1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This implements the ScheduleDAGInstrs class, which implements
10/// re-scheduling of MachineInstrs.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/ScheduleDAGInstrs.h"
15#include "llvm/ADT/IntEqClasses.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/SparseSet.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/LiveIntervals.h"
24#include "llvm/CodeGen/LivePhysRegs.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineInstr.h"
29#include "llvm/CodeGen/MachineInstrBundle.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineOperand.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/PseudoSourceValue.h"
34#include "llvm/CodeGen/RegisterPressure.h"
35#include "llvm/CodeGen/ScheduleDAG.h"
36#include "llvm/CodeGen/ScheduleDFS.h"
37#include "llvm/CodeGen/SlotIndexes.h"
38#include "llvm/CodeGen/TargetRegisterInfo.h"
39#include "llvm/CodeGen/TargetSubtargetInfo.h"
40#include "llvm/Config/llvm-config.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/Operator.h"
46#include "llvm/IR/Type.h"
47#include "llvm/IR/Value.h"
48#include "llvm/MC/LaneBitmask.h"
49#include "llvm/MC/MCRegisterInfo.h"
50#include "llvm/Support/Casting.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/Format.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58#include <cassert>
59#include <iterator>
60#include <string>
61#include <utility>
62#include <vector>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "machine-scheduler"
67
68static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
69    cl::ZeroOrMore, cl::init(false),
70    cl::desc("Enable use of AA during MI DAG construction"));
71
72static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
73    cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
74
75// Note: the two options below might be used in tuning compile time vs
76// output quality. Setting HugeRegion so large that it will never be
77// reached means best-effort, but may be slow.
78
79// When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
80// together hold this many SUs, a reduction of maps will be done.
81static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
82    cl::init(1000), cl::desc("The limit to use while constructing the DAG "
83                             "prior to scheduling, at which point a trade-off "
84                             "is made to avoid excessive compile time."));
85
86static cl::opt<unsigned> ReductionSize(
87    "dag-maps-reduction-size", cl::Hidden,
88    cl::desc("A huge scheduling region will have maps reduced by this many "
89             "nodes at a time. Defaults to HugeRegion / 2."));
90
91static unsigned getReductionSize() {
92  // Always reduce a huge region with half of the elements, except
93  // when user sets this number explicitly.
94  if (ReductionSize.getNumOccurrences() == 0)
95    return HugeRegion / 2;
96  return ReductionSize;
97}
98
99static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
100#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101  dbgs() << "{ ";
102  for (const SUnit *su : L) {
103    dbgs() << "SU(" << su->NodeNum << ")";
104    if (su != L.back())
105      dbgs() << ", ";
106  }
107  dbgs() << "}\n";
108#endif
109}
110
111ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
112                                     const MachineLoopInfo *mli,
113                                     bool RemoveKillFlags)
114    : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
115      RemoveKillFlags(RemoveKillFlags),
116      UnknownValue(UndefValue::get(
117                             Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
118  DbgValues.clear();
119
120  const TargetSubtargetInfo &ST = mf.getSubtarget();
121  SchedModel.init(&ST);
122}
123
124/// If this machine instr has memory reference information and it can be
125/// tracked to a normal reference to a known object, return the Value
126/// for that object. This function returns false the memory location is
127/// unknown or may alias anything.
128static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
129                                         const MachineFrameInfo &MFI,
130                                         UnderlyingObjectsVector &Objects,
131                                         const DataLayout &DL) {
132  auto allMMOsOkay = [&]() {
133    for (const MachineMemOperand *MMO : MI->memoperands()) {
134      // TODO: Figure out whether isAtomic is really necessary (see D57601).
135      if (MMO->isVolatile() || MMO->isAtomic())
136        return false;
137
138      if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
139        // Function that contain tail calls don't have unique PseudoSourceValue
140        // objects. Two PseudoSourceValues might refer to the same or
141        // overlapping locations. The client code calling this function assumes
142        // this is not the case. So return a conservative answer of no known
143        // object.
144        if (MFI.hasTailCall())
145          return false;
146
147        // For now, ignore PseudoSourceValues which may alias LLVM IR values
148        // because the code that uses this function has no way to cope with
149        // such aliases.
150        if (PSV->isAliased(&MFI))
151          return false;
152
153        bool MayAlias = PSV->mayAlias(&MFI);
154        Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
155      } else if (const Value *V = MMO->getValue()) {
156        SmallVector<Value *, 4> Objs;
157        if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
158          return false;
159
160        for (Value *V : Objs) {
161          assert(isIdentifiedObject(V));
162          Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
163        }
164      } else
165        return false;
166    }
167    return true;
168  };
169
170  if (!allMMOsOkay()) {
171    Objects.clear();
172    return false;
173  }
174
175  return true;
176}
177
178void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
179  BB = bb;
180}
181
182void ScheduleDAGInstrs::finishBlock() {
183  // Subclasses should no longer refer to the old block.
184  BB = nullptr;
185}
186
187void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
188                                    MachineBasicBlock::iterator begin,
189                                    MachineBasicBlock::iterator end,
190                                    unsigned regioninstrs) {
191  assert(bb == BB && "startBlock should set BB");
192  RegionBegin = begin;
193  RegionEnd = end;
194  NumRegionInstrs = regioninstrs;
195}
196
197void ScheduleDAGInstrs::exitRegion() {
198  // Nothing to do.
199}
200
201void ScheduleDAGInstrs::addSchedBarrierDeps() {
202  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
203  ExitSU.setInstr(ExitMI);
204  // Add dependencies on the defs and uses of the instruction.
205  if (ExitMI) {
206    for (const MachineOperand &MO : ExitMI->operands()) {
207      if (!MO.isReg() || MO.isDef()) continue;
208      Register Reg = MO.getReg();
209      if (Register::isPhysicalRegister(Reg)) {
210        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
211      } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
212        addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
213      }
214    }
215  }
216  if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
217    // For others, e.g. fallthrough, conditional branch, assume the exit
218    // uses all the registers that are livein to the successor blocks.
219    for (const MachineBasicBlock *Succ : BB->successors()) {
220      for (const auto &LI : Succ->liveins()) {
221        if (!Uses.contains(LI.PhysReg))
222          Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
223      }
224    }
225  }
226}
227
228/// MO is an operand of SU's instruction that defines a physical register. Adds
229/// data dependencies from SU to any uses of the physical register.
230void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
231  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
232  assert(MO.isDef() && "expect physreg def");
233
234  // Ask the target if address-backscheduling is desirable, and if so how much.
235  const TargetSubtargetInfo &ST = MF.getSubtarget();
236
237  // Only use any non-zero latency for real defs/uses, in contrast to
238  // "fake" operands added by regalloc.
239  const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
240  bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
241                            !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
242  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
243       Alias.isValid(); ++Alias) {
244    if (!Uses.contains(*Alias))
245      continue;
246    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
247      SUnit *UseSU = I->SU;
248      if (UseSU == SU)
249        continue;
250
251      // Adjust the dependence latency using operand def/use information,
252      // then allow the target to perform its own adjustments.
253      int UseOp = I->OpIdx;
254      MachineInstr *RegUse = nullptr;
255      SDep Dep;
256      if (UseOp < 0)
257        Dep = SDep(SU, SDep::Artificial);
258      else {
259        // Set the hasPhysRegDefs only for physreg defs that have a use within
260        // the scheduling region.
261        SU->hasPhysRegDefs = true;
262        Dep = SDep(SU, SDep::Data, *Alias);
263        RegUse = UseSU->getInstr();
264      }
265      const MCInstrDesc *UseMIDesc =
266          (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
267      bool ImplicitPseudoUse =
268          (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
269           !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
270      if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
271        Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
272                                                        RegUse, UseOp));
273        ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
274      } else {
275        Dep.setLatency(0);
276        // FIXME: We could always let target to adjustSchedDependency(), and
277        // remove this condition, but that currently asserts in Hexagon BE.
278        if (SU->getInstr()->isBundle() || (RegUse && RegUse->isBundle()))
279          ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
280      }
281
282      UseSU->addPred(Dep);
283    }
284  }
285}
286
287/// Adds register dependencies (data, anti, and output) from this SUnit
288/// to following instructions in the same scheduling region that depend the
289/// physical register referenced at OperIdx.
290void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
291  MachineInstr *MI = SU->getInstr();
292  MachineOperand &MO = MI->getOperand(OperIdx);
293  Register Reg = MO.getReg();
294  // We do not need to track any dependencies for constant registers.
295  if (MRI.isConstantPhysReg(Reg))
296    return;
297
298  const TargetSubtargetInfo &ST = MF.getSubtarget();
299
300  // Optionally add output and anti dependencies. For anti
301  // dependencies we use a latency of 0 because for a multi-issue
302  // target we want to allow the defining instruction to issue
303  // in the same cycle as the using instruction.
304  // TODO: Using a latency of 1 here for output dependencies assumes
305  //       there's no cost for reusing registers.
306  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
307  for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
308    if (!Defs.contains(*Alias))
309      continue;
310    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
311      SUnit *DefSU = I->SU;
312      if (DefSU == &ExitSU)
313        continue;
314      if (DefSU != SU &&
315          (Kind != SDep::Output || !MO.isDead() ||
316           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
317        SDep Dep(SU, Kind, /*Reg=*/*Alias);
318        if (Kind != SDep::Anti)
319          Dep.setLatency(
320            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
321        ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
322        DefSU->addPred(Dep);
323      }
324    }
325  }
326
327  if (!MO.isDef()) {
328    SU->hasPhysRegUses = true;
329    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
330    // retrieve the existing SUnits list for this register's uses.
331    // Push this SUnit on the use list.
332    Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
333    if (RemoveKillFlags)
334      MO.setIsKill(false);
335  } else {
336    addPhysRegDataDeps(SU, OperIdx);
337
338    // Clear previous uses and defs of this register and its subergisters.
339    for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
340      if (Uses.contains(*SubReg))
341        Uses.eraseAll(*SubReg);
342      if (!MO.isDead())
343        Defs.eraseAll(*SubReg);
344    }
345    if (MO.isDead() && SU->isCall) {
346      // Calls will not be reordered because of chain dependencies (see
347      // below). Since call operands are dead, calls may continue to be added
348      // to the DefList making dependence checking quadratic in the size of
349      // the block. Instead, we leave only one call at the back of the
350      // DefList.
351      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
352      Reg2SUnitsMap::iterator B = P.first;
353      Reg2SUnitsMap::iterator I = P.second;
354      for (bool isBegin = I == B; !isBegin; /* empty */) {
355        isBegin = (--I) == B;
356        if (!I->SU->isCall)
357          break;
358        I = Defs.erase(I);
359      }
360    }
361
362    // Defs are pushed in the order they are visited and never reordered.
363    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
364  }
365}
366
367LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
368{
369  Register Reg = MO.getReg();
370  // No point in tracking lanemasks if we don't have interesting subregisters.
371  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
372  if (!RC.HasDisjunctSubRegs)
373    return LaneBitmask::getAