      Block->Height = Height;
1436    }
1437  }
1438}
1439
1440// SIScheduleBlockScheduler //
1441
1442SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
1443                                                   SISchedulerBlockSchedulerVariant Variant,
1444                                                   SIScheduleBlocks  BlocksStruct) :
1445  DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
1446  LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
1447  SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
1448
1449  // Fill the usage of every output
1450  // Warning: while by construction we always have a link between two blocks
1451  // when one needs a result from the other, the number of users of an output
1452  // is not the sum of child blocks having as input the same virtual register.
1453  // Here is an example. A produces x and y. B eats x and produces x'.
1454  // C eats x' and y. The register coalescer may have attributed the same
1455  // virtual register to x and x'.
1456  // To count accurately, we do a topological sort. In case the register is
1457  // found for several parents, we increment the usage of the one with the
1458  // highest topological index.
1459  LiveOutRegsNumUsages.resize(Blocks.size());
1460  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1461    SIScheduleBlock *Block = Blocks[i];
1462    for (unsigned Reg : Block->getInRegs()) {
1463      bool Found = false;
1464      int topoInd = -1;
1465      for (SIScheduleBlock* Pred: Block->getPreds()) {
1466        std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1467        std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1468
1469        if (RegPos != PredOutRegs.end()) {
1470          Found = true;
1471          if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
1472            topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
1473          }
1474        }
1475      }
1476
1477      if (!Found)
1478        continue;
1479
1480      int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
1481      ++LiveOutRegsNumUsages[PredID][Reg];
1482    }
1483  }
1484
1485  LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
1486  BlockNumPredsLeft.resize(Blocks.size());
1487  BlockNumSuccsLeft.resize(Blocks.size());
1488
1489  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1490    SIScheduleBlock *Block = Blocks[i];
1491    BlockNumPredsLeft[i] = Block->getPreds().size();
1492    BlockNumSuccsLeft[i] = Block->getSuccs().size();
1493  }
1494
1495#ifndef NDEBUG
1496  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1497    SIScheduleBlock *Block = Blocks[i];
1498    assert(Block->getID() == i);
1499  }
1500#endif
1501
1502  std::set<unsigned> InRegs = DAG->getInRegs();
1503  addLiveRegs(InRegs);
1504
1505  // Increase LiveOutRegsNumUsages for blocks
1506  // producing registers consumed in another
1507  // scheduling region.
1508  for (unsigned Reg : DAG->getOutRegs()) {
1509    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1510      // Do reverse traversal
1511      int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
1512      SIScheduleBlock *Block = Blocks[ID];
1513      const std::set<unsigned> &OutRegs = Block->getOutRegs();
1514
1515      if (OutRegs.find(Reg) == OutRegs.end())
1516        continue;
1517
1518      ++LiveOutRegsNumUsages[ID][Reg];
1519      break;
1520    }
1521  }
1522
1523  // Fill LiveRegsConsumers for regs that were already
1524  // defined before scheduling.
1525  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1526    SIScheduleBlock *Block = Blocks[i];
1527    for (unsigned Reg : Block->getInRegs()) {
1528      bool Found = false;
1529      for (SIScheduleBlock* Pred: Block->getPreds()) {
1530        std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1531        std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1532
1533        if (RegPos != PredOutRegs.end()) {
1534          Found = true;
1535          break;
1536        }
1537      }
1538
1539      if (!Found)
1540        ++LiveRegsConsumers[Reg];
1541    }
1542  }
1543
1544  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1545    SIScheduleBlock *Block = Blocks[i];
1546    if (BlockNumPredsLeft[i] == 0) {
1547      ReadyBlocks.push_back(Block);
1548    }
1549  }
1550
1551  while (SIScheduleBlock *Block = pickBlock()) {
1552    BlocksScheduled.push_back(Block);
1553    blockScheduled(Block);
1554  }
1555
1556  LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
1557                                            : BlocksScheduled) {
1558    dbgs() << ' ' << Block->getID();
1559  } dbgs() << '\n';);
1560}
1561
1562bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
1563                                                   SIBlockSchedCandidate &TryCand) {
1564  if (!Cand.isValid()) {
1565    TryCand.Reason = NodeOrder;
1566    return true;
1567  }
1568
1569  // Try to hide high latencies.
