1//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SelectionDAG::LegalizeTypes method.  It transforms
10// an arbitrary well-formed SelectionDAG to only consist of legal types.  This
11// is common code shared among the LegalizeTypes*.cpp files.
12//
13//===----------------------------------------------------------------------===//
14
15#include "LegalizeTypes.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/IR/CallingConv.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/Support/CommandLine.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace llvm;
25
26#define DEBUG_TYPE "legalize-types"
27
28static cl::opt<bool>
29EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
30
31/// Do extensive, expensive, sanity checking.
32void DAGTypeLegalizer::PerformExpensiveChecks() {
33  // If a node is not processed, then none of its values should be mapped by any
34  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35
36  // If a node is processed, then each value with an illegal type must be mapped
37  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
38  // Values with a legal type may be mapped by ReplacedValues, but not by any of
39  // the other maps.
40
41  // Note that these invariants may not hold momentarily when processing a node:
42  // the node being processed may be put in a map before being marked Processed.
43
44  // Note that it is possible to have nodes marked NewNode in the DAG.  This can
45  // occur in two ways.  Firstly, a node may be created during legalization but
46  // never passed to the legalization core.  This is usually due to the implicit
47  // folding that occurs when using the DAG.getNode operators.  Secondly, a new
48  // node may be passed to the legalization core, but when analyzed may morph
49  // into a different node, leaving the original node as a NewNode in the DAG.
50  // A node may morph if one of its operands changes during analysis.  Whether
51  // it actually morphs or not depends on whether, after updating its operands,
52  // it is equivalent to an existing node: if so, it morphs into that existing
53  // node (CSE).  An operand can change during analysis if the operand is a new
54  // node that morphs, or it is a processed value that was mapped to some other
55  // value (as recorded in ReplacedValues) in which case the operand is turned
56  // into that other value.  If a node morphs then the node it morphed into will
57  // be used instead of it for legalization, however the original node continues
58  // to live on in the DAG.
59  // The conclusion is that though there may be nodes marked NewNode in the DAG,
60  // all uses of such nodes are also marked NewNode: the result is a fungus of
61  // NewNodes growing on top of the useful nodes, and perhaps using them, but
62  // not used by them.
63
64  // If a value is mapped by ReplacedValues, then it must have no uses, except
65  // by nodes marked NewNode (see above).
66
67  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
68  // Note that ReplacedValues should be applied iteratively.
69
70  // Note that the ReplacedValues map may also map deleted nodes (by iterating
71  // over the DAG we never dereference deleted nodes).  This means that it may
72  // also map nodes marked NewNode if the deallocated memory was reallocated as
73  // another node, and that new node was not seen by the LegalizeTypes machinery
74  // (for example because it was created but not used).  In general, we cannot
75  // distinguish between new nodes and deleted nodes.
76  SmallVector<SDNode*, 16> NewNodes;
77  for (SDNode &Node : DAG.allnodes()) {
78    // Remember nodes marked NewNode - they are subject to extra checking below.
79    if (Node.getNodeId() == NewNode)
80      NewNodes.push_back(&Node);
81
82    for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
83      SDValue Res(&Node, i);
84      bool Failed = false;
85      // Don't create a value in map.
86      auto ResId = (ValueToIdMap.count(Res)) ? ValueToIdMap[Res] : 0;
87
88      unsigned Mapped = 0;
89      if (ResId && (ReplacedValues.find(ResId) != ReplacedValues.end())) {
90        Mapped |= 1;
91        // Check that remapped values are only used by nodes marked NewNode.
92        for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
93             UI != UE; ++UI)
94          if (UI.getUse().getResNo() == i)
95            assert(UI->getNodeId() == NewNode &&
96                   "Remapped value has non-trivial use!");
97
98        // Check that the final result of applying ReplacedValues is not
99        // marked NewNode.
100        auto NewValId = ReplacedValues[ResId];
101        auto I = ReplacedValues.find(NewValId);
102        while (I != ReplacedValues.end()) {
103          NewValId = I->second;
104          I = ReplacedValues.find(NewValId);
105        }
106        SDValue NewVal = getSDValue(NewValId);
107        (void)NewVal;
108        assert(NewVal.getNode()->getNodeId() != NewNode &&
109               "ReplacedValues maps to a new node!");
110      }
111      if (ResId && PromotedIntegers.find(ResId) != PromotedIntegers.end())
112        Mapped |= 2;
113      if (ResId && SoftenedFloats.find(ResId) != SoftenedFloats.end())
114        Mapped |= 4;
115      if (ResId && ScalarizedVectors.find(ResId) != ScalarizedVectors.end())
116        Mapped |= 8;
117      if (ResId && ExpandedIntegers.find(ResId) != ExpandedIntegers.end())
118        Mapped |= 16;
119      if (ResId && ExpandedFloats.find(ResId) != ExpandedFloats.end())
120        Mapped |= 32;
121      if (ResId && SplitVectors.find(ResId) != SplitVectors.end())
122        Mapped |= 64;
123      if (ResId && WidenedVectors.find(ResId) != WidenedVectors.end())
124        Mapped |= 128;
125      if (ResId && PromotedFloats.find(ResId) != PromotedFloats.end())
126        Mapped |= 256;
127      if (ResId && SoftPromotedHalfs.find(ResId) != SoftPromotedHalfs.end())
128        Mapped |= 512;
129
130      if (Node.getNodeId() != Processed) {
131        // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132        // marked NewNode too, since a deleted node may have been reallocated as
133        // another node that has not been seen by the LegalizeTypes machinery.
