1//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file includes support code use by SelectionDAGBuilder when lowering a
10// statepoint sequence in SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "StatepointLowering.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/ISDOpcodes.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/RuntimeLibcalls.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SelectionDAGNodes.h"
34#include "llvm/CodeGen/StackMaps.h"
35#include "llvm/CodeGen/TargetLowering.h"
36#include "llvm/CodeGen/TargetOpcodes.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Statepoint.h"
43#include "llvm/IR/Type.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/MachineValueType.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <iterator>
53#include <tuple>
54#include <utility>
55
56using namespace llvm;
57
58#define DEBUG_TYPE "statepoint-lowering"
59
60STATISTIC(NumSlotsAllocatedForStatepoints,
61          "Number of stack slots allocated for statepoints");
62STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
63STATISTIC(StatepointMaxSlotsRequired,
64          "Maximum number of stack slots required for a singe statepoint");
65
66cl::opt<bool> UseRegistersForDeoptValues(
67    "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
68    cl::desc("Allow using registers for non pointer deopt args"));
69
70static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
71                                 SelectionDAGBuilder &Builder, uint64_t Value) {
72  SDLoc L = Builder.getCurSDLoc();
73  Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
74                                              MVT::i64));
75  Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
76}
77
78void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
79  // Consistency check
80  assert(PendingGCRelocateCalls.empty() &&
81         "Trying to visit statepoint before finished processing previous one");
82  Locations.clear();
83  NextSlotToAllocate = 0;
84  // Need to resize this on each safepoint - we need the two to stay in sync and
85  // the clear patterns of a SelectionDAGBuilder have no relation to
86  // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
87  AllocatedStackSlots.clear();
88  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
89}
90
91void StatepointLoweringState::clear() {
92  Locations.clear();
93  AllocatedStackSlots.clear();
94  assert(PendingGCRelocateCalls.empty() &&
95         "cleared before statepoint sequence completed");
96}
97
98SDValue
99StatepointLoweringState::allocateStackSlot(EVT ValueType,
100                                           SelectionDAGBuilder &Builder) {
101  NumSlotsAllocatedForStatepoints++;
102  MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
103
104  unsigned SpillSize = ValueType.getStoreSize();
105  assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
106
107  // First look for a previously created stack slot which is not in
108  // use (accounting for the fact arbitrary slots may already be
109  // reserved), or to create a new stack slot and use it.
110
111  const size_t NumSlots = AllocatedStackSlots.size();
112  assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
113
114  assert(AllocatedStackSlots.size() ==
115         Builder.FuncInfo.StatepointStackSlots.size() &&
116         "Broken invariant");
117
118  for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
119    if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
120      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
121      if (MFI.getObjectSize(FI) == SpillSize) {
122        AllocatedStackSlots.set(NextSlotToAllocate);
123        // TODO: Is ValueType the right thing to use here?
124        return Builder.DAG.getFrameIndex(FI, ValueType);
125      }
126    }
127  }
128
129  // Couldn't find a free slot, so create a new one:
130
131  SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
132  const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
133  MFI.markAsStatepointSpillSlotObjectIndex(FI);
134
135  Builder.FuncInfo.StatepointStackSlots.push_back(FI);
136  AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
137  assert(AllocatedStackSlots.size() ==
138         Builder.FuncInfo.StatepointStackSlots.size() &&
139         "Broken invariant");
140
141  StatepointMaxSlotsRequired.updateMax(
142      Builder.FuncInfo.StatepointStackSlots.size());
143
144  return SpillSlot;
145}
146
147/// Utility function for reservePreviousStackSlotForValue. Tries to find
148/// stack slot index to which we have spilled value for previous statepoints.
149/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
150static Optional<int> findPreviousSpillSlot(const Value *Val,
151                                           SelectionDAGBuilder &Builder,
152                                           int LookUpDepth) {
153  // Can not look any further - give up now
154  if (LookUpDepth <= 0)
155    return None;
156
157  // Spill location is known for gc relocates
158  if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
159    const auto &SpillMap =
160        Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
161
162    auto It = SpillMap.find(Relocate->getDerivedPtr());
163    if (It == SpillMap.end())
164      return None;
165
166    return It->second;
167  }
168
169  // Look through bitcast instructions.
170  if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
171    return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
172
173  // Look through phi nodes
174  // All incoming values should have same known stack slot, otherwise result
175  // is unknown.
