1//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the DAGTypeLegalizer class.  This is a private interface
10// shared between the code that implements the SelectionDAG::LegalizeTypes
11// method.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/CodeGen/TargetLowering.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Support/Debug.h"
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27/// This takes an arbitrary SelectionDAG as input and hacks on it until only
28/// value types the target machine can handle are left. This involves promoting
29/// small sizes to large sizes or splitting up large values into small values.
30///
31class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
32  const TargetLowering &TLI;
33  SelectionDAG &DAG;
34public:
35  /// This pass uses the NodeId on the SDNodes to hold information about the
36  /// state of the node. The enum has all the values.
37  enum NodeIdFlags {
38    /// All operands have been processed, so this node is ready to be handled.
39    ReadyToProcess = 0,
40
41    /// This is a new node, not before seen, that was created in the process of
42    /// legalizing some other node.
43    NewNode = -1,
44
45    /// This node's ID needs to be set to the number of its unprocessed
46    /// operands.
47    Unanalyzed = -2,
48
49    /// This is a node that has already been processed.
50    Processed = -3
51
52    // 1+ - This is a node which has this many unprocessed operands.
53  };
54private:
55
56  /// This is a bitvector that contains two bits for each simple value type,
57  /// where the two bits correspond to the LegalizeAction enum from
58  /// TargetLowering. This can be queried with "getTypeAction(VT)".
59  TargetLowering::ValueTypeActionImpl ValueTypeActions;
60
61  /// Return how we should legalize values of this type.
62  TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
63    return TLI.getTypeAction(*DAG.getContext(), VT);
64  }
65
66  /// Return true if this type is legal on this target.
67  bool isTypeLegal(EVT VT) const {
68    return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
69  }
70
71  /// Return true if this is a simple legal type.
72  bool isSimpleLegalType(EVT VT) const {
73    return VT.isSimple() && TLI.isTypeLegal(VT);
74  }
75
76  EVT getSetCCResultType(EVT VT) const {
77    return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
78  }
79
80  /// Pretend all of this node's results are legal.
81  bool IgnoreNodeResults(SDNode *N) const {
82    return N->getOpcode() == ISD::TargetConstant ||
83           N->getOpcode() == ISD::Register;
84  }
85
86  // Bijection from SDValue to unique id. As each created node gets a
87  // new id we do not need to worry about reuse expunging.  Should we
88  // run out of ids, we can do a one time expensive compactifcation.
89  typedef unsigned TableId;
90
91  TableId NextValueId = 1;
92
93  SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
94  SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
95
96  /// For integer nodes that are below legal width, this map indicates what
97  /// promoted value to use.
98  SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
99
100  /// For integer nodes that need to be expanded this map indicates which
101  /// operands are the expanded version of the input.
102  SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
103
104  /// For floating-point nodes converted to integers of the same size, this map
105  /// indicates the converted value to use.
106  SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
107
108  /// For floating-point nodes that have a smaller precision than the smallest
109  /// supported precision, this map indicates what promoted value to use.
110  SmallDenseMap<TableId, TableId, 8> PromotedFloats;
111
112  /// For floating-point nodes that have a smaller precision than the smallest
113  /// supported precision, this map indicates the converted value to use.
114  SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
115
116  /// For float nodes that need to be expanded this map indicates which operands
117  /// are the expanded version of the input.
118  SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
119
120  /// For nodes that are <1 x ty>, this map indicates the scalar value of type
121  /// 'ty' to use.
122  SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
123
124  /// For nodes that need to be split this map indicates which operands are the
125  /// expanded version of the input.
126  SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
127
128  /// For vector nodes that need to be widened, indicates the widened value to
129  /// use.
130  SmallDenseMap<TableId, TableId, 8> WidenedVectors;
131
132  /// For values that have been replaced with another, indicates the replacement
133  /// value to use.
134  SmallDenseMap<TableId, TableId, 8> ReplacedValues;
135
136  /// This defines a worklist of nodes to process. In order to be pushed onto
137  /// this worklist, all operands of a node must have already been processed.
138  SmallVector<SDNode*, 128> Worklist;
139
140  TableId getTableId(SDValue V) {
141    assert(V.getNode() && "Getting TableId on SDValue()");
142
143    auto I = ValueToIdMap.find(V);
144    if (I != ValueToIdMap.end()) {
145      // replace if there's been a shift.