134        if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135            (Node.getNodeId() != NewNode && Mapped != 0)) {
136          dbgs() << "Unprocessed value in a map!";
137          Failed = true;
138        }
139      } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
140        if (Mapped > 1) {
141          dbgs() << "Value with legal type was transformed!";
142          Failed = true;
143        }
144      } else {
145        if (Mapped == 0) {
146          dbgs() << "Processed value not in any map!";
147          Failed = true;
148        } else if (Mapped & (Mapped - 1)) {
149          dbgs() << "Value in multiple maps!";
150          Failed = true;
151        }
152      }
153
154      if (Failed) {
155        if (Mapped & 1)
156          dbgs() << " ReplacedValues";
157        if (Mapped & 2)
158          dbgs() << " PromotedIntegers";
159        if (Mapped & 4)
160          dbgs() << " SoftenedFloats";
161        if (Mapped & 8)
162          dbgs() << " ScalarizedVectors";
163        if (Mapped & 16)
164          dbgs() << " ExpandedIntegers";
165        if (Mapped & 32)
166          dbgs() << " ExpandedFloats";
167        if (Mapped & 64)
168          dbgs() << " SplitVectors";
169        if (Mapped & 128)
170          dbgs() << " WidenedVectors";
171        if (Mapped & 256)
172          dbgs() << " PromotedFloats";
173        if (Mapped & 512)
174          dbgs() << " SoftPromoteHalfs";
175        dbgs() << "\n";
176        llvm_unreachable(nullptr);
177      }
178    }
179  }
180
181#ifndef NDEBUG
182  // Checked that NewNodes are only used by other NewNodes.
183  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
184    SDNode *N = NewNodes[i];
185    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
186         UI != UE; ++UI)
187      assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
188  }
189#endif
190}
191
192/// This is the main entry point for the type legalizer. This does a top-down
193/// traversal of the dag, legalizing types as it goes. Returns "true" if it made
194/// any changes.
195bool DAGTypeLegalizer::run() {
196  bool Changed = false;
197
198  // Create a dummy node (which is not added to allnodes), that adds a reference
199  // to the root node, preventing it from being deleted, and tracking any
200  // changes of the root.
201  HandleSDNode Dummy(DAG.getRoot());
202  Dummy.setNodeId(Unanalyzed);
203
204  // The root of the dag may dangle to deleted nodes until the type legalizer is
205  // done.  Set it to null to avoid confusion.
206  DAG.setRoot(SDValue());
207
208  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
209  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
210  // non-leaves.
211  for (SDNode &Node : DAG.allnodes()) {
212    if (Node.getNumOperands() == 0) {
213      Node.setNodeId(ReadyToProcess);
214      Worklist.push_back(&Node);
215    } else {
216      Node.setNodeId(Unanalyzed);
217    }
218  }
219
220  // Now that we have a set of nodes to process, handle them all.
221  while (!Worklist.empty()) {
222#ifndef EXPENSIVE_CHECKS
223    if (EnableExpensiveChecks)
224#endif
225      PerformExpensiveChecks();
226
227    SDNode *N = Worklist.back();
228    Worklist.pop_back();
229    assert(N->getNodeId() == ReadyToProcess &&
230           "Node should be ready if on worklist!");
231
232    LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
233    if (IgnoreNodeResults(N)) {
234      LLVM_DEBUG(dbgs() << "Ignoring node results\n");
235      goto ScanOperands;
236    }
237
238    // Scan the values produced by the node, checking to see if any result
239    // types are illegal.
240    for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
241      EVT ResultVT = N->getValueType(i);
242      LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
243                        << "\n");
244      switch (getTypeAction(ResultVT)) {
245      case TargetLowering::TypeLegal:
246        LLVM_DEBUG(dbgs() << "Legal result type\n");
247        break;
248      case TargetLowering::TypeScalarizeScalableVector:
249        report_fatal_error(
250            "Scalarization of scalable vectors is not supported.");
251      // The following calls must take care of *all* of the node's results,
252      // not just the illegal result they were passed (this includes results
253      // with a legal type).  Results can be remapped using ReplaceValueWith,
254      // or their promoted/expanded/etc values registered in PromotedIntegers,
255      // ExpandedIntegers etc.