176  if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
177    Optional<int> MergedResult = None;
178
179    for (auto &IncomingValue : Phi->incoming_values()) {
180      Optional<int> SpillSlot =
181          findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
182      if (!SpillSlot.hasValue())
183        return None;
184
185      if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
186        return None;
187
188      MergedResult = SpillSlot;
189    }
190    return MergedResult;
191  }
192
193  // TODO: We can do better for PHI nodes. In cases like this:
194  //   ptr = phi(relocated_pointer, not_relocated_pointer)
195  //   statepoint(ptr)
196  // We will return that stack slot for ptr is unknown. And later we might
197  // assign different stack slots for ptr and relocated_pointer. This limits
198  // llvm's ability to remove redundant stores.
199  // Unfortunately it's hard to accomplish in current infrastructure.
200  // We use this function to eliminate spill store completely, while
201  // in example we still need to emit store, but instead of any location
202  // we need to use special "preferred" location.
203
204  // TODO: handle simple updates.  If a value is modified and the original
205  // value is no longer live, it would be nice to put the modified value in the
206  // same slot.  This allows folding of the memory accesses for some
207  // instructions types (like an increment).
208  //   statepoint (i)
209  //   i1 = i+1
210  //   statepoint (i1)
211  // However we need to be careful for cases like this:
212  //   statepoint(i)
213  //   i1 = i+1
214  //   statepoint(i, i1)
215  // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
216  // put handling of simple modifications in this function like it's done
217  // for bitcasts we might end up reserving i's slot for 'i+1' because order in
218  // which we visit values is unspecified.
219
220  // Don't know any information about this instruction
221  return None;
222}
223
224
225/// Return true if-and-only-if the given SDValue can be lowered as either a
226/// constant argument or a stack reference.  The key point is that the value
227/// doesn't need to be spilled or tracked as a vreg use.
228static bool willLowerDirectly(SDValue Incoming) {
229  // We are making an unchecked assumption that the frame size <= 2^16 as that
230  // is the largest offset which can be encoded in the stackmap format.
231  if (isa<FrameIndexSDNode>(Incoming))
232    return true;
233
234  // The largest constant describeable in the StackMap format is 64 bits.
235  // Potential Optimization:  Constants values are sign extended by consumer,
236  // and thus there are many constants of static type > 64 bits whose value
237  // happens to be sext(Con64) and could thus be lowered directly.
238  if (Incoming.getValueType().getSizeInBits() > 64)
239    return false;
240
241  return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
242          Incoming.isUndef());
243}
244
245
246/// Try to find existing copies of the incoming values in stack slots used for
247/// statepoint spilling.  If we can find a spill slot for the incoming value,
248/// mark that slot as allocated, and reuse the same slot for this safepoint.
249/// This helps to avoid series of loads and stores that only serve to reshuffle
250/// values on the stack between calls.
251static void reservePreviousStackSlotForValue(const Value *IncomingValue,
252                                             SelectionDAGBuilder &Builder) {
253  SDValue Incoming = Builder.getValue(IncomingValue);
254
255  // If we won't spill this, we don't need to check for previously allocated
256  // stack slots.
257  if (willLowerDirectly(Incoming))
258    return;
259
260  SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
261  if (OldLocation.getNode())
262    // Duplicates in input
263    return;
264
265  const int LookUpDepth = 6;
266  Optional<int> Index =
267      findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
268  if (!Index.hasValue())
269    return;
270
271  const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
272
273  auto SlotIt = find(StatepointSlots, *Index);
274  assert(SlotIt != StatepointSlots.end() &&
275         "Value spilled to the unknown stack slot");
276
277  // This is one of our dedicated lowering slots
278  const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
279  if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
280    // stack slot already assigned to someone else, can't use it!
281    // TODO: currently we reserve space for gc arguments after doing
282    // normal allocation for deopt arguments.  We should reserve for
283    // _all_ deopt and gc arguments, then start allocating.  This
284    // will prevent some moves being inserted when vm state changes,
285    // but gc state doesn't between two calls.
286    return;
287  }
288  // Reserve this stack slot
289  Builder.StatepointLowering.reserveStackSlot(Offset);
290
291  // Cache this slot so we find it when going through the normal
292  // assignment loop.
293  SDValue Loc =
294      Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
295  Builder.StatepointLowering.setLocation(Incoming, Loc);
296}
297
298/// Extract call from statepoint, lower it and return pointer to the
299/// call node. Also update NodeMap so that getValue(statepoint) will
300/// reference lowered call result
301static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
302    SelectionDAGBuilder::StatepointLoweringInfo &SI,
303    SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
304  SDValue ReturnValue, CallEndVal;
305  std::tie(ReturnValue, CallEndVal) =
306      Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
307  SDNode *CallEnd = CallEndVal.getNode();
308
309  // Get a call instruction from the call sequence chain.  Tail calls are not
310  // allowed.  The following code is essentially reverse engineering X86's
311  // LowerCallTo.
