1//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This library implements `print` family of functions in classes like
10// Module, Function, Value, etc. In-memory representation of those classes is
11// converted to IR strings.
12//
13// Note that these routines must be extremely tolerant of various errors in the
14// LLVM code, because it can be used for debugging transformations.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/None.h"
23#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/BinaryFormat/Dwarf.h"
32#include "llvm/Config/llvm-config.h"
33#include "llvm/IR/Argument.h"
34#include "llvm/IR/AssemblyAnnotationWriter.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CFG.h"
38#include "llvm/IR/CallingConv.h"
39#include "llvm/IR/Comdat.h"
40#include "llvm/IR/Constant.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DebugInfoMetadata.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GlobalAlias.h"
46#include "llvm/IR/GlobalIFunc.h"
47#include "llvm/IR/GlobalIndirectSymbol.h"
48#include "llvm/IR/GlobalObject.h"
49#include "llvm/IR/GlobalValue.h"
50#include "llvm/IR/GlobalVariable.h"
51#include "llvm/IR/IRPrintingPasses.h"
52#include "llvm/IR/InlineAsm.h"
53#include "llvm/IR/InstrTypes.h"
54#include "llvm/IR/Instruction.h"
55#include "llvm/IR/Instructions.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Metadata.h"
58#include "llvm/IR/Module.h"
59#include "llvm/IR/ModuleSlotTracker.h"
60#include "llvm/IR/ModuleSummaryIndex.h"
61#include "llvm/IR/Operator.h"
62#include "llvm/IR/Statepoint.h"
63#include "llvm/IR/Type.h"
64#include "llvm/IR/TypeFinder.h"
65#include "llvm/IR/Use.h"
66#include "llvm/IR/UseListOrder.h"
67#include "llvm/IR/User.h"
68#include "llvm/IR/Value.h"
69#include "llvm/Support/AtomicOrdering.h"
70#include "llvm/Support/Casting.h"
71#include "llvm/Support/Compiler.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/ErrorHandling.h"
74#include "llvm/Support/Format.h"
75#include "llvm/Support/FormattedStream.h"
76#include "llvm/Support/raw_ostream.h"
77#include <algorithm>
78#include <cassert>
79#include <cctype>
80#include <cstddef>
81#include <cstdint>
82#include <iterator>
83#include <memory>
84#include <string>
85#include <tuple>
86#include <utility>
87#include <vector>
88
89using namespace llvm;
90
91// Make virtual table appear in this compilation unit.
92AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93
94//===----------------------------------------------------------------------===//
95// Helper Functions
96//===----------------------------------------------------------------------===//
97
98namespace {
99
100struct OrderMap {
101  DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
102
103  unsigned size() const { return IDs.size(); }
104  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
105
106  std::pair<unsigned, bool> lookup(const Value *V) const {
107    return IDs.lookup(V);
108  }
109
110  void index(const Value *V) {
111    // Explicitly sequence get-size and insert-value operations to avoid UB.
112    unsigned ID = IDs.size() + 1;
113    IDs[V].first = ID;
114  }
115};
116
117} // end anonymous namespace
118
119static void orderValue(const Value *V, OrderMap &OM) {
120  if (OM.lookup(V).first)
121    return;
122
123  if (const Constant *C = dyn_cast<Constant>(V))
124    if (C->getNumOperands() && !isa<GlobalValue>(C))
125      for (const Value *Op : C->operands())
126        if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
127          orderValue(Op, OM);
128
129  // Note: we cannot cache this lookup above, since inserting into the map
130  // changes the map's size, and thus affects the other IDs.
131  OM.index(V);
132}
133
134static OrderMap orderModule(const Module *M) {
135  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136  // and ValueEnumerator::incorporateFunction().
137  OrderMap OM;
138
139  for (const GlobalVariable &G : M->globals()) {
140    if (G.hasInitializer())
141      if (!isa<GlobalValue>(G.getInitializer()))
142        orderValue(G.getInitializer(), OM);
143    orderValue(&G, OM);
144  }
145  for (const GlobalAlias &A : M->aliases()) {
146    if (!isa<GlobalValue>(A.getAliasee()))
147      orderValue(A.getAliasee(), OM);
148    orderValue(&A, OM);
149  }
150  for (const GlobalIFunc &I : M->ifuncs()) {
151    if (!isa<GlobalValue>(I.getResolver()))
152      orderValue(I.getResolver(), OM);
153    orderValue(&I, OM);
154  }
155  for (const Function &F : *M) {
156    for (const Use &U : F.operands())
157      if (!isa<GlobalValue>(U.get()))
158        orderValue(U.get(), OM);
159
160    orderValue(&F, OM);
161
162    if (F.isDeclaration())
163      continue;
164
165    for (const Argument &A : F.args())
166      orderValue(&A, OM);
167    for (const BasicBlock &BB : F) {
168      orderValue(&BB, OM);
169      for (const Instruction &I : BB) {
170        for (const Value *Op : I.operands())
171          if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
172              isa<InlineAsm>(*Op))
173            orderValue(Op, OM);
174        orderValue(&I, OM);
175      }
176    }
177  }
178  return OM;
179}
180
181static void predictValueUseListOrderImpl(const Value *V, const Function *F,
182                                         unsigned ID, const OrderMap &OM,
183                                         UseListOrderStack &Stack) {
184  // Predict use-list order for this one.
185  using Entry = std::pair<const Use *, unsigned>;
186  SmallVector<Entry, 64> List;
187  for (const Use &U : V->uses())
188    // Check if this user will be serialized.
189    if (OM.lookup(U.getUser()).first)
190      List.push_back(std::make_pair(&U, List.size()));
191
192  if (List.size() < 2)
193    // We may have lost some users.
194    return;
195
196  bool GetsReversed =
197      !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
198  if (auto *BA = dyn_cast<BlockAddress>(V))
199    ID = OM.lookup(BA->getBasicBlock()).first;
200  llvm::sort(List, [&](const Entry &L, const Entry &R) {
201    const Use *LU = L.first;
202    const Use *RU = R.first;
203    if (LU == RU)
204      return false;
205
206    auto LID = OM.lookup(LU->getUser()).first;
207    auto RID = OM.lookup(RU->getUser()).first;
208
209    // If ID is 4, then expect: 7 6 5 1 2 3.
210    if (LID < RID) {
211      if (GetsReversed)
212        if (RID <= ID)
213          return true;
214      return false;
215    }
216    if (RID < LID) {
217      if (GetsReversed)
218        if (LID <= ID)
219          return false;
220      return true;
221    }
222
223    // LID and RID are equal, so we have different operands of the same user.
224    // Assume operands are added in order for all instructions.
225    if (GetsReversed)
226      if (LID <= ID)
227        return LU->getOperandNo() < RU->getOperandNo();
228    return LU->getOperandNo() > RU->getOperandNo();
229  });
230
231  if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
232        return L.second < R.second;
233      }))
234    // Order is already correct.
235    return;
236
237  // Store the shuffle.
238  Stack.emplace_back(V, F, List.size());
239  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
240  for (size_t I = 0, E = List.size(); I != E; ++I)
241    Stack.back().Shuffle[I] = List[I].second;
242}
243
244static void predictValueUseListOrder(const Value *V, const Function *F,
245                                     OrderMap &OM, UseListOrderStack &Stack) {
246  auto &IDPair = OM[V];
247  assert(IDPair.first && "Unmapped value");
248  if (IDPair.second)
249    // Already predicted.
250    return;
251
252  // Do the actual prediction.
253  IDPair.second = true;
254  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
255    predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
256
257  // Recursive descent into constants.
258  if (const Constant *C = dyn_cast<Constant>(V))
259    if (C->getNumOperands()) // Visit GlobalValues.
260      for (const Value *Op : C->operands())
261        if (isa<Constant>(Op)) // Visit GlobalValues.
262          predictValueUseListOrder(Op, F, OM, Stack);
263}
264
265static UseListOrderStack predictUseListOrder(const Module *M) {
266  OrderMap OM = orderModule(M);
267
268  // Use-list orders need to be serialized after all the users have been added
269  // to a value, or else the shuffles will be incomplete.  Store them per
270  // function in a stack.
271  //
272  // Aside from function order, the order of values doesn't matter much here.
273  UseListOrderStack Stack;
274
275  // We want to visit the functions backward now so we can list function-local
276  // constants in the last Function they're used in.  Module-level constants
277  // have already been visited above.
278  for (const Function &F : make_range(M->rbegin(), M->rend())) {
279    if (F.isDeclaration())
280      continue;
281    for (const BasicBlock &BB : F)
282      predictValueUseListOrder(&BB, &F, OM, Stack);
283    for (const Argument &A : F.args())
284      predictValueUseListOrder(&A, &F, OM, Stack);
285    for (const BasicBlock &BB : F)
286      for (const Instruction &I : BB)
287        for (const Value *Op : I.operands())
288          if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
289            predictValueUseListOrder(Op, &F, OM, Stack);
290    for (const BasicBlock &BB : F)
291      for (const Instruction &I : BB)
292        predictValueUseListOrder(&I, &F, OM, Stack);
293  }
294
295  // Visit globals last.
296  for (const GlobalVariable &G : M->globals())
297    predictValueUseListOrder(&G, nullptr, OM, Stack);
298  for (const Function &F : *M)
299    predictValueUseListOrder(&F, nullptr, OM, Stack);
300  for (const GlobalAlias &A : M->aliases())
301    predictValueUseListOrder(&A, nullptr, OM, Stack);
302  for (const GlobalIFunc &I : M->ifuncs())
303    predictValueUseListOrder(&I, nullptr, OM, Stack);
304  for (const GlobalVariable &G : M->globals())
305    if (G.hasInitializer())
306      predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
307  for (const GlobalAlias &A : M->aliases())
308    predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
309  for (const GlobalIFunc &I : M->ifuncs())
310    predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
311  for (const Function &F : *M)
312    for (const Use &U : F.operands())
313      predictValueUseListOrder(U.get(), nullptr, OM, Stack);
314
315  return Stack;
316}
317
318static const Module *getModuleFromVal(const Value *V) {
319  if (const Argument *MA = dyn_cast<Argument>(V))
320    return MA->getParent() ? MA->getParent()->getParent() : nullptr;
321
322  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
323    return BB->getParent() ? BB->getParent()->getParent() : nullptr;
324
325  if (const Instruction *I = dyn_cast<Instruction>(V)) {
326    const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
327    return M ? M->getParent() : nullptr;
328  }
329
330  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
331    return GV->getParent();
332
333  if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
334    for (const User *U : MAV->users())
335      if (isa<Instruction>(U))
336        if (const Module *M = getModuleFromVal(U))
337          return M;
338    return nullptr;
339  }
340
341  return nullptr;
342}
343
344static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
345  switch (cc) {
346  default:                         Out << "cc" << cc; break;
347  case CallingConv::Fast:          Out << "fastcc"; break;
348  case CallingConv::Cold:          Out << "coldcc"; break;
349  case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
350  case CallingConv::AnyReg:        Out << "anyregcc"; break;
351  case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
352  case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
353  case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
354  case CallingConv::GHC:           Out << "ghccc"; break;
355  case CallingConv::Tail:          Out << "tailcc"; break;
356  case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
357  case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
358  case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
359  case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
360  case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
361  case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
362  case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
363  case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
364  case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
365  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
366  case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
367  case CallingConv::AArch64_SVE_VectorCall:
368    Out << "aarch64_sve_vector_pcs";
369    break;
370  case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
371  case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
372  case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
373  case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
374  case CallingConv::PTX_Device:    Out << "ptx_device"; break;
375  case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
376  case CallingConv::Win64:         Out << "win64cc"; break;
377  case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
378  case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
379  case CallingConv::Swift:         Out << "swiftcc"; break;
380  case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
381  case CallingConv::HHVM:          Out << "hhvmcc"; break;
382  case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
383  case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
384  case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
385  case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
386  case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
387  case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
388  case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
389  case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
390  case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
391  }
392}
393
394enum PrefixType {
395  GlobalPrefix,
396  ComdatPrefix,
397  LabelPrefix,
398  LocalPrefix,
399  NoPrefix
400};
401
402void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
403  assert(!Name.empty() && "Cannot get empty name!");
404
405  // Scan the name to see if it needs quotes first.
406  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
407  if (!NeedsQuotes) {
408    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
409      // By making this unsigned, the value passed in to isalnum will always be
410      // in the range 0-255.  This is important when building with MSVC because
411      // its implementation will assert.  This situation can arise when dealing
412      // with UTF-8 multibyte characters.
413      unsigned char C = Name[i];
414      if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
415          C != '_') {
416        NeedsQuotes = true;
417        break;
418      }
419    }
420  }
421
422  // If we didn't need any quotes, just write out the name in one blast.
423  if (!NeedsQuotes) {
424    OS << Name;
425    return;
426  }
427
428  // Okay, we need quotes.  Output the quotes and escape any scary characters as
429  // needed.
430  OS << '"';
431  printEscapedString(Name, OS);
432  OS << '"';
433}
434
435/// Turn the specified name into an 'LLVM name', which is either prefixed with %
436/// (if the string only contains simple characters) or is surrounded with ""'s
437/// (if it has special chars in it). Print it out.
438static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
439  switch (Prefix) {
440  case NoPrefix:
441    break;
442  case GlobalPrefix:
443    OS << '@';
444    break;
445  case ComdatPrefix:
446    OS << '$';
447    break;
448  case LabelPrefix:
449    break;
450  case LocalPrefix:
451    OS << '%';
452    break;
453  }
454  printLLVMNameWithoutPrefix(OS, Name);
455}
456
457/// Turn the specified name into an 'LLVM name', which is either prefixed with %
458/// (if the string only contains simple characters) or is surrounded with ""'s
459/// (if it has special chars in it). Print it out.
460static void PrintLLVMName(raw_ostream &OS, const Value *V) {
461  PrintLLVMName(OS, V->getName(),
462                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
463}
464
465static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
466  Out << ", <";
467  if (isa<ScalableVectorType>(Ty))
468    Out << "vscale x ";
469  Out << Mask.size() << " x i32> ";
470  bool FirstElt = true;
471  if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
472    Out << "zeroinitializer";
473  } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
474    Out << "undef";
475  } else {
476    Out << "<";
477    for (int Elt : Mask) {
478      if (FirstElt)
479        FirstElt = false;
480      else
481        Out << ", ";
482      Out << "i32 ";
483      if (Elt == UndefMaskElem)
484        Out << "undef";
485      else
486        Out << Elt;
487    }
488    Out << ">";
489  }
490}
491
492namespace {
493
494class TypePrinting {
495public:
496  TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
497
498  TypePrinting(const TypePrinting &) = delete;
499  TypePrinting &operator=(const TypePrinting &) = delete;
500
501  /// The named types that are used by the current module.
502  TypeFinder &getNamedTypes();
503
504  /// The numbered types, number to type mapping.
505  std::vector<StructType *> &getNumberedTypes();
506
507  bool empty();
508
509  void print(Type *Ty, raw_ostream &OS);
510
511  void printStructBody(StructType *Ty, raw_ostream &OS);
512
513private:
514  void incorporateTypes();
515
516  /// A module to process lazily when needed. Set to nullptr as soon as used.
517  const Module *DeferredM;
518
519  TypeFinder NamedTypes;
520
521  // The numbered types, along with their value.
522  DenseMap<StructType *, unsigned> Type2Number;
523
524  std::vector<StructType *> NumberedTypes;
525};
526
527} // end anonymous namespace
528
529TypeFinder &TypePrinting::getNamedTypes() {
530  incorporateTypes();
531  return NamedTypes;
532}
533
534std::vector<StructType *> &TypePrinting::getNumberedTypes() {
535  incorporateTypes();
536
537  // We know all the numbers that each type is used and we know that it is a
538  // dense assignment. Convert the map to an index table, if it's not done
539  // already (judging from the sizes):
540  if (NumberedTypes.size() == Type2Number.size())
541    return NumberedTypes;
542
543  NumberedTypes.resize(Type2Number.size());
544  for (const auto &P : Type2Number) {
545    assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
546    assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
547    NumberedTypes[P.second] = P.first;
548  }
549  return NumberedTypes;
550}
551
552bool TypePrinting::empty() {
553  incorporateTypes();
554  return NamedTypes.empty() && Type2Number.empty();
555}
556
557void TypePrinting::incorporateTypes() {
558  if (!DeferredM)
559    return;
560
561  NamedTypes.run(*DeferredM, false);
562  DeferredM = nullptr;
563
564  // The list of struct types we got back includes all the struct types, split
565  // the unnamed ones out to a numbering and remove the anonymous structs.
566  unsigned NextNumber = 0;
567
568  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
569  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
570    StructType *STy = *I;
571
572    // Ignore anonymous types.
573    if (STy->isLiteral())
574      continue;
575
576    if (STy->getName().empty())
577      Type2Number[STy] = NextNumber++;
578    else
579      *NextToUse++ = STy;
580  }
581
582  NamedTypes.erase(NextToUse, NamedTypes.end());
583}
584
585/// Write the specified type to the specified raw_ostream, making use of type
586/// names or up references to shorten the type name where possible.
587void TypePrinting::print(Type *Ty, raw_ostream &OS) {
588  switch (Ty->getTypeID()) {
589  case Type::VoidTyID:      OS << "void"; return;
590  case Type::HalfTyID:      OS << "half"; return;
591  case Type::BFloatTyID:    OS << "bfloat"; return;
592  case Type::FloatTyID:     OS << "float"; return;
593  case Type::DoubleTyID:    OS << "double"; return;
594  case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
595  case Type::FP128TyID:     OS << "fp128"; return;
596  case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
597  case Type::LabelTyID:     OS << "label"; return;
598  case Type::MetadataTyID:  OS << "metadata"; return;
599  case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
600  case Type::TokenTyID:     OS << "token"; return;
601  case Type::IntegerTyID:
602    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
603    return;
604
605  case Type::FunctionTyID: {
606    FunctionType *FTy = cast<FunctionType>(Ty);
607    print(FTy->getReturnType(), OS);
608    OS << " (";
609    for (FunctionType::param_iterator I = FTy->param_begin(),
610         E = FTy->param_end(); I != E; ++I) {
611      if (I != FTy->param_begin())
612        OS << ", ";
613      print(*I, OS);
614    }
615    if (FTy->isVarArg()) {
616      if (FTy->getNumParams()) OS << ", ";
617      OS << "...";
618    }
619    OS << ')';
620    return;
621  }
622  case Type::StructTyID: {
623    StructType *STy = cast<StructType>(Ty);
624
625    if (STy->isLiteral())
626      return printStructBody(STy, OS);
627
628    if (!STy->getName().empty())
629      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
630
631    incorporateTypes();
632    const auto I = Type2Number.find(STy);
633    if (I != Type2Number.end())
634      OS << '%' << I->second;
635    else  // Not enumerated, print the hex address.