146      RemapId(I->second);
147      assert(I->second && "All Ids should be nonzero");
148      return I->second;
149    }
150    // Add if it's not there.
151    ValueToIdMap.insert(std::make_pair(V, NextValueId));
152    IdToValueMap.insert(std::make_pair(NextValueId, V));
153    ++NextValueId;
154    assert(NextValueId != 0 &&
155           "Ran out of Ids. Increase id type size or add compactification");
156    return NextValueId - 1;
157  }
158
159  const SDValue &getSDValue(TableId &Id) {
160    RemapId(Id);
161    assert(Id && "TableId should be non-zero");
162    auto I = IdToValueMap.find(Id);
163    assert(I != IdToValueMap.end() && "cannot find Id in map");
164    return I->second;
165  }
166
167public:
168  explicit DAGTypeLegalizer(SelectionDAG &dag)
169    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
170    ValueTypeActions(TLI.getValueTypeActions()) {
171    static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
172                  "Too many value types for ValueTypeActions to hold!");
173  }
174
175  /// This is the main entry point for the type legalizer.  This does a
176  /// top-down traversal of the dag, legalizing types as it goes.  Returns
177  /// "true" if it made any changes.
178  bool run();
179
180  void NoteDeletion(SDNode *Old, SDNode *New) {
181    assert(Old != New && "node replaced with self");
182    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
183      TableId NewId = getTableId(SDValue(New, i));
184      TableId OldId = getTableId(SDValue(Old, i));
185
186      if (OldId != NewId) {
187        ReplacedValues[OldId] = NewId;
188
189        // Delete Node from tables.  We cannot do this when OldId == NewId,
190        // because NewId can still have table references to it in
191        // ReplacedValues.
192        IdToValueMap.erase(OldId);
193        PromotedIntegers.erase(OldId);
194        ExpandedIntegers.erase(OldId);
195        SoftenedFloats.erase(OldId);
196        PromotedFloats.erase(OldId);
197        SoftPromotedHalfs.erase(OldId);
198        ExpandedFloats.erase(OldId);
199        ScalarizedVectors.erase(OldId);
200        SplitVectors.erase(OldId);
201        WidenedVectors.erase(OldId);
202      }
203
204      ValueToIdMap.erase(SDValue(Old, i));
205    }
206  }
207
208  SelectionDAG &getDAG() const { return DAG; }
209
210private:
211  SDNode *AnalyzeNewNode(SDNode *N);
212  void AnalyzeNewValue(SDValue &Val);
213  void PerformExpensiveChecks();
214  void RemapId(TableId &Id);
215  void RemapValue(SDValue &V);
216
217  // Common routines.
218  SDValue BitConvertToInteger(SDValue Op);
219  SDValue BitConvertVectorToIntegerVector(SDValue Op);
220  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
221  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
222  bool CustomWidenLowerNode(SDNode *N, EVT VT);
223
224  /// Replace each result of the given MERGE_VALUES node with the corresponding
225  /// input operand, except for the result 'ResNo', for which the corresponding
226  /// input operand is returned.
227  SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
228
229  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
230
231  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
232
233  SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
234
235  void ReplaceValueWith(SDValue From, SDValue To);
236  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
237  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
238                    SDValue &Lo, SDValue &Hi);
239
240  //===--------------------------------------------------------------------===//
241  // Integer Promotion Support: LegalizeIntegerTypes.cpp
242  //===--------------------------------------------------------------------===//
243
244  /// Given a processed operand Op which was promoted to a larger integer type,
245  /// this returns the promoted value. The low bits of the promoted value
246  /// corresponding to the original type are exactly equal to Op.
247  /// The extra bits contain rubbish, so the promoted value may need to be zero-
248  /// or sign-extended from the original type before it is usable (the helpers
249  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
250  /// For example, if Op is an i16 and was promoted to an i32, then this method
251  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
252  /// 16 bits of which contain rubbish.
253  SDValue GetPromotedInteger(SDValue Op) {
254    TableId &PromotedId = PromotedIntegers[getTableId(Op)];
255    SDValue PromotedOp = getSDValue(PromotedId);
256    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
257    return PromotedOp;
258  }
259  void SetPromotedInteger(SDValue Op, SDValue Result);
260
261  /// Get a promoted operand and sign extend it to the final size.