312  //
313  // We are expecting DAG to have the following form:
314  //
315  // ch = eh_label (only in case of invoke statepoint)
316  //   ch, glue = callseq_start ch
317  //   ch, glue = X86::Call ch, glue
318  //   ch, glue = callseq_end ch, glue
319  //   get_return_value ch, glue
320  //
321  // get_return_value can either be a sequence of CopyFromReg instructions
322  // to grab the return value from the return register(s), or it can be a LOAD
323  // to load a value returned by reference via a stack slot.
324
325  bool HasDef = !SI.CLI.RetTy->isVoidTy();
326  if (HasDef) {
327    if (CallEnd->getOpcode() == ISD::LOAD)
328      CallEnd = CallEnd->getOperand(0).getNode();
329    else
330      while (CallEnd->getOpcode() == ISD::CopyFromReg)
331        CallEnd = CallEnd->getOperand(0).getNode();
332  }
333
334  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
335  return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
336}
337
338static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
339                                               FrameIndexSDNode &FI) {
340  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
341  auto MMOFlags = MachineMemOperand::MOStore |
342    MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
343  auto &MFI = MF.getFrameInfo();
344  return MF.getMachineMemOperand(PtrInfo, MMOFlags,
345                                 MFI.getObjectSize(FI.getIndex()),
346                                 MFI.getObjectAlign(FI.getIndex()));
347}
348
349/// Spill a value incoming to the statepoint. It might be either part of
350/// vmstate
351/// or gcstate. In both cases unconditionally spill it on the stack unless it
352/// is a null constant. Return pair with first element being frame index
353/// containing saved value and second element with outgoing chain from the
354/// emitted store
355static std::tuple<SDValue, SDValue, MachineMemOperand*>
356spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
357                             SelectionDAGBuilder &Builder) {
358  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
359  MachineMemOperand* MMO = nullptr;
360
361  // Emit new store if we didn't do it for this ptr before
362  if (!Loc.getNode()) {
363    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
364                                                       Builder);
365    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
366    // We use TargetFrameIndex so that isel will not select it into LEA
367    Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
368
369    // Right now we always allocate spill slots that are of the same
370    // size as the value we're about to spill (the size of spillee can
371    // vary since we spill vectors of pointers too).  At some point we
372    // can consider allowing spills of smaller values to larger slots
373    // (i.e. change the '==' in the assert below to a '>=').
374    MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
375    assert((MFI.getObjectSize(Index) * 8) ==
376           (int64_t)Incoming.getValueSizeInBits() &&
377           "Bad spill:  stack slot does not match!");
378
379    // Note: Using the alignment of the spill slot (rather than the abi or
380    // preferred alignment) is required for correctness when dealing with spill
381    // slots with preferred alignments larger than frame alignment..
382    auto &MF = Builder.DAG.getMachineFunction();
383    auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
384    auto *StoreMMO = MF.getMachineMemOperand(
385        PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
386        MFI.getObjectAlign(Index));
387    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
388                                 StoreMMO);
389
390    MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
391
392    Builder.StatepointLowering.setLocation(Incoming, Loc);
393  }
394
395  assert(Loc.getNode());
396  return std::make_tuple(Loc, Chain, MMO);
397}
398
399/// Lower a single value incoming to a statepoint node.  This value can be
400/// either a deopt value or a gc value, the handling is the same.  We special
401/// case constants and allocas, then fall back to spilling if required.
402static void
403lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
404                             SmallVectorImpl<SDValue> &Ops,
405                             SmallVectorImpl<MachineMemOperand *> &MemRefs,
406                             SelectionDAGBuilder &Builder) {
407
408  if (willLowerDirectly(Incoming)) {
409    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
410      // This handles allocas as arguments to the statepoint (this is only
411      // really meaningful for a deopt value.  For GC, we'd be trying to
412      // relocate the address of the alloca itself?)
413      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
414             "Incoming value is a frame index!");
415      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
416                                                    Builder.getFrameIndexTy()));
417
418      auto &MF = Builder.DAG.getMachineFunction();
419      auto *MMO = getMachineMemOperand(MF, *FI);
420      MemRefs.push_back(MMO);
421      return;
422    }
423
424    assert(Incoming.getValueType().getSizeInBits() <= 64);
425
426    if (Incoming.isUndef()) {
427      // Put an easily recognized constant that's unlikely to be a valid
428      // value so that uses of undef by the consumer of the stackmap is
429      // easily recognized. This is legal since the compiler is always
430      // allowed to chose an arbitrary value for undef.
431      pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
432      return;
433    }
434
435    // If the original value was a constant, make sure it gets recorded as
436    // such in the stackmap.  This is required so that the consumer can
437    // parse any internal format to the deopt state.  It also handles null
438    // pointers and other constant pointers in GC states.