1570  if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
1571                 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
1572    return true;
1573  // Schedule high latencies early so you can hide them better.
1574  if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
1575                          TryCand, Cand, Latency))
1576    return true;
1577  if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
1578                                                   TryCand, Cand, Depth))
1579    return true;
1580  if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
1581                          Cand.NumHighLatencySuccessors,
1582                          TryCand, Cand, Successor))
1583    return true;
1584  return false;
1585}
1586
1587bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
1588                                                    SIBlockSchedCandidate &TryCand) {
1589  if (!Cand.isValid()) {
1590    TryCand.Reason = NodeOrder;
1591    return true;
1592  }
1593
1594  if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
1595                       TryCand, Cand, RegUsage))
1596    return true;
1597  if (SISched::tryGreater(TryCand.NumSuccessors > 0,
1598                          Cand.NumSuccessors > 0,
1599                          TryCand, Cand, Successor))
1600    return true;
1601  if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
1602    return true;
1603  if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
1604                       TryCand, Cand, RegUsage))
1605    return true;
1606  return false;
1607}
1608
1609SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
1610  SIBlockSchedCandidate Cand;
1611  std::vector<SIScheduleBlock*>::iterator Best;
1612  SIScheduleBlock *Block;
1613  if (ReadyBlocks.empty())
1614    return nullptr;
1615
1616  DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
1617                        VregCurrentUsage, SregCurrentUsage);
1618  if (VregCurrentUsage > maxVregUsage)
1619    maxVregUsage = VregCurrentUsage;
1620  if (SregCurrentUsage > maxSregUsage)
1621    maxSregUsage = SregCurrentUsage;
1622  LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
1623             for (SIScheduleBlock *Block
1624                  : ReadyBlocks) dbgs()
1625             << Block->getID() << ' ';
1626             dbgs() << "\nCurrent Live:\n";
1627             for (unsigned Reg
1628                  : LiveRegs) dbgs()
1629             << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
1630             dbgs() << '\n';
1631             dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
1632             dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
1633
1634  Cand.Block = nullptr;
1635  for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
1636       E = ReadyBlocks.end(); I != E; ++I) {
1637    SIBlockSchedCandidate TryCand;
1638    TryCand.Block = *I;
1639    TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
1640    TryCand.VGPRUsageDiff =
1641      checkRegUsageImpact(TryCand.Block->getInRegs(),
1642          TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32];
1643    TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
1644    TryCand.NumHighLatencySuccessors =
1645      TryCand.Block->getNumHighLatencySuccessors();
1646    TryCand.LastPosHighLatParentScheduled =
1647      (unsigned int) std::max<int> (0,
1648         LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
1649           LastPosWaitedHighLatency);
1650    TryCand.Height = TryCand.Block->Height;
1651    // Try not to increase VGPR usage too much, else we may spill.
1652    if (VregCurrentUsage > 120 ||
1653        Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
1654      if (!tryCandidateRegUsage(Cand, TryCand) &&
1655          Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
1656        tryCandidateLatency(Cand, TryCand);
1657    } else {
1658      if (!tryCandidateLatency(Cand, TryCand))
1659        tryCandidateRegUsage(Cand, TryCand);
1660    }
1661    if (TryCand.Reason != NoCand) {
1662      Cand.setBest(TryCand);
1663      Best = I;
1664      LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
1665                        << getReasonStr(Cand.Reason) << '\n');
1666    }
1667  }
1668
1669  LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
1670             dbgs() << "Is a block with high latency instruction: "
1671                    << (Cand.IsHighLatency ? "yes\n" : "no\n");
1672             dbgs() << "Position of last high latency dependency: "
1673                    << Cand.LastPosHighLatParentScheduled << '\n';
1674             dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
1675             dbgs() << '\n';);
1676
1677  Block = Cand.Block;
1678  ReadyBlocks.erase(Best);
1679  return Block;
1680}
1681
1682// Tracking of currently alive registers to determine VGPR Usage.
1683
1684void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
1685  for (unsigned Reg : Regs) {
1686    // For now only track virtual registers.
1687    if (!Register::isVirtualRegister(Reg))
1688      continue;
1689    // If not already in the live set, then add it.