262  SDValue SExtPromotedInteger(SDValue Op) {
263    EVT OldVT = Op.getValueType();
264    SDLoc dl(Op);
265    Op = GetPromotedInteger(Op);
266    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
267                       DAG.getValueType(OldVT));
268  }
269
270  /// Get a promoted operand and zero extend it to the final size.
271  SDValue ZExtPromotedInteger(SDValue Op) {
272    EVT OldVT = Op.getValueType();
273    SDLoc dl(Op);
274    Op = GetPromotedInteger(Op);
275    return DAG.getZeroExtendInReg(Op, dl, OldVT);
276  }
277
278  // Get a promoted operand and sign or zero extend it to the final size
279  // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
280  // subtarget and type, the choice of sign or zero-extension will be
281  // consistent.
282  SDValue SExtOrZExtPromotedInteger(SDValue Op) {
283    EVT OldVT = Op.getValueType();
284    SDLoc DL(Op);
285    Op = GetPromotedInteger(Op);
286    if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
287      return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
288                         DAG.getValueType(OldVT));
289    return DAG.getZeroExtendInReg(Op, DL, OldVT);
290  }
291
292  // Integer Result Promotion.
293  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
294  SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
295  SDValue PromoteIntRes_AssertSext(SDNode *N);
296  SDValue PromoteIntRes_AssertZext(SDNode *N);
297  SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
298  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
299  SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
300  SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
301  SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
302  SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
303  SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
304  SDValue PromoteIntRes_SPLAT_VECTOR(SDNode *N);
305  SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
306  SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
307  SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
308  SDValue PromoteIntRes_BITCAST(SDNode *N);
309  SDValue PromoteIntRes_BSWAP(SDNode *N);
310  SDValue PromoteIntRes_BITREVERSE(SDNode *N);
311  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
312  SDValue PromoteIntRes_Constant(SDNode *N);
313  SDValue PromoteIntRes_CTLZ(SDNode *N);
314  SDValue PromoteIntRes_CTPOP(SDNode *N);
315  SDValue PromoteIntRes_CTTZ(SDNode *N);
316  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
317  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
318  SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
319  SDValue PromoteIntRes_FREEZE(SDNode *N);
320  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
321  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
322  SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
323  SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
324  SDValue PromoteIntRes_Overflow(SDNode *N);
325  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
326  SDValue PromoteIntRes_SELECT(SDNode *N);
327  SDValue PromoteIntRes_VSELECT(SDNode *N);
328  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
329  SDValue PromoteIntRes_SETCC(SDNode *N);
330  SDValue PromoteIntRes_SHL(SDNode *N);
331  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
332  SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
333  SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
334  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
335  SDValue PromoteIntRes_SRA(SDNode *N);
336  SDValue PromoteIntRes_SRL(SDNode *N);
337  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
338  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
339  SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
340  SDValue PromoteIntRes_UNDEF(SDNode *N);
341  SDValue PromoteIntRes_VAARG(SDNode *N);
342  SDValue PromoteIntRes_VSCALE(SDNode *N);
343  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
344  SDValue PromoteIntRes_ADDSUBSAT(SDNode *N);
345  SDValue PromoteIntRes_MULFIX(SDNode *N);
346  SDValue PromoteIntRes_DIVFIX(SDNode *N);
347  SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N);
348  SDValue PromoteIntRes_VECREDUCE(SDNode *N);
349  SDValue PromoteIntRes_ABS(SDNode *N);
350
351  // Integer Operand Promotion.