439    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
440      pushStackMapConstant(Ops, Builder, C->getSExtValue());
441      return;
442    } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
443      pushStackMapConstant(Ops, Builder,
444                           C->getValueAPF().bitcastToAPInt().getZExtValue());
445      return;
446    }
447
448    llvm_unreachable("unhandled direct lowering case");
449  }
450
451
452
453  if (!RequireSpillSlot) {
454    // If this value is live in (not live-on-return, or live-through), we can
455    // treat it the same way patchpoint treats it's "live in" values.  We'll
456    // end up folding some of these into stack references, but they'll be
457    // handled by the register allocator.  Note that we do not have the notion
458    // of a late use so these values might be placed in registers which are
459    // clobbered by the call.  This is fine for live-in. For live-through
460    // fix-up pass should be executed to force spilling of such registers.
461    Ops.push_back(Incoming);
462  } else {
463    // Otherwise, locate a spill slot and explicitly spill it so it can be
464    // found by the runtime later.  Note: We know all of these spills are
465    // independent, but don't bother to exploit that chain wise.  DAGCombine
466    // will happily do so as needed, so doing it here would be a small compile
467    // time win at most.
468    SDValue Chain = Builder.getRoot();
469    auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
470    Ops.push_back(std::get<0>(Res));
471    if (auto *MMO = std::get<2>(Res))
472      MemRefs.push_back(MMO);
473    Chain = std::get<1>(Res);;
474    Builder.DAG.setRoot(Chain);
475  }
476
477}
478
479/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
480/// lowering is described in lowerIncomingStatepointValue.  This function is
481/// responsible for lowering everything in the right position and playing some
482/// tricks to avoid redundant stack manipulation where possible.  On
483/// completion, 'Ops' will contain ready to use operands for machine code
484/// statepoint. The chain nodes will have already been created and the DAG root
485/// will be set to the last value spilled (if any were).
486static void
487lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
488                        SmallVectorImpl<MachineMemOperand*> &MemRefs,                                    SelectionDAGBuilder::StatepointLoweringInfo &SI,
489                        SelectionDAGBuilder &Builder) {
490  // Lower the deopt and gc arguments for this statepoint.  Layout will be:
491  // deopt argument length, deopt arguments.., gc arguments...
492#ifndef NDEBUG
493  if (auto *GFI = Builder.GFI) {
494    // Check that each of the gc pointer and bases we've gotten out of the
495    // safepoint is something the strategy thinks might be a pointer (or vector
496    // of pointers) into the GC heap.  This is basically just here to help catch
497    // errors during statepoint insertion. TODO: This should actually be in the
498    // Verifier, but we can't get to the GCStrategy from there (yet).
499    GCStrategy &S = GFI->getStrategy();
500    for (const Value *V : SI.Bases) {
501      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
502      if (Opt.hasValue()) {
503        assert(Opt.getValue() &&
504               "non gc managed base pointer found in statepoint");
505      }
506    }
507    for (const Value *V : SI.Ptrs) {
508      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
509      if (Opt.hasValue()) {
510        assert(Opt.getValue() &&
511               "non gc managed derived pointer found in statepoint");
512      }
513    }
514    assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
515  } else {
516    assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
517    assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
518  }
519#endif
520
521  // Figure out what lowering strategy we're going to use for each part
522  // Note: Is is conservatively correct to lower both "live-in" and "live-out"
523  // as "live-through". A "live-through" variable is one which is "live-in",
524  // "live-out", and live throughout the lifetime of the call (i.e. we can find
525  // it from any PC within the transitive callee of the statepoint).  In
526  // particular, if the callee spills callee preserved registers we may not
527  // be able to find a value placed in that register during the call.  This is
528  // fine for live-out, but not for live-through.  If we were willing to make
529  // assumptions about the code generator producing the callee, we could
530  // potentially allow live-through values in callee saved registers.
531  const bool LiveInDeopt =
532    SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
533
534  auto isGCValue = [&](const Value *V) {
535    auto *Ty = V->getType();
536    if (!Ty->isPtrOrPtrVectorTy())
537      return false;
538    if (auto *GFI = Builder.GFI)
539      if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
540        return *IsManaged;
541    return true; // conservative
542  };
543
544  auto requireSpillSlot = [&](const Value *V) {
545    return !(LiveInDeopt || UseRegistersForDeoptValues) || isGCValue(V);
546  };
547
548  // Before we actually start lowering (and allocating spill slots for values),
549  // reserve any stack slots which we judge to be profitable to reuse for a
550  // particular value.  This is purely an optimization over the code below and
551  // doesn't change semantics at all.  It is important for performance that we
552  // reserve slots for both deopt and gc values before lowering either.