636      OS << "%\"type " << STy << '\"';
637    return;
638  }
639  case Type::PointerTyID: {
640    PointerType *PTy = cast<PointerType>(Ty);
641    print(PTy->getElementType(), OS);
642    if (unsigned AddressSpace = PTy->getAddressSpace())
643      OS << " addrspace(" << AddressSpace << ')';
644    OS << '*';
645    return;
646  }
647  case Type::ArrayTyID: {
648    ArrayType *ATy = cast<ArrayType>(Ty);
649    OS << '[' << ATy->getNumElements() << " x ";
650    print(ATy->getElementType(), OS);
651    OS << ']';
652    return;
653  }
654  case Type::FixedVectorTyID:
655  case Type::ScalableVectorTyID: {
656    VectorType *PTy = cast<VectorType>(Ty);
657    ElementCount EC = PTy->getElementCount();
658    OS << "<";
659    if (EC.Scalable)
660      OS << "vscale x ";
661    OS << EC.Min << " x ";
662    print(PTy->getElementType(), OS);
663    OS << '>';
664    return;
665  }
666  }
667  llvm_unreachable("Invalid TypeID");
668}
669
670void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
671  if (STy->isOpaque()) {
672    OS << "opaque";
673    return;
674  }
675
676  if (STy->isPacked())
677    OS << '<';
678
679  if (STy->getNumElements() == 0) {
680    OS << "{}";
681  } else {
682    StructType::element_iterator I = STy->element_begin();
683    OS << "{ ";
684    print(*I++, OS);
685    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
686      OS << ", ";
687      print(*I, OS);
688    }
689
690    OS << " }";
691  }
692  if (STy->isPacked())
693    OS << '>';
694}
695
696namespace llvm {
697
698//===----------------------------------------------------------------------===//
699// SlotTracker Class: Enumerate slot numbers for unnamed values
700//===----------------------------------------------------------------------===//
701/// This class provides computation of slot numbers for LLVM Assembly writing.
702///
703class SlotTracker {
704public:
705  /// ValueMap - A mapping of Values to slot numbers.
706  using ValueMap = DenseMap<const Value *, unsigned>;
707
708private:
709  /// TheModule - The module for which we are holding slot numbers.
710  const Module* TheModule;
711
712  /// TheFunction - The function for which we are holding slot numbers.
713  const Function* TheFunction = nullptr;
714  bool FunctionProcessed = false;
715  bool ShouldInitializeAllMetadata;
716
717  /// The summary index for which we are holding slot numbers.
718  const ModuleSummaryIndex *TheIndex = nullptr;
719
720  /// mMap - The slot map for the module level data.
721  ValueMap mMap;
722  unsigned mNext = 0;
723
724  /// fMap - The slot map for the function level data.
725  ValueMap fMap;
726  unsigned fNext = 0;
727
728  /// mdnMap - Map for MDNodes.
729  DenseMap<const MDNode*, unsigned> mdnMap;
730  unsigned mdnNext = 0;
731
732  /// asMap - The slot map for attribute sets.
733  DenseMap<AttributeSet, unsigned> asMap;
734  unsigned asNext = 0;
735
736  /// ModulePathMap - The slot map for Module paths used in the summary index.
737  StringMap<unsigned> ModulePathMap;
738  unsigned ModulePathNext = 0;
739
740  /// GUIDMap - The slot map for GUIDs used in the summary index.
741  DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
742  unsigned GUIDNext = 0;
743
744  /// TypeIdMap - The slot map for type ids used in the summary index.
745  StringMap<unsigned> TypeIdMap;
746  unsigned TypeIdNext = 0;
747
748public:
749  /// Construct from a module.
750  ///
751  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
752  /// functions, giving correct numbering for metadata referenced only from
753  /// within a function (even if no functions have been initialized).
754  explicit SlotTracker(const Module *M,
755                       bool ShouldInitializeAllMetadata = false);
756
757  /// Construct from a function, starting out in incorp state.
758  ///
759  /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
760  /// functions, giving correct numbering for metadata referenced only from
761  /// within a function (even if no functions have been initialized).
762  explicit SlotTracker(const Function *F,
763                       bool ShouldInitializeAllMetadata = false);
764
765  /// Construct from a module summary index.
766  explicit SlotTracker(const ModuleSummaryIndex *Index);
767
768  SlotTracker(const SlotTracker &) = delete;
769  SlotTracker &operator=(const SlotTracker &) = delete;
770
771  /// Return the slot number of the specified value in it's type
772  /// plane.  If something is not in the SlotTracker, return -1.
773  int getLocalSlot(const Value *V);
774  int getGlobalSlot(const GlobalValue *V);
775  int getMetadataSlot(const MDNode *N);
776  int getAttributeGroupSlot(AttributeSet AS);
777  int getModulePathSlot(StringRef Path);
778  int getGUIDSlot(GlobalValue::GUID GUID);
779  int getTypeIdSlot(StringRef Id);
780
781  /// If you'd like to deal with a function instead of just a module, use
782  /// this method to get its data into the SlotTracker.
783  void incorporateFunction(const Function *F) {
784    TheFunction = F;
785    FunctionProcessed = false;
786  }
787
788  const Function *getFunction() const { return TheFunction; }
789
790  /// After calling incorporateFunction, use this method to remove the
791  /// most recently incorporated function from the SlotTracker. This
792  /// will reset the state of the machine back to just the module contents.
793  void purgeFunction();
794
795  /// MDNode map iterators.
796  using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
797
798  mdn_iterator mdn_begin() { return mdnMap.begin(); }
799  mdn_iterator mdn_end() { return mdnMap.end(); }
800  unsigned mdn_size() const { return mdnMap.size(); }
801  bool mdn_empty() const { return mdnMap.empty(); }
802
803  /// AttributeSet map iterators.
804  using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
805
806  as_iterator as_begin()   { return asMap.begin(); }
807  as_iterator as_end()     { return asMap.end(); }
808  unsigned as_size() const { return asMap.size(); }
809  bool as_empty() const    { return asMap.empty(); }
810
811  /// GUID map iterators.
812  using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
813
814  /// These functions do the actual initialization.
815  inline void initializeIfNeeded();
816  int initializeIndexIfNeeded();
817
818  // Implementation Details
819private:
820  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
821  void CreateModuleSlot(const GlobalValue *V);
822
823  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
824  void CreateMetadataSlot(const MDNode *N);
825
826  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
827  void CreateFunctionSlot(const Value *V);
828
829  /// Insert the specified AttributeSet into the slot table.
830  void CreateAttributeSetSlot(AttributeSet AS);
831
832  inline void CreateModulePathSlot(StringRef Path);
833  void CreateGUIDSlot(GlobalValue::GUID GUID);
834  void CreateTypeIdSlot(StringRef Id);
835
836  /// Add all of the module level global variables (and their initializers)
837  /// and function declarations, but not the contents of those functions.
838  void processModule();
839  // Returns number of allocated slots
840  int processIndex();
841
842  /// Add all of the functions arguments, basic blocks, and instructions.
843  void processFunction();
844
845  /// Add the metadata directly attached to a GlobalObject.
846  void processGlobalObjectMetadata(const GlobalObject &GO);
847
848  /// Add all of the metadata from a function.
849  void processFunctionMetadata(const Function &F);
850
851  /// Add all of the metadata from an instruction.
852  void processInstructionMetadata(const Instruction &I);
853};
854
855} // end namespace llvm
856
857ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
858                                     const Function *F)
859    : M(M), F(F), Machine(&Machine) {}
860
861ModuleSlotTracker::ModuleSlotTracker(const Module *M,
862                                     bool ShouldInitializeAllMetadata)
863    : ShouldCreateStorage(M),
864      ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
865
866ModuleSlotTracker::~ModuleSlotTracker() = default;
867
868SlotTracker *ModuleSlotTracker::getMachine() {
869  if (!ShouldCreateStorage)
870    return Machine;
871
872  ShouldCreateStorage = false;
873  MachineStorage =
874      std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
875  Machine = MachineStorage.get();
876  return Machine;
877}
878
879void ModuleSlotTracker::incorporateFunction(const Function &F) {
880  // Using getMachine() may lazily create the slot tracker.
881  if (!getMachine())
882    return;
883
884  // Nothing to do if this is the right function already.
885  if (this->F == &F)
886    return;
887  if (this->F)
888    Machine->purgeFunction();
889  Machine->incorporateFunction(&F);
890  this->F = &F;
891}
892
893int ModuleSlotTracker::getLocalSlot(const Value *V) {
894  assert(F && "No function incorporated");
895  return Machine->getLocalSlot(V);
896}
897
898static SlotTracker *createSlotTracker(const Value *V) {
899  if (const Argument *FA = dyn_cast<Argument>(V))
900    return new SlotTracker(FA->getParent());
901
902  if (const Instruction *I = dyn_cast<Instruction>(V))
903    if (I->getParent())
904      return new SlotTracker(I->getParent()->getParent());
905
906  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
907    return new SlotTracker(BB->getParent());
908
909  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
910    return new SlotTracker(GV->getParent());
911
912  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
913    return new SlotTracker(GA->getParent());
914
915  if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
916    return new SlotTracker(GIF->getParent());
917
918  if (const Function *Func = dyn_cast<Function>(V))
919    return new SlotTracker(Func);
920
921  return nullptr;
922}
923
924#if 0
925#define ST_DEBUG(X) dbgs() << X
926#else
927#define ST_DEBUG(X)
928#endif
929
930// Module level constructor. Causes the contents of the Module (sans functions)
931// to be added to the slot table.
932SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
933    : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
934
935// Function level constructor. Causes the contents of the Module and the one
936// function provided to be added to the slot table.
937SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
938    : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
939      ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
940
941SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
942    : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
943
944inline void SlotTracker::initializeIfNeeded() {
945  if (TheModule) {
946    processModule();
947    TheModule = nullptr; ///< Prevent re-processing next time we're called.
948  }
949
950  if (TheFunction && !FunctionProcessed)
951    processFunction();
952}
953
954int SlotTracker::initializeIndexIfNeeded() {
955  if (!TheIndex)
956    return 0;
957  int NumSlots = processIndex();
958  TheIndex = nullptr; ///< Prevent re-processing next time we're called.
959  return NumSlots;
960}
961
962// Iterate through all the global variables, functions, and global
963// variable initializers and create slots for them.
964void SlotTracker::processModule() {
965  ST_DEBUG("begin processModule!\n");
966
967  // Add all of the unnamed global variables to the value table.
968  for (const GlobalVariable &Var : TheModule->globals()) {
969    if (!Var.hasName())
970      CreateModuleSlot(&Var);
971    processGlobalObjectMetadata(Var);
972    auto Attrs = Var.getAttributes();
973    if (Attrs.hasAttributes())
974      CreateAttributeSetSlot(Attrs);
975  }
976
977  for (const GlobalAlias &A : TheModule->aliases()) {
978    if (!A.hasName())
979      CreateModuleSlot(&A);
980  }
981
982  for (const GlobalIFunc &I : TheModule->ifuncs()) {
983    if (!I.hasName())
984      CreateModuleSlot(&I);
985  }
986
987  // Add metadata used by named metadata.
988  for (const NamedMDNode &NMD : TheModule->named_metadata()) {
989    for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
990      CreateMetadataSlot(NMD.getOperand(i));
991  }
992
993  for (const Function &F : *TheModule) {
994    if (!F.hasName())
995      // Add all the unnamed functions to the table.
996      CreateModuleSlot(&F);
997
998    if (ShouldInitializeAllMetadata)
999      processFunctionMetadata(F);
1000
1001    // Add all the function attributes to the table.
1002    // FIXME: Add attributes of other objects?
1003    AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
1004    if (FnAttrs.hasAttributes())
1005      CreateAttributeSetSlot(FnAttrs);
1006  }
1007
1008  ST_DEBUG("end processModule!\n");
1009}
1010
1011// Process the arguments, basic blocks, and instructions  of a function.
1012void SlotTracker::processFunction() {
1013  ST_DEBUG("begin processFunction!\n");
1014  fNext = 0;
1015
1016  // Process function metadata if it wasn't hit at the module-level.
1017  if (!ShouldInitializeAllMetadata)
1018    processFunctionMetadata(*TheFunction);
1019
1020  // Add all the function arguments with no names.
1021  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1022      AE = TheFunction->arg_end(); AI != AE; ++AI)
1023    if (!AI->hasName())
1024      CreateFunctionSlot(&*AI);
1025
1026  ST_DEBUG("Inserting Instructions:\n");
1027
1028  // Add all of the basic blocks and instructions with no names.
1029  for (auto &BB : *TheFunction) {
1030    if (!BB.hasName())
1031      CreateFunctionSlot(&BB);
1032
1033    for (auto &I : BB) {
1034      if (!I.getType()->isVoidTy() && !I.hasName())
1035        CreateFunctionSlot(&I);
1036
1037      // We allow direct calls to any llvm.foo function here, because the
1038      // target may not be linked into the optimizer.
1039      if (const auto *Call = dyn_cast<CallBase>(&I)) {
1040        // Add all the call attributes to the table.
1041        AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1042        if (Attrs.hasAttributes())
1043          CreateAttributeSetSlot(Attrs);
1044      }
1045    }
1046  }
1047
1048  FunctionProcessed = true;
1049
1050  ST_DEBUG("end processFunction!\n");
1051}
1052
1053// Iterate through all the GUID in the index and create slots for them.
1054int SlotTracker::processIndex() {
1055  ST_DEBUG("begin processIndex!\n");
1056  assert(TheIndex);
1057
1058  // The first block of slots are just the module ids, which start at 0 and are
1059  // assigned consecutively. Since the StringMap iteration order isn't
1060  // guaranteed, use a std::map to order by module ID before assigning slots.
1061  std::map<uint64_t, StringRef> ModuleIdToPathMap;
1062  for (auto &ModPath : TheIndex->modulePaths())
1063    ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1064  for (auto &ModPair : ModuleIdToPathMap)
1065    CreateModulePathSlot(ModPair.second);
1066
1067  // Start numbering the GUIDs after the module ids.
1068  GUIDNext = ModulePathNext;
1069
1070  for (auto &GlobalList : *TheIndex)
1071    CreateGUIDSlot(GlobalList.first);
1072
1073  for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1074    CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1075
1076  // Start numbering the TypeIds after the GUIDs.
1077  TypeIdNext = GUIDNext;
1078  for (auto TidIter = TheIndex->typeIds().begin();
1079       TidIter != TheIndex->typeIds().end(); TidIter++)
1080    CreateTypeIdSlot(TidIter->second.first);
1081
1082  ST_DEBUG("end processIndex!\n");
1083  return TypeIdNext;
1084}
1085
1086void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1087  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1088  GO.getAllMetadata(MDs);
1089  for (auto &MD : MDs)
1090    CreateMetadataSlot(MD.second);
1091}
1092
1093void SlotTracker::processFunctionMetadata(const Function &F) {
1094  processGlobalObjectMetadata(F);
1095  for (auto &BB : F) {
1096    for (auto &I : BB)
1097      processInstructionMetadata(I);
1098  }
1099}
1100
1101void SlotTracker::processInstructionMetadata(const Instruction &I) {
1102  // Process metadata used directly by intrinsics.
1103  if (const CallInst *CI = dyn_cast<CallInst>(&I))
1104    if (Function *F = CI->getCalledFunction())
1105      if (F->isIntrinsic())
1106        for (auto &Op : I.operands())
1107          if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1108            if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1109              CreateMetadataSlot(N);
1110
1111  // Process metadata attached to this instruction.
1112  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1113  I.getAllMetadata(MDs);
1114  for (auto &MD : MDs)
1115    CreateMetadataSlot(MD.second);
1116}
1117
1118/// Clean up after incorporating a function. This is the only way to get out of
1119/// the function incorporation state that affects get*Slot/Create*Slot. Function
1120/// incorporation state is indicated by TheFunction != 0.
1121void SlotTracker::purgeFunction() {
1122  ST_DEBUG("begin purgeFunction!\n");
1123  fMap.clear(); // Simply discard the function level map
1124  TheFunction = nullptr;
1125  FunctionProcessed = false;
1126  ST_DEBUG("end purgeFunction!\n");
1127}
1128
1129/// getGlobalSlot - Get the slot number of a global value.
1130int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1131  // Check for uninitialized state and do lazy initialization.
1132  initializeIfNeeded();
1133
1134  // Find the value in the module map
1135  ValueMap::iterator MI = mMap.find(V);
1136  return MI == mMap.end() ? -1 : (int)MI->second;
1137}
1138
1139/// getMetadataSlot - Get the slot number of a MDNode.
1140int SlotTracker::getMetadataSlot(const MDNode *N) {
1141  // Check for uninitialized state and do lazy initialization.
1142  initializeIfNeeded();
1143
1144  // Find the MDNode in the module map
1145  mdn_iterator MI = mdnMap.find(N);
1146  return MI == mdnMap.end() ? -1 : (int)MI->second;
1147}
1148
1149/// getLocalSlot - Get the slot number for a value that is local to a function.
1150int SlotTracker::getLocalSlot(const Value *V) {
1151  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1152
1153  // Check for uninitialized state and do lazy initialization.
