1//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the Emit routines for the SelectionDAG class, which creates
10// MachineInstrs based on the decisions of the SelectionDAG instruction
11// selection.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstrEmitter.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/CodeGen/MachineConstantPool.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/StackMaps.h"
24#include "llvm/CodeGen/TargetInstrInfo.h"
25#include "llvm/CodeGen/TargetLowering.h"
26#include "llvm/CodeGen/TargetSubtargetInfo.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DebugInfo.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetMachine.h"
33using namespace llvm;
34
35#define DEBUG_TYPE "instr-emitter"
36
37/// MinRCSize - Smallest register class we allow when constraining virtual
38/// registers.  If satisfying all register class constraints would require
39/// using a smaller register class, emit a COPY to a new virtual register
40/// instead.
41const unsigned MinRCSize = 4;
42
43/// CountResults - The results of target nodes have register or immediate
44/// operands first, then an optional chain, and optional glue operands (which do
45/// not go into the resulting MachineInstr).
46unsigned InstrEmitter::CountResults(SDNode *Node) {
47  unsigned N = Node->getNumValues();
48  while (N && Node->getValueType(N - 1) == MVT::Glue)
49    --N;
50  if (N && Node->getValueType(N - 1) == MVT::Other)
51    --N;    // Skip over chain result.
52  return N;
53}
54
55/// countOperands - The inputs to target nodes have any actual inputs first,
56/// followed by an optional chain operand, then an optional glue operand.
57/// Compute the number of actual operands that will go into the resulting
58/// MachineInstr.
59///
60/// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
61/// the chain and glue. These operands may be implicit on the machine instr.
62static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
63                              unsigned &NumImpUses) {
64  unsigned N = Node->getNumOperands();
65  while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
66    --N;
67  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
68    --N; // Ignore chain if it exists.
69
70  // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
71  NumImpUses = N - NumExpUses;
72  for (unsigned I = N; I > NumExpUses; --I) {
73    if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
74      continue;
75    if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
76      if (Register::isPhysicalRegister(RN->getReg()))
77        continue;
78    NumImpUses = N - I;
79    break;
80  }
81
82  return N;
83}
84
85/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
86/// implicit physical register output.
87void InstrEmitter::
88EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
89                Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
90  Register VRBase;
91  if (SrcReg.isVirtual()) {
92    // Just use the input register directly!
93    SDValue Op(Node, ResNo);
94    if (IsClone)
95      VRBaseMap.erase(Op);
96    bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
97    (void)isNew; // Silence compiler warning.
98    assert(isNew && "Node emitted out of order - early");
99    return;
100  }
101
102  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
103  // the CopyToReg'd destination register instead of creating a new vreg.
104  bool MatchReg = true;
105  const TargetRegisterClass *UseRC = nullptr;
106  MVT VT = Node->getSimpleValueType(ResNo);
107
108  // Stick to the preferred register classes for legal types.
109  if (TLI->isTypeLegal(VT))
110    UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
111
112  if (!IsClone && !IsCloned)
113    for (SDNode *User : Node->uses()) {
114      bool Match = true;
115      if (User->getOpcode() == ISD::CopyToReg &&
116          User->getOperand(2).getNode() == Node &&
117          User->getOperand(2).getResNo() == ResNo) {
118        Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
119        if (DestReg.isVirtual()) {
120          VRBase = DestReg;
121          Match = false;
122        } else if (DestReg != SrcReg)
123          Match = false;
124      } else {
125        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
126          SDValue Op = User->getOperand(i);
127          if (Op.getNode() != Node || Op.getResNo() != ResNo)
128            continue;
129          MVT VT = Node->getSimpleValueType(Op.getResNo());
130          if (VT == MVT::Other || VT == MVT::Glue)
131            continue;
132          Match = false;
133          if (User->isMachineOpcode()) {
134            const MCInstrDesc &II = TII->get(User->getMachineOpcode());
135            const TargetRegisterClass *RC = nullptr;
136            if (i+II.getNumDefs() < II.getNumOperands()) {
137              RC = TRI->getAllocatableClass(
138                TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
139            }
140            if (!UseRC)
141              UseRC = RC;
142            else if (RC) {
143              const TargetRegisterClass *ComRC =
144                TRI->getCommonSubClass(UseRC, RC);
145              // If multiple uses expect disjoint register classes, we emit
146              // copies in AddRegisterOperand.
147              if (ComRC)
148                UseRC = ComRC;
149            }
150          }
151        }
152      }
153      MatchReg &= Match;
154      if (VRBase)
155        break;
156    }
157
158  const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
159  SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
160
161  // Figure out the register class to create for the destreg.
162  if (VRBase) {
163    DstRC = MRI->getRegClass(VRBase);
164  } else if (UseRC) {
165    assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
166           "Incompatible phys register def and uses!");
167    DstRC = UseRC;
168  } else {
169    DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
170  }
171
172  // If all uses are reading from the src physical register and copying the
173  // register is either impossible or very expensive, then don't create a copy.