553  for (const Value *V : SI.DeoptState) {
554    if (requireSpillSlot(V))
555      reservePreviousStackSlotForValue(V, Builder);
556  }
557  for (unsigned i = 0; i < SI.Bases.size(); ++i) {
558    reservePreviousStackSlotForValue(SI.Bases[i], Builder);
559    reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
560  }
561
562  // First, prefix the list with the number of unique values to be
563  // lowered.  Note that this is the number of *Values* not the
564  // number of SDValues required to lower them.
565  const int NumVMSArgs = SI.DeoptState.size();
566  pushStackMapConstant(Ops, Builder, NumVMSArgs);
567
568  // The vm state arguments are lowered in an opaque manner.  We do not know
569  // what type of values are contained within.
570  for (const Value *V : SI.DeoptState) {
571    SDValue Incoming;
572    // If this is a function argument at a static frame index, generate it as
573    // the frame index.
574    if (const Argument *Arg = dyn_cast<Argument>(V)) {
575      int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
576      if (FI != INT_MAX)
577        Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
578    }
579    if (!Incoming.getNode())
580      Incoming = Builder.getValue(V);
581    lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
582                                 Builder);
583  }
584
585  // Finally, go ahead and lower all the gc arguments.  There's no prefixed
586  // length for this one.  After lowering, we'll have the base and pointer
587  // arrays interwoven with each (lowered) base pointer immediately followed by
588  // it's (lowered) derived pointer.  i.e
589  // (base[0], ptr[0], base[1], ptr[1], ...)
590  for (unsigned i = 0; i < SI.Bases.size(); ++i) {
591    const Value *Base = SI.Bases[i];
592    lowerIncomingStatepointValue(Builder.getValue(Base),
593                                 /*RequireSpillSlot*/ true, Ops, MemRefs,
594                                 Builder);
595
596    const Value *Ptr = SI.Ptrs[i];
597    lowerIncomingStatepointValue(Builder.getValue(Ptr),
598                                 /*RequireSpillSlot*/ true, Ops, MemRefs,
599                                 Builder);
600  }
601
602  // If there are any explicit spill slots passed to the statepoint, record
603  // them, but otherwise do not do anything special.  These are user provided
604  // allocas and give control over placement to the consumer.  In this case,
605  // it is the contents of the slot which may get updated, not the pointer to
606  // the alloca
607  for (Value *V : SI.GCArgs) {
608    SDValue Incoming = Builder.getValue(V);
609    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
610      // This handles allocas as arguments to the statepoint
611      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
612             "Incoming value is a frame index!");
613      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
614                                                    Builder.getFrameIndexTy()));
615
616      auto &MF = Builder.DAG.getMachineFunction();
617      auto *MMO = getMachineMemOperand(MF, *FI);
618      MemRefs.push_back(MMO);
619    }
620  }
621
622  // Record computed locations for all lowered values.
623  // This can not be embedded in lowering loops as we need to record *all*
624  // values, while previous loops account only values with unique SDValues.
625  const Instruction *StatepointInstr = SI.StatepointInstr;
626  auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
627
628  for (const GCRelocateInst *Relocate : SI.GCRelocates) {
629    const Value *V = Relocate->getDerivedPtr();
630    SDValue SDV = Builder.getValue(V);
631    SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
632
633    if (Loc.getNode()) {
634      SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
635    } else {
636      // Record value as visited, but not spilled. This is case for allocas
637      // and constants. For this values we can avoid emitting spill load while
638      // visiting corresponding gc_relocate.
639      // Actually we do not need to record them in this map at all.
640      // We do this only to check that we are not relocating any unvisited
641      // value.
642      SpillMap[V] = None;
643
644      // Default llvm mechanisms for exporting values which are used in
645      // different basic blocks does not work for gc relocates.
646      // Note that it would be incorrect to teach llvm that all relocates are
647      // uses of the corresponding values so that it would automatically
648      // export them. Relocates of the spilled values does not use original
649      // value.
650      if (Relocate->getParent() != StatepointInstr->getParent())
651        Builder.ExportFromCurrentBlock(V);
652    }
653  }
654}
655
656SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
657    SelectionDAGBuilder::StatepointLoweringInfo &SI) {
658  // The basic scheme here is that information about both the original call and
659  // the safepoint is encoded in the CallInst.  We create a temporary call and
660  // lower it, then reverse engineer the calling sequence.