1690    (void) LiveRegs.insert(Reg);
1691  }
1692}
1693
1694void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
1695                                       std::set<unsigned> &Regs) {
1696  for (unsigned Reg : Regs) {
1697    // For now only track virtual registers.
1698    std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
1699    assert (Pos != LiveRegs.end() && // Reg must be live.
1700               LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
1701               LiveRegsConsumers[Reg] >= 1);
1702    --LiveRegsConsumers[Reg];
1703    if (LiveRegsConsumers[Reg] == 0)
1704      LiveRegs.erase(Pos);
1705  }
1706}
1707
1708void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
1709  for (const auto &Block : Parent->getSuccs()) {
1710    if (--BlockNumPredsLeft[Block.first->getID()] == 0)
1711      ReadyBlocks.push_back(Block.first);
1712
1713    if (Parent->isHighLatencyBlock() &&
1714        Block.second == SIScheduleBlockLinkKind::Data)
1715      LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
1716  }
1717}
1718
1719void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
1720  decreaseLiveRegs(Block, Block->getInRegs());
1721  addLiveRegs(Block->getOutRegs());
1722  releaseBlockSuccs(Block);
1723  for (std::map<unsigned, unsigned>::iterator RegI =
1724       LiveOutRegsNumUsages[Block->getID()].begin(),
1725       E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
1726    std::pair<unsigned, unsigned> RegP = *RegI;
1727    // We produce this register, thus it must not be previously alive.
1728    assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
1729           LiveRegsConsumers[RegP.first] == 0);
1730    LiveRegsConsumers[RegP.first] += RegP.second;
1731  }
1732  if (LastPosHighLatencyParentScheduled[Block->getID()] >
1733        (unsigned)LastPosWaitedHighLatency)
1734    LastPosWaitedHighLatency =
1735      LastPosHighLatencyParentScheduled[Block->getID()];
1736  ++NumBlockScheduled;
1737}
1738
1739std::vector<int>
1740SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
1741                                     std::set<unsigned> &OutRegs) {
1742  std::vector<int> DiffSetPressure;
1743  DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
1744
1745  for (unsigned Reg : InRegs) {
1746    // For now only track virtual registers.
1747    if (!Register::isVirtualRegister(Reg))
1748      continue;
1749    if (LiveRegsConsumers[Reg] > 1)
1750      continue;
1751    PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1752    for (; PSetI.isValid(); ++PSetI) {
1753      DiffSetPressure[*PSetI] -= PSetI.getWeight();
1754    }
1755  }
1756
1757  for (unsigned Reg : OutRegs) {
1758    // For now only track virtual registers.
1759    if (!Register::isVirtualRegister(Reg))
1760      continue;
1761    PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1762    for (; PSetI.isValid(); ++PSetI) {
1763      DiffSetPressure[*PSetI] += PSetI.getWeight();
1764    }
1765  }
1766
1767  return DiffSetPressure;
1768}
1769
1770// SIScheduler //
1771
1772struct SIScheduleBlockResult
1773SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
1774                             SISchedulerBlockSchedulerVariant ScheduleVariant) {
1775  SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
1776  SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
1777  std::vector<SIScheduleBlock*> ScheduledBlocks;
1778  struct SIScheduleBlockResult Res;
1779
1780  ScheduledBlocks = Scheduler.getBlocks();
1781
1782  for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
1783    SIScheduleBlock *Block = ScheduledBlocks[b];
1784    std::vector<SUnit*> SUs = Block->getScheduledUnits();
1785
1786    for (SUnit* SU : SUs)
1787      Res.SUs.push_back(SU->NodeNum);
1788  }
1789
1790  Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
1791  Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
1792  return Res;
1793}
1794
1795// SIScheduleDAGMI //
1796
1797SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
1798  ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
1799  SITII = static_cast<const SIInstrInfo*>(TII);
1800  SITRI = static_cast<const SIRegisterInfo*>(TRI);
1801}
1802
1803SIScheduleDAGMI::~SIScheduleDAGMI() = default;
1804
1805// Code adapted from scheduleDAG.cpp
1806// Does a topological sort over the SUs.