174  if (MatchReg && SrcRC->getCopyCost() < 0) {
175    VRBase = SrcReg;
176  } else {
177    // Create the reg, emit the copy.
178    VRBase = MRI->createVirtualRegister(DstRC);
179    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
180            VRBase).addReg(SrcReg);
181  }
182
183  SDValue Op(Node, ResNo);
184  if (IsClone)
185    VRBaseMap.erase(Op);
186  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
187  (void)isNew; // Silence compiler warning.
188  assert(isNew && "Node emitted out of order - early");
189}
190
191void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
192                                       MachineInstrBuilder &MIB,
193                                       const MCInstrDesc &II,
194                                       bool IsClone, bool IsCloned,
195                                       DenseMap<SDValue, Register> &VRBaseMap) {
196  assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
197         "IMPLICIT_DEF should have been handled as a special case elsewhere!");
198
199  unsigned NumResults = CountResults(Node);
200  bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
201                             II.isVariadic() && II.variadicOpsAreDefs();
202  unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
203  for (unsigned i = 0; i < NumVRegs; ++i) {
204    // If the specific node value is only used by a CopyToReg and the dest reg
205    // is a vreg in the same register class, use the CopyToReg'd destination
206    // register instead of creating a new vreg.
207    Register VRBase;
208    const TargetRegisterClass *RC =
209      TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
210    // Always let the value type influence the used register class. The
211    // constraints on the instruction may be too lax to represent the value
212    // type correctly. For example, a 64-bit float (X86::FR64) can't live in
213    // the 32-bit float super-class (X86::FR32).
214    if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
215      const TargetRegisterClass *VTRC = TLI->getRegClassFor(
216          Node->getSimpleValueType(i),
217          (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
218      if (RC)
219        VTRC = TRI->getCommonSubClass(RC, VTRC);
220      if (VTRC)
221        RC = VTRC;
222    }
223
224    if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
225      // Optional def must be a physical register.
226      VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
227      assert(VRBase.isPhysical());
228      MIB.addReg(VRBase, RegState::Define);
229    }
230
231    if (!VRBase && !IsClone && !IsCloned)
232      for (SDNode *User : Node->uses()) {
233        if (User->getOpcode() == ISD::CopyToReg &&
234            User->getOperand(2).getNode() == Node &&
235            User->getOperand(2).getResNo() == i) {
236          unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
237          if (Register::isVirtualRegister(Reg)) {
238            const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
239            if (RegRC == RC) {
240              VRBase = Reg;
241              MIB.addReg(VRBase, RegState::Define);
242              break;
243            }
244          }
245        }
246      }
247
248    // Create the result registers for this node and add the result regs to
249    // the machine instruction.
250    if (VRBase == 0) {
251      assert(RC && "Isn't a register operand!");
252      VRBase = MRI->createVirtualRegister(RC);
253      MIB.addReg(VRBase, RegState::Define);
254    }
255
256    // If this def corresponds to a result of the SDNode insert the VRBase into
257    // the lookup map.
258    if (i < NumResults) {
259      SDValue Op(Node, i);
260      if (IsClone)
261        VRBaseMap.erase(Op);
262      bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
263      (void)isNew; // Silence compiler warning.
264      assert(isNew && "Node emitted out of order - early");
265    }
266  }
267}
268
269/// getVR - Return the virtual register corresponding to the specified result
270/// of the specified node.
271Register InstrEmitter::getVR(SDValue Op,
272                             DenseMap<SDValue, Register> &VRBaseMap) {
273  if (Op.isMachineOpcode() &&
274      Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
275    // Add an IMPLICIT_DEF instruction before every use.
276    // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
277    // does not include operand register class info.
278    const TargetRegisterClass *RC = TLI->getRegClassFor(
279        Op.getSimpleValueType(), Op.getNode()->isDivergent());
280    Register VReg = MRI->createVirtualRegister(RC);
281    BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
282            TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
283    return VReg;
284  }
285
286  DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
287  assert(I != VRBaseMap.end() && "Node emitted out of order - late");
288  return I->second;
289}
290
291
292/// AddRegisterOperand - Add the specified register as an operand to the
293/// specified machine instr. Insert register copies if the register is
294/// not in the required register class.
295void
296InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
297                                 SDValue Op,
298                                 unsigned IIOpNum,
299                                 const MCInstrDesc *II,
300                                 DenseMap<SDValue, Register> &VRBaseMap,
301                                 bool IsDebug, bool IsClone, bool IsCloned) {
302  assert(Op.getValueType() != MVT::Other &&
303         Op.getValueType() != MVT::Glue &&
304         "Chain and glue operands should occur at end of operand list!");
305  // Get/emit the operand.