661
662  NumOfStatepoints++;
663  // Clear state
664  StatepointLowering.startNewStatepoint(*this);
665  assert(SI.Bases.size() == SI.Ptrs.size() &&
666         SI.Ptrs.size() <= SI.GCRelocates.size());
667
668#ifndef NDEBUG
669  for (auto *Reloc : SI.GCRelocates)
670    if (Reloc->getParent() == SI.StatepointInstr->getParent())
671      StatepointLowering.scheduleRelocCall(*Reloc);
672#endif
673
674  // Lower statepoint vmstate and gcstate arguments
675  SmallVector<SDValue, 10> LoweredMetaArgs;
676  SmallVector<MachineMemOperand*, 16> MemRefs;
677  lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this);
678
679  // Now that we've emitted the spills, we need to update the root so that the
680  // call sequence is ordered correctly.
681  SI.CLI.setChain(getRoot());
682
683  // Get call node, we will replace it later with statepoint
684  SDValue ReturnVal;
685  SDNode *CallNode;
686  std::tie(ReturnVal, CallNode) =
687      lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
688
689  // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
690  // nodes with all the appropriate arguments and return values.
691
692  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
693  SDValue Chain = CallNode->getOperand(0);
694
695  SDValue Glue;
696  bool CallHasIncomingGlue = CallNode->getGluedNode();
697  if (CallHasIncomingGlue) {
698    // Glue is always last operand
699    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
700  }
701
702  // Build the GC_TRANSITION_START node if necessary.
703  //
704  // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
705  // order in which they appear in the call to the statepoint intrinsic. If
706  // any of the operands is a pointer-typed, that operand is immediately
707  // followed by a SRCVALUE for the pointer that may be used during lowering
708  // (e.g. to form MachinePointerInfo values for loads/stores).
709  const bool IsGCTransition =
710      (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
711      (uint64_t)StatepointFlags::GCTransition;
712  if (IsGCTransition) {
713    SmallVector<SDValue, 8> TSOps;
714
715    // Add chain
716    TSOps.push_back(Chain);
717
718    // Add GC transition arguments
719    for (const Value *V : SI.GCTransitionArgs) {
720      TSOps.push_back(getValue(V));
721      if (V->getType()->isPointerTy())
722        TSOps.push_back(DAG.getSrcValue(V));
723    }
724
725    // Add glue if necessary
726    if (CallHasIncomingGlue)
727      TSOps.push_back(Glue);
728
729    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
730
731    SDValue GCTransitionStart =
732        DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
733
734    Chain = GCTransitionStart.getValue(0);
735    Glue = GCTransitionStart.getValue(1);
736  }
737
738  // TODO: Currently, all of these operands are being marked as read/write in
739  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
740  // and flags to be read-only.
741  SmallVector<SDValue, 40> Ops;
742
743  // Add the <id> and <numBytes> constants.
744  Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
745  Ops.push_back(
746      DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
747
748  // Calculate and push starting position of vmstate arguments
749  // Get number of arguments incoming directly into call node
750  unsigned NumCallRegArgs =
751      CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
752  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
753
754  // Add call target
755  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
756  Ops.push_back(CallTarget);
757
758  // Add call arguments
759  // Get position of register mask in the call
760  SDNode::op_iterator RegMaskIt;
761  if (CallHasIncomingGlue)
762    RegMaskIt = CallNode->op_end() - 2;
763  else
764    RegMaskIt = CallNode->op_end() - 1;
765  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
766
767  // Add a constant argument for the calling convention
768  pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
769
770  // Add a constant argument for the flags
771  uint64_t Flags = SI.StatepointFlags;
772  assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
773         "Unknown flag used");
774  pushStackMapConstant(Ops, *this, Flags);
775
776  // Insert all vmstate and gcstate arguments
777  Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
778
779  // Add register mask from call node
780  Ops.push_back(*RegMaskIt);
781
782  // Add chain
783  Ops.push_back(Chain);
784
785  // Same for the glue, but we add it only if original call had it
786  if (Glue.getNode())
787    Ops.push_back(Glue);
788
789  // Compute return values.  Provide a glue output since we consume one as
790  // input.  This allows someone else to chain off us as needed.
791  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
792
793  MachineSDNode *StatepointMCNode =
794    DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
795  DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
796
797  SDNode *SinkNode = StatepointMCNode;
798
799  // Build the GC_TRANSITION_END node if necessary.
800  //
801  // See the comment above regarding GC_TRANSITION_START for the layout of
802  // the operands to the GC_TRANSITION_END node.
803  if (IsGCTransition) {
804    SmallVector<SDValue, 8> TEOps;
805
806    // Add chain
807    TEOps.push_back(SDValue(StatepointMCNode, 0));
808
809    // Add GC transition arguments
810    for (const Value *V : SI.GCTransitionArgs) {
811      TEOps.push_back(getValue(V));
812      if (V->getType()->isPointerTy())
813        TEOps.push_back(DAG.getSrcValue(V));
814    }
815
816    // Add glue
817    TEOps.push_back(SDValue(StatepointMCNode, 1));
818
819    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
820
821    SDValue GCTransitionStart =
822        DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
823
824    SinkNode = GCTransitionStart.getNode();
825  }
826
827  // Replace original call
828  DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
829  // Remove original call node
830  DAG.DeleteNode(CallNode);
831
832  // DON'T set the root - under the assumption that it's already set past the
833  // inserted node we created.