1807// Both TopDown and BottomUp
1808void SIScheduleDAGMI::topologicalSort() {
1809  Topo.InitDAGTopologicalSorting();
1810
1811  TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
1812  BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
1813}
1814
1815// Move low latencies further from their user without
1816// increasing SGPR usage (in general)
1817// This is to be replaced by a better pass that would
1818// take into account SGPR usage (based on VGPR Usage
1819// and the corresponding wavefront count), that would
1820// try to merge groups of loads if it make sense, etc
1821void SIScheduleDAGMI::moveLowLatencies() {
1822   unsigned DAGSize = SUnits.size();
1823   int LastLowLatencyUser = -1;
1824   int LastLowLatencyPos = -1;
1825
1826   for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
1827    SUnit *SU = &SUnits[ScheduledSUnits[i]];
1828    bool IsLowLatencyUser = false;
1829    unsigned MinPos = 0;
1830
1831    for (SDep& PredDep : SU->Preds) {
1832      SUnit *Pred = PredDep.getSUnit();
1833      if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
1834        IsLowLatencyUser = true;
1835      }
1836      if (Pred->NodeNum >= DAGSize)
1837        continue;
1838      unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
1839      if (PredPos >= MinPos)
1840        MinPos = PredPos + 1;
1841    }
1842
1843    if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1844      unsigned BestPos = LastLowLatencyUser + 1;
1845      if ((int)BestPos <= LastLowLatencyPos)
1846        BestPos = LastLowLatencyPos + 1;
1847      if (BestPos < MinPos)
1848        BestPos = MinPos;
1849      if (BestPos < i) {
1850        for (unsigned u = i; u > BestPos; --u) {
1851          ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1852          ScheduledSUnits[u] = ScheduledSUnits[u-1];
1853        }
1854        ScheduledSUnits[BestPos] = SU->NodeNum;
1855        ScheduledSUnitsInv[SU->NodeNum] = BestPos;
1856      }
1857      LastLowLatencyPos = BestPos;
1858      if (IsLowLatencyUser)
1859        LastLowLatencyUser = BestPos;
1860    } else if (IsLowLatencyUser) {
1861      LastLowLatencyUser = i;
1862    // Moves COPY instructions on which depends
1863    // the low latency instructions too.
1864    } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
1865      bool CopyForLowLat = false;
1866      for (SDep& SuccDep : SU->Succs) {
1867        SUnit *Succ = SuccDep.getSUnit();
1868        if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1869          continue;
1870        if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
1871          CopyForLowLat = true;
1872        }
1873      }
1874      if (!CopyForLowLat)
1875        continue;
1876      if (MinPos < i) {
1877        for (unsigned u = i; u > MinPos; --u) {
1878          ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1879          ScheduledSUnits[u] = ScheduledSUnits[u-1];
1880        }
1881        ScheduledSUnits[MinPos] = SU->NodeNum;
1882        ScheduledSUnitsInv[SU->NodeNum] = MinPos;
1883      }
1884    }
1885  }
1886}
1887
1888void SIScheduleDAGMI::restoreSULinksLeft() {
1889  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1890    SUnits[i].isScheduled = false;
1891    SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
1892    SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
1893    SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
1894    SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
1895  }
1896}
1897
1898// Return the Vgpr and Sgpr usage corresponding to some virtual registers.
1899template<typename _Iterator> void
1900SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
1901                                  unsigned &VgprUsage, unsigned &SgprUsage) {
1902  VgprUsage = 0;
1903  SgprUsage = 0;
1904  for (_Iterator RegI = First; RegI != End; ++RegI) {
1905    unsigned Reg = *RegI;
1906    // For now only track virtual registers
1907    if (!Register::isVirtualRegister(Reg))
1908      continue;
1909    PSetIterator PSetI = MRI.getPressureSets(Reg);
1910    for (; PSetI.isValid(); ++PSetI) {
1911      if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32)
1912        VgprUsage += PSetI.getWeight();
1913      else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32)
1914        SgprUsage += PSetI.getWeight();
1915    }
1916  }
1917}
1918
1919void SIScheduleDAGMI::schedule()
1920{
1921  SmallVector<SUnit*, 8> TopRoots, BotRoots;
1922  SIScheduleBlockResult Best, Temp;
1923  LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
1924
1925  buildDAGWithRegPressure();
1926  LLVM_DEBUG(dump());
1927
1928  topologicalSort();
1929  findRootsAndBiasEdges(TopRoots, BotRoots);
1930  // We reuse several ScheduleDAGMI and ScheduleDAGMILive
1931  // functions, but to make them happy we must initialize
1932  // the default Scheduler implementation (even if we do not
1933  // run it)
1934  SchedImpl->initialize(this);
1935  initQueues(TopRoots, BotRoots);
1936
1937  // Fill some stats to help scheduling.