1154  initializeIfNeeded();
1155
1156  ValueMap::iterator FI = fMap.find(V);
1157  return FI == fMap.end() ? -1 : (int)FI->second;
1158}
1159
1160int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1161  // Check for uninitialized state and do lazy initialization.
1162  initializeIfNeeded();
1163
1164  // Find the AttributeSet in the module map.
1165  as_iterator AI = asMap.find(AS);
1166  return AI == asMap.end() ? -1 : (int)AI->second;
1167}
1168
1169int SlotTracker::getModulePathSlot(StringRef Path) {
1170  // Check for uninitialized state and do lazy initialization.
1171  initializeIndexIfNeeded();
1172
1173  // Find the Module path in the map
1174  auto I = ModulePathMap.find(Path);
1175  return I == ModulePathMap.end() ? -1 : (int)I->second;
1176}
1177
1178int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1179  // Check for uninitialized state and do lazy initialization.
1180  initializeIndexIfNeeded();
1181
1182  // Find the GUID in the map
1183  guid_iterator I = GUIDMap.find(GUID);
1184  return I == GUIDMap.end() ? -1 : (int)I->second;
1185}
1186
1187int SlotTracker::getTypeIdSlot(StringRef Id) {
1188  // Check for uninitialized state and do lazy initialization.
1189  initializeIndexIfNeeded();
1190
1191  // Find the TypeId string in the map
1192  auto I = TypeIdMap.find(Id);
1193  return I == TypeIdMap.end() ? -1 : (int)I->second;
1194}
1195
1196/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1197void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1198  assert(V && "Can't insert a null Value into SlotTracker!");
1199  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1200  assert(!V->hasName() && "Doesn't need a slot!");
1201
1202  unsigned DestSlot = mNext++;
1203  mMap[V] = DestSlot;
1204
1205  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1206           DestSlot << " [");
1207  // G = Global, F = Function, A = Alias, I = IFunc, o = other
1208  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1209            (isa<Function>(V) ? 'F' :
1210             (isa<GlobalAlias>(V) ? 'A' :
1211              (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1212}
1213
1214/// CreateSlot - Create a new slot for the specified value if it has no name.
1215void SlotTracker::CreateFunctionSlot(const Value *V) {
1216  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1217
1218  unsigned DestSlot = fNext++;
1219  fMap[V] = DestSlot;
1220
1221  // G = Global, F = Function, o = other
1222  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1223           DestSlot << " [o]\n");
1224}
1225
1226/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1227void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1228  assert(N && "Can't insert a null Value into SlotTracker!");
1229
1230  // Don't make slots for DIExpressions. We just print them inline everywhere.
1231  if (isa<DIExpression>(N))
1232    return;
1233
1234  unsigned DestSlot = mdnNext;
1235  if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1236    return;
1237  ++mdnNext;
1238
1239  // Recursively add any MDNodes referenced by operands.
1240  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1241    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1242      CreateMetadataSlot(Op);
1243}
1244
1245void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1246  assert(AS.hasAttributes() && "Doesn't need a slot!");
1247
1248  as_iterator I = asMap.find(AS);
1249  if (I != asMap.end())
1250    return;
1251
1252  unsigned DestSlot = asNext++;
1253  asMap[AS] = DestSlot;
1254}
1255
1256/// Create a new slot for the specified Module
1257void SlotTracker::CreateModulePathSlot(StringRef Path) {
1258  ModulePathMap[Path] = ModulePathNext++;
1259}
1260
1261/// Create a new slot for the specified GUID
1262void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1263  GUIDMap[GUID] = GUIDNext++;
1264}
1265
1266/// Create a new slot for the specified Id
1267void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1268  TypeIdMap[Id] = TypeIdNext++;
1269}
1270
1271//===----------------------------------------------------------------------===//
1272// AsmWriter Implementation
1273//===----------------------------------------------------------------------===//
1274
1275static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1276                                   TypePrinting *TypePrinter,
1277                                   SlotTracker *Machine,
1278                                   const Module *Context);
1279
1280static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1281                                   TypePrinting *TypePrinter,
1282                                   SlotTracker *Machine, const Module *Context,
1283                                   bool FromValue = false);
1284
1285static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1286  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1287    // 'Fast' is an abbreviation for all fast-math-flags.
1288    if (FPO->isFast())
1289      Out << " fast";
1290    else {
1291      if (FPO->hasAllowReassoc())
1292        Out << " reassoc";
1293      if (FPO->hasNoNaNs())
1294        Out << " nnan";
1295      if (FPO->hasNoInfs())
1296        Out << " ninf";
1297      if (FPO->hasNoSignedZeros())
1298        Out << " nsz";
1299      if (FPO->hasAllowReciprocal())
1300        Out << " arcp";
1301      if (FPO->hasAllowContract())
1302        Out << " contract";
1303      if (FPO->hasApproxFunc())
1304        Out << " afn";
1305    }
1306  }
1307
1308  if (const OverflowingBinaryOperator *OBO =
1309        dyn_cast<OverflowingBinaryOperator>(U)) {
1310    if (OBO->hasNoUnsignedWrap())
1311      Out << " nuw";
1312    if (OBO->hasNoSignedWrap())
1313      Out << " nsw";
1314  } else if (const PossiblyExactOperator *Div =
1315               dyn_cast<PossiblyExactOperator>(U)) {
1316    if (Div->isExact())
1317      Out << " exact";
1318  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1319    if (GEP->isInBounds())
1320      Out << " inbounds";
1321  }
1322}
1323
1324static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1325                                  TypePrinting &TypePrinter,
1326                                  SlotTracker *Machine,
1327                                  const Module *Context) {
1328  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1329    if (CI->getType()->isIntegerTy(1)) {
1330      Out << (CI->getZExtValue() ? "true" : "false");
1331      return;
1332    }
1333    Out << CI->getValue();
1334    return;
1335  }
1336
1337  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1338    const APFloat &APF = CFP->getValueAPF();
1339    if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1340        &APF.getSemantics() == &APFloat::IEEEdouble()) {
1341      // We would like to output the FP constant value in exponential notation,
1342      // but we cannot do this if doing so will lose precision.  Check here to
1343      // make sure that we only output it in exponential format if we can parse
1344      // the value back and get the same value.
1345      //
1346      bool ignored;
1347      bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1348      bool isInf = APF.isInfinity();
1349      bool isNaN = APF.isNaN();
1350      if (!isInf && !isNaN) {
1351        double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1352        SmallString<128> StrVal;
1353        APF.toString(StrVal, 6, 0, false);
1354        // Check to make sure that the stringized number is not some string like
1355        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1356        // that the string matches the "[-+]?[0-9]" regex.
1357        //
1358        assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1359                ((StrVal[0] == '-' || StrVal[0] == '+') &&
1360                 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1361               "[-+]?[0-9] regex does not match!");
1362        // Reparse stringized version!
1363        if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1364          Out << StrVal;
1365          return;
1366        }
1367      }
1368      // Otherwise we could not reparse it to exactly the same value, so we must
1369      // output the string in hexadecimal format!  Note that loading and storing
1370      // floating point types changes the bits of NaNs on some hosts, notably
1371      // x86, so we must not use these types.
1372      static_assert(sizeof(double) == sizeof(uint64_t),
1373                    "assuming that double is 64 bits!");
1374      APFloat apf = APF;
1375      // Floats are represented in ASCII IR as double, convert.
1376      if (!isDouble)
1377        apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1378                          &ignored);
1379      Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1380      return;
1381    }
1382
1383    // Either half, bfloat or some form of long double.
1384    // These appear as a magic letter identifying the type, then a
1385    // fixed number of hex digits.
1386    Out << "0x";
1387    APInt API = APF.bitcastToAPInt();
1388    if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1389      Out << 'K';
1390      Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1391                                  /*Upper=*/true);
1392      Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1393                                  /*Upper=*/true);
1394      return;
1395    } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1396      Out << 'L';
1397      Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1398                                  /*Upper=*/true);
1399      Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1400                                  /*Upper=*/true);
1401    } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1402      Out << 'M';
1403      Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1404                                  /*Upper=*/true);
1405      Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1406                                  /*Upper=*/true);
1407    } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1408      Out << 'H';
1409      Out << format_hex_no_prefix(API.getZExtValue(), 4,
1410                                  /*Upper=*/true);
1411    } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1412      Out << 'R';
1413      Out << format_hex_no_prefix(API.getZExtValue(), 4,
1414                                  /*Upper=*/true);
1415    } else
1416      llvm_unreachable("Unsupported floating point type");
1417    return;
1418  }
1419
1420  if (isa<ConstantAggregateZero>(CV)) {
1421    Out << "zeroinitializer";
1422    return;
1423  }
1424
1425  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1426    Out << "blockaddress(";
1427    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1428                           Context);
1429    Out << ", ";
1430    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1431                           Context);
1432    Out << ")";
1433    return;
1434  }
1435
1436  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1437    Type *ETy = CA->getType()->getElementType();
1438    Out << '[';
1439    TypePrinter.print(ETy, Out);
1440    Out << ' ';
1441    WriteAsOperandInternal(Out, CA->getOperand(0),
1442                           &TypePrinter, Machine,
1443                           Context);
1444    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1445      Out << ", ";
1446      TypePrinter.print(ETy, Out);
1447      Out << ' ';
1448      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1449                             Context);
1450    }
1451    Out << ']';
1452    return;
1453  }
1454
1455  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1456    // As a special case, print the array as a string if it is an array of
1457    // i8 with ConstantInt values.
1458    if (CA->isString()) {
1459      Out << "c\"";
1460      printEscapedString(CA->getAsString(), Out);
1461      Out << '"';
1462      return;
1463    }
1464
1465    Type *ETy = CA->getType()->getElementType();
1466    Out << '[';
1467    TypePrinter.print(ETy, Out);
1468    Out << ' ';
1469    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1470                           &TypePrinter, Machine,
1471                           Context);
1472    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1473      Out << ", ";
1474      TypePrinter.print(ETy, Out);
1475      Out << ' ';
1476      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1477                             Machine, Context);
1478    }
1479    Out << ']';
1480    return;
1481  }
1482
1483  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1484    if (CS->getType()->isPacked())
1485      Out << '<';
1486    Out << '{';
1487    unsigned N = CS->getNumOperands();
1488    if (N) {
1489      Out << ' ';
1490      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1491      Out << ' ';
1492
1493      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1494                             Context);
1495
1496      for (unsigned i = 1; i < N; i++) {
1497        Out << ", ";
1498        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1499        Out << ' ';
1500
1501        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1502                               Context);
1503      }
1504      Out << ' ';
1505    }
1506
1507    Out << '}';
1508    if (CS->getType()->isPacked())
1509      Out << '>';
1510    return;
1511  }
1512
1513  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1514    auto *CVVTy = cast<VectorType>(CV->getType());
1515    Type *ETy = CVVTy->getElementType();
1516    Out << '<';
1517    TypePrinter.print(ETy, Out);
1518    Out << ' ';
1519    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1520                           Machine, Context);
1521    for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1522      Out << ", ";
1523      TypePrinter.print(ETy, Out);
1524      Out << ' ';
1525      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1526                             Machine, Context);
1527    }
1528    Out << '>';
1529    return;
1530  }
1531
1532  if (isa<ConstantPointerNull>(CV)) {
1533    Out << "null";
1534    return;
1535  }
1536
1537  if (isa<ConstantTokenNone>(CV)) {
1538    Out << "none";
1539    return;
1540  }
1541
1542  if (isa<UndefValue>(CV)) {
1543    Out << "undef";
1544    return;
1545  }
1546
1547  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1548    Out << CE->getOpcodeName();
1549    WriteOptimizationInfo(Out, CE);
1550    if (CE->isCompare())
1551      Out << ' ' << CmpInst::getPredicateName(
1552                        static_cast<CmpInst::Predicate>(CE->getPredicate()));
1553    Out << " (";
1554
1555    Optional<unsigned> InRangeOp;
1556    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1557      TypePrinter.print(GEP->getSourceElementType(), Out);
1558      Out << ", ";
1559      InRangeOp = GEP->getInRangeIndex();
1560      if (InRangeOp)
1561        ++*InRangeOp;
1562    }
1563
1564    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1565      if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1566        Out << "inrange ";
1567      TypePrinter.print((*OI)->getType(), Out);
1568      Out << ' ';
1569      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1570      if (OI+1 != CE->op_end())
1571        Out << ", ";
1572    }
1573
1574    if (CE->hasIndices()) {
1575      ArrayRef<unsigned> Indices = CE->getIndices();
1576      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1577        Out << ", " << Indices[i];
1578    }
1579
1580    if (CE->isCast()) {
1581      Out << " to ";
1582      TypePrinter.print(CE->getType(), Out);
1583    }
1584
1585    if (CE->getOpcode() == Instruction::ShuffleVector)
1586      PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1587
1588    Out << ')';
1589    return;
1590  }
1591
1592  Out << "<placeholder or erroneous Constant>";
1593}
1594
1595static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1596                         TypePrinting *TypePrinter, SlotTracker *Machine,
1597                         const Module *Context) {
1598  Out << "!{";
1599  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1600    const Metadata *MD = Node->getOperand(mi);
1601    if (!MD)
1602      Out << "null";
1603    else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1604      Value *V = MDV->getValue();
1605      TypePrinter->print(V->getType(), Out);
1606      Out << ' ';
1607      WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1608    } else {
1609      WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1610    }
1611    if (mi + 1 != me)
1612      Out << ", ";
1613  }
1614
1615  Out << "}";
1616}
1617
1618namespace {
1619
1620struct FieldSeparator {
1621  bool Skip = true;
1622  const char *Sep;
1623
1624  FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1625};
1626
1627raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1628  if (FS.Skip) {
1629    FS.Skip = false;
1630    return OS;
1631  }
1632  return OS << FS.Sep;
1633}
1634
1635struct MDFieldPrinter {
1636  raw_ostream &Out;
1637  FieldSeparator FS;
1638  TypePrinting *TypePrinter = nullptr;
1639  SlotTracker *Machine = nullptr;
1640  const Module *Context = nullptr;
1641
1642  explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1643  MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1644                 SlotTracker *Machine, const Module *Context)
1645      : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1646  }
1647
1648  void printTag(const DINode *N);
1649  void printMacinfoType(const DIMacroNode *N);
1650  void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1651  void printString(StringRef Name, StringRef Value,
1652                   bool ShouldSkipEmpty = true);
1653  void printMetadata(StringRef Name, const Metadata *MD,
1654                     bool ShouldSkipNull = true);
1655  template <class IntTy>
1656  void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1657  void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1658                  bool ShouldSkipZero);
1659  void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1660  void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1661  void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1662  template <class IntTy, class Stringifier>
1663  void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1664                      bool ShouldSkipZero = true);
1665  void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1666  void printNameTableKind(StringRef Name,
1667                          DICompileUnit::DebugNameTableKind NTK);
1668};
1669
1670} // end anonymous namespace
1671
1672void MDFieldPrinter::printTag(const DINode *N) {
1673  Out << FS << "tag: ";
1674  auto Tag = dwarf::TagString(N->getTag());
1675  if (!Tag.empty())
1676    Out << Tag;
1677  else
1678    Out << N->getTag();
1679}
1680
1681void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1682  Out << FS << "type: ";
1683  auto Type = dwarf::MacinfoString(N->getMacinfoType());
1684  if (!Type.empty())
1685    Out << Type;
1686  else
1687    Out << N->getMacinfoType();
1688}
1689
1690void MDFieldPrinter::printChecksum(
1691    const DIFile::ChecksumInfo<StringRef> &Checksum) {
1692  Out << FS << "checksumkind: " << Checksum.getKindAsString();
1693  printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1694}
1695
1696void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1697                                 bool ShouldSkipEmpty) {
1698  if (ShouldSkipEmpty && Value.empty())
1699    return;
1700
1701  Out << FS << Name << ": \"";
1702  printEscapedString(Value, Out);
1703  Out << "\"";
1704}
1705
1706static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1707                                   TypePrinting *TypePrinter,
1708                                   SlotTracker *Machine,
1709                                   const Module *Context) {
1710  if (!MD) {
1711    Out << "null";
1712    return;
1713  }
1714  WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1715}
1716
1717void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1718                                   bool ShouldSkipNull) {
1719  if (ShouldSkipNull && !MD)
1720    return;
1721
1722  Out << FS << Name << ": ";
1723  writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1724}
1725
1726template <class IntTy>
1727void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1728  if (ShouldSkipZero && !Int)
1729    return;
1730
1731  Out << FS << Name << ": " << Int;
1732}
1733
1734void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1735                                bool IsUnsigned, bool ShouldSkipZero) {
1736  if (ShouldSkipZero && Int.isNullValue())
1737    return;
1738
1739  Out << FS << Name << ": ";
1740  Int.print(Out, !IsUnsigned);
1741}
1742
1743void MDFieldPrinter::printBool(StringRef Name, bool Value,
1744                               Optional<bool> Default) {
1745  if (Default && Value == *Default)
1746    return;
1747  Out << FS << Name << ": " << (Value ? "true" : "false");
1748}
1749
1750void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1751  if (!Flags)
1752    return;
1753
1754  Out << FS << Name << ": ";
1755
1756  SmallVector<DINode::DIFlags, 8> SplitFlags;
1757  auto Extra = DINode::splitFlags(Flags, SplitFlags);
1758
1759  FieldSeparator FlagsFS(" | ");
1760  for (auto F : SplitFlags) {
1761    auto StringF = DINode::getFlagString(F);
1762    assert(!StringF.empty() && "Expected valid flag");
1763    Out << FlagsFS << StringF;
1764  }
1765  if (Extra || SplitFlags.empty())
1766    Out << FlagsFS << Extra;
1767}
1768
1769void MDFieldPrinter::printDISPFlags(StringRef Name,
1770                                    DISubprogram::DISPFlags Flags) {
1771  // Always print this field, because no flags in the IR at all will be
1772  // interpreted as old-style isDefinition: true.