352  bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
353  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
354  SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
355  SDValue PromoteIntOp_BITCAST(SDNode *N);
356  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
357  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
358  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
359  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
360  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
361  SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
362  SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
363  SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
364  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
365  SDValue PromoteIntOp_SPLAT_VECTOR(SDNode *N);
366  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
367  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
368  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
369  SDValue PromoteIntOp_Shift(SDNode *N);
370  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
371  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
372  SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
373  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
374  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
375  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
376  SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
377  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
378  SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
379  SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
380  SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
381  SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
382  SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
383  SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
384  SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo);
385  SDValue PromoteIntOp_FIX(SDNode *N);
386  SDValue PromoteIntOp_FPOWI(SDNode *N);
387  SDValue PromoteIntOp_VECREDUCE(SDNode *N);
388
389  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
390
391  //===--------------------------------------------------------------------===//
392  // Integer Expansion Support: LegalizeIntegerTypes.cpp
393  //===--------------------------------------------------------------------===//
394
395  /// Given a processed operand Op which was expanded into two integers of half
396  /// the size, this returns the two halves. The low bits of Op are exactly
397  /// equal to the bits of Lo; the high bits exactly equal Hi.
398  /// For example, if Op is an i64 which was expanded into two i32's, then this
399  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
400  /// Op, and Hi being equal to the upper 32 bits.
401  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
402  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
403
404  // Integer Result Expansion.
405  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
406  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
407  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
408  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
409  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
410  void ExpandIntRes_ABS               (SDNode *N, SDValue &Lo, SDValue &Hi);
411  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
412  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
413  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
414  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
415  void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
416  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
417  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
418  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
419  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
420  void ExpandIntRes_FLT_ROUNDS        (SDNode *N, SDValue &Lo, SDValue &Hi);
421  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
422  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
423  void ExpandIntRes_LLROUND_LLRINT    (SDNode *N, SDValue &Lo, SDValue &Hi);
424
425  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
426  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
427  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
428  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
429  void ExpandIntRes_ADDSUBCARRY       (SDNode *N, SDValue &Lo, SDValue &Hi);
430  void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
431  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
432  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
433  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
434  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
435  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
436  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
437  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
438
439  void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
440
441  void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
442  void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
443  void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
444  void ExpandIntRes_ADDSUBSAT         (SDNode *N, SDValue &Lo, SDValue &Hi);
445  void ExpandIntRes_MULFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
446  void ExpandIntRes_DIVFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
447
448  void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
449  void ExpandIntRes_VECREDUCE         (SDNode *N, SDValue &Lo, SDValue &Hi);
450
451  void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
452                             SDValue &Lo, SDValue &Hi);
453  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
454  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
455
456  // Integer Operand Expansion.
457  bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
458  SDValue ExpandIntOp_BR_CC(SDNode *N);
459  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
460  SDValue ExpandIntOp_SETCC(SDNode *N);
461  SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
462  SDValue ExpandIntOp_Shift(SDNode *N);
463  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
464  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
465  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
466  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
467  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
468  SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
469
470  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
471                                  ISD::CondCode &CCCode, const SDLoc &dl);
472
473  //===--------------------------------------------------------------------===//
474  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
475  //===--------------------------------------------------------------------===//
476
477  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
478  /// integer of the same size, this returns the integer.  The integer contains
479  /// exactly the same bits as Op - only the type changed.  For example, if Op
480  /// is an f32 which was softened to an i32, then this method returns an i32,
481  /// the bits of which coincide with those of Op
482  SDValue GetSoftenedFloat(SDValue Op) {
483    TableId Id = getTableId(Op);
484    auto Iter = SoftenedFloats.find(Id);
485    if (Iter == SoftenedFloats.end()) {
486      assert(isSimpleLegalType(Op.getValueType()) &&
487             "Operand wasn't converted to integer?");
488      return Op;
489    }
490    SDValue SoftenedOp = getSDValue(Iter->second);
491    assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
492    return SoftenedOp;
493  }
494  void SetSoftenedFloat(SDValue Op, SDValue Result);
495
496  // Convert Float Results to Integer.