1938
1939  SUnitsLinksBackup = SUnits;
1940  IsLowLatencySU.clear();
1941  LowLatencyOffset.clear();
1942  IsHighLatencySU.clear();
1943
1944  IsLowLatencySU.resize(SUnits.size(), 0);
1945  LowLatencyOffset.resize(SUnits.size(), 0);
1946  IsHighLatencySU.resize(SUnits.size(), 0);
1947
1948  for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1949    SUnit *SU = &SUnits[i];
1950    const MachineOperand *BaseLatOp;
1951    int64_t OffLatReg;
1952    if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1953      IsLowLatencySU[i] = 1;
1954      bool OffsetIsScalable;
1955      if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
1956                                         OffsetIsScalable, TRI))
1957        LowLatencyOffset[i] = OffLatReg;
1958    } else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode()))
1959      IsHighLatencySU[i] = 1;
1960  }
1961
1962  SIScheduler Scheduler(this);
1963  Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
1964                                   SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
1965
1966  // if VGPR usage is extremely high, try other good performing variants
1967  // which could lead to lower VGPR usage
1968  if (Best.MaxVGPRUsage > 180) {
1969    static const std::pair<SISchedulerBlockCreatorVariant,
1970                           SISchedulerBlockSchedulerVariant>
1971        Variants[] = {
1972      { LatenciesAlone, BlockRegUsageLatency },
1973//      { LatenciesAlone, BlockRegUsage },
1974      { LatenciesGrouped, BlockLatencyRegUsage },
1975//      { LatenciesGrouped, BlockRegUsageLatency },
1976//      { LatenciesGrouped, BlockRegUsage },
1977      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1978//      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1979//      { LatenciesAlonePlusConsecutive, BlockRegUsage }
1980    };
1981    for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1982      Temp = Scheduler.scheduleVariant(v.first, v.second);
1983      if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1984        Best = Temp;
1985    }
1986  }
1987  // if VGPR usage is still extremely high, we may spill. Try other variants
1988  // which are less performing, but that could lead to lower VGPR usage.
1989  if (Best.MaxVGPRUsage > 200) {
1990    static const std::pair<SISchedulerBlockCreatorVariant,
1991                           SISchedulerBlockSchedulerVariant>
1992        Variants[] = {
1993//      { LatenciesAlone, BlockRegUsageLatency },
1994      { LatenciesAlone, BlockRegUsage },
1995//      { LatenciesGrouped, BlockLatencyRegUsage },
1996      { LatenciesGrouped, BlockRegUsageLatency },
1997      { LatenciesGrouped, BlockRegUsage },
1998//      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1999      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
2000      { LatenciesAlonePlusConsecutive, BlockRegUsage }
2001    };
2002    for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
2003      Temp = Scheduler.scheduleVariant(v.first, v.second);
2004      if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
2005        Best = Temp;
2006    }
2007  }
2008
2009  ScheduledSUnits = Best.SUs;
2010  ScheduledSUnitsInv.resize(SUnits.size());
2011
2012  for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
2013    ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
2014  }
2015
2016  moveLowLatencies();
2017
2018  // Tell the outside world about the result of the scheduling.
2019
2020  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
2021  TopRPTracker.setPos(CurrentTop);
2022
2023  for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
2024       E = ScheduledSUnits.end(); I != E; ++I) {
2025    SUnit *SU = &SUnits[*I];
2026
2027    scheduleMI(SU, true);
2028
2029    LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
2030                      << *SU->getInstr());
2031  }
2032
2033  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
2034
2035  placeDebugValues();
2036
2037  LLVM_DEBUG({
2038    dbgs() << "*** Final schedule for "
2039           << printMBBReference(*begin()->getParent()) << " ***\n";
2040    dumpSchedule();
2041    dbgs() << '\n';
2042  });
2043}
2044