256      case TargetLowering::TypePromoteInteger:
257        PromoteIntegerResult(N, i);
258        Changed = true;
259        goto NodeDone;
260      case TargetLowering::TypeExpandInteger:
261        ExpandIntegerResult(N, i);
262        Changed = true;
263        goto NodeDone;
264      case TargetLowering::TypeSoftenFloat:
265        SoftenFloatResult(N, i);
266        Changed = true;
267        goto NodeDone;
268      case TargetLowering::TypeExpandFloat:
269        ExpandFloatResult(N, i);
270        Changed = true;
271        goto NodeDone;
272      case TargetLowering::TypeScalarizeVector:
273        ScalarizeVectorResult(N, i);
274        Changed = true;
275        goto NodeDone;
276      case TargetLowering::TypeSplitVector:
277        SplitVectorResult(N, i);
278        Changed = true;
279        goto NodeDone;
280      case TargetLowering::TypeWidenVector:
281        WidenVectorResult(N, i);
282        Changed = true;
283        goto NodeDone;
284      case TargetLowering::TypePromoteFloat:
285        PromoteFloatResult(N, i);
286        Changed = true;
287        goto NodeDone;
288      case TargetLowering::TypeSoftPromoteHalf:
289        SoftPromoteHalfResult(N, i);
290        Changed = true;
291        goto NodeDone;
292      }
293    }
294
295ScanOperands:
296    // Scan the operand list for the node, handling any nodes with operands that
297    // are illegal.
298    {
299    unsigned NumOperands = N->getNumOperands();
300    bool NeedsReanalyzing = false;
301    unsigned i;
302    for (i = 0; i != NumOperands; ++i) {
303      if (IgnoreNodeResults(N->getOperand(i).getNode()))
304        continue;
305
306      const auto Op = N->getOperand(i);
307      LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
308      EVT OpVT = Op.getValueType();
309      switch (getTypeAction(OpVT)) {
310      case TargetLowering::TypeLegal:
311        LLVM_DEBUG(dbgs() << "Legal operand\n");
312        continue;
313      case TargetLowering::TypeScalarizeScalableVector:
314        report_fatal_error(
315            "Scalarization of scalable vectors is not supported.");
316      // The following calls must either replace all of the node's results
317      // using ReplaceValueWith, and return "false"; or update the node's
318      // operands in place, and return "true".
319      case TargetLowering::TypePromoteInteger:
320        NeedsReanalyzing = PromoteIntegerOperand(N, i);
321        Changed = true;
322        break;
323      case TargetLowering::TypeExpandInteger:
324        NeedsReanalyzing = ExpandIntegerOperand(N, i);
325        Changed = true;
326        break;
327      case TargetLowering::TypeSoftenFloat:
328        NeedsReanalyzing = SoftenFloatOperand(N, i);
329        Changed = true;
330        break;
331      case TargetLowering::TypeExpandFloat:
332        NeedsReanalyzing = ExpandFloatOperand(N, i);
333        Changed = true;
334        break;
335      case TargetLowering::TypeScalarizeVector:
336        NeedsReanalyzing = ScalarizeVectorOperand(N, i);
337        Changed = true;
338        break;
339      case TargetLowering::TypeSplitVector:
340        NeedsReanalyzing = SplitVectorOperand(N, i);
341        Changed = true;
342        break;
343      case TargetLowering::TypeWidenVector:
344        NeedsReanalyzing = WidenVectorOperand(N, i);
345        Changed = true;
346        break;
347      case TargetLowering::TypePromoteFloat:
348        NeedsReanalyzing = PromoteFloatOperand(N, i);
349        Changed = true;
350        break;
351      case TargetLowering::TypeSoftPromoteHalf:
352        NeedsReanalyzing = SoftPromoteHalfOperand(N, i);
353        Changed = true;
354        break;
355      }
356      break;
357    }
358
359    // The sub-method updated N in place.  Check to see if any operands are new,
360    // and if so, mark them.  If the node needs revisiting, don't add all users
361    // to the worklist etc.
362    if (NeedsReanalyzing) {
363      assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
364
365      N->setNodeId(NewNode);
366      // Recompute the NodeId and correct processed operands, adding the node to
367      // the worklist if ready.
368      SDNode *M = AnalyzeNewNode(N);
369      if (M == N)
370        // The node didn't morph - nothing special to do, it will be revisited.
371        continue;
372
373      // The node morphed - this is equivalent to legalizing by replacing every
374      // value of N with the corresponding value of M.  So do that now.
375      assert(N->getNumValues() == M->getNumValues() &&
376             "Node morphing changed the number of results!");
377      for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
378        // Replacing the value takes care of remapping the new value.
379        ReplaceValueWith(SDValue(N, i), SDValue(M, i));
380      assert(N->getNodeId() == NewNode && "Unexpected node state!");
381      // The node continues to live on as part of the NewNode fungus that
382      // grows on top of the useful nodes.  Nothing more needs to be done
383      // with it - move on to the next node.
384      continue;
385    }
386
387    if (i == NumOperands) {
388      LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
389                 dbgs() << "\n");
390    }
391    }
392NodeDone:
393
394    // If we reach here, the node was processed, potentially creating new nodes.
395    // Mark it as processed and add its users to the worklist as appropriate.
396    assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
397    N->setNodeId(Processed);
398
399    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
400         UI != E; ++UI) {
401      SDNode *User = *UI;
402      int NodeId = User->getNodeId();
403
404      // This node has two options: it can either be a new node or its Node ID
405      // may be a count of the number of operands it has that are not ready.
406      if (NodeId > 0) {
407        User->setNodeId(NodeId-1);
408
409        // If this was the last use it was waiting on, add it to the ready list.
410        if (NodeId-1 == ReadyToProcess)
411          Worklist.push_back(User);
412        continue;
413      }
414
415      // If this is an unreachable new node, then ignore it.  If it ever becomes
416      // reachable by being used by a newly created node then it will be handled
417      // by AnalyzeNewNode.
418      if (NodeId == NewNode)
419        continue;
420
421      // Otherwise, this node is new: this is the first operand of it that
422      // became ready.  Its new NodeId is the number of operands it has minus 1
423      // (as this node is now processed).
424      assert(NodeId == Unanalyzed && "Unknown node ID!");
425      User->setNodeId(User->getNumOperands() - 1);
426
427      // If the node only has a single operand, it is now ready.
428      if (User->getNumOperands() == 1)
429        Worklist.push_back(User);
430    }
431  }
432
433#ifndef EXPENSIVE_CHECKS
434  if (EnableExpensiveChecks)
435#endif
436    PerformExpensiveChecks();
437
438  // If the root changed (e.g. it was a dead load) update the root.
439  DAG.setRoot(Dummy.getValue());
440
441  // Remove dead nodes.  This is important to do for cleanliness but also before
442  // the checking loop below.  Implicit folding by the DAG.getNode operators and
443  // node morphing can cause unreachable nodes to be around with their flags set
444  // to new.
445  DAG.RemoveDeadNodes();
446
447  // In a debug build, scan all the nodes to make sure we found them all.  This
448  // ensures that there are no cycles and that everything got processed.
449#ifndef NDEBUG
450  for (SDNode &Node : DAG.allnodes()) {
451    bool Failed = false;
452
453    // Check that all result types are legal.
454    if (!IgnoreNodeResults(&Node))
455      for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
456        if (!isTypeLegal(Node.getValueType(i))) {
457          dbgs() << "Result type " << i << " illegal: ";
458          Node.dump(&DAG);
459          Failed = true;
460        }
461
462    // Check that all operand types are legal.
463    for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
464      if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
465          !isTypeLegal(Node.getOperand(i).getValueType())) {
466        dbgs() << "Operand type " << i << " illegal: ";
467        Node.getOperand(i).dump(&DAG);
468        Failed = true;
469      }
470
471    if (Node.getNodeId() != Processed) {
472       if (Node.getNodeId() == NewNode)
473         dbgs() << "New node not analyzed?\n";
474       else if (Node.getNodeId() == Unanalyzed)
475         dbgs() << "Unanalyzed node not noticed?\n";
476       else if (Node.getNodeId() > 0)
477         dbgs() << "Operand not processed?\n";
478       else if (Node.getNodeId() == ReadyToProcess)
479         dbgs() << "Not added to worklist?\n";
480       Failed = true;
481    }
482
483    if (Failed) {
484      Node.dump(&DAG); dbgs() << "\n";
485      llvm_unreachable(nullptr);
486    }
487  }
488#endif
489
490  return Changed;
491}
492
493/// The specified node is the root of a subtree of potentially new nodes.
494/// Correct any processed operands (this may change the node) and calculate the
495/// NodeId. If the node itself changes to a processed node, it is not remapped -
496/// the caller needs to take care of this. Returns the potentially changed node.
497SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
498  // If this was an existing node that is already done, we're done.
499  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
500    return N;
501
502  // Okay, we know that this node is new.  Recursively walk all of its operands
503  // to see if they are new also.  The depth of this walk is bounded by the size
504  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
505  // about revisiting of nodes.
506  //
507  // As we walk the operands, keep track of the number of nodes that are
508  // processed.  If non-zero, this will become the new nodeid of this node.
509  // Operands may morph when they are analyzed.  If so, the node will be
510  // updated after all operands have been analyzed.  Since this is rare,
511  // the code tries to minimize overhead in the non-morphing case.
512
513  std::vector<SDValue> NewOps;
514  unsigned NumProcessed = 0;
515  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
516    SDValue OrigOp = N->getOperand(i);
517    SDValue Op = OrigOp;
518
519    AnalyzeNewValue(Op); // Op may morph.
520
521    if (Op.getNode()->getNodeId() == Processed)
522      ++NumProcessed;
523
524    if (!NewOps.empty()) {
525      // Some previous operand changed.  Add this one to the list.
526      NewOps.push_back(Op);
527    } else if (Op != OrigOp) {
528      // This is the first operand to change - add all operands so far.
529      NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
530      NewOps.push_back(Op);
531    }
532  }
533
534  // Some operands changed - update the node.
535  if (!NewOps.empty()) {
536    SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
537    if (M != N) {
538      // The node morphed into a different node.  Normally for this to happen
539      // the original node would have to be marked NewNode.  However this can
540      // in theory momentarily not be the case while ReplaceValueWith is doing
541      // its stuff.  Mark the original node NewNode to help sanity checking.
542      N->setNodeId(NewNode);
543      if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
544        // It morphed into a previously analyzed node - nothing more to do.
545        return M;
546
547      // It morphed into a different new node.  Do the equivalent of passing
548      // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
549      // to remap the operands, since they are the same as the operands we
550      // remapped above.
551      N = M;
552    }
553  }
554
555  // Calculate the NodeId.
556  N->setNodeId(N->getNumOperands() - NumProcessed);
557  if (N->getNodeId() == ReadyToProcess)
558    Worklist.push_back(N);
559
560  return N;
561}
562
563/// Call AnalyzeNewNode, updating the node in Val if needed.
564/// If the node changes to a processed node, then remap it.
565void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
566  Val.setNode(AnalyzeNewNode(Val.getNode()));
567  if (Val.getNode()->getNodeId() == Processed)
568    // We were passed a processed node, or it morphed into one - remap it.
569    RemapValue(Val);
570}
571
572/// If the specified value was already legalized to another value,
573/// replace it by that value.
574void DAGTypeLegalizer::RemapValue(SDValue &V) {
575  auto Id = getTableId(V);
576  V = getSDValue(Id);
577}
578
579void DAGTypeLegalizer::RemapId(TableId &Id) {
580  auto I = ReplacedValues.find(Id);
581  if (I != ReplacedValues.end()) {
582    assert(Id != I->second && "Id is mapped to itself.");
583    // Use path compression to speed up future lookups if values get multiply
584    // replaced with other values.
585    RemapId(I->second);
586    Id = I->second;
587
588    // Note that N = IdToValueMap[Id] it is possible to have
589    // N.getNode()->getNodeId() == NewNode at this point because it is possible
590    // for a node to be put in the map before being processed.
591  }
592}
593
594namespace {
595  /// This class is a DAGUpdateListener that listens for updates to nodes and
596  /// recomputes their ready state.
597  class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
598    DAGTypeLegalizer &DTL;
599    SmallSetVector<SDNode*, 16> &NodesToAnalyze;
600  public:
601    explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
602                                SmallSetVector<SDNode*, 16> &nta)
603      : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
604        DTL(dtl), NodesToAnalyze(nta) {}
605
606    void NodeDeleted(SDNode *N, SDNode *E) override {
607      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
608             N->getNodeId() != DAGTypeLegalizer::Processed &&
609             "Invalid node ID for RAUW deletion!");
610      // It is possible, though rare, for the deleted node N to occur as a
611      // target in a map, so note the replacement N -> E in ReplacedValues.
612      assert(E && "Node not replaced?");
613      DTL.NoteDeletion(N, E);
614
615      // In theory the deleted node could also have been scheduled for analysis.
616      // So remove it from the set of nodes which will be analyzed.
617      NodesToAnalyze.remove(N);
618
619      // In general nothing needs to be done for E, since it didn't change but
620      // only gained new uses.  However N -> E was just added to ReplacedValues,
621      // and the result of a ReplacedValues mapping is not allowed to be marked
622      // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
623      if (E->getNodeId() == DAGTypeLegalizer::NewNode)
624        NodesToAnalyze.insert(E);
625    }
626
627    void NodeUpdated(SDNode *N) override {
628      // Node updates can mean pretty much anything.  It is possible that an
629      // operand was set to something already processed (f.e.) in which case
630      // this node could become ready.  Recompute its flags.
631      assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
632             N->getNodeId() != DAGTypeLegalizer::Processed &&
633             "Invalid node ID for RAUW deletion!");
634      N->setNodeId(DAGTypeLegalizer::NewNode);
635      NodesToAnalyze.insert(N);
636    }
637  };
638}
639
640
641/// The specified value was legalized to the specified other value.
642/// Update the DAG and NodeIds replacing any uses of From to use To instead.
643void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
644  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
645
646  // If expansion produced new nodes, make sure they are properly marked.
647  AnalyzeNewValue(To);
648
649  // Anything that used the old node should now use the new one.  Note that this
650  // can potentially cause recursive merging.
651  SmallSetVector<SDNode*, 16> NodesToAnalyze;
652  NodeUpdateListener NUL(*this, NodesToAnalyze);
653  do {
654
655    // The old node may be present in a map like ExpandedIntegers or
656    // PromotedIntegers. Inform maps about the replacement.
657    auto FromId = getTableId(From);
658    auto ToId = getTableId(To);
659
660    if (FromId != ToId)
661      ReplacedValues[FromId] = ToId;
662    DAG.ReplaceAllUsesOfValueWith(From, To);
663
664    // Process the list of nodes that need to be reanalyzed.
665    while (!NodesToAnalyze.empty()) {
666      SDNode *N = NodesToAnalyze.back();
667      NodesToAnalyze.pop_back();
668      if (N->getNodeId() != DAGTypeLegalizer::NewNode)
669        // The node was analyzed while reanalyzing an earlier node - it is safe
670        // to skip.  Note that this is not a morphing node - otherwise it would
671        // still be marked NewNode.
672        continue;
673
674      // Analyze the node's operands and recalculate the node ID.
675      SDNode *M = AnalyzeNewNode(N);
676      if (M != N) {
677        // The node morphed into a different node.  Make everyone use the new
678        // node instead.
679        assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
680        assert(N->getNumValues() == M->getNumValues() &&
681               "Node morphing changed the number of results!");
682        for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
683          SDValue OldVal(N, i);
684          SDValue NewVal(M, i);
685          if (M->getNodeId() == Processed)
686            RemapValue(NewVal);
687          // OldVal may be a target of the ReplacedValues map which was marked
688          // NewNode to force reanalysis because it was updated.  Ensure that
689          // anything that ReplacedValues mapped to OldVal will now be mapped
690          // all the way to NewVal.
691          auto OldValId = getTableId(OldVal);
692          auto NewValId = getTableId(NewVal);
693          DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
694          if (OldValId != NewValId)
695            ReplacedValues[OldValId] = NewValId;
696        }
697        // The original node continues to exist in the DAG, marked NewNode.
698      }
699    }
700    // When recursively update nodes with new nodes, it is possible to have
701    // new uses of From due to CSE. If this happens, replace the new uses of
702    // From with To.
703  } while (!From.use_empty());
704}
705
706void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
707  assert(Result.getValueType() ==
708         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
709         "Invalid type for promoted integer");
710  AnalyzeNewValue(Result);
711
712  auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
713  assert((OpIdEntry == 0) && "Node is already promoted!");
714  OpIdEntry = getTableId(Result);
715  Result->setFlags(Op->getFlags());
716
717  DAG.transferDbgValues(Op, Result);
718}
719
720void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
721  assert(Result.getValueType() ==
722         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
723         "Invalid type for softened float");
724  AnalyzeNewValue(Result);
725
726  auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
727  assert((OpIdEntry == 0) && "Node is already converted to integer!");
728  OpIdEntry = getTableId(Result);
729}
730
731void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
732  assert(Result.getValueType() ==
733         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
734         "Invalid type for promoted float");
735  AnalyzeNewValue(Result);
736
737  auto &OpIdEntry = PromotedFloats[getTableId(Op)];
738  assert((OpIdEntry == 0) && "Node is already promoted!");
739  OpIdEntry = getTableId(Result);
740}
741
742void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op, SDValue Result) {
743  assert(Result.getValueType() == MVT::i16 &&
744         "Invalid type for soft-promoted half");
745  AnalyzeNewValue(Result);
746
747  auto &OpIdEntry = SoftPromotedHalfs[getTableId(Op)];
748  assert((OpIdEntry == 0) && "Node is already promoted!");
749  OpIdEntry = getTableId(Result);
750}
751
752void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
753  // Note that in some cases vector operation operands may be greater than
754  // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
755  // a constant i8 operand.
756  assert(Result.getValueSizeInBits() >= Op.getScalarValueSizeInBits() &&
757         "Invalid type for scalarized vector");
758  AnalyzeNewValue(Result);
759
760  auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
761  assert((OpIdEntry == 0) && "Node is already scalarized!");
762  OpIdEntry = getTableId(Result);
763}
764
765void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
766                                          SDValue &Hi) {
767  std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
768  assert((Entry.first != 0) && "Operand isn't expanded");
769  Lo = getSDValue(Entry.first);
770  Hi = getSDValue(Entry.second);
771}
772
773void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
774                                          SDValue Hi) {
775  assert(Lo.getValueType() ==
776         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
777         Hi.getValueType() == Lo.getValueType() &&
778         "Invalid type for expanded integer");
779  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
780  AnalyzeNewValue(Lo);
781  AnalyzeNewValue(Hi);
782
783  // Transfer debug values. Don't invalidate the source debug value until it's
784  // been transferred to the high and low bits.
785  if (DAG.getDataLayout().isBigEndian()) {
786    DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
787    DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
788                          Lo.getValueSizeInBits());
789  } else {
790    DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
791    DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
792                          Hi.getValueSizeInBits());
793  }
794
795  // Remember that this is the result of the node.
796  std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
797  assert((Entry.first == 0) && "Node already expanded");
798  Entry.first = getTableId(Lo);
799  Entry.second = getTableId(Hi);
800}
801
802void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
803                                        SDValue &Hi) {
804  std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
805  assert((Entry.first != 0) && "Operand isn't expanded");
806  Lo = getSDValue(Entry.first);
807  Hi = getSDValue(Entry.second);
808}
809
810void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
811                                        SDValue Hi) {
812  assert(Lo.getValueType() ==
813         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
814         Hi.getValueType() == Lo.getValueType() &&
815         "Invalid type for expanded float");
816  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
817  AnalyzeNewValue(Lo);
818  AnalyzeNewValue(Hi);
819
820  std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
821  assert((Entry.first == 0) && "Node already expanded");
822  Entry.first = getTableId(Lo);
823  Entry.second = getTableId(Hi);
824}
825
826void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
827                                      SDValue &Hi) {
828  std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
829  Lo = getSDValue(Entry.first);
830  Hi = getSDValue(Entry.second);
831  assert(Lo.getNode() && "Operand isn't split");
832  ;
833}
834
835void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
836                                      SDValue Hi) {
837  assert(Lo.getValueType().getVectorElementType() ==
838             Op.getValueType().getVectorElementType() &&
839         Lo.getValueType().getVectorElementCount() * 2 ==
840             Op.getValueType().getVectorElementCount() &&
841         Hi.getValueType() == Lo.getValueType() &&
842         "Invalid type for split vector");
843  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
844  AnalyzeNewValue(Lo);
845  AnalyzeNewValue(Hi);
846
847  // Remember that this is the result of the node.
848  std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
849  assert((Entry.first == 0) && "Node already split");
850  Entry.first = getTableId(Lo);
851  Entry.second = getTableId(Hi);
852}
853
854void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
855  assert(Result.getValueType() ==
856         TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
857         "Invalid type for widened vector");
858  AnalyzeNewValue(Result);
859
860  auto &OpIdEntry = WidenedVectors[getTableId(Op)];
861  assert((OpIdEntry == 0) && "Node already widened!");
862  OpIdEntry = getTableId(Result);
863}
864
865
866//===----------------------------------------------------------------------===//
867// Utilities.
868//===----------------------------------------------------------------------===//
869
870/// Convert to an integer of the same size.
871SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
872  unsigned BitWidth = Op.getValueSizeInBits();
873  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
874                     EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
875}
876
877/// Convert to a vector of integers of the same size.
878SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
879  assert(Op.getValueType().isVector() && "Only applies to vectors!");
880  unsigned EltWidth = Op.getScalarValueSizeInBits();
881  EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
882  auto EltCnt = Op.getValueType().getVectorElementCount();
883  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
884                     EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
885}
886
887SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
888                                               EVT DestVT) {
889  SDLoc dl(Op);
890  // Create the stack frame object.  Make sure it is aligned for both
891  // the source and destination types.
892
893  // In cases where the vector is illegal it will be broken down into parts
894  // and stored in parts - we should use the alignment for the smallest part.
895  Align DestAlign = DAG.getReducedAlign(DestVT, /*UseABI=*/false);
896  Align OpAlign = DAG.getReducedAlign(Op.getValueType(), /*UseABI=*/false);
897  Align Align = std::max(DestAlign, OpAlign);
898  SDValue StackPtr =
899      DAG.CreateStackTemporary(Op.getValueType().getStoreSize(), Align);
900  // Emit a store to the stack slot.
901  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
902                               MachinePointerInfo(), Align);
903  // Result is a load from the stack slot.
904  return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), Align);
905}
906
907/// Replace the node's results with custom code provided by the target and
908/// return "true", or do nothing and return "false".
909/// The last parameter is FALSE if we are dealing with a node with legal
910/// result types and illegal operand. The second parameter denotes the type of
911/// illegal OperandNo in that case.
912/// The last parameter being TRUE means we are dealing with a
913/// node with illegal result types. The second parameter denotes the type of
914/// illegal ResNo in that case.
915bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
916  // See if the target wants to custom lower this node.
917  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
918    return false;
919
920  SmallVector<SDValue, 8> Results;
921  if (LegalizeResult)
922    TLI.ReplaceNodeResults(N, Results, DAG);
923  else
924    TLI.LowerOperationWrapper(N, Results, DAG);
925
926  if (Results.empty())
927    // The target didn't want to custom lower it after all.
928    return false;
929
930  // Make everything that once used N's values now use those in Results instead.
931  assert(Results.size() == N->getNumValues() &&
932         "Custom lowering returned the wrong number of results!");
933  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
934    ReplaceValueWith(SDValue(N, i), Results[i]);
935  }
936  return true;
937}
938
939
940/// Widen the node's results with custom code provided by the target and return
941/// "true", or do nothing and return "false".
942bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
943  // See if the target wants to custom lower this node.
944  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
945    return false;
946
947  SmallVector<SDValue, 8> Results;
948  TLI.ReplaceNodeResults(N, Results, DAG);
949
950  if (Results.empty())
951    // The target didn't want to custom widen lower its result after all.
952    return false;
953
954  // Update the widening map.
955  assert(Results.size() == N->getNumValues() &&
956         "Custom lowering returned the wrong number of results!");
957  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
958    // If this is a chain output just replace it.
959    if (Results[i].getValueType() == MVT::Other)
960      ReplaceValueWith(SDValue(N, i), Results[i]);
961    else
962      SetWidenedVector(SDValue(N, i), Results[i]);
963  }
964  return true;
965}
966
967SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
968  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
969    if (i != ResNo)
970      ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
971  return SDValue(N->getOperand(ResNo));
972}
973
974/// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
975/// given value.
976void DAGTypeLegalizer::GetPairElements(SDValue Pair,
977                                       SDValue &Lo, SDValue &Hi) {
978  SDLoc dl(Pair);
979  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
980  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
981                   DAG.getIntPtrConstant(0, dl));
982  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
983                   DAG.getIntPtrConstant(1, dl));
984}
985
986/// Build an integer with low bits Lo and high bits Hi.
987SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
988  // Arbitrarily use dlHi for result SDLoc
989  SDLoc dlHi(Hi);
990  SDLoc dlLo(Lo);
991  EVT LVT = Lo.getValueType();
992  EVT HVT = Hi.getValueType();
993  EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
994                              LVT.getSizeInBits() + HVT.getSizeInBits());
995
996  EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
997  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
998  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
999  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1000                   DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1001  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1002}
1003
1004/// Promote the given target boolean to a target boolean of the given type.
1005/// A target boolean is an integer value, not necessarily of type i1, the bits
1006/// of which conform to getBooleanContents.
1007///
1008/// ValVT is the type of values that produced the boolean.
1009SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1010  SDLoc dl(Bool);
1011  EVT BoolVT = getSetCCResultType(ValVT);
1012  ISD::NodeType ExtendCode =
1013      TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
1014  return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1015}
1016
1017/// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1018void DAGTypeLegalizer::SplitInteger(SDValue Op,
1019                                    EVT LoVT, EVT HiVT,
1020                                    SDValue &Lo, SDValue &Hi) {
1021  SDLoc dl(Op);
1022  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1023         Op.getValueSizeInBits() && "Invalid integer splitting!");
1024  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1025  unsigned ReqShiftAmountInBits =
1026      Log2_32_Ceil(Op.getValueType().getSizeInBits());
1027  MVT ShiftAmountTy =
1028      TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1029  if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1030    ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1031  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1032                   DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1033  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1034}
1035
1036/// Return the lower and upper halves of Op's bits in a value type half the
1037/// size of Op's.
1038void DAGTypeLegalizer::SplitInteger(SDValue Op,
1039                                    SDValue &Lo, SDValue &Hi) {
1040  EVT HalfVT =
1041      EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1042  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1043}
1044
1045
1046//===----------------------------------------------------------------------===//
1047//  Entry Point
1048//===----------------------------------------------------------------------===//
1049
1050/// This transforms the SelectionDAG into a SelectionDAG that only uses types
1051/// natively supported by the target. Returns "true" if it made any changes.
1052///
1053/// Note that this is an involved process that may invalidate pointers into
1054/// the graph.
1055bool SelectionDAG::LegalizeTypes() {
1056  return DAGTypeLegalizer(*this).run();
1057}
1058