834
835  // TODO: A better future implementation would be to emit a single variable
836  // argument, variable return value STATEPOINT node here and then hookup the
837  // return value of each gc.relocate to the respective output of the
838  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
839  // to actually be possible today.
840
841  return ReturnVal;
842}
843
844void
845SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
846                                     const BasicBlock *EHPadBB /*= nullptr*/) {
847  assert(I.getCallingConv() != CallingConv::AnyReg &&
848         "anyregcc is not supported on statepoints!");
849
850#ifndef NDEBUG
851  // Check that the associated GCStrategy expects to encounter statepoints.
852  assert(GFI->getStrategy().useStatepoints() &&
853         "GCStrategy does not expect to encounter statepoints");
854#endif
855
856  SDValue ActualCallee;
857  SDValue Callee = getValue(I.getActualCalledOperand());
858
859  if (I.getNumPatchBytes() > 0) {
860    // If we've been asked to emit a nop sequence instead of a call instruction
861    // for this statepoint then don't lower the call target, but use a constant
862    // `undef` instead.  Not lowering the call target lets statepoint clients
863    // get away without providing a physical address for the symbolic call
864    // target at link time.
865    ActualCallee = DAG.getUNDEF(Callee.getValueType());
866  } else {
867    ActualCallee = Callee;
868  }
869
870  StatepointLoweringInfo SI(DAG);
871  populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
872                           I.getNumCallArgs(), ActualCallee,
873                           I.getActualReturnType(), false /* IsPatchPoint */);
874
875  // There may be duplication in the gc.relocate list; such as two copies of
876  // each relocation on normal and exceptional path for an invoke.  We only
877  // need to spill once and record one copy in the stackmap, but we need to
878  // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
879  // handled as a CSE problem elsewhere.)
880  // TODO: There a couple of major stackmap size optimizations we could do
881  // here if we wished.
882  // 1) If we've encountered a derived pair {B, D}, we don't need to actually
883  // record {B,B} if it's seen later.
884  // 2) Due to rematerialization, actual derived pointers are somewhat rare;
885  // given that, we could change the format to record base pointer relocations
886  // separately with half the space. This would require a format rev and a
887  // fairly major rework of the STATEPOINT node though.
888  SmallSet<SDValue, 8> Seen;
889  for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
890    SI.GCRelocates.push_back(Relocate);
891
892    SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
893    if (Seen.insert(DerivedSD).second) {
894      SI.Bases.push_back(Relocate->getBasePtr());
895      SI.Ptrs.push_back(Relocate->getDerivedPtr());
896    }
897  }
898
899  SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
900  SI.StatepointInstr = &I;
901  SI.ID = I.getID();
902
903  SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
904  SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
905                                            I.gc_transition_args_end());
906
907  SI.StatepointFlags = I.getFlags();
908  SI.NumPatchBytes = I.getNumPatchBytes();
909  SI.EHPadBB = EHPadBB;
910
911  SDValue ReturnValue = LowerAsSTATEPOINT(SI);
912
913  // Export the result value if needed
914  const GCResultInst *GCResult = I.getGCResult();
915  Type *RetTy = I.getActualReturnType();
916
917  if (RetTy->isVoidTy() || !GCResult) {
918    // The return value is not needed, just generate a poison value.
919    setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
920    return;
921  }
922
923  if (GCResult->getParent() == I.getParent()) {
924    // Result value will be used in a same basic block. Don't export it or
925    // perform any explicit register copies. The gc_result will simply grab
926    // this value.
927    setValue(&I, ReturnValue);
928    return;
929  }
930
931  // Result value will be used in a different basic block so we need to export
932  // it now.  Default exporting mechanism will not work here because statepoint
933  // call has a different type than the actual call. It means that by default
934  // llvm will create export register of the wrong type (always i32 in our
935  // case). So instead we need to create export register with correct type
936  // manually.
937  // TODO: To eliminate this problem we can remove gc.result intrinsics
938  //       completely and make statepoint call to return a tuple.