306  Register VReg = getVR(Op, VRBaseMap);
307
308  const MCInstrDesc &MCID = MIB->getDesc();
309  bool isOptDef = IIOpNum < MCID.getNumOperands() &&
310    MCID.OpInfo[IIOpNum].isOptionalDef();
311
312  // If the instruction requires a register in a different class, create
313  // a new virtual register and copy the value into it, but first attempt to
314  // shrink VReg's register class within reason.  For example, if VReg == GR32
315  // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
316  if (II) {
317    const TargetRegisterClass *OpRC = nullptr;
318    if (IIOpNum < II->getNumOperands())
319      OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
320
321    if (OpRC) {
322      const TargetRegisterClass *ConstrainedRC
323        = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
324      if (!ConstrainedRC) {
325        OpRC = TRI->getAllocatableClass(OpRC);
326        assert(OpRC && "Constraints cannot be fulfilled for allocation");
327        Register NewVReg = MRI->createVirtualRegister(OpRC);
328        BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
329                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
330        VReg = NewVReg;
331      } else {
332        assert(ConstrainedRC->isAllocatable() &&
333           "Constraining an allocatable VReg produced an unallocatable class?");
334      }
335    }
336  }
337
338  // If this value has only one use, that use is a kill. This is a
339  // conservative approximation. InstrEmitter does trivial coalescing
340  // with CopyFromReg nodes, so don't emit kill flags for them.
341  // Avoid kill flags on Schedule cloned nodes, since there will be
342  // multiple uses.
343  // Tied operands are never killed, so we need to check that. And that
344  // means we need to determine the index of the operand.
345  bool isKill = Op.hasOneUse() &&
346                Op.getNode()->getOpcode() != ISD::CopyFromReg &&
347                !IsDebug &&
348                !(IsClone || IsCloned);
349  if (isKill) {
350    unsigned Idx = MIB->getNumOperands();
351    while (Idx > 0 &&
352           MIB->getOperand(Idx-1).isReg() &&
353           MIB->getOperand(Idx-1).isImplicit())
354      --Idx;
355    bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
356    if (isTied)
357      isKill = false;
358  }
359
360  MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
361             getDebugRegState(IsDebug));
362}
363
364/// AddOperand - Add the specified operand to the specified machine instr.  II
365/// specifies the instruction information for the node, and IIOpNum is the
366/// operand number (in the II) that we are adding.
367void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
368                              SDValue Op,
369                              unsigned IIOpNum,
370                              const MCInstrDesc *II,
371                              DenseMap<SDValue, Register> &VRBaseMap,
372                              bool IsDebug, bool IsClone, bool IsCloned) {
373  if (Op.isMachineOpcode()) {
374    AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
375                       IsDebug, IsClone, IsCloned);
376  } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
377    MIB.addImm(C->getSExtValue());
378  } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
379    MIB.addFPImm(F->getConstantFPValue());
380  } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
381    Register VReg = R->getReg();
382    MVT OpVT = Op.getSimpleValueType();
383    const TargetRegisterClass *IIRC =
384        II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
385           : nullptr;
386    const TargetRegisterClass *OpRC =
387        TLI->isTypeLegal(OpVT)
388            ? TLI->getRegClassFor(OpVT,
389                                  Op.getNode()->isDivergent() ||
390                                      (IIRC && TRI->isDivergentRegClass(IIRC)))
391            : nullptr;
392
393    if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
394      Register NewVReg = MRI->createVirtualRegister(IIRC);
395      BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
396               TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
397      VReg = NewVReg;
398    }
399    // Turn additional physreg operands into implicit uses on non-variadic
400    // instructions. This is used by call and return instructions passing
401    // arguments in registers.
402    bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
403    MIB.addReg(VReg, getImplRegState(Imp));
404  } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
405    MIB.addRegMask(RM->getRegMask());
406  } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
407    MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
408                         TGA->getTargetFlags());
409  } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
410    MIB.addMBB(BBNode->getBasicBlock());
411  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
412    MIB.addFrameIndex(FI->getIndex());
413  } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
414    MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
415  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
416    int Offset = CP->getOffset();
417    Align Alignment = CP->getAlign();
418
419    unsigned Idx;
420    MachineConstantPool *MCP = MF->getConstantPool();
421    if (CP->isMachineConstantPoolEntry())
422      Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
423    else
424      Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
425    MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
426  } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
427    MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
428  } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
429    MIB.addSym(SymNode->getMCSymbol());
430  } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
431    MIB.addBlockAddress(BA->getBlockAddress(),
432                        BA->getOffset(),
433                        BA->getTargetFlags());
434  } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
435    MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
436  } else {
437    assert(Op.getValueType() != MVT::Other &&
438           Op.getValueType() != MVT::Glue &&
439           "Chain and glue operands should occur at end of operand list!");
440    AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
441                       IsDebug, IsClone, IsCloned);
442  }
443}
444
445Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
446                                          MVT VT, bool isDivergent, const DebugLoc &DL) {
447  const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
448  const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
449
450  // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
451  // within reason.