497  void SoftenFloatResult(SDNode *N, unsigned ResNo);
498  SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
499  SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
500  SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
501  SDValue SoftenFloatRes_BITCAST(SDNode *N);
502  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
503  SDValue SoftenFloatRes_ConstantFP(SDNode *N);
504  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
505  SDValue SoftenFloatRes_FABS(SDNode *N);
506  SDValue SoftenFloatRes_FMINNUM(SDNode *N);
507  SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
508  SDValue SoftenFloatRes_FADD(SDNode *N);
509  SDValue SoftenFloatRes_FCBRT(SDNode *N);
510  SDValue SoftenFloatRes_FCEIL(SDNode *N);
511  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
512  SDValue SoftenFloatRes_FCOS(SDNode *N);
513  SDValue SoftenFloatRes_FDIV(SDNode *N);
514  SDValue SoftenFloatRes_FEXP(SDNode *N);
515  SDValue SoftenFloatRes_FEXP2(SDNode *N);
516  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
517  SDValue SoftenFloatRes_FLOG(SDNode *N);
518  SDValue SoftenFloatRes_FLOG2(SDNode *N);
519  SDValue SoftenFloatRes_FLOG10(SDNode *N);
520  SDValue SoftenFloatRes_FMA(SDNode *N);
521  SDValue SoftenFloatRes_FMUL(SDNode *N);
522  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
523  SDValue SoftenFloatRes_FNEG(SDNode *N);
524  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
525  SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
526  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
527  SDValue SoftenFloatRes_FPOW(SDNode *N);
528  SDValue SoftenFloatRes_FPOWI(SDNode *N);
529  SDValue SoftenFloatRes_FREEZE(SDNode *N);
530  SDValue SoftenFloatRes_FREM(SDNode *N);
531  SDValue SoftenFloatRes_FRINT(SDNode *N);
532  SDValue SoftenFloatRes_FROUND(SDNode *N);
533  SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
534  SDValue SoftenFloatRes_FSIN(SDNode *N);
535  SDValue SoftenFloatRes_FSQRT(SDNode *N);
536  SDValue SoftenFloatRes_FSUB(SDNode *N);
537  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
538  SDValue SoftenFloatRes_LOAD(SDNode *N);
539  SDValue SoftenFloatRes_SELECT(SDNode *N);
540  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
541  SDValue SoftenFloatRes_UNDEF(SDNode *N);
542  SDValue SoftenFloatRes_VAARG(SDNode *N);
543  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
544
545  // Convert Float Operand to Integer.
546  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
547  SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
548  SDValue SoftenFloatOp_BITCAST(SDNode *N);
549  SDValue SoftenFloatOp_BR_CC(SDNode *N);
550  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
551  SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
552  SDValue SoftenFloatOp_LROUND(SDNode *N);
553  SDValue SoftenFloatOp_LLROUND(SDNode *N);
554  SDValue SoftenFloatOp_LRINT(SDNode *N);
555  SDValue SoftenFloatOp_LLRINT(SDNode *N);
556  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
557  SDValue SoftenFloatOp_SETCC(SDNode *N);
558  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
559  SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
560
561  //===--------------------------------------------------------------------===//
562  // Float Expansion Support: LegalizeFloatTypes.cpp
563  //===--------------------------------------------------------------------===//
564
565  /// Given a processed operand Op which was expanded into two floating-point
566  /// values of half the size, this returns the two halves.
567  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
568  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
569  /// into two f64's, then this method returns the two f64's, with Lo being
570  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
571  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
572  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
573
574  // Float Result Expansion.
575  void ExpandFloatResult(SDNode *N, unsigned ResNo);
576  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
577  void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
578                            SDValue &Lo, SDValue &Hi);
579  void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
580                             SDValue &Lo, SDValue &Hi);
581  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
582  void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
583  void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
584  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
585  void ExpandFloatRes_FCBRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
586  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
587  void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
588  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
589  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
590  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
591  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
592  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
593  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
594  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
595  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
596  void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
597  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
598  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
599  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
600  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
601  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
602  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
603  void ExpandFloatRes_FREEZE    (SDNode *N, SDValue &Lo, SDValue &Hi);
604  void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
605  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
606  void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
607  void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
608  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
609  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
610  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
611  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
612  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
613  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
614
615  // Float Operand Expansion.