1773  Out << FS << Name << ": ";
1774
1775  if (!Flags) {
1776    Out << 0;
1777    return;
1778  }
1779
1780  SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1781  auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1782
1783  FieldSeparator FlagsFS(" | ");
1784  for (auto F : SplitFlags) {
1785    auto StringF = DISubprogram::getFlagString(F);
1786    assert(!StringF.empty() && "Expected valid flag");
1787    Out << FlagsFS << StringF;
1788  }
1789  if (Extra || SplitFlags.empty())
1790    Out << FlagsFS << Extra;
1791}
1792
1793void MDFieldPrinter::printEmissionKind(StringRef Name,
1794                                       DICompileUnit::DebugEmissionKind EK) {
1795  Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1796}
1797
1798void MDFieldPrinter::printNameTableKind(StringRef Name,
1799                                        DICompileUnit::DebugNameTableKind NTK) {
1800  if (NTK == DICompileUnit::DebugNameTableKind::Default)
1801    return;
1802  Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1803}
1804
1805template <class IntTy, class Stringifier>
1806void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1807                                    Stringifier toString, bool ShouldSkipZero) {
1808  if (!Value)
1809    return;
1810
1811  Out << FS << Name << ": ";
1812  auto S = toString(Value);
1813  if (!S.empty())
1814    Out << S;
1815  else
1816    Out << Value;
1817}
1818
1819static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1820                               TypePrinting *TypePrinter, SlotTracker *Machine,
1821                               const Module *Context) {
1822  Out << "!GenericDINode(";
1823  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1824  Printer.printTag(N);
1825  Printer.printString("header", N->getHeader());
1826  if (N->getNumDwarfOperands()) {
1827    Out << Printer.FS << "operands: {";
1828    FieldSeparator IFS;
1829    for (auto &I : N->dwarf_operands()) {
1830      Out << IFS;
1831      writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1832    }
1833    Out << "}";
1834  }
1835  Out << ")";
1836}
1837
1838static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1839                            TypePrinting *TypePrinter, SlotTracker *Machine,
1840                            const Module *Context) {
1841  Out << "!DILocation(";
1842  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1843  // Always output the line, since 0 is a relevant and important value for it.
1844  Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1845  Printer.printInt("column", DL->getColumn());
1846  Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1847  Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1848  Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1849                    /* Default */ false);
1850  Out << ")";
1851}
1852
1853static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1854                            TypePrinting *TypePrinter, SlotTracker *Machine,
1855                            const Module *Context) {
1856  Out << "!DISubrange(";
1857  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1858  if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1859    Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1860  else
1861    Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable *>(),
1862                          /*ShouldSkipNull */ true);
1863
1864  // A lowerBound of constant 0 should not be skipped, since it is different
1865  // from an unspecified lower bound (= nullptr).
1866  auto *LBound = N->getRawLowerBound();
1867  if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1868    auto *LV = cast<ConstantInt>(LE->getValue());
1869    Printer.printInt("lowerBound", LV->getSExtValue(),
1870                     /* ShouldSkipZero */ false);
1871  } else
1872    Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1873
1874  auto *UBound = N->getRawUpperBound();
1875  if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1876    auto *UV = cast<ConstantInt>(UE->getValue());
1877    Printer.printInt("upperBound", UV->getSExtValue(),
1878                     /* ShouldSkipZero */ false);
1879  } else
1880    Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1881
1882  auto *Stride = N->getRawStride();
1883  if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1884    auto *SV = cast<ConstantInt>(SE->getValue());
1885    Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1886  } else
1887    Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1888
1889  Out << ")";
1890}
1891
1892static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1893                              TypePrinting *, SlotTracker *, const Module *) {
1894  Out << "!DIEnumerator(";
1895  MDFieldPrinter Printer(Out);
1896  Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1897  Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1898                     /*ShouldSkipZero=*/false);
1899  if (N->isUnsigned())
1900    Printer.printBool("isUnsigned", true);
1901  Out << ")";
1902}
1903
1904static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1905                             TypePrinting *, SlotTracker *, const Module *) {
1906  Out << "!DIBasicType(";
1907  MDFieldPrinter Printer(Out);
1908  if (N->getTag() != dwarf::DW_TAG_base_type)
1909    Printer.printTag(N);
1910  Printer.printString("name", N->getName());
1911  Printer.printInt("size", N->getSizeInBits());
1912  Printer.printInt("align", N->getAlignInBits());
1913  Printer.printDwarfEnum("encoding", N->getEncoding(),
1914                         dwarf::AttributeEncodingString);
1915  Printer.printDIFlags("flags", N->getFlags());
1916  Out << ")";
1917}
1918
1919static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1920                               TypePrinting *TypePrinter, SlotTracker *Machine,
1921                               const Module *Context) {
1922  Out << "!DIDerivedType(";
1923  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1924  Printer.printTag(N);
1925  Printer.printString("name", N->getName());
1926  Printer.printMetadata("scope", N->getRawScope());
1927  Printer.printMetadata("file", N->getRawFile());
1928  Printer.printInt("line", N->getLine());
1929  Printer.printMetadata("baseType", N->getRawBaseType(),
1930                        /* ShouldSkipNull */ false);
1931  Printer.printInt("size", N->getSizeInBits());
1932  Printer.printInt("align", N->getAlignInBits());
1933  Printer.printInt("offset", N->getOffsetInBits());
1934  Printer.printDIFlags("flags", N->getFlags());
1935  Printer.printMetadata("extraData", N->getRawExtraData());
1936  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1937    Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1938                     /* ShouldSkipZero */ false);
1939  Out << ")";
1940}
1941
1942static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1943                                 TypePrinting *TypePrinter,
1944                                 SlotTracker *Machine, const Module *Context) {
1945  Out << "!DICompositeType(";
1946  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1947  Printer.printTag(N);
1948  Printer.printString("name", N->getName());
1949  Printer.printMetadata("scope", N->getRawScope());
1950  Printer.printMetadata("file", N->getRawFile());
1951  Printer.printInt("line", N->getLine());
1952  Printer.printMetadata("baseType", N->getRawBaseType());
1953  Printer.printInt("size", N->getSizeInBits());
1954  Printer.printInt("align", N->getAlignInBits());
1955  Printer.printInt("offset", N->getOffsetInBits());
1956  Printer.printDIFlags("flags", N->getFlags());
1957  Printer.printMetadata("elements", N->getRawElements());
1958  Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1959                         dwarf::LanguageString);
1960  Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1961  Printer.printMetadata("templateParams", N->getRawTemplateParams());
1962  Printer.printString("identifier", N->getIdentifier());
1963  Printer.printMetadata("discriminator", N->getRawDiscriminator());
1964  Printer.printMetadata("dataLocation", N->getRawDataLocation());
1965  Out << ")";
1966}
1967
1968static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1969                                  TypePrinting *TypePrinter,
1970                                  SlotTracker *Machine, const Module *Context) {
1971  Out << "!DISubroutineType(";
1972  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1973  Printer.printDIFlags("flags", N->getFlags());
1974  Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1975  Printer.printMetadata("types", N->getRawTypeArray(),
1976                        /* ShouldSkipNull */ false);
1977  Out << ")";
1978}
1979
1980static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1981                        SlotTracker *, const Module *) {
1982  Out << "!DIFile(";
1983  MDFieldPrinter Printer(Out);
1984  Printer.printString("filename", N->getFilename(),
1985                      /* ShouldSkipEmpty */ false);
1986  Printer.printString("directory", N->getDirectory(),
1987                      /* ShouldSkipEmpty */ false);
1988  // Print all values for checksum together, or not at all.
1989  if (N->getChecksum())
1990    Printer.printChecksum(*N->getChecksum());
1991  Printer.printString("source", N->getSource().getValueOr(StringRef()),
1992                      /* ShouldSkipEmpty */ true);
1993  Out << ")";
1994}
1995
1996static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1997                               TypePrinting *TypePrinter, SlotTracker *Machine,
1998                               const Module *Context) {
1999  Out << "!DICompileUnit(";
2000  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2001  Printer.printDwarfEnum("language", N->getSourceLanguage(),
2002                         dwarf::LanguageString, /* ShouldSkipZero */ false);
2003  Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2004  Printer.printString("producer", N->getProducer());
2005  Printer.printBool("isOptimized", N->isOptimized());
2006  Printer.printString("flags", N->getFlags());
2007  Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2008                   /* ShouldSkipZero */ false);
2009  Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2010  Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2011  Printer.printMetadata("enums", N->getRawEnumTypes());
2012  Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2013  Printer.printMetadata("globals", N->getRawGlobalVariables());
2014  Printer.printMetadata("imports", N->getRawImportedEntities());
2015  Printer.printMetadata("macros", N->getRawMacros());
2016  Printer.printInt("dwoId", N->getDWOId());
2017  Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2018  Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2019                    false);
2020  Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2021  Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2022  Printer.printString("sysroot", N->getSysRoot());
2023  Printer.printString("sdk", N->getSDK());
2024  Out << ")";
2025}
2026
2027static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2028                              TypePrinting *TypePrinter, SlotTracker *Machine,
2029                              const Module *Context) {
2030  Out << "!DISubprogram(";
2031  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2032  Printer.printString("name", N->getName());
2033  Printer.printString("linkageName", N->getLinkageName());
2034  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2035  Printer.printMetadata("file", N->getRawFile());
2036  Printer.printInt("line", N->getLine());
2037  Printer.printMetadata("type", N->getRawType());
2038  Printer.printInt("scopeLine", N->getScopeLine());
2039  Printer.printMetadata("containingType", N->getRawContainingType());
2040  if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2041      N->getVirtualIndex() != 0)
2042    Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2043  Printer.printInt("thisAdjustment", N->getThisAdjustment());
2044  Printer.printDIFlags("flags", N->getFlags());
2045  Printer.printDISPFlags("spFlags", N->getSPFlags());
2046  Printer.printMetadata("unit", N->getRawUnit());
2047  Printer.printMetadata("templateParams", N->getRawTemplateParams());
2048  Printer.printMetadata("declaration", N->getRawDeclaration());
2049  Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2050  Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2051  Out << ")";
2052}
2053
2054static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2055                                TypePrinting *TypePrinter, SlotTracker *Machine,
2056                                const Module *Context) {
2057  Out << "!DILexicalBlock(";
2058  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2059  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2060  Printer.printMetadata("file", N->getRawFile());
2061  Printer.printInt("line", N->getLine());
2062  Printer.printInt("column", N->getColumn());
2063  Out << ")";
2064}
2065
2066static void writeDILexicalBlockFile(raw_ostream &Out,
2067                                    const DILexicalBlockFile *N,
2068                                    TypePrinting *TypePrinter,
2069                                    SlotTracker *Machine,
2070                                    const Module *Context) {
2071  Out << "!DILexicalBlockFile(";
2072  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2073  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2074  Printer.printMetadata("file", N->getRawFile());
2075  Printer.printInt("discriminator", N->getDiscriminator(),
2076                   /* ShouldSkipZero */ false);
2077  Out << ")";
2078}
2079
2080static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2081                             TypePrinting *TypePrinter, SlotTracker *Machine,
2082                             const Module *Context) {
2083  Out << "!DINamespace(";
2084  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2085  Printer.printString("name", N->getName());
2086  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2087  Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2088  Out << ")";
2089}
2090
2091static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2092                               TypePrinting *TypePrinter, SlotTracker *Machine,
2093                               const Module *Context) {
2094  Out << "!DICommonBlock(";
2095  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2096  Printer.printMetadata("scope", N->getRawScope(), false);
2097  Printer.printMetadata("declaration", N->getRawDecl(), false);
2098  Printer.printString("name", N->getName());
2099  Printer.printMetadata("file", N->getRawFile());
2100  Printer.printInt("line", N->getLineNo());
2101  Out << ")";
2102}
2103
2104static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2105                         TypePrinting *TypePrinter, SlotTracker *Machine,
2106                         const Module *Context) {
2107  Out << "!DIMacro(";
2108  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2109  Printer.printMacinfoType(N);
2110  Printer.printInt("line", N->getLine());
2111  Printer.printString("name", N->getName());
2112  Printer.printString("value", N->getValue());
2113  Out << ")";
2114}
2115
2116static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2117                             TypePrinting *TypePrinter, SlotTracker *Machine,
2118                             const Module *Context) {
2119  Out << "!DIMacroFile(";
2120  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2121  Printer.printInt("line", N->getLine());
2122  Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2123  Printer.printMetadata("nodes", N->getRawElements());
2124  Out << ")";
2125}
2126
2127static void writeDIModule(raw_ostream &Out, const DIModule *N,
2128                          TypePrinting *TypePrinter, SlotTracker *Machine,
2129                          const Module *Context) {
2130  Out << "!DIModule(";
2131  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2132  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2133  Printer.printString("name", N->getName());
2134  Printer.printString("configMacros", N->getConfigurationMacros());
2135  Printer.printString("includePath", N->getIncludePath());
2136  Printer.printString("apinotes", N->getAPINotesFile());
2137  Printer.printMetadata("file", N->getRawFile());
2138  Printer.printInt("line", N->getLineNo());
2139  Out << ")";
2140}
2141
2142
2143static void writeDITemplateTypeParameter(raw_ostream &Out,
2144                                         const DITemplateTypeParameter *N,
2145                                         TypePrinting *TypePrinter,
2146                                         SlotTracker *Machine,
2147                                         const Module *Context) {
2148  Out << "!DITemplateTypeParameter(";
2149  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2150  Printer.printString("name", N->getName());
2151  Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2152  Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2153  Out << ")";
2154}
2155
2156static void writeDITemplateValueParameter(raw_ostream &Out,
2157                                          const DITemplateValueParameter *N,
2158                                          TypePrinting *TypePrinter,
2159                                          SlotTracker *Machine,
2160                                          const Module *Context) {
2161  Out << "!DITemplateValueParameter(";
2162  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2163  if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2164    Printer.printTag(N);
2165  Printer.printString("name", N->getName());
2166  Printer.printMetadata("type", N->getRawType());
2167  Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2168  Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2169  Out << ")";
2170}
2171
2172static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2173                                  TypePrinting *TypePrinter,
2174                                  SlotTracker *Machine, const Module *Context) {
2175  Out << "!DIGlobalVariable(";
2176  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2177  Printer.printString("name", N->getName());
2178  Printer.printString("linkageName", N->getLinkageName());
2179  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2180  Printer.printMetadata("file", N->getRawFile());
2181  Printer.printInt("line", N->getLine());
2182  Printer.printMetadata("type", N->getRawType());
2183  Printer.printBool("isLocal", N->isLocalToUnit());
2184  Printer.printBool("isDefinition", N->isDefinition());
2185  Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2186  Printer.printMetadata("templateParams", N->getRawTemplateParams());
2187  Printer.printInt("align", N->getAlignInBits());
2188  Out << ")";
2189}
2190
2191static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2192                                 TypePrinting *TypePrinter,
2193                                 SlotTracker *Machine, const Module *Context) {
2194  Out << "!DILocalVariable(";
2195  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2196  Printer.printString("name", N->getName());
2197  Printer.printInt("arg", N->getArg());
2198  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2199  Printer.printMetadata("file", N->getRawFile());
2200  Printer.printInt("line", N->getLine());
2201  Printer.printMetadata("type", N->getRawType());
2202  Printer.printDIFlags("flags", N->getFlags());
2203  Printer.printInt("align", N->getAlignInBits());
2204  Out << ")";
2205}
2206
2207static void writeDILabel(raw_ostream &Out, const DILabel *N,
2208                         TypePrinting *TypePrinter,
2209                         SlotTracker *Machine, const Module *Context) {
2210  Out << "!DILabel(";
2211  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2212  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2213  Printer.printString("name", N->getName());
2214  Printer.printMetadata("file", N->getRawFile());
2215  Printer.printInt("line", N->getLine());
2216  Out << ")";
2217}
2218
2219static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2220                              TypePrinting *TypePrinter, SlotTracker *Machine,
2221                              const Module *Context) {
2222  Out << "!DIExpression(";
2223  FieldSeparator FS;
2224  if (N->isValid()) {
2225    for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2226      auto OpStr = dwarf::OperationEncodingString(I->getOp());
2227      assert(!OpStr.empty() && "Expected valid opcode");
2228
2229      Out << FS << OpStr;
2230      if (I->getOp() == dwarf::DW_OP_LLVM_convert) {
2231        Out << FS << I->getArg(0);
2232        Out << FS << dwarf::AttributeEncodingString(I->getArg(1));
2233      } else {
2234        for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2235          Out << FS << I->getArg(A);
2236      }
2237    }
2238  } else {
2239    for (const auto &I : N->getElements())
2240      Out << FS << I;
2241  }
2242  Out << ")";
2243}
2244
2245static void writeDIGlobalVariableExpression(raw_ostream &Out,
2246                                            const DIGlobalVariableExpression *N,
2247                                            TypePrinting *TypePrinter,
2248                                            SlotTracker *Machine,
2249                                            const Module *Context) {
2250  Out << "!DIGlobalVariableExpression(";
2251  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2252  Printer.printMetadata("var", N->getVariable());
2253  Printer.printMetadata("expr", N->getExpression());
2254  Out << ")";
2255}
2256
2257static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2258                                TypePrinting *TypePrinter, SlotTracker *Machine,
2259                                const Module *Context) {
2260  Out << "!DIObjCProperty(";
2261  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2262  Printer.printString("name", N->getName());
2263  Printer.printMetadata("file", N->getRawFile());
2264  Printer.printInt("line", N->getLine());
2265  Printer.printString("setter", N->getSetterName());
2266  Printer.printString("getter", N->getGetterName());
2267  Printer.printInt("attributes", N->getAttributes());
2268  Printer.printMetadata("type", N->getRawType());
2269  Out << ")";
2270}
2271
2272static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2273                                  TypePrinting *TypePrinter,
2274                                  SlotTracker *Machine, const Module *Context) {
2275  Out << "!DIImportedEntity(";
2276  MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2277  Printer.printTag(N);
2278  Printer.printString("name", N->getName());
2279  Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2280  Printer.printMetadata("entity", N->getRawEntity());
2281  Printer.printMetadata("file", N->getRawFile());
2282  Printer.printInt("line", N->getLine());
2283  Out << ")";
2284}
2285
2286static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2287                                    TypePrinting *TypePrinter,
2288                                    SlotTracker *Machine,
2289                                    const Module *Context) {
2290  if (Node->isDistinct())
2291    Out << "distinct ";
2292  else if (Node->isTemporary())
2293    Out << "<temporary!> "; // Handle broken code.
2294
2295  switch (Node->getMetadataID()) {
2296  default:
2297    llvm_unreachable("Expected uniquable MDNode");
2298#define HANDLE_MDNODE_LEAF(CLASS)                                              \
2299  case Metadata::CLASS##Kind:                                                  \
2300    write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2301    break;
2302#include "llvm/IR/Metadata.def"
2303  }
2304}
2305
2306// Full implementation of printing a Value as an operand with support for
2307// TypePrinting, etc.