939  unsigned Reg = FuncInfo.CreateRegs(RetTy);
940  RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
941                   DAG.getDataLayout(), Reg, RetTy,
942                   I.getCallingConv());
943  SDValue Chain = DAG.getEntryNode();
944
945  RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
946  PendingExports.push_back(Chain);
947  FuncInfo.ValueMap[&I] = Reg;
948}
949
950void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
951    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
952    bool VarArgDisallowed, bool ForceVoidReturnTy) {
953  StatepointLoweringInfo SI(DAG);
954  unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
955  populateCallLoweringInfo(
956      SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
957      ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
958      false);
959  if (!VarArgDisallowed)
960    SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
961
962  auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
963
964  unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
965
966  auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
967  SI.ID = SD.StatepointID.getValueOr(DefaultID);
968  SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
969
970  SI.DeoptState =
971      ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
972  SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
973  SI.EHPadBB = EHPadBB;
974
975  // NB! The GC arguments are deliberately left empty.
976
977  if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
978    ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
979    setValue(Call, ReturnVal);
980  }
981}
982
983void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
984    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
985  LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
986                                   /* VarArgDisallowed = */ false,
987                                   /* ForceVoidReturnTy  = */ false);
988}
989
990void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
991  // The result value of the gc_result is simply the result of the actual
992  // call.  We've already emitted this, so just grab the value.
993  const GCStatepointInst *SI = CI.getStatepoint();
994
995  if (SI->getParent() == CI.getParent()) {
996    setValue(&CI, getValue(SI));
997    return;
998  }
999  // Statepoint is in different basic block so we should have stored call
1000  // result in a virtual register.
1001  // We can not use default getValue() functionality to copy value from this
1002  // register because statepoint and actual call return types can be
1003  // different, and getValue() will use CopyFromReg of the wrong type,
1004  // which is always i32 in our case.
1005  Type *RetTy = SI->getActualReturnType();
1006  SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1007
1008  assert(CopyFromReg.getNode());
1009  setValue(&CI, CopyFromReg);
1010}
1011
1012void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1013#ifndef NDEBUG
1014  // Consistency check
1015  // We skip this check for relocates not in the same basic block as their
1016  // statepoint. It would be too expensive to preserve validation info through
1017  // different basic blocks.
1018  if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
1019    StatepointLowering.relocCallVisited(Relocate);
1020
1021  auto *Ty = Relocate.getType()->getScalarType();
1022  if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1023    assert(*IsManaged && "Non gc managed pointer relocated!");
1024#endif
1025
1026  const Value *DerivedPtr = Relocate.getDerivedPtr();
1027  SDValue SD = getValue(DerivedPtr);
1028
1029  if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1030    // Lowering relocate(undef) as arbitrary constant. Current constant value
1031    // is chosen such that it's unlikely to be a valid pointer.
1032    setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1033    return;
1034  }
1035
1036  auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
1037  auto SlotIt = SpillMap.find(DerivedPtr);
1038  assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
1039  Optional<int> DerivedPtrLocation = SlotIt->second;
1040
1041  // We didn't need to spill these special cases (constants and allocas).
1042  // See the handling in spillIncomingValueForStatepoint for detail.
1043  if (!DerivedPtrLocation) {
1044    setValue(&Relocate, SD);
1045    return;
1046  }
1047
1048  unsigned Index = *DerivedPtrLocation;
1049  SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1050
1051  // All the reloads are independent and are reading memory only modified by
1052  // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1053  // this this let's CSE kick in for free and allows reordering of instructions
1054  // if possible.  The lowering for statepoint sets the root, so this is
1055  // ordering all reloads with the either a) the statepoint node itself, or b)
1056  // the entry of the current block for an invoke statepoint.
1057  const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1058
1059  auto &MF = DAG.getMachineFunction();
1060  auto &MFI = MF.getFrameInfo();
1061  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1062  auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1063                                          MFI.getObjectSize(Index),
1064                                          MFI.getObjectAlign(Index));
1065
1066  auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1067                                                         Relocate.getType());
1068
1069  SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1070                                  SpillSlot, LoadMMO);
1071  PendingLoads.push_back(SpillLoad.getValue(1));
1072
1073  assert(SpillLoad.getNode());
1074  setValue(&Relocate, SpillLoad);
1075}
1076
1077void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1078  const auto &TLI = DAG.getTargetLoweringInfo();
1079  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1080                                         TLI.getPointerTy(DAG.getDataLayout()));
1081
1082  // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1083  // call.  We also do not lower the return value to any virtual register, and
1084  // change the immediately following return to a trap instruction.
1085  LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1086                                   /* VarArgDisallowed = */ true,
1087                                   /* ForceVoidReturnTy = */ true);
1088}
1089
1090void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1091  // We do not lower the return value from llvm.deoptimize to any virtual
1092  // register, and change the immediately following return to a trap
1093  // instruction.
1094  if (DAG.getTarget().Options.TrapUnreachable)
1095    DAG.setRoot(
1096        DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1097}
1098