616  bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
617  SDValue ExpandFloatOp_BR_CC(SDNode *N);
618  SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
619  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
620  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
621  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
622  SDValue ExpandFloatOp_LROUND(SDNode *N);
623  SDValue ExpandFloatOp_LLROUND(SDNode *N);
624  SDValue ExpandFloatOp_LRINT(SDNode *N);
625  SDValue ExpandFloatOp_LLRINT(SDNode *N);
626  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
627  SDValue ExpandFloatOp_SETCC(SDNode *N);
628  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
629
630  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
631                                ISD::CondCode &CCCode, const SDLoc &dl);
632
633  //===--------------------------------------------------------------------===//
634  // Float promotion support: LegalizeFloatTypes.cpp
635  //===--------------------------------------------------------------------===//
636
637  SDValue GetPromotedFloat(SDValue Op) {
638    TableId &PromotedId = PromotedFloats[getTableId(Op)];
639    SDValue PromotedOp = getSDValue(PromotedId);
640    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
641    return PromotedOp;
642  }
643  void SetPromotedFloat(SDValue Op, SDValue Result);
644
645  void PromoteFloatResult(SDNode *N, unsigned ResNo);
646  SDValue PromoteFloatRes_BITCAST(SDNode *N);
647  SDValue PromoteFloatRes_BinOp(SDNode *N);
648  SDValue PromoteFloatRes_ConstantFP(SDNode *N);
649  SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
650  SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
651  SDValue PromoteFloatRes_FMAD(SDNode *N);
652  SDValue PromoteFloatRes_FPOWI(SDNode *N);
653  SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
654  SDValue PromoteFloatRes_LOAD(SDNode *N);
655  SDValue PromoteFloatRes_SELECT(SDNode *N);
656  SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
657  SDValue PromoteFloatRes_UnaryOp(SDNode *N);
658  SDValue PromoteFloatRes_UNDEF(SDNode *N);
659  SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
660  SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
661
662  bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
663  SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
664  SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
665  SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
666  SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
667  SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
668  SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
669  SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
670
671  //===--------------------------------------------------------------------===//
672  // Half soft promotion support: LegalizeFloatTypes.cpp
673  //===--------------------------------------------------------------------===//
674
675  SDValue GetSoftPromotedHalf(SDValue Op) {
676    TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
677    SDValue PromotedOp = getSDValue(PromotedId);
678    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
679    return PromotedOp;
680  }
681  void SetSoftPromotedHalf(SDValue Op, SDValue Result);
682
683  void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
684  SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
685  SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
686  SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
687  SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
688  SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
689  SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
690  SDValue SoftPromoteHalfRes_FPOWI(SDNode *N);
691  SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
692  SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
693  SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
694  SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
695  SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
696  SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
697  SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
698
699  bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
700  SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
701  SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
702  SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
703  SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
704  SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
705  SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
706  SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
707
708  //===--------------------------------------------------------------------===//
709  // Scalarization Support: LegalizeVectorTypes.cpp
710  //===--------------------------------------------------------------------===//
711
712  /// Given a processed one-element vector Op which was scalarized to its
713  /// element type, this returns the element. For example, if Op is a v1i32,
714  /// Op = < i32 val >, this method returns val, an i32.
715  SDValue GetScalarizedVector(SDValue Op) {
716    TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
717    SDValue ScalarizedOp = getSDValue(ScalarizedId);
718    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
719    return ScalarizedOp;
720  }
721  void SetScalarizedVector(SDValue Op, SDValue Result);
722
723  // Vector Result Scalarization: <1 x ty> -> ty.
724  void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
725  SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
726  SDValue ScalarizeVecRes_BinOp(SDNode *N);
727  SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
728  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
729  SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
730  SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
731  SDValue ScalarizeVecRes_InregOp(SDNode *N);
732  SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
733
734  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
735  SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
736  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
737  SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
738  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
739  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
740  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
741  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
742  SDValue ScalarizeVecRes_VSELECT(SDNode *N);
743  SDValue ScalarizeVecRes_SELECT(SDNode *N);
744  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
745  SDValue ScalarizeVecRes_SETCC(SDNode *N);
746  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
747  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
748
749  SDValue ScalarizeVecRes_FIX(SDNode *N);
750
751  // Vector Operand Scalarization: <1 x ty> -> ty.
752  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
753  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
754  SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
755  SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
756  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
757  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
758  SDValue ScalarizeVecOp_VSELECT(SDNode *N);
759  SDValue ScalarizeVecOp_VSETCC(SDNode *N);
760  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
761  SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
762  SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
763  SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
764
765  //===--------------------------------------------------------------------===//
766  // Vector Splitting Support: LegalizeVectorTypes.cpp
767  //===--------------------------------------------------------------------===//
768
769  /// Given a processed vector Op which was split into vectors of half the size,
770  /// this method returns the halves. The first elements of Op coincide with the
771  /// elements of Lo; the remaining elements of Op coincide with the elements of
772  /// Hi: Op is what you would get by concatenating Lo and Hi.