2308static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2309                                   TypePrinting *TypePrinter,
2310                                   SlotTracker *Machine,
2311                                   const Module *Context) {
2312  if (V->hasName()) {
2313    PrintLLVMName(Out, V);
2314    return;
2315  }
2316
2317  const Constant *CV = dyn_cast<Constant>(V);
2318  if (CV && !isa<GlobalValue>(CV)) {
2319    assert(TypePrinter && "Constants require TypePrinting!");
2320    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2321    return;
2322  }
2323
2324  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2325    Out << "asm ";
2326    if (IA->hasSideEffects())
2327      Out << "sideeffect ";
2328    if (IA->isAlignStack())
2329      Out << "alignstack ";
2330    // We don't emit the AD_ATT dialect as it's the assumed default.
2331    if (IA->getDialect() == InlineAsm::AD_Intel)
2332      Out << "inteldialect ";
2333    Out << '"';
2334    printEscapedString(IA->getAsmString(), Out);
2335    Out << "\", \"";
2336    printEscapedString(IA->getConstraintString(), Out);
2337    Out << '"';
2338    return;
2339  }
2340
2341  if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2342    WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2343                           Context, /* FromValue */ true);
2344    return;
2345  }
2346
2347  char Prefix = '%';
2348  int Slot;
2349  // If we have a SlotTracker, use it.
2350  if (Machine) {
2351    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2352      Slot = Machine->getGlobalSlot(GV);
2353      Prefix = '@';
2354    } else {
2355      Slot = Machine->getLocalSlot(V);
2356
2357      // If the local value didn't succeed, then we may be referring to a value
2358      // from a different function.  Translate it, as this can happen when using
2359      // address of blocks.
2360      if (Slot == -1)
2361        if ((Machine = createSlotTracker(V))) {
2362          Slot = Machine->getLocalSlot(V);
2363          delete Machine;
2364        }
2365    }
2366  } else if ((Machine = createSlotTracker(V))) {
2367    // Otherwise, create one to get the # and then destroy it.
2368    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2369      Slot = Machine->getGlobalSlot(GV);
2370      Prefix = '@';
2371    } else {
2372      Slot = Machine->getLocalSlot(V);
2373    }
2374    delete Machine;
2375    Machine = nullptr;
2376  } else {
2377    Slot = -1;
2378  }
2379
2380  if (Slot != -1)
2381    Out << Prefix << Slot;
2382  else
2383    Out << "<badref>";
2384}
2385
2386static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2387                                   TypePrinting *TypePrinter,
2388                                   SlotTracker *Machine, const Module *Context,
2389                                   bool FromValue) {
2390  // Write DIExpressions inline when used as a value. Improves readability of
2391  // debug info intrinsics.
2392  if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2393    writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2394    return;
2395  }
2396
2397  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2398    std::unique_ptr<SlotTracker> MachineStorage;
2399    if (!Machine) {
2400      MachineStorage = std::make_unique<SlotTracker>(Context);
2401      Machine = MachineStorage.get();
2402    }
2403    int Slot = Machine->getMetadataSlot(N);
2404    if (Slot == -1) {
2405      if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2406        writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2407        return;
2408      }
2409      // Give the pointer value instead of "badref", since this comes up all
2410      // the time when debugging.
2411      Out << "<" << N << ">";
2412    } else
2413      Out << '!' << Slot;
2414    return;
2415  }
2416
2417  if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2418    Out << "!\"";
2419    printEscapedString(MDS->getString(), Out);
2420    Out << '"';
2421    return;
2422  }
2423
2424  auto *V = cast<ValueAsMetadata>(MD);
2425  assert(TypePrinter && "TypePrinter required for metadata values");
2426  assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2427         "Unexpected function-local metadata outside of value argument");
2428
2429  TypePrinter->print(V->getValue()->getType(), Out);
2430  Out << ' ';
2431  WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2432}
2433
2434namespace {
2435
2436class AssemblyWriter {
2437  formatted_raw_ostream &Out;
2438  const Module *TheModule = nullptr;
2439  const ModuleSummaryIndex *TheIndex = nullptr;
2440  std::unique_ptr<SlotTracker> SlotTrackerStorage;
2441  SlotTracker &Machine;
2442  TypePrinting TypePrinter;
2443  AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2444  SetVector<const Comdat *> Comdats;
2445  bool IsForDebug;
2446  bool ShouldPreserveUseListOrder;
2447  UseListOrderStack UseListOrders;
2448  SmallVector<StringRef, 8> MDNames;
2449  /// Synchronization scope names registered with LLVMContext.
2450  SmallVector<StringRef, 8> SSNs;
2451  DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2452
2453public:
2454  /// Construct an AssemblyWriter with an external SlotTracker
2455  AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2456                 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2457                 bool ShouldPreserveUseListOrder = false);
2458
2459  AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2460                 const ModuleSummaryIndex *Index, bool IsForDebug);
2461
2462  void printMDNodeBody(const MDNode *MD);
2463  void printNamedMDNode(const NamedMDNode *NMD);
2464
2465  void printModule(const Module *M);
2466
2467  void writeOperand(const Value *Op, bool PrintType);
2468  void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2469  void writeOperandBundles(const CallBase *Call);
2470  void writeSyncScope(const LLVMContext &Context,
2471                      SyncScope::ID SSID);
2472  void writeAtomic(const LLVMContext &Context,
2473                   AtomicOrdering Ordering,
2474                   SyncScope::ID SSID);
2475  void writeAtomicCmpXchg(const LLVMContext &Context,
2476                          AtomicOrdering SuccessOrdering,
2477                          AtomicOrdering FailureOrdering,
2478                          SyncScope::ID SSID);
2479
2480  void writeAllMDNodes();
2481  void writeMDNode(unsigned Slot, const MDNode *Node);
2482  void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2483  void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2484  void writeAllAttributeGroups();
2485
2486  void printTypeIdentities();
2487  void printGlobal(const GlobalVariable *GV);
2488  void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2489  void printComdat(const Comdat *C);
2490  void printFunction(const Function *F);
2491  void printArgument(const Argument *FA, AttributeSet Attrs);
2492  void printBasicBlock(const BasicBlock *BB);
2493  void printInstructionLine(const Instruction &I);
2494  void printInstruction(const Instruction &I);
2495
2496  void printUseListOrder(const UseListOrder &Order);
2497  void printUseLists(const Function *F);
2498
2499  void printModuleSummaryIndex();
2500  void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2501  void printSummary(const GlobalValueSummary &Summary);
2502  void printAliasSummary(const AliasSummary *AS);
2503  void printGlobalVarSummary(const GlobalVarSummary *GS);
2504  void printFunctionSummary(const FunctionSummary *FS);
2505  void printTypeIdSummary(const TypeIdSummary &TIS);
2506  void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2507  void printTypeTestResolution(const TypeTestResolution &TTRes);
2508  void printArgs(const std::vector<uint64_t> &Args);
2509  void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2510  void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2511  void printVFuncId(const FunctionSummary::VFuncId VFId);
2512  void
2513  printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2514                      const char *Tag);
2515  void
2516  printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2517                   const char *Tag);
2518
2519private:
2520  /// Print out metadata attachments.
2521  void printMetadataAttachments(
2522      const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2523      StringRef Separator);
2524
2525  // printInfoComment - Print a little comment after the instruction indicating
2526  // which slot it occupies.
2527  void printInfoComment(const Value &V);
2528
2529  // printGCRelocateComment - print comment after call to the gc.relocate
2530  // intrinsic indicating base and derived pointer names.
2531  void printGCRelocateComment(const GCRelocateInst &Relocate);
2532};
2533
2534} // end anonymous namespace
2535
2536AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2537                               const Module *M, AssemblyAnnotationWriter *AAW,
2538                               bool IsForDebug, bool ShouldPreserveUseListOrder)
2539    : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2540      IsForDebug(IsForDebug),
2541      ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2542  if (!TheModule)
2543    return;
2544  for (const GlobalObject &GO : TheModule->global_objects())
2545    if (const Comdat *C = GO.getComdat())
2546      Comdats.insert(C);
2547}
2548
2549AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2550                               const ModuleSummaryIndex *Index, bool IsForDebug)
2551    : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2552      IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2553
2554void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2555  if (!Operand) {
2556    Out << "<null operand!>";
2557    return;
2558  }
2559  if (PrintType) {
2560    TypePrinter.print(Operand->getType(), Out);
2561    Out << ' ';
2562  }
2563  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2564}
2565
2566void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2567                                    SyncScope::ID SSID) {
2568  switch (SSID) {
2569  case SyncScope::System: {
2570    break;
2571  }
2572  default: {
2573    if (SSNs.empty())
2574      Context.getSyncScopeNames(SSNs);
2575
2576    Out << " syncscope(\"";
2577    printEscapedString(SSNs[SSID], Out);
2578    Out << "\")";
2579    break;
2580  }
2581  }
2582}
2583
2584void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2585                                 AtomicOrdering Ordering,
2586                                 SyncScope::ID SSID) {
2587  if (Ordering == AtomicOrdering::NotAtomic)
2588    return;
2589
2590  writeSyncScope(Context, SSID);
2591  Out << " " << toIRString(Ordering);
2592}
2593
2594void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2595                                        AtomicOrdering SuccessOrdering,
2596                                        AtomicOrdering FailureOrdering,
2597                                        SyncScope::ID SSID) {
2598  assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2599         FailureOrdering != AtomicOrdering::NotAtomic);
2600
2601  writeSyncScope(Context, SSID);
2602  Out << " " << toIRString(SuccessOrdering);
2603  Out << " " << toIRString(FailureOrdering);
2604}
2605
2606void AssemblyWriter::writeParamOperand(const Value *Operand,
2607                                       AttributeSet Attrs) {
2608  if (!Operand) {
2609    Out << "<null operand!>";
2610    return;
2611  }
2612
2613  // Print the type
2614  TypePrinter.print(Operand->getType(), Out);
2615  // Print parameter attributes list
2616  if (Attrs.hasAttributes()) {
2617    Out << ' ';
2618    writeAttributeSet(Attrs);
2619  }
2620  Out << ' ';
2621  // Print the operand
2622  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2623}
2624
2625void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2626  if (!Call->hasOperandBundles())
2627    return;
2628
2629  Out << " [ ";
2630
2631  bool FirstBundle = true;
2632  for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2633    OperandBundleUse BU = Call->getOperandBundleAt(i);
2634
2635    if (!FirstBundle)
2636      Out << ", ";
2637    FirstBundle = false;
2638
2639    Out << '"';
2640    printEscapedString(BU.getTagName(), Out);
2641    Out << '"';
2642
2643    Out << '(';
2644
2645    bool FirstInput = true;
2646    for (const auto &Input : BU.Inputs) {
2647      if (!FirstInput)
2648        Out << ", ";
2649      FirstInput = false;
2650
2651      TypePrinter.print(Input->getType(), Out);
2652      Out << " ";
2653      WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2654    }
2655
2656    Out << ')';
2657  }
2658
2659  Out << " ]";
2660}
2661
2662void AssemblyWriter::printModule(const Module *M) {
2663  Machine.initializeIfNeeded();
2664
2665  if (ShouldPreserveUseListOrder)
2666    UseListOrders = predictUseListOrder(M);
2667
2668  if (!M->getModuleIdentifier().empty() &&
2669      // Don't print the ID if it will start a new line (which would
2670      // require a comment char before it).
2671      M->getModuleIdentifier().find('\n') == std::string::npos)
2672    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2673
2674  if (!M->getSourceFileName().empty()) {
2675    Out << "source_filename = \"";
2676    printEscapedString(M->getSourceFileName(), Out);
2677    Out << "\"\n";
2678  }
2679
2680  const std::string &DL = M->getDataLayoutStr();
2681  if (!DL.empty())
2682    Out << "target datalayout = \"" << DL << "\"\n";
2683  if (!M->getTargetTriple().empty())
2684    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2685
2686  if (!M->getModuleInlineAsm().empty()) {
2687    Out << '\n';
2688
2689    // Split the string into lines, to make it easier to read the .ll file.
2690    StringRef Asm = M->getModuleInlineAsm();
2691    do {
2692      StringRef Front;
2693      std::tie(Front, Asm) = Asm.split('\n');
2694
2695      // We found a newline, print the portion of the asm string from the
2696      // last newline up to this newline.
2697      Out << "module asm \"";
2698      printEscapedString(Front, Out);
2699      Out << "\"\n";
2700    } while (!Asm.empty());
2701  }
2702
2703  printTypeIdentities();
2704
2705  // Output all comdats.
2706  if (!Comdats.empty())
2707    Out << '\n';
2708  for (const Comdat *C : Comdats) {
2709    printComdat(C);
2710    if (C != Comdats.back())
2711      Out << '\n';
2712  }
2713
2714  // Output all globals.
2715  if (!M->global_empty()) Out << '\n';
2716  for (const GlobalVariable &GV : M->globals()) {
2717    printGlobal(&GV); Out << '\n';
2718  }
2719
2720  // Output all aliases.
2721  if (!M->alias_empty()) Out << "\n";
2722  for (const GlobalAlias &GA : M->aliases())
2723    printIndirectSymbol(&GA);
2724
2725  // Output all ifuncs.
2726  if (!M->ifunc_empty()) Out << "\n";
2727  for (const GlobalIFunc &GI : M->ifuncs())
2728    printIndirectSymbol(&GI);
2729
2730  // Output global use-lists.
2731  printUseLists(nullptr);
2732
2733  // Output all of the functions.
2734  for (const Function &F : *M) {
2735    Out << '\n';
2736    printFunction(&F);
2737  }
2738  assert(UseListOrders.empty() && "All use-lists should have been consumed");
2739
2740  // Output all attribute groups.
2741  if (!Machine.as_empty()) {
2742    Out << '\n';
2743    writeAllAttributeGroups();
2744  }
2745
2746  // Output named metadata.
2747  if (!M->named_metadata_empty()) Out << '\n';
2748
2749  for (const NamedMDNode &Node : M->named_metadata())
2750    printNamedMDNode(&Node);
2751
2752  // Output metadata.
2753  if (!Machine.mdn_empty()) {
2754    Out << '\n';
2755    writeAllMDNodes();
2756  }
2757}
2758
2759void AssemblyWriter::printModuleSummaryIndex() {
2760  assert(TheIndex);
2761  int NumSlots = Machine.initializeIndexIfNeeded();
2762
2763  Out << "\n";
2764
2765  // Print module path entries. To print in order, add paths to a vector
2766  // indexed by module slot.
2767  std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2768  std::string RegularLTOModuleName =
2769      ModuleSummaryIndex::getRegularLTOModuleName();
2770  moduleVec.resize(TheIndex->modulePaths().size());
2771  for (auto &ModPath : TheIndex->modulePaths())
2772    moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2773        // A module id of -1 is a special entry for a regular LTO module created
2774        // during the thin link.
2775        ModPath.second.first == -1u ? RegularLTOModuleName
2776                                    : (std::string)std::string(ModPath.first()),
2777        ModPath.second.second);
2778
2779  unsigned i = 0;
2780  for (auto &ModPair : moduleVec) {
2781    Out << "^" << i++ << " = module: (";
2782    Out << "path: \"";
2783    printEscapedString(ModPair.first, Out);
2784    Out << "\", hash: (";
2785    FieldSeparator FS;
2786    for (auto Hash : ModPair.second)
2787      Out << FS << Hash;
2788    Out << "))\n";
2789  }
2790
2791  // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2792  // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2793  for (auto &GlobalList : *TheIndex) {
2794    auto GUID = GlobalList.first;
2795    for (auto &Summary : GlobalList.second.SummaryList)
2796      SummaryToGUIDMap[Summary.get()] = GUID;
2797  }
2798
2799  // Print the global value summary entries.
2800  for (auto &GlobalList : *TheIndex) {
2801    auto GUID = GlobalList.first;
2802    auto VI = TheIndex->getValueInfo(GlobalList);
2803    printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2804  }
2805
2806  // Print the TypeIdMap entries.
2807  for (auto TidIter = TheIndex->typeIds().begin();
2808       TidIter != TheIndex->typeIds().end(); TidIter++) {
2809    Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2810        << " = typeid: (name: \"" << TidIter->second.first << "\"";
2811    printTypeIdSummary(TidIter->second.second);
2812    Out << ") ; guid = " << TidIter->first << "\n";
2813  }
2814
2815  // Print the TypeIdCompatibleVtableMap entries.
2816  for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2817    auto GUID = GlobalValue::getGUID(TId.first);
2818    Out << "^" << Machine.getGUIDSlot(GUID)
2819        << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2820    printTypeIdCompatibleVtableSummary(TId.second);
2821    Out << ") ; guid = " << GUID << "\n";
2822  }
2823
2824  // Don't emit flags when it's not really needed (value is zero by default).
2825  if (TheIndex->getFlags()) {
2826    Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2827    ++NumSlots;
2828  }
2829
2830  Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2831      << "\n";
2832}
2833
2834static const char *
2835getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2836  switch (K) {
2837  case WholeProgramDevirtResolution::Indir:
2838    return "indir";
2839  case WholeProgramDevirtResolution::SingleImpl:
2840    return "singleImpl";
2841  case WholeProgramDevirtResolution::BranchFunnel:
2842    return "branchFunnel";
2843  }
2844  llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2845}
2846
2847static const char *getWholeProgDevirtResByArgKindName(
2848    WholeProgramDevirtResolution::ByArg::Kind K) {
2849  switch (K) {
2850  case WholeProgramDevirtResolution::ByArg::Indir:
2851    return "indir";
2852  case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2853    return "uniformRetVal";
2854  case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2855    return "uniqueRetVal";
2856  case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2857    return "virtualConstProp";
2858  }
2859  llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2860}
2861
2862static const char *getTTResKindName(TypeTestResolution::Kind K) {
2863  switch (K) {
2864  case TypeTestResolution::Unknown:
2865    return "unknown";
2866  case TypeTestResolution::Unsat:
2867    return "unsat";
2868  case TypeTestResolution::ByteArray:
2869    return "byteArray";
2870  case TypeTestResolution::Inline:
2871    return "inline";
2872  case TypeTestResolution::Single:
2873    return "single";
2874  case TypeTestResolution::AllOnes:
2875    return "allOnes";
2876  }
2877  llvm_unreachable("invalid TypeTestResolution kind");
2878}
2879
2880void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2881  Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2882      << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2883
2884  // The following fields are only used if the target does not support the use
2885  // of absolute symbols to store constants. Print only if non-zero.
2886  if (TTRes.AlignLog2)
2887    Out << ", alignLog2: " << TTRes.AlignLog2;
2888  if (TTRes.SizeM1)
2889    Out << ", sizeM1: " << TTRes.SizeM1;
2890  if (TTRes.BitMask)
2891    // BitMask is uint8_t which causes it to print the corresponding char.
2892    Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2893  if (TTRes.InlineBits)
2894    Out << ", inlineBits: " << TTRes.InlineBits;
2895
2896  Out << ")";
2897}
2898
2899void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2900  Out << ", summary: (";
2901  printTypeTestResolution(TIS.TTRes);
2902  if (!TIS.WPDRes.empty()) {
2903    Out << ", wpdResolutions: (";
2904    FieldSeparator FS;
2905    for (auto &WPDRes : TIS.WPDRes) {
2906      Out << FS;
2907      Out << "(offset: " << WPDRes.first << ", ";
2908      printWPDRes(WPDRes.second);
2909      Out << ")";
2910    }
2911    Out << ")";
2912  }
2913  Out << ")";
2914}
2915
2916void AssemblyWriter::printTypeIdCompatibleVtableSummary(
2917    const TypeIdCompatibleVtableInfo &TI) {
2918  Out << ", summary: (";
2919  FieldSeparator FS;
2920  for (auto &P : TI) {
2921    Out << FS;
2922    Out << "(offset: " << P.AddressPointOffset << ", ";
2923    Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
2924    Out << ")";
2925  }
2926  Out << ")";
2927}
2928
2929void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2930  Out << "args: (";
2931  FieldSeparator FS;
2932  for (auto arg : Args) {
2933    Out << FS;
2934    Out << arg;
2935  }
2936  Out << ")";
2937}
2938
2939void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2940  Out << "wpdRes: (kind: ";
2941  Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2942
2943  if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2944    Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2945
2946  if (!WPDRes.ResByArg.empty()) {
2947    Out << ", resByArg: (";
2948    FieldSeparator FS;
2949    for (auto &ResByArg : WPDRes.ResByArg) {
2950      Out << FS;
2951      printArgs(ResByArg.first);
2952      Out << ", byArg: (kind: ";
2953      Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2954      if (ResByArg.second.TheKind ==
2955              WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2956          ResByArg.second.TheKind ==
2957              WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2958        Out << ", info: " << ResByArg.second.Info;
2959
2960      // The following fields are only used if the target does not support the
2961      // use of absolute symbols to store constants. Print only if non-zero.
2962      if (ResByArg.second.Byte || ResByArg.second.Bit)
2963        Out << ", byte: " << ResByArg.second.Byte
2964            << ", bit: " << ResByArg.second.Bit;
2965
2966      Out << ")";
2967    }
2968    Out << ")";
2969  }
2970  Out << ")";
2971}
2972
2973static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2974  switch (SK) {
2975  case GlobalValueSummary::AliasKind:
2976    return "alias";
2977  case GlobalValueSummary::FunctionKind:
2978    return "function";
2979  case GlobalValueSummary::GlobalVarKind:
2980    return "variable";
2981  }
2982  llvm_unreachable("invalid summary kind");
2983}
2984
2985void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2986  Out << ", aliasee: ";
2987  // The indexes emitted for distributed backends may not include the
2988  // aliasee summary (only if it is being imported directly). Handle
2989  // that case by just emitting "null" as the aliasee.
2990  if (AS->hasAliasee())
2991    Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2992  else
2993    Out << "null";
2994}
2995
2996void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2997  auto VTableFuncs = GS->vTableFuncs();
2998  Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
2999      << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3000      << "constant: " << GS->VarFlags.Constant;
3001  if (!VTableFuncs.empty())
3002    Out << ", "
3003        << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3004  Out << ")";
3005
3006  if (!VTableFuncs.empty()) {
3007    Out << ", vTableFuncs: (";
3008    FieldSeparator FS;
3009    for (auto &P : VTableFuncs) {
3010      Out << FS;
3011      Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3012          << ", offset: " << P.VTableOffset;
3013      Out << ")";
3014    }
3015    Out << ")";
3016  }
3017}
3018
3019static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3020  switch (LT) {
3021  case GlobalValue::ExternalLinkage:
3022    return "external";
3023  case GlobalValue::PrivateLinkage:
3024    return "private";
3025  case GlobalValue::InternalLinkage:
3026    return "internal";
3027  case GlobalValue::LinkOnceAnyLinkage:
3028    return "linkonce";
3029  case GlobalValue::LinkOnceODRLinkage:
3030    return "linkonce_odr";
3031  case GlobalValue::WeakAnyLinkage:
3032    return "weak";
3033  case GlobalValue::WeakODRLinkage:
3034    return "weak_odr";
3035  case GlobalValue::CommonLinkage:
3036    return "common";
3037  case GlobalValue::AppendingLinkage:
3038    return "appending";
3039  case GlobalValue::ExternalWeakLinkage:
3040    return "extern_weak";
3041  case GlobalValue::AvailableExternallyLinkage:
3042    return "available_externally";
3043  }
3044  llvm_unreachable("invalid linkage");
3045}
3046
3047// When printing the linkage types in IR where the ExternalLinkage is
3048// not printed, and other linkage types are expected to be printed with
3049// a space after the name.
3050static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3051  if (LT == GlobalValue::ExternalLinkage)
3052    return "";
3053  return getLinkageName(LT) + " ";
3054}
3055
3056void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3057  Out << ", insts: " << FS->instCount();
3058
3059  FunctionSummary::FFlags FFlags = FS->fflags();
3060  if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
3061      FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) {
3062    Out << ", funcFlags: (";
3063    Out << "readNone: " << FFlags.ReadNone;
3064    Out << ", readOnly: " << FFlags.ReadOnly;
3065    Out << ", noRecurse: " << FFlags.NoRecurse;
3066    Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
3067    Out << ", noInline: " << FFlags.NoInline;
3068    Out << ", alwaysInline: " << FFlags.AlwaysInline;
3069    Out << ")";
3070  }
3071  if (!FS->calls().empty()) {
3072    Out << ", calls: (";
3073    FieldSeparator IFS;
3074    for (auto &Call : FS->calls()) {
3075      Out << IFS;
3076      Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3077      if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3078        Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3079      else if (Call.second.RelBlockFreq)
3080        Out << ", relbf: " << Call.second.RelBlockFreq;
3081      Out << ")";
3082    }
3083    Out << ")";
3084  }
3085
3086  if (const auto *TIdInfo = FS->getTypeIdInfo())
3087    printTypeIdInfo(*TIdInfo);
3088
3089  auto PrintRange = [&](const ConstantRange &Range) {
3090    Out << "[" << Range.getLower() << ", " << Range.getSignedMax() << "]";
3091  };
3092
3093  if (!FS->paramAccesses().empty()) {
3094    Out << ", params: (";
3095    FieldSeparator IFS;
3096    for (auto &PS : FS->paramAccesses()) {
3097      Out << IFS;
3098      Out << "(param: " << PS.ParamNo;
3099      Out << ", offset: ";
3100      PrintRange(PS.Use);
3101      if (!PS.Calls.empty()) {
3102        Out << ", calls: (";
3103        FieldSeparator IFS;
3104        for (auto &Call : PS.Calls) {
3105          Out << IFS;
3106          Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee);
3107          Out << ", param: " << Call.ParamNo;
3108          Out << ", offset: ";
3109          PrintRange(Call.Offsets);
3110          Out << ")";
3111        }
3112        Out << ")";
3113      }
3114      Out << ")";
3115    }
3116    Out << ")";
3117  }
3118}
3119
3120void AssemblyWriter::printTypeIdInfo(
3121    const FunctionSummary::TypeIdInfo &TIDInfo) {
3122  Out << ", typeIdInfo: (";
3123  FieldSeparator TIDFS;
3124  if (!TIDInfo.TypeTests.empty()) {
3125    Out << TIDFS;
3126    Out << "typeTests: (";
3127    FieldSeparator FS;
3128    for (auto &GUID : TIDInfo.TypeTests) {
3129      auto TidIter = TheIndex->typeIds().equal_range(GUID);
3130      if (TidIter.first == TidIter.second) {
3131        Out << FS;
3132        Out << GUID;
3133        continue;
3134      }
3135      // Print all type id that correspond to this GUID.
3136      for (auto It = TidIter.first; It != TidIter.second; ++It) {
3137        Out << FS;
3138        auto Slot = Machine.getTypeIdSlot(It->second.first);
3139        assert(Slot != -1);
3140        Out << "^" << Slot;
3141      }
3142    }
3143    Out << ")";
3144  }
3145  if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3146    Out << TIDFS;
3147    printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3148  }
3149  if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3150    Out << TIDFS;
3151    printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3152  }
3153  if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3154    Out << TIDFS;
3155    printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3156                     "typeTestAssumeConstVCalls");
3157  }
3158  if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3159    Out << TIDFS;
3160    printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3161                     "typeCheckedLoadConstVCalls");
3162  }
3163  Out << ")";
3164}
3165
3166void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3167  auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3168  if (TidIter.first == TidIter.second) {
3169    Out << "vFuncId: (";
3170    Out << "guid: " << VFId.GUID;
3171    Out << ", offset: " << VFId.Offset;
3172    Out << ")";
3173    return;
3174  }
3175  // Print all type id that correspond to this GUID.
3176  FieldSeparator FS;
3177  for (auto It = TidIter.first; It != TidIter.second; ++It) {
3178    Out << FS;
3179    Out << "vFuncId: (";
3180    auto Slot = Machine.getTypeIdSlot(It->second.first);
3181    assert(Slot != -1);
3182    Out << "^" << Slot;
3183    Out << ", offset: " << VFId.Offset;
3184    Out << ")";
3185  }
3186}
3187
3188void AssemblyWriter::printNonConstVCalls(
3189    const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3190  Out << Tag << ": (";
3191  FieldSeparator FS;
3192  for (auto &VFuncId : VCallList) {
3193    Out << FS;
3194    printVFuncId(VFuncId);
3195  }
3196  Out << ")";
3197}
3198
3199void AssemblyWriter::printConstVCalls(
3200    const std::vector<FunctionSummary::ConstVCall> &VCallList,
3201    const char *Tag) {
3202  Out << Tag << ": (";
3203  FieldSeparator FS;
3204  for (auto &ConstVCall : VCallList) {
3205    Out << FS;
3206    Out << "(";
3207    printVFuncId(ConstVCall.VFunc);
3208    if (!ConstVCall.Args.empty()) {
3209      Out << ", ";
3210      printArgs(ConstVCall.Args);
3211    }
3212    Out << ")";
3213  }
3214  Out << ")";
3215}
3216
3217void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3218  GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3219  GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3220  Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3221  Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3222      << ", flags: (";
3223  Out << "linkage: " << getLinkageName(LT);
3224  Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3225  Out << ", live: " << GVFlags.Live;
3226  Out << ", dsoLocal: " << GVFlags.DSOLocal;
3227  Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3228  Out << ")";
3229
3230  if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3231    printAliasSummary(cast<AliasSummary>(&Summary));
3232  else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3233    printFunctionSummary(cast<FunctionSummary>(&Summary));
3234  else
3235    printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3236
3237  auto RefList = Summary.refs();
3238  if (!RefList.empty()) {
3239    Out << ", refs: (";
3240    FieldSeparator FS;
3241    for (auto &Ref : RefList) {
3242      Out << FS;
3243      if (Ref.isReadOnly())
3244        Out << "readonly ";
3245      else if (Ref.isWriteOnly())
3246        Out << "writeonly ";
3247      Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3248    }
3249    Out << ")";
3250  }
3251
3252  Out << ")";
3253}
3254
3255void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3256  Out << "^" << Slot << " = gv: (";
3257  if (!VI.name().empty())
3258    Out << "name: \"" << VI.name() << "\"";
3259  else
3260    Out << "guid: " << VI.getGUID();
3261  if (!VI.getSummaryList().empty()) {
3262    Out << ", summaries: (";
3263    FieldSeparator FS;
3264    for (auto &Summary : VI.getSummaryList()) {
3265      Out << FS;
3266      printSummary(*Summary);
3267    }
3268    Out << ")";
3269  }
3270  Out << ")";
3271  if (!VI.name().empty())
3272    Out << " ; guid = " << VI.getGUID();
3273  Out << "\n";
3274}
3275
3276static void printMetadataIdentifier(StringRef Name,
3277                                    formatted_raw_ostream &Out) {
3278  if (Name.empty()) {
3279    Out << "<empty name> ";
3280  } else {
3281    if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3282        Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3283      Out << Name[0];
3284    else
3285      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3286    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3287      unsigned char C = Name[i];
3288      if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3289          C == '.' || C == '_')
3290        Out << C;
3291      else
3292        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3293    }
3294  }
3295}
3296
3297void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3298  Out << '!';
3299  printMetadataIdentifier(NMD->getName(), Out);
3300  Out << " = !{";
3301  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3302    if (i)
3303      Out << ", ";
3304
3305    // Write DIExpressions inline.
3306    // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3307    MDNode *Op = NMD->getOperand(i);
3308    if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3309      writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3310      continue;
3311    }
3312
3313    int Slot = Machine.getMetadataSlot(Op);
3314    if (Slot == -1)
3315      Out << "<badref>";
3316    else
3317      Out << '!' << Slot;
3318  }
3319  Out << "}\n";
3320}
3321
3322static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3323                            formatted_raw_ostream &Out) {
3324  switch (Vis) {
3325  case GlobalValue::DefaultVisibility: break;
3326  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3327  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3328  }
3329}
3330
3331static void PrintDSOLocation(const GlobalValue &GV,
3332                             formatted_raw_ostream &Out) {
3333  if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3334    Out << "dso_local ";
3335}
3336
3337static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3338                                 formatted_raw_ostream &Out) {
3339  switch (SCT) {
3340  case GlobalValue::DefaultStorageClass: break;
3341  case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3342  case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3343  }
3344}
3345
3346static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3347                                  formatted_raw_ostream &Out) {
3348  switch (TLM) {
3349    case GlobalVariable::NotThreadLocal:
3350      break;
3351    case GlobalVariable::GeneralDynamicTLSModel:
3352      Out << "thread_local ";
3353      break;
3354    case GlobalVariable::LocalDynamicTLSModel:
3355      Out << "thread_local(localdynamic) ";
3356      break;
3357    case GlobalVariable::InitialExecTLSModel:
3358      Out << "thread_local(initialexec) ";
3359      break;
3360    case GlobalVariable::LocalExecTLSModel:
3361      Out << "thread_local(localexec) ";
3362      break;
3363  }
3364}
3365
3366static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3367  switch (UA) {
3368  case GlobalVariable::UnnamedAddr::None:
3369    return "";
3370  case GlobalVariable::UnnamedAddr::Local:
3371    return "local_unnamed_addr";
3372  case GlobalVariable::UnnamedAddr::Global:
3373    return "unnamed_addr";
3374  }
3375  llvm_unreachable("Unknown UnnamedAddr");
3376}
3377
3378static void maybePrintComdat(formatted_raw_ostream &Out,
3379                             const GlobalObject &GO) {
3380  const Comdat *C = GO.getComdat();
3381  if (!C)
3382    return;
3383
3384  if (isa<GlobalVariable>(GO))
3385    Out << ',';
3386  Out << " comdat";
3387
3388  if (GO.getName() == C->getName())
3389    return;
3390
3391  Out << '(';
3392  PrintLLVMName(Out, C->getName(), ComdatPrefix);
3393  Out << ')';
3394}
3395
3396void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3397  if (GV->isMaterializable())
3398    Out << "; Materializable\n";
3399
3400  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3401  Out << " = ";
3402
3403  if (!GV->hasInitializer() && GV->hasExternalLinkage())
3404    Out << "external ";
3405
3406  Out << getLinkageNameWithSpace(GV->getLinkage());
3407  PrintDSOLocation(*GV, Out);
3408  PrintVisibility(GV->getVisibility(), Out);
3409  PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3410  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3411  StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3412  if (!UA.empty())
3413      Out << UA << ' ';
3414
3415  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3416    Out << "addrspace(" << AddressSpace << ") ";
3417  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3418  Out << (GV->isConstant() ? "constant " : "global ");
3419  TypePrinter.print(GV->getValueType(), Out);
3420
3421  if (GV->hasInitializer()) {
3422    Out << ' ';
3423    writeOperand(GV->getInitializer(), false);
3424  }
3425
3426  if (GV->hasSection()) {
3427    Out << ", section \"";
3428    printEscapedString(GV->getSection(), Out);
3429    Out << '"';
3430  }
3431  if (GV->hasPartition()) {
3432    Out << ", partition \"";
3433    printEscapedString(GV->getPartition(), Out);
3434    Out << '"';
3435  }
3436
3437  maybePrintComdat(Out, *GV);
3438  if (GV->getAlignment())
3439    Out << ", align " << GV->getAlignment();
3440
3441  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3442  GV->getAllMetadata(MDs);
3443  printMetadataAttachments(MDs, ", ");
3444
3445  auto Attrs = GV->getAttributes();
3446  if (Attrs.hasAttributes())
3447    Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3448
3449  printInfoComment(*GV);
3450}
3451
3452void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3453  if (GIS->isMaterializable())
3454    Out << "; Materializable\n";
3455
3456  WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3457  Out << " = ";
3458
3459  Out << getLinkageNameWithSpace(GIS->getLinkage());
3460  PrintDSOLocation(*GIS, Out);
3461  PrintVisibility(GIS->getVisibility(), Out);
3462  PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3463  PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3464  StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3465  if (!UA.empty())
3466      Out << UA << ' ';
3467
3468  if (isa<GlobalAlias>(GIS))
3469    Out << "alias ";
3470  else if (isa<GlobalIFunc>(GIS))
3471    Out << "ifunc ";
3472  else
3473    llvm_unreachable("Not an alias or ifunc!");
3474
3475  TypePrinter.print(GIS->getValueType(), Out);
3476
3477  Out << ", ";
3478
3479  const Constant *IS = GIS->getIndirectSymbol();
3480
3481  if (!IS) {
3482    TypePrinter.print(GIS->getType(), Out);
3483    Out << " <<NULL ALIASEE>>";
3484  } else {
3485    writeOperand(IS, !isa<ConstantExpr>(IS));
3486  }
3487
3488  if (GIS->hasPartition()) {
3489    Out << ", partition \"";
3490    printEscapedString(GIS->getPartition(), Out);
3491    Out << '"';
3492  }
3493
3494  printInfoComment(*GIS);
3495  Out << '\n';
3496}
3497
3498void AssemblyWriter::printComdat(const Comdat *C) {
3499  C->print(Out);
3500}
3501
3502void AssemblyWriter::printTypeIdentities() {
3503  if (TypePrinter.empty())
3504    return;
3505
3506  Out << '\n';
3507
3508  // Emit all numbered types.
3509  auto &NumberedTypes = TypePrinter.getNumberedTypes();
3510  for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3511    Out << '%' << I << " = type ";
3512
3513    // Make sure we print out at least one level of the type structure, so
3514    // that we do not get %2 = type %2
3515    TypePrinter.printStructBody(NumberedTypes[I], Out);
3516    Out << '\n';
3517  }
3518
3519  auto &NamedTypes = TypePrinter.getNamedTypes();
3520  for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3521    PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3522    Out << " = type ";
3523
3524    // Make sure we print out at least one level of the type structure, so
3525    // that we do not get %FILE = type %FILE
3526    TypePrinter.printStructBody(NamedTypes[I], Out);
3527    Out << '\n';
3528  }
3529}
3530
3531/// printFunction - Print all aspects of a function.
3532void AssemblyWriter::printFunction(const Function *F) {
3533  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3534
3535  if (F->isMaterializable())
3536    Out << "; Materializable\n";
3537
3538  const AttributeList &Attrs = F->getAttributes();
3539  if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3540    AttributeSet AS = Attrs.getFnAttributes();
3541    std::string AttrStr;
3542
3543    for (const Attribute &Attr : AS) {
3544      if (!Attr.isStringAttribute()) {
3545        if (!AttrStr.empty()) AttrStr += ' ';
3546        AttrStr += Attr.getAsString();
3547      }
3548    }
3549
3550    if (!AttrStr.empty())
3551      Out << "; Function Attrs: " << AttrStr << '\n';
3552  }
3553
3554  Machine.incorporateFunction(F);
3555
3556  if (F->isDeclaration()) {
3557    Out << "declare";
3558    SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3559    F->getAllMetadata(MDs);
3560    printMetadataAttachments(MDs, " ");
3561    Out << ' ';
3562  } else
3563    Out << "define ";
3564
3565  Out << getLinkageNameWithSpace(F->getLinkage());
3566  PrintDSOLocation(*F, Out);
3567  PrintVisibility(F->getVisibility(), Out);
3568  PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3569
3570  // Print the calling convention.
3571  if (F->getCallingConv() != CallingConv::C) {
3572    PrintCallingConv(F->getCallingConv(), Out);
3573    Out << " ";
3574  }
3575
3576  FunctionType *FT = F->getFunctionType();
3577  if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3578    Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3579  TypePrinter.print(F->getReturnType(), Out);
3580  Out << ' ';
3581  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3582  Out << '(';
3583
3584  // Loop over the arguments, printing them...
3585  if (F->isDeclaration() && !IsForDebug) {
3586    // We're only interested in the type here - don't print argument names.
3587    for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3588      // Insert commas as we go... the first arg doesn't get a comma
3589      if (I)
3590        Out << ", ";
3591      // Output type...
3592      TypePrinter.print(FT->getParamType(I), Out);
3593
3594      AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3595      if (ArgAttrs.hasAttributes()) {
3596        Out << ' ';
3597        writeAttributeSet(ArgAttrs);
3598      }
3599    }
3600  } else {
3601    // The arguments are meaningful here, print them in detail.
3602    for (const Argument &Arg : F->args()) {
3603      // Insert commas as we go... the first arg doesn't get a comma
3604      if (Arg.getArgNo() != 0)
3605        Out << ", ";
3606      printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3607    }
3608  }
3609
3610  // Finish printing arguments...
3611  if (FT->isVarArg()) {
3612    if (FT->getNumParams()) Out << ", ";
3613    Out << "...";  // Output varargs portion of signature!
3614  }
3615  Out << ')';
3616  StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3617  if (!UA.empty())
3618    Out << ' ' << UA;
3619  // We print the function address space if it is non-zero or if we are writing
3620  // a module with a non-zero program address space or if there is no valid
3621  // Module* so that the file can be parsed without the datalayout string.
3622  const Module *Mod = F->getParent();
3623  if (F->getAddressSpace() != 0 || !Mod ||
3624      Mod->getDataLayout().getProgramAddressSpace() != 0)
3625    Out << " addrspace(" << F->getAddressSpace() << ")";
3626  if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3627    Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3628  if (F->hasSection()) {
3629    Out << " section \"";
3630    printEscapedString(F->getSection(), Out);
3631    Out << '"';
3632  }
3633  if (F->hasPartition()) {
3634    Out << " partition \"";
3635    printEscapedString(F->getPartition(), Out);
3636    Out << '"';
3637  }
3638  maybePrintComdat(Out, *F);
3639  if (F->getAlignment())
3640    Out << " align " << F->getAlignment();
3641  if (F->hasGC())
3642    Out << " gc \"" << F->getGC() << '"';
3643  if (F->hasPrefixData()) {
3644    Out << " prefix ";
3645    writeOperand(F->getPrefixData(), true);
3646  }
3647  if (F->hasPrologueData()) {
3648    Out << " prologue ";
3649    writeOperand(F->getPrologueData(), true);
3650  }
3651  if (F->hasPersonalityFn()) {
3652    Out << " personality ";
3653    writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3654  }
3655
3656  if (F->isDeclaration()) {
3657    Out << '\n';
3658  } else {
3659    SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3660    F->getAllMetadata(MDs);
3661    printMetadataAttachments(MDs, " ");
3662
3663    Out << " {";
3664    // Output all of the function's basic blocks.
3665    for (const BasicBlock &BB : *F)
3666      printBasicBlock(&BB);
3667
3668    // Output the function's use-lists.
3669    printUseLists(F);
3670
3671    Out << "}\n";
3672  }
3673
3674  Machine.purgeFunction();
3675}
3676
3677/// printArgument - This member is called for every argument that is passed into
3678/// the function.  Simply print it out
3679void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3680  // Output type...
3681  TypePrinter.print(Arg->getType(), Out);
3682
3683  // Output parameter attributes list
3684  if (Attrs.hasAttributes()) {
3685    Out << ' ';
3686    writeAttributeSet(Attrs);
3687  }
3688
3689  // Output name, if available...
3690  if (Arg->hasName()) {
3691    Out << ' ';
3692    PrintLLVMName(Out, Arg);
3693  } else {
3694    int Slot = Machine.getLocalSlot(Arg);
3695    assert(Slot != -1 && "expect argument in function here");
3696    Out << " %" << Slot;
3697  }
3698}
3699
3700/// printBasicBlock - This member is called for each basic block in a method.
3701void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3702  assert(BB && BB->getParent() && "block without parent!");
3703  bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock();
3704  if (BB->hasName()) {              // Print out the label if it exists...
3705    Out << "\n";
3706    PrintLLVMName(Out, BB->getName(), LabelPrefix);
3707    Out << ':';
3708  } else if (!IsEntryBlock) {
3709    Out << "\n";
3710    int Slot = Machine.getLocalSlot(BB);
3711    if (Slot != -1)
3712      Out << Slot << ":";
3713    else
3714      Out << "<badref>:";
3715  }
3716
3717  if (!IsEntryBlock) {
3718    // Output predecessors for the block.
3719    Out.PadToColumn(50);
3720    Out << ";";
3721    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3722
3723    if (PI == PE) {
3724      Out << " No predecessors!";
3725    } else {
3726      Out << " preds = ";
3727      writeOperand(*PI, false);
3728      for (++PI; PI != PE; ++PI) {
3729        Out << ", ";
3730        writeOperand(*PI, false);
3731      }
3732    }
3733  }
3734
3735  Out << "\n";
3736
3737  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3738
3739  // Output all of the instructions in the basic block...
3740  for (const Instruction &I : *BB) {
3741    printInstructionLine(I);
3742  }
3743
3744  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3745}
3746
3747/// printInstructionLine - Print an instruction and a newline character.
3748void AssemblyWriter::printInstructionLine(const Instruction &I) {
3749  printInstruction(I);
3750  Out << '\n';
3751}
3752
3753/// printGCRelocateComment - print comment after call to the gc.relocate
3754/// intrinsic indicating base and derived pointer names.
3755void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3756  Out << " ; (";
3757  writeOperand(Relocate.getBasePtr(), false);
3758  Out << ", ";
3759  writeOperand(Relocate.getDerivedPtr(), false);
3760  Out << ")";
3761}
3762
3763/// printInfoComment - Print a little comment after the instruction indicating
3764/// which slot it occupies.
3765void AssemblyWriter::printInfoComment(const Value &V) {
3766  if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3767    printGCRelocateComment(*Relocate);
3768
3769  if (AnnotationWriter)
3770    AnnotationWriter->printInfoComment(V, Out);
3771}
3772
3773static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3774                                    raw_ostream &Out) {
3775  // We print the address space of the call if it is non-zero.
3776  unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3777  bool PrintAddrSpace = CallAddrSpace != 0;
3778  if (!PrintAddrSpace) {
3779    const Module *Mod = getModuleFromVal(I);
3780    // We also print it if it is zero but not equal to the program address space
3781    // or if we can't find a valid Module* to make it possible to parse
3782    // the resulting file even without a datalayout string.
3783    if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3784      PrintAddrSpace = true;
3785  }
3786  if (PrintAddrSpace)
3787    Out << " addrspace(" << CallAddrSpace << ")";
3788}
3789
3790// This member is called for each Instruction in a function..
3791void AssemblyWriter::printInstruction(const Instruction &I) {
3792  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3793
3794  // Print out indentation for an instruction.
3795  Out << "  ";
3796
3797  // Print out name if it exists...
3798  if (I.hasName()) {
3799    PrintLLVMName(Out, &I);
3800    Out << " = ";
3801  } else if (!I.getType()->isVoidTy()) {
3802    // Print out the def slot taken.
3803    int SlotNum = Machine.getLocalSlot(&I);
3804    if (SlotNum == -1)
3805      Out << "<badref> = ";
3806    else
3807      Out << '%' << SlotNum << " = ";
3808  }
3809
3810  if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3811    if (CI->isMustTailCall())
3812      Out << "musttail ";
3813    else if (CI->isTailCall())
3814      Out << "tail ";
3815    else if (CI->isNoTailCall())
3816      Out << "notail ";
3817  }
3818
3819  // Print out the opcode...
3820  Out << I.getOpcodeName();
3821
3822  // If this is an atomic load or store, print out the atomic marker.
3823  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3824      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3825    Out << " atomic";
3826
3827  if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3828    Out << " weak";
3829
3830  // If this is a volatile operation, print out the volatile marker.
3831  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3832      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3833      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3834      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3835    Out << " volatile";
3836
3837  // Print out optimization information.
3838  WriteOptimizationInfo(Out, &I);
3839
3840  // Print out the compare instruction predicates
3841  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3842    Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3843
3844  // Print out the atomicrmw operation
3845  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3846    Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3847
3848  // Print out the type of the operands...
3849  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3850
3851  // Special case conditional branches to swizzle the condition out to the front
3852  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3853    const BranchInst &BI(cast<BranchInst>(I));
3854    Out << ' ';
3855    writeOperand(BI.getCondition(), true);
3856    Out << ", ";
3857    writeOperand(BI.getSuccessor(0), true);
3858    Out << ", ";
3859    writeOperand(BI.getSuccessor(1), true);
3860
3861  } else if (isa<SwitchInst>(I)) {
3862    const SwitchInst& SI(cast<SwitchInst>(I));
3863    // Special case switch instruction to get formatting nice and correct.
3864    Out << ' ';
3865    writeOperand(SI.getCondition(), true);
3866    Out << ", ";
3867    writeOperand(SI.getDefaultDest(), true);
3868    Out << " [";
3869    for (auto Case : SI.cases()) {
3870      Out << "\n    ";
3871      writeOperand(Case.getCaseValue(), true);
3872      Out << ", ";
3873      writeOperand(Case.getCaseSuccessor(), true);
3874    }
3875    Out << "\n  ]";
3876  } else if (isa<IndirectBrInst>(I)) {
3877    // Special case indirectbr instruction to get formatting nice and correct.
3878    Out << ' ';
3879    writeOperand(Operand, true);
3880    Out << ", [";
3881
3882    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3883      if (i != 1)
3884        Out << ", ";
3885      writeOperand(I.getOperand(i), true);
3886    }
3887    Out << ']';
3888  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3889    Out << ' ';
3890    TypePrinter.print(I.getType(), Out);
3891    Out << ' ';
3892
3893    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3894      if (op) Out << ", ";
3895      Out << "[ ";
3896      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3897      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3898    }
3899  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3900    Out << ' ';
3901    writeOperand(I.getOperand(0), true);
3902    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3903      Out << ", " << *i;
3904  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3905    Out << ' ';
3906    writeOperand(I.getOperand(0), true); Out << ", ";
3907    writeOperand(I.getOperand(1), true);
3908    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3909      Out << ", " << *i;
3910  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3911    Out << ' ';
3912    TypePrinter.print(I.getType(), Out);
3913    if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3914      Out << '\n';
3915
3916    if (LPI->isCleanup())
3917      Out << "          cleanup";
3918
3919    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3920      if (i != 0 || LPI->isCleanup()) Out << "\n";
3921      if (LPI->isCatch(i))
3922        Out << "          catch ";
3923      else
3924        Out << "          filter ";
3925
3926      writeOperand(LPI->getClause(i), true);
3927    }
3928  } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3929    Out << " within ";
3930    writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3931    Out << " [";
3932    unsigned Op = 0;
3933    for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3934      if (Op > 0)
3935        Out << ", ";
3936      writeOperand(PadBB, /*PrintType=*/true);
3937      ++Op;
3938    }
3939    Out << "] unwind ";
3940    if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3941      writeOperand(UnwindDest, /*PrintType=*/true);
3942    else
3943      Out << "to caller";
3944  } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3945    Out << " within ";
3946    writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3947    Out << " [";
3948    for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3949         ++Op) {
3950      if (Op > 0)
3951        Out << ", ";
3952      writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3953    }
3954    Out << ']';
3955  } else if (isa<ReturnInst>(I) && !Operand) {
3956    Out << " void";
3957  } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3958    Out << " from ";
3959    writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3960
3961    Out << " to ";
3962    writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3963  } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3964    Out << " from ";
3965    writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3966
3967    Out << " unwind ";
3968    if (CRI->hasUnwindDest())
3969      writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3970    else
3971      Out << "to caller";
3972  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3973    // Print the calling convention being used.
3974    if (CI->getCallingConv() != CallingConv::C) {
3975      Out << " ";
3976      PrintCallingConv(CI->getCallingConv(), Out);
3977    }
3978
3979    Operand = CI->getCalledOperand();
3980    FunctionType *FTy = CI->getFunctionType();
3981    Type *RetTy = FTy->getReturnType();
3982    const AttributeList &PAL = CI->getAttributes();
3983
3984    if (PAL.hasAttributes(AttributeList::ReturnIndex))
3985      Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3986
3987    // Only print addrspace(N) if necessary:
3988    maybePrintCallAddrSpace(Operand, &I, Out);
3989
3990    // If possible, print out the short form of the call instruction.  We can
3991    // only do this if the first argument is a pointer to a nonvararg function,
3992    // and if the return type is not a pointer to a function.
3993    //
3994    Out << ' ';
3995    TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3996    Out << ' ';
3997    writeOperand(Operand, false);
3998    Out << '(';
3999    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
4000      if (op > 0)
4001        Out << ", ";
4002      writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
4003    }
4004
4005    // Emit an ellipsis if this is a musttail call in a vararg function.  This
4006    // is only to aid readability, musttail calls forward varargs by default.
4007    if (CI->isMustTailCall() && CI->getParent() &&
4008        CI->getParent()->getParent() &&
4009        CI->getParent()->getParent()->isVarArg())
4010      Out << ", ...";
4011
4012    Out << ')';
4013    if (PAL.hasAttributes(AttributeList::FunctionIndex))
4014      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4015
4016    writeOperandBundles(CI);
4017  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4018    Operand = II->getCalledOperand();
4019    FunctionType *FTy = II->getFunctionType();
4020    Type *RetTy = FTy->getReturnType();
4021    const AttributeList &PAL = II->getAttributes();
4022
4023    // Print the calling convention being used.
4024    if (II->getCallingConv() != CallingConv::C) {
4025      Out << " ";
4026      PrintCallingConv(II->getCallingConv(), Out);
4027    }
4028
4029    if (PAL.hasAttributes(AttributeList::ReturnIndex))
4030      Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4031
4032    // Only print addrspace(N) if necessary:
4033    maybePrintCallAddrSpace(Operand, &I, Out);
4034
4035    // If possible, print out the short form of the invoke instruction. We can
4036    // only do this if the first argument is a pointer to a nonvararg function,
4037    // and if the return type is not a pointer to a function.
4038    //
4039    Out << ' ';
4040    TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4041    Out << ' ';
4042    writeOperand(Operand, false);
4043    Out << '(';
4044    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
4045      if (op)
4046        Out << ", ";
4047      writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
4048    }
4049
4050    Out << ')';
4051    if (PAL.hasAttributes(AttributeList::FunctionIndex))
4052      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4053
4054    writeOperandBundles(II);
4055
4056    Out << "\n          to ";
4057    writeOperand(II->getNormalDest(), true);
4058    Out << " unwind ";
4059    writeOperand(II->getUnwindDest(), true);
4060  } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4061    Operand = CBI->getCalledOperand();
4062    FunctionType *FTy = CBI->getFunctionType();
4063    Type *RetTy = FTy->getReturnType();
4064    const AttributeList &PAL = CBI->getAttributes();
4065
4066    // Print the calling convention being used.
4067    if (CBI->getCallingConv() != CallingConv::C) {
4068      Out << " ";
4069      PrintCallingConv(CBI->getCallingConv(), Out);
4070    }
4071
4072    if (PAL.hasAttributes(AttributeList::ReturnIndex))
4073      Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4074
4075    // If possible, print out the short form of the callbr instruction. We can
4076    // only do this if the first argument is a pointer to a nonvararg function,
4077    // and if the return type is not a pointer to a function.
4078    //
4079    Out << ' ';
4080    TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4081    Out << ' ';
4082    writeOperand(Operand, false);
4083    Out << '(';
4084    for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
4085      if (op)
4086        Out << ", ";
4087      writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
4088    }
4089
4090    Out << ')';
4091    if (PAL.hasAttributes(AttributeList::FunctionIndex))
4092      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4093
4094    writeOperandBundles(CBI);
4095
4096    Out << "\n          to ";
4097    writeOperand(CBI->getDefaultDest(), true);
4098    Out << " [";
4099    for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4100      if (i != 0)
4101        Out << ", ";
4102      writeOperand(CBI->getIndirectDest(i), true);
4103    }
4104    Out << ']';
4105  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4106    Out << ' ';
4107    if (AI->isUsedWithInAlloca())
4108      Out << "inalloca ";
4109    if (AI->isSwiftError())
4110      Out << "swifterror ";
4111    TypePrinter.print(AI->getAllocatedType(), Out);
4112
4113    // Explicitly write the array size if the code is broken, if it's an array
4114    // allocation, or if the type is not canonical for scalar allocations.  The
4115    // latter case prevents the type from mutating when round-tripping through
4116    // assembly.
4117    if (!AI->getArraySize() || AI->isArrayAllocation() ||
4118        !AI->getArraySize()->getType()->isIntegerTy(32)) {
4119      Out << ", ";
4120      writeOperand(AI->getArraySize(), true);
4121    }
4122    if (AI->getAlignment()) {
4123      Out << ", align " << AI->getAlignment();
4124    }
4125
4126    unsigned AddrSpace = AI->getType()->getAddressSpace();
4127    if (AddrSpace != 0) {
4128      Out << ", addrspace(" << AddrSpace << ')';
4129    }
4130  } else if (isa<CastInst>(I)) {
4131    if (Operand) {
4132      Out << ' ';
4133      writeOperand(Operand, true);   // Work with broken code
4134    }
4135    Out << " to ";
4136    TypePrinter.print(I.getType(), Out);
4137  } else if (isa<VAArgInst>(I)) {
4138    if (Operand) {
4139      Out << ' ';
4140      writeOperand(Operand, true);   // Work with broken code
4141    }
4142    Out << ", ";
4143    TypePrinter.print(I.getType(), Out);
4144  } else if (Operand) {   // Print the normal way.
4145    if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4146      Out << ' ';
4147      TypePrinter.print(GEP->getSourceElementType(), Out);
4148      Out << ',';
4149    } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4150      Out << ' ';
4151      TypePrinter.print(LI->getType(), Out);
4152      Out << ',';
4153    }
4154
4155    // PrintAllTypes - Instructions who have operands of all the same type
4156    // omit the type from all but the first operand.  If the instruction has
4157    // different type operands (for example br), then they are all printed.
4158    bool PrintAllTypes = false;
4159    Type *TheType = Operand->getType();
4160
4161    // Select, Store and ShuffleVector always print all types.
4162    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4163        || isa<ReturnInst>(I)) {
4164      PrintAllTypes = true;
4165    } else {
4166      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4167        Operand = I.getOperand(i);
4168        // note that Operand shouldn't be null, but the test helps make dump()
4169        // more tolerant of malformed IR
4170        if (Operand && Operand->getType() != TheType) {
4171          PrintAllTypes = true;    // We have differing types!  Print them all!
4172          break;
4173        }
4174      }
4175    }
4176
4177    if (!PrintAllTypes) {
4178      Out << ' ';
4179      TypePrinter.print(TheType, Out);
4180    }
4181
4182    Out << ' ';
4183    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4184      if (i) Out << ", ";
4185      writeOperand(I.getOperand(i), PrintAllTypes);
4186    }
4187  }
4188
4189  // Print atomic ordering/alignment for memory operations
4190  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4191    if (LI->isAtomic())
4192      writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4193    if (LI->getAlignment())
4194      Out << ", align " << LI->getAlignment();
4195  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4196    if (SI->isAtomic())
4197      writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4198    if (SI->getAlignment())
4199      Out << ", align " << SI->getAlignment();
4200  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4201    writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4202                       CXI->getFailureOrdering(), CXI->getSyncScopeID());
4203  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4204    writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4205                RMWI->getSyncScopeID());
4206  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4207    writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4208  } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4209    PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4210  }
4211
4212  // Print Metadata info.
4213  SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4214  I.getAllMetadata(InstMD);
4215  printMetadataAttachments(InstMD, ", ");
4216
4217  // Print a nice comment.
4218  printInfoComment(I);
4219}
4220
4221void AssemblyWriter::printMetadataAttachments(
4222    const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4223    StringRef Separator) {
4224  if (MDs.empty())
4225    return;
4226
4227  if (MDNames.empty())
4228    MDs[0].second->getContext().getMDKindNames(MDNames);
4229
4230  for (const auto &I : MDs) {
4231    unsigned Kind = I.first;
4232    Out << Separator;
4233    if (Kind < MDNames.size()) {
4234      Out << "!";
4235      printMetadataIdentifier(MDNames[Kind], Out);
4236    } else
4237      Out << "!<unknown kind #" << Kind << ">";
4238    Out << ' ';
4239    WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4240  }
4241}
4242
4243void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4244  Out << '!' << Slot << " = ";
4245  printMDNodeBody(Node);
4246  Out << "\n";
4247}
4248
4249void AssemblyWriter::writeAllMDNodes() {
4250  SmallVector<const MDNode *, 16> Nodes;
4251  Nodes.resize(Machine.mdn_size());
4252  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
4253       I != E; ++I)
4254    Nodes[I->second] = cast<MDNode>(I->first);
4255
4256  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4257    writeMDNode(i, Nodes[i]);
4258  }
4259}
4260
4261void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4262  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4263}
4264
4265void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4266  if (!Attr.isTypeAttribute()) {
4267    Out << Attr.getAsString(InAttrGroup);
4268    return;
4269  }
4270
4271  assert((Attr.hasAttribute(Attribute::ByVal) ||
4272          Attr.hasAttribute(Attribute::Preallocated)) &&
4273         "unexpected type attr");
4274
4275  if (Attr.hasAttribute(Attribute::ByVal)) {
4276    Out << "byval";
4277  } else {
4278    Out << "preallocated";
4279  }
4280
4281  if (Type *Ty = Attr.getValueAsType()) {
4282    Out << '(';
4283    TypePrinter.print(Ty, Out);
4284    Out << ')';
4285  }
4286}
4287
4288void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4289                                       bool InAttrGroup) {
4290  bool FirstAttr = true;
4291  for (const auto &Attr : AttrSet) {
4292    if (!FirstAttr)
4293      Out << ' ';
4294    writeAttribute(Attr, InAttrGroup);
4295    FirstAttr = false;
4296  }
4297}
4298
4299void AssemblyWriter::writeAllAttributeGroups() {
4300  std::vector<std::pair<AttributeSet, unsigned>> asVec;
4301  asVec.resize(Machine.as_size());
4302
4303  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
4304       I != E; ++I)
4305    asVec[I->second] = *I;
4306
4307  for (const auto &I : asVec)
4308    Out << "attributes #" << I.second << " = { "
4309        << I.first.getAsString(true) << " }\n";
4310}
4311
4312void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
4313  bool IsInFunction = Machine.getFunction();
4314  if (IsInFunction)
4315    Out << "  ";
4316
4317  Out << "uselistorder";
4318  if (const BasicBlock *BB =
4319          IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
4320    Out << "_bb ";
4321    writeOperand(BB->getParent(), false);
4322    Out << ", ";
4323    writeOperand(BB, false);
4324  } else {
4325    Out << " ";
4326    writeOperand(Order.V, true);
4327  }
4328  Out << ", { ";
4329
4330  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4331  Out << Order.Shuffle[0];
4332  for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4333    Out << ", " << Order.Shuffle[I];
4334  Out << " }\n";
4335}
4336
4337void AssemblyWriter::printUseLists(const Function *F) {
4338  auto hasMore =
4339      [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4340  if (!hasMore())
4341    // Nothing to do.
4342    return;
4343
4344  Out << "\n; uselistorder directives\n";
4345  while (hasMore()) {
4346    printUseListOrder(UseListOrders.back());
4347    UseListOrders.pop_back();
4348  }
4349}
4350
4351//===----------------------------------------------------------------------===//
4352//                       External Interface declarations
4353//===----------------------------------------------------------------------===//
4354
4355void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4356                     bool ShouldPreserveUseListOrder,
4357                     bool IsForDebug) const {
4358  SlotTracker SlotTable(this->getParent());
4359  formatted_raw_ostream OS(ROS);
4360  AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4361                   IsForDebug,
4362                   ShouldPreserveUseListOrder);
4363  W.printFunction(this);
4364}
4365
4366void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4367                     bool ShouldPreserveUseListOrder,
4368                     bool IsForDebug) const {
4369  SlotTracker SlotTable(this->getModule());
4370  formatted_raw_ostream OS(ROS);
4371  AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4372                   IsForDebug,
4373                   ShouldPreserveUseListOrder);
4374  W.printBasicBlock(this);
4375}
4376
4377void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4378                   bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4379  SlotTracker SlotTable(this);
4380  formatted_raw_ostream OS(ROS);
4381  AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4382                   ShouldPreserveUseListOrder);
4383  W.printModule(this);
4384}
4385
4386void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4387  SlotTracker SlotTable(getParent());
4388  formatted_raw_ostream OS(ROS);
4389  AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4390  W.printNamedMDNode(this);
4391}
4392
4393void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4394                        bool IsForDebug) const {
4395  Optional<SlotTracker> LocalST;
4396  SlotTracker *SlotTable;
4397  if (auto *ST = MST.getMachine())
4398    SlotTable = ST;
4399  else {
4400    LocalST.emplace(getParent());
4401    SlotTable = &*LocalST;
4402  }
4403
4404  formatted_raw_ostream OS(ROS);
4405  AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4406  W.printNamedMDNode(this);
4407}
4408
4409void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4410  PrintLLVMName(ROS, getName(), ComdatPrefix);
4411  ROS << " = comdat ";
4412
4413  switch (getSelectionKind()) {
4414  case Comdat::Any:
4415    ROS << "any";
4416    break;
4417  case Comdat::ExactMatch:
4418    ROS << "exactmatch";
4419    break;
4420  case Comdat::Largest:
4421    ROS << "largest";
4422    break;
4423  case Comdat::NoDuplicates:
4424    ROS << "noduplicates";
4425    break;
4426  case Comdat::SameSize:
4427    ROS << "samesize";
4428    break;
4429  }
4430
4431  ROS << '\n';
4432}
4433
4434void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4435  TypePrinting TP;
4436  TP.print(const_cast<Type*>(this), OS);
4437
4438  if (NoDetails)
4439    return;
4440
4441  // If the type is a named struct type, print the body as well.
4442  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4443    if (!STy->isLiteral()) {
4444      OS << " = type ";
4445      TP.printStructBody(STy, OS);
4446    }
4447}
4448
4449static bool isReferencingMDNode(const Instruction &I) {
4450  if (const auto *CI = dyn_cast<CallInst>(&I))
4451    if (Function *F = CI->getCalledFunction())
4452      if (F->isIntrinsic())
4453        for (auto &Op : I.operands())
4454          if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4455            if (isa<MDNode>(V->getMetadata()))
4456              return true;
4457  return false;
4458}
4459
4460void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4461  bool ShouldInitializeAllMetadata = false;
4462  if (auto *I = dyn_cast<Instruction>(this))
4463    ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4464  else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4465    ShouldInitializeAllMetadata = true;
4466
4467  ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4468  print(ROS, MST, IsForDebug);
4469}
4470
4471void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4472                  bool IsForDebug) const {
4473  formatted_raw_ostream OS(ROS);
4474  SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4475  SlotTracker &SlotTable =
4476      MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4477  auto incorporateFunction = [&](const Function *F) {
4478    if (F)
4479      MST.incorporateFunction(*F);
4480  };
4481
4482  if (const Instruction *I = dyn_cast<Instruction>(this)) {
4483    incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4484    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4485    W.printInstruction(*I);
4486  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4487    incorporateFunction(BB->getParent());
4488    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4489    W.printBasicBlock(BB);
4490  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4491    AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4492    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4493      W.printGlobal(V);
4494    else if (const Function *F = dyn_cast<Function>(GV))
4495      W.printFunction(F);
4496    else
4497      W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4498  } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4499    V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4500  } else if (const Constant *C = dyn_cast<Constant>(this)) {
4501    TypePrinting TypePrinter;
4502    TypePrinter.print(C->getType(), OS);
4503    OS << ' ';
4504    WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4505  } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4506    this->printAsOperand(OS, /* PrintType */ true, MST);
4507  } else {
4508    llvm_unreachable("Unknown value to print out!");
4509  }
4510}
4511
4512/// Print without a type, skipping the TypePrinting object.
4513///
4514/// \return \c true iff printing was successful.
4515static bool printWithoutType(const Value &V, raw_ostream &O,
4516                             SlotTracker *Machine, const Module *M) {
4517  if (V.hasName() || isa<GlobalValue>(V) ||
4518      (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4519    WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4520    return true;
4521  }
4522  return false;
4523}
4524
4525static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4526                               ModuleSlotTracker &MST) {
4527  TypePrinting TypePrinter(MST.getModule());
4528  if (PrintType) {
4529    TypePrinter.print(V.getType(), O);
4530    O << ' ';
4531  }
4532
4533  WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4534                         MST.getModule());
4535}
4536
4537void Value::printAsOperand(raw_ostream &O, bool PrintType,
4538                           const Module *M) const {
4539  if (!M)
4540    M = getModuleFromVal(this);
4541
4542  if (!PrintType)
4543    if (printWithoutType(*this, O, nullptr, M))
4544      return;
4545
4546  SlotTracker Machine(
4547      M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4548  ModuleSlotTracker MST(Machine, M);
4549  printAsOperandImpl(*this, O, PrintType, MST);
4550}
4551
4552void Value::printAsOperand(raw_ostream &O, bool PrintType,
4553                           ModuleSlotTracker &MST) const {
4554  if (!PrintType)
4555    if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4556      return;
4557
4558  printAsOperandImpl(*this, O, PrintType, MST);
4559}
4560
4561static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4562                              ModuleSlotTracker &MST, const Module *M,
4563                              bool OnlyAsOperand) {
4564  formatted_raw_ostream OS(ROS);
4565
4566  TypePrinting TypePrinter(M);
4567
4568  WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4569                         /* FromValue */ true);
4570
4571  auto *N = dyn_cast<MDNode>(&MD);
4572  if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4573    return;
4574
4575  OS << " = ";
4576  WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4577}
4578
4579void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4580  ModuleSlotTracker MST(M, isa<MDNode>(this));
4581  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4582}
4583
4584void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4585                              const Module *M) const {
4586  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4587}
4588
4589void Metadata::print(raw_ostream &OS, const Module *M,
4590                     bool /*IsForDebug*/) const {
4591  ModuleSlotTracker MST(M, isa<MDNode>(this));
4592  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4593}
4594
4595void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4596                     const Module *M, bool /*IsForDebug*/) const {
4597  printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4598}
4599
4600void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4601  SlotTracker SlotTable(this);
4602  formatted_raw_ostream OS(ROS);
4603  AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4604  W.printModuleSummaryIndex();
4605}
4606
4607#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4608// Value::dump - allow easy printing of Values from the debugger.
4609LLVM_DUMP_METHOD
4610void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4611
4612// Type::dump - allow easy printing of Types from the debugger.
4613LLVM_DUMP_METHOD
4614void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4615
4616// Module::dump() - Allow printing of Modules from the debugger.
4617LLVM_DUMP_METHOD
4618void Module::dump() const {
4619  print(dbgs(), nullptr,
4620        /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4621}
4622
4623// Allow printing of Comdats from the debugger.
4624LLVM_DUMP_METHOD
4625void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4626
4627// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4628LLVM_DUMP_METHOD
4629void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4630
4631LLVM_DUMP_METHOD
4632void Metadata::dump() const { dump(nullptr); }
4633
4634LLVM_DUMP_METHOD
4635void Metadata::dump(const Module *M) const {
4636  print(dbgs(), M, /*IsForDebug=*/true);
4637  dbgs() << '\n';
4638}
4639
4640// Allow printing of ModuleSummaryIndex from the debugger.
4641LLVM_DUMP_METHOD
4642void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4643#endif
4644