452  if (RC && RC != VRC)
453    RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
454
455  // VReg has been adjusted.  It can be used with SubIdx operands now.
456  if (RC)
457    return VReg;
458
459  // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
460  // register instead.
461  RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
462  assert(RC && "No legal register class for VT supports that SubIdx");
463  Register NewReg = MRI->createVirtualRegister(RC);
464  BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
465    .addReg(VReg);
466  return NewReg;
467}
468
469/// EmitSubregNode - Generate machine code for subreg nodes.
470///
471void InstrEmitter::EmitSubregNode(SDNode *Node,
472                                  DenseMap<SDValue, Register> &VRBaseMap,
473                                  bool IsClone, bool IsCloned) {
474  Register VRBase;
475  unsigned Opc = Node->getMachineOpcode();
476
477  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
478  // the CopyToReg'd destination register instead of creating a new vreg.
479  for (SDNode *User : Node->uses()) {
480    if (User->getOpcode() == ISD::CopyToReg &&
481        User->getOperand(2).getNode() == Node) {
482      Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
483      if (DestReg.isVirtual()) {
484        VRBase = DestReg;
485        break;
486      }
487    }
488  }
489
490  if (Opc == TargetOpcode::EXTRACT_SUBREG) {
491    // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
492    // constraints on the %dst register, COPY can target all legal register
493    // classes.
494    unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
495    const TargetRegisterClass *TRC =
496      TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
497
498    Register Reg;
499    MachineInstr *DefMI;
500    RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
501    if (R && Register::isPhysicalRegister(R->getReg())) {
502      Reg = R->getReg();
503      DefMI = nullptr;
504    } else {
505      Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
506      DefMI = MRI->getVRegDef(Reg);
507    }
508
509    Register SrcReg, DstReg;
510    unsigned DefSubIdx;
511    if (DefMI &&
512        TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
513        SubIdx == DefSubIdx &&
514        TRC == MRI->getRegClass(SrcReg)) {
515      // Optimize these:
516      // r1025 = s/zext r1024, 4
517      // r1026 = extract_subreg r1025, 4
518      // to a copy
519      // r1026 = copy r1024
520      VRBase = MRI->createVirtualRegister(TRC);
521      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
522              TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
523      MRI->clearKillFlags(SrcReg);
524    } else {
525      // Reg may not support a SubIdx sub-register, and we may need to
526      // constrain its register class or issue a COPY to a compatible register
527      // class.
528      if (Reg.isVirtual())
529        Reg = ConstrainForSubReg(Reg, SubIdx,
530                                 Node->getOperand(0).getSimpleValueType(),
531                                 Node->isDivergent(), Node->getDebugLoc());
532      // Create the destreg if it is missing.
533      if (!VRBase)
534        VRBase = MRI->createVirtualRegister(TRC);
535
536      // Create the extract_subreg machine instruction.
537      MachineInstrBuilder CopyMI =
538          BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
539                  TII->get(TargetOpcode::COPY), VRBase);
540      if (Reg.isVirtual())
541        CopyMI.addReg(Reg, 0, SubIdx);
542      else
543        CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
544    }
545  } else if (Opc == TargetOpcode::INSERT_SUBREG ||
546             Opc == TargetOpcode::SUBREG_TO_REG) {
547    SDValue N0 = Node->getOperand(0);
548    SDValue N1 = Node->getOperand(1);
549    SDValue N2 = Node->getOperand(2);
550    unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
551
552    // Figure out the register class to create for the destreg.  It should be
553    // the largest legal register class supporting SubIdx sub-registers.
554    // RegisterCoalescer will constrain it further if it decides to eliminate
555    // the INSERT_SUBREG instruction.
556    //
557    //   %dst = INSERT_SUBREG %src, %sub, SubIdx
558    //
559    // is lowered by TwoAddressInstructionPass to:
560    //
561    //   %dst = COPY %src
562    //   %dst:SubIdx = COPY %sub
563    //
564    // There is no constraint on the %src register class.
565    //
566    const TargetRegisterClass *SRC =
567        TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
568    SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
569    assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
570
571    if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
572      VRBase = MRI->createVirtualRegister(SRC);
573
574    // Create the insert_subreg or subreg_to_reg machine instruction.
575    MachineInstrBuilder MIB =
576      BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
577
578    // If creating a subreg_to_reg, then the first input operand
579    // is an implicit value immediate, otherwise it's a register
580    if (Opc == TargetOpcode::SUBREG_TO_REG) {
581      const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
582      MIB.addImm(SD->getZExtValue());
583    } else
584      AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
585                 IsClone, IsCloned);
586    // Add the subregister being inserted
587    AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
588               IsClone, IsCloned);
589    MIB.addImm(SubIdx);
590    MBB->insert(InsertPos, MIB);
591  } else
592    llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
593
594  SDValue Op(Node, 0);
595  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
596  (void)isNew; // Silence compiler warning.
597  assert(isNew && "Node emitted out of order - early");
598}
599
600/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
601/// COPY_TO_REGCLASS is just a normal copy, except that the destination
602/// register is constrained to be in a particular register class.
603///
604void
605InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
606                                     DenseMap<SDValue, Register> &VRBaseMap) {
607  unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
608
609  // Create the new VReg in the destination class and emit a copy.
610  unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
611  const TargetRegisterClass *DstRC =
612    TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
613  Register NewVReg = MRI->createVirtualRegister(DstRC);
614  BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
615    NewVReg).addReg(VReg);
616
617  SDValue Op(Node, 0);
618  bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
619  (void)isNew; // Silence compiler warning.
620  assert(isNew && "Node emitted out of order - early");
621}
622
623/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
624///
625void InstrEmitter::EmitRegSequence(SDNode *Node,
626                                  DenseMap<SDValue, Register> &VRBaseMap,
627                                  bool IsClone, bool IsCloned) {
628  unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
629  const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
630  Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
631  const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
632  MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
633  unsigned NumOps = Node->getNumOperands();
634  // If the input pattern has a chain, then the root of the corresponding
635  // output pattern will get a chain as well. This can happen to be a
636  // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
637  if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
638    --NumOps; // Ignore chain if it exists.
639
640  assert((NumOps & 1) == 1 &&
641         "REG_SEQUENCE must have an odd number of operands!");
642  for (unsigned i = 1; i != NumOps; ++i) {
643    SDValue Op = Node->getOperand(i);
644    if ((i & 1) == 0) {
645      RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
646      // Skip physical registers as they don't have a vreg to get and we'll
647      // insert copies for them in TwoAddressInstructionPass anyway.
648      if (!R || !Register::isPhysicalRegister(R->getReg())) {
649        unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
650        unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
651        const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
652        const TargetRegisterClass *SRC =
653        TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
654        if (SRC && SRC != RC) {
655          MRI->setRegClass(NewVReg, SRC);
656          RC = SRC;
657        }
658      }
659    }
660    AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
661               IsClone, IsCloned);
662  }
663
664  MBB->insert(InsertPos, MIB);
665  SDValue Op(Node, 0);
666  bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
667  (void)isNew; // Silence compiler warning.
668  assert(isNew && "Node emitted out of order - early");
669}
670
671/// EmitDbgValue - Generate machine instruction for a dbg_value node.
672///
673MachineInstr *
674InstrEmitter::EmitDbgValue(SDDbgValue *SD,
675                           DenseMap<SDValue, Register> &VRBaseMap) {
676  MDNode *Var = SD->getVariable();
677  MDNode *Expr = SD->getExpression();
678  DebugLoc DL = SD->getDebugLoc();
679  assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
680         "Expected inlined-at fields to agree");
681
682  SD->setIsEmitted();
683
684  if (SD->isInvalidated()) {
685    // An invalidated SDNode must generate an undef DBG_VALUE: although the
686    // original value is no longer computed, earlier DBG_VALUEs live ranges
687    // must not leak into later code.
688    auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
689    MIB.addReg(0U);
690    MIB.addReg(0U, RegState::Debug);
691    MIB.addMetadata(Var);
692    MIB.addMetadata(Expr);
693    return &*MIB;
694  }
695
696  if (SD->getKind() == SDDbgValue::FRAMEIX) {
697    // Stack address; this needs to be lowered in target-dependent fashion.
698    // EmitTargetCodeForFrameDebugValue is responsible for allocation.
699    auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
700                       .addFrameIndex(SD->getFrameIx());
701    if (SD->isIndirect())
702      // Push [fi + 0] onto the DIExpression stack.
703      FrameMI.addImm(0);
704    else
705      // Push fi onto the DIExpression stack.
706      FrameMI.addReg(0);
707    return FrameMI.addMetadata(Var).addMetadata(Expr);
708  }
709  // Otherwise, we're going to create an instruction here.
710  const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
711  MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
712  if (SD->getKind() == SDDbgValue::SDNODE) {
713    SDNode *Node = SD->getSDNode();
714    SDValue Op = SDValue(Node, SD->getResNo());
715    // It's possible we replaced this SDNode with other(s) and therefore
716    // didn't generate code for it.  It's better to catch these cases where
717    // they happen and transfer the debug info, but trying to guarantee that
718    // in all cases would be very fragile; this is a safeguard for any
719    // that were missed.
720    DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
721    if (I==VRBaseMap.end())
722      MIB.addReg(0U);       // undef
723    else
724      AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
725                 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
726  } else if (SD->getKind() == SDDbgValue::VREG) {
727    MIB.addReg(SD->getVReg(), RegState::Debug);
728  } else if (SD->getKind() == SDDbgValue::CONST) {
729    const Value *V = SD->getConst();
730    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
731      if (CI->getBitWidth() > 64)
732        MIB.addCImm(CI);
733      else
734        MIB.addImm(CI->getSExtValue());
735    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
736      MIB.addFPImm(CF);
737    } else if (isa<ConstantPointerNull>(V)) {
738      // Note: This assumes that all nullptr constants are zero-valued.
739      MIB.addImm(0);
740    } else {
741      // Could be an Undef.  In any case insert an Undef so we can see what we
742      // dropped.
743      MIB.addReg(0U);
744    }
745  } else {
746    // Insert an Undef so we can see what we dropped.
747    MIB.addReg(0U);
748  }
749
750  // Indirect addressing is indicated by an Imm as the second parameter.
751  if (SD->isIndirect())
752    MIB.addImm(0U);
753  else
754    MIB.addReg(0U, RegState::Debug);
755
756  MIB.addMetadata(Var);
757  MIB.addMetadata(Expr);
758
759  return &*MIB;
760}
761
762MachineInstr *
763InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
764  MDNode *Label = SD->getLabel();
765  DebugLoc DL = SD->getDebugLoc();
766  assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
767         "Expected inlined-at fields to agree");
768
769  const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
770  MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
771  MIB.addMetadata(Label);
772
773  return &*MIB;
774}
775
776/// EmitMachineNode - Generate machine code for a target-specific node and
777/// needed dependencies.
778///
779void InstrEmitter::
780EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
781                DenseMap<SDValue, Register> &VRBaseMap) {
782  unsigned Opc = Node->getMachineOpcode();
783
784  // Handle subreg insert/extract specially
785  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
786      Opc == TargetOpcode::INSERT_SUBREG ||
787      Opc == TargetOpcode::SUBREG_TO_REG) {
788    EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
789    return;
790  }
791
792  // Handle COPY_TO_REGCLASS specially.
793  if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
794    EmitCopyToRegClassNode(Node, VRBaseMap);
795    return;
796  }
797
798  // Handle REG_SEQUENCE specially.
799  if (Opc == TargetOpcode::REG_SEQUENCE) {
800    EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
801    return;
802  }
803
804  if (Opc == TargetOpcode::IMPLICIT_DEF)
805    // We want a unique VR for each IMPLICIT_DEF use.
806    return;
807
808  const MCInstrDesc &II = TII->get(Opc);
809  unsigned NumResults = CountResults(Node);
810  unsigned NumDefs = II.getNumDefs();
811  const MCPhysReg *ScratchRegs = nullptr;
812
813  // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
814  if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
815    // Stackmaps do not have arguments and do not preserve their calling
816    // convention. However, to simplify runtime support, they clobber the same
817    // scratch registers as AnyRegCC.
818    unsigned CC = CallingConv::AnyReg;
819    if (Opc == TargetOpcode::PATCHPOINT) {
820      CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
821      NumDefs = NumResults;
822    }
823    ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
824  }
825
826  unsigned NumImpUses = 0;
827  unsigned NodeOperands =
828    countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
829  bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
830                             II.isVariadic() && II.variadicOpsAreDefs();
831  bool HasPhysRegOuts = NumResults > NumDefs &&
832                        II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
833#ifndef NDEBUG
834  unsigned NumMIOperands = NodeOperands + NumResults;
835  if (II.isVariadic())
836    assert(NumMIOperands >= II.getNumOperands() &&
837           "Too few operands for a variadic node!");
838  else
839    assert(NumMIOperands >= II.getNumOperands() &&
840           NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
841                            NumImpUses &&
842           "#operands for dag node doesn't match .td file!");
843#endif
844
845  // Create the new machine instruction.
846  MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
847
848  // Add result register values for things that are defined by this
849  // instruction.
850  if (NumResults) {
851    CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
852
853    // Transfer any IR flags from the SDNode to the MachineInstr
854    MachineInstr *MI = MIB.getInstr();
855    const SDNodeFlags Flags = Node->getFlags();
856    if (Flags.hasNoSignedZeros())
857      MI->setFlag(MachineInstr::MIFlag::FmNsz);
858
859    if (Flags.hasAllowReciprocal())
860      MI->setFlag(MachineInstr::MIFlag::FmArcp);
861
862    if (Flags.hasNoNaNs())
863      MI->setFlag(MachineInstr::MIFlag::FmNoNans);
864
865    if (Flags.hasNoInfs())
866      MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
867
868    if (Flags.hasAllowContract())
869      MI->setFlag(MachineInstr::MIFlag::FmContract);
870
871    if (Flags.hasApproximateFuncs())
872      MI->setFlag(MachineInstr::MIFlag::FmAfn);
873
874    if (Flags.hasAllowReassociation())
875      MI->setFlag(MachineInstr::MIFlag::FmReassoc);
876
877    if (Flags.hasNoUnsignedWrap())
878      MI->setFlag(MachineInstr::MIFlag::NoUWrap);
879
880    if (Flags.hasNoSignedWrap())
881      MI->setFlag(MachineInstr::MIFlag::NoSWrap);
882
883    if (Flags.hasExact())
884      MI->setFlag(MachineInstr::MIFlag::IsExact);
885
886    if (Flags.hasNoFPExcept())
887      MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
888  }
889
890  // Emit all of the actual operands of this instruction, adding them to the
891  // instruction as appropriate.
892  bool HasOptPRefs = NumDefs > NumResults;
893  assert((!HasOptPRefs || !HasPhysRegOuts) &&
894         "Unable to cope with optional defs and phys regs defs!");
895  unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
896  for (unsigned i = NumSkip; i != NodeOperands; ++i)
897    AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
898               VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
899
900  // Add scratch registers as implicit def and early clobber
901  if (ScratchRegs)
902    for (unsigned i = 0; ScratchRegs[i]; ++i)
903      MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
904                                 RegState::EarlyClobber);
905
906  // Set the memory reference descriptions of this instruction now that it is
907  // part of the function.
908  MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
909
910  // Insert the instruction into position in the block. This needs to
911  // happen before any custom inserter hook is called so that the
912  // hook knows where in the block to insert the replacement code.
913  MBB->insert(InsertPos, MIB);
914
915  // The MachineInstr may also define physregs instead of virtregs.  These
916  // physreg values can reach other instructions in different ways:
917  //
918  // 1. When there is a use of a Node value beyond the explicitly defined
919  //    virtual registers, we emit a CopyFromReg for one of the implicitly
920  //    defined physregs.  This only happens when HasPhysRegOuts is true.
921  //
922  // 2. A CopyFromReg reading a physreg may be glued to this instruction.
923  //
924  // 3. A glued instruction may implicitly use a physreg.
925  //
926  // 4. A glued instruction may use a RegisterSDNode operand.
927  //
928  // Collect all the used physreg defs, and make sure that any unused physreg
929  // defs are marked as dead.
930  SmallVector<Register, 8> UsedRegs;
931
932  // Additional results must be physical register defs.
933  if (HasPhysRegOuts) {
934    for (unsigned i = NumDefs; i < NumResults; ++i) {
935      Register Reg = II.getImplicitDefs()[i - NumDefs];
936      if (!Node->hasAnyUseOfValue(i))
937        continue;
938      // This implicitly defined physreg has a use.
939      UsedRegs.push_back(Reg);
940      EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
941    }
942  }
943
944  // Scan the glue chain for any used physregs.
945  if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
946    for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
947      if (F->getOpcode() == ISD::CopyFromReg) {
948        UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
949        continue;
950      } else if (F->getOpcode() == ISD::CopyToReg) {
951        // Skip CopyToReg nodes that are internal to the glue chain.
952        continue;
953      }
954      // Collect declared implicit uses.
955      const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
956      UsedRegs.append(MCID.getImplicitUses(),
957                      MCID.getImplicitUses() + MCID.getNumImplicitUses());
958      // In addition to declared implicit uses, we must also check for
959      // direct RegisterSDNode operands.
960      for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
961        if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
962          Register Reg = R->getReg();
963          if (Reg.isPhysical())
964            UsedRegs.push_back(Reg);
965        }
966    }
967  }
968
969  // Finally mark unused registers as dead.
970  if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
971    MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
972
973  // Run post-isel target hook to adjust this instruction if needed.
974  if (II.hasPostISelHook())
975    TLI->AdjustInstrPostInstrSelection(*MIB, Node);
976}
977
978/// EmitSpecialNode - Generate machine code for a target-independent node and
979/// needed dependencies.
980void InstrEmitter::
981EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
982                DenseMap<SDValue, Register> &VRBaseMap) {
983  switch (Node->getOpcode()) {
984  default:
985#ifndef NDEBUG
986    Node->dump();
987#endif
988    llvm_unreachable("This target-independent node should have been selected!");
989  case ISD::EntryToken:
990    llvm_unreachable("EntryToken should have been excluded from the schedule!");
991  case ISD::MERGE_VALUES:
992  case ISD::TokenFactor: // fall thru
993    break;
994  case ISD::CopyToReg: {
995    Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
996    SDValue SrcVal = Node->getOperand(2);
997    if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
998        SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
999      // Instead building a COPY to that vreg destination, build an
1000      // IMPLICIT_DEF instruction instead.
1001      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1002              TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1003      break;
1004    }
1005    Register SrcReg;
1006    if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1007      SrcReg = R->getReg();
1008    else
1009      SrcReg = getVR(SrcVal, VRBaseMap);
1010
1011    if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1012      break;
1013
1014    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1015            DestReg).addReg(SrcReg);
1016    break;
1017  }
1018  case ISD::CopyFromReg: {
1019    unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1020    EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1021    break;
1022  }
1023  case ISD::EH_LABEL:
1024  case ISD::ANNOTATION_LABEL: {
1025    unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1026                       ? TargetOpcode::EH_LABEL
1027                       : TargetOpcode::ANNOTATION_LABEL;
1028    MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1029    BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1030            TII->get(Opc)).addSym(S);
1031    break;
1032  }
1033
1034  case ISD::LIFETIME_START:
1035  case ISD::LIFETIME_END: {
1036    unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1037    TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1038
1039    FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1040    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1041    .addFrameIndex(FI->getIndex());
1042    break;
1043  }
1044
1045  case ISD::INLINEASM:
1046  case ISD::INLINEASM_BR: {
1047    unsigned NumOps = Node->getNumOperands();
1048    if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1049      --NumOps;  // Ignore the glue operand.
1050
1051    // Create the inline asm machine instruction.
1052    unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1053                          ? TargetOpcode::INLINEASM_BR
1054                          : TargetOpcode::INLINEASM;
1055    MachineInstrBuilder MIB =
1056        BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1057
1058    // Add the asm string as an external symbol operand.
1059    SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1060    const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1061    MIB.addExternalSymbol(AsmStr);
1062
1063    // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1064    // bits.
1065    int64_t ExtraInfo =
1066      cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1067                          getZExtValue();
1068    MIB.addImm(ExtraInfo);
1069
1070    // Remember to operand index of the group flags.
1071    SmallVector<unsigned, 8> GroupIdx;
1072
1073    // Remember registers that are part of early-clobber defs.
1074    SmallVector<unsigned, 8> ECRegs;
1075
1076    // Add all of the operand registers to the instruction.
1077    for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1078      unsigned Flags =
1079        cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1080      const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1081
1082      GroupIdx.push_back(MIB->getNumOperands());
1083      MIB.addImm(Flags);
1084      ++i;  // Skip the ID value.
1085
1086      switch (InlineAsm::getKind(Flags)) {
1087      default: llvm_unreachable("Bad flags!");
1088        case InlineAsm::Kind_RegDef:
1089        for (unsigned j = 0; j != NumVals; ++j, ++i) {
1090          unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1091          // FIXME: Add dead flags for physical and virtual registers defined.
1092          // For now, mark physical register defs as implicit to help fast
1093          // regalloc. This makes inline asm look a lot like calls.
1094          MIB.addReg(Reg,
1095                     RegState::Define |
1096                         getImplRegState(Register::isPhysicalRegister(Reg)));
1097        }
1098        break;
1099      case InlineAsm::Kind_RegDefEarlyClobber:
1100      case InlineAsm::Kind_Clobber:
1101        for (unsigned j = 0; j != NumVals; ++j, ++i) {
1102          unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1103          MIB.addReg(Reg,
1104                     RegState::Define | RegState::EarlyClobber |
1105                         getImplRegState(Register::isPhysicalRegister(Reg)));
1106          ECRegs.push_back(Reg);
1107        }
1108        break;
1109      case InlineAsm::Kind_RegUse:  // Use of register.
1110      case InlineAsm::Kind_Imm:  // Immediate.
1111      case InlineAsm::Kind_Mem:  // Addressing mode.
1112        // The addressing mode has been selected, just add all of the
1113        // operands to the machine instruction.
1114        for (unsigned j = 0; j != NumVals; ++j, ++i)
1115          AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1116                     /*IsDebug=*/false, IsClone, IsCloned);
1117
1118        // Manually set isTied bits.
1119        if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1120          unsigned DefGroup = 0;
1121          if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1122            unsigned DefIdx = GroupIdx[DefGroup] + 1;
1123            unsigned UseIdx = GroupIdx.back() + 1;
1124            for (unsigned j = 0; j != NumVals; ++j)
1125              MIB->tieOperands(DefIdx + j, UseIdx + j);
1126          }
1127        }
1128        break;
1129      }
1130    }
1131
1132    // GCC inline assembly allows input operands to also be early-clobber
1133    // output operands (so long as the operand is written only after it's
1134    // used), but this does not match the semantics of our early-clobber flag.
1135    // If an early-clobber operand register is also an input operand register,
1136    // then remove the early-clobber flag.
1137    for (unsigned Reg : ECRegs) {
1138      if (MIB->readsRegister(Reg, TRI)) {
1139        MachineOperand *MO =
1140            MIB->findRegisterDefOperand(Reg, false, false, TRI);
1141        assert(MO && "No def operand for clobbered register?");
1142        MO->setIsEarlyClobber(false);
1143      }
1144    }
1145
1146    // Get the mdnode from the asm if it exists and add it to the instruction.
1147    SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1148    const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1149    if (MD)
1150      MIB.addMetadata(MD);
1151
1152    MBB->insert(InsertPos, MIB);
1153    break;
1154  }
1155  }
1156}
1157
1158/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1159/// at the given position in the given block.
1160InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1161                           MachineBasicBlock::iterator insertpos)
1162    : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1163      TII(MF->getSubtarget().getInstrInfo()),
1164      TRI(MF->getSubtarget().getRegisterInfo()),
1165      TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1166      InsertPos(insertpos) {}
1167