773  /// For example, if Op is a v8i32 that was split into two v4i32's, then this
774  /// method returns the two v4i32's, with Lo corresponding to the first 4
775  /// elements of Op, and Hi to the last 4 elements.
776  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
777  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
778
779  // Helper function for incrementing the pointer when splitting
780  // memory operations
781  void IncrementPointer(MemSDNode *N, EVT MemVT,
782                        MachinePointerInfo &MPI, SDValue &Ptr);
783
784  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
785  void SplitVectorResult(SDNode *N, unsigned ResNo);
786  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
787  void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
788  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
789  void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
790  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
791  void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
792  void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
793  void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
794                              SDValue &Lo, SDValue &Hi);
795
796  void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
797
798  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
799  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
800  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
801  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
802  void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
803  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
804  void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
805  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
806  void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
807  void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
808  void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi);
809  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
810  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
811  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
812                                  SDValue &Hi);
813  void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
814
815  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
816  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
817  SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
818  SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
819  SDValue SplitVecOp_UnaryOp(SDNode *N);
820  SDValue SplitVecOp_TruncateHelper(SDNode *N);
821
822  SDValue SplitVecOp_BITCAST(SDNode *N);
823  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
824  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
825  SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
826  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
827  SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
828  SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
829  SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo);
830  SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
831  SDValue SplitVecOp_VSETCC(SDNode *N);
832  SDValue SplitVecOp_FP_ROUND(SDNode *N);
833  SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
834
835  //===--------------------------------------------------------------------===//
836  // Vector Widening Support: LegalizeVectorTypes.cpp
837  //===--------------------------------------------------------------------===//
838
839  /// Given a processed vector Op which was widened into a larger vector, this
840  /// method returns the larger vector. The elements of the returned vector
841  /// consist of the elements of Op followed by elements containing rubbish.
842  /// For example, if Op is a v2i32 that was widened to a v4i32, then this
843  /// method returns a v4i32 for which the first two elements are the same as
844  /// those of Op, while the last two elements contain rubbish.
845  SDValue GetWidenedVector(SDValue Op) {
846    TableId &WidenedId = WidenedVectors[getTableId(Op)];
847    SDValue WidenedOp = getSDValue(WidenedId);
848    assert(WidenedOp.getNode() && "Operand wasn't widened?");
849    return WidenedOp;
850  }
851  void SetWidenedVector(SDValue Op, SDValue Result);
852
853  // Widen Vector Result Promotion.
854  void WidenVectorResult(SDNode *N, unsigned ResNo);
855  SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
856  SDValue WidenVecRes_BITCAST(SDNode* N);
857  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
858  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
859  SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
860  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
861  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
862  SDValue WidenVecRes_LOAD(SDNode* N);
863  SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
864  SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
865  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
866  SDValue WidenVecRes_SELECT(SDNode* N);
867  SDValue WidenVSELECTAndMask(SDNode *N);
868  SDValue WidenVecRes_SELECT_CC(SDNode* N);
869  SDValue WidenVecRes_SETCC(SDNode* N);
870  SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
871  SDValue WidenVecRes_UNDEF(SDNode *N);
872  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
873
874  SDValue WidenVecRes_Ternary(SDNode *N);
875  SDValue WidenVecRes_Binary(SDNode *N);
876  SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
877  SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
878  SDValue WidenVecRes_StrictFP(SDNode *N);
879  SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
880  SDValue WidenVecRes_Convert(SDNode *N);
881  SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
882  SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
883  SDValue WidenVecRes_POWI(SDNode *N);
884  SDValue WidenVecRes_Shift(SDNode *N);
885  SDValue WidenVecRes_Unary(SDNode *N);
886  SDValue WidenVecRes_InregOp(SDNode *N);
887
888  // Widen Vector Operand.
889  bool WidenVectorOperand(SDNode *N, unsigned OpNo);
890  SDValue WidenVecOp_BITCAST(SDNode *N);
891  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
892  SDValue WidenVecOp_EXTEND(SDNode *N);
893  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
894  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
895  SDValue WidenVecOp_STORE(SDNode* N);
896  SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
897  SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
898  SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
899  SDValue WidenVecOp_SETCC(SDNode* N);
900  SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
901  SDValue WidenVecOp_VSELECT(SDNode *N);
902
903  SDValue WidenVecOp_Convert(SDNode *N);
904  SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
905  SDValue WidenVecOp_VECREDUCE(SDNode *N);
906
907  /// Helper function to generate a set of operations to perform
908  /// a vector operation for a wider type.
909  ///
910  SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
911
912  //===--------------------------------------------------------------------===//
913  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
914  //===--------------------------------------------------------------------===//
915
916  /// Helper function to generate a set of loads to load a vector with a
917  /// resulting wider type. It takes:
918  ///   LdChain: list of chains for the load to be generated.
919  ///   Ld:      load to widen
920  SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
921                              LoadSDNode *LD);
922
923  /// Helper function to generate a set of extension loads to load a vector with
924  /// a resulting wider type. It takes:
925  ///   LdChain: list of chains for the load to be generated.
926  ///   Ld:      load to widen
927  ///   ExtType: extension element type
928  SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
929                                 LoadSDNode *LD, ISD::LoadExtType ExtType);
930
931  /// Helper function to generate a set of stores to store a widen vector into
932  /// non-widen memory.
933  ///   StChain: list of chains for the stores we have generated
934  ///   ST:      store of a widen value
935  void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
936
937  /// Helper function to generate a set of stores to store a truncate widen
938  /// vector into non-widen memory.
939  ///   StChain: list of chains for the stores we have generated
940  ///   ST:      store of a widen value
941  void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
942                                 StoreSDNode *ST);
943
944  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
945  /// input vector must have the same element type as NVT.
946  /// When FillWithZeroes is "on" the vector will be widened with zeroes.
947  /// By default, the vector will be widened with undefined values.
948  SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
949
950  /// Return a mask of vector type MaskVT to replace InMask. Also adjust
951  /// MaskVT to ToMaskVT if needed with vector extension or truncation.
952  SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
953
954  //===--------------------------------------------------------------------===//
955  // Generic Splitting: LegalizeTypesGeneric.cpp
956  //===--------------------------------------------------------------------===//
957
958  // Legalization methods which only use that the illegal type is split into two
959  // not necessarily identical types.  As such they can be used for splitting
960  // vectors and expanding integers and floats.
961
962  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
963    if (Op.getValueType().isVector())
964      GetSplitVector(Op, Lo, Hi);
965    else if (Op.getValueType().isInteger())
966      GetExpandedInteger(Op, Lo, Hi);
967    else
968      GetExpandedFloat(Op, Lo, Hi);
969  }
970
971  /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
972  /// given value.
973  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
974
975  // Generic Result Splitting.
976  void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
977                             SDValue &Lo, SDValue &Hi);
978  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
979  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
980  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
981  void SplitRes_FREEZE      (SDNode *N, SDValue &Lo, SDValue &Hi);
982
983  void SplitVSETCC(const SDNode *N);
984
985  //===--------------------------------------------------------------------===//
986  // Generic Expansion: LegalizeTypesGeneric.cpp
987  //===--------------------------------------------------------------------===//
988
989  // Legalization methods which only use that the illegal type is split into two
990  // identical types of half the size, and that the Lo/Hi part is stored first
991  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
992  // such they can be used for expanding integers and floats.
993
994  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
995    if (Op.getValueType().isInteger())
996      GetExpandedInteger(Op, Lo, Hi);
997    else
998      GetExpandedFloat(Op, Lo, Hi);
999  }
1000
1001
1002  /// This function will split the integer \p Op into \p NumElements
1003  /// operations of type \p EltVT and store them in \p Ops.
1004  void IntegerToVector(SDValue Op, unsigned NumElements,
1005                       SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1006
1007  // Generic Result Expansion.
1008  void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
1009                                    SDValue &Lo, SDValue &Hi);
1010  void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
1011  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
1012  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
1013  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1014  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
1015  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
1016
1017  // Generic Operand Expansion.
1018  SDValue ExpandOp_BITCAST          (SDNode *N);
1019  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
1020  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
1021  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1022  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1023  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
1024};
1025
1026} // end namespace llvm.
1027
1028#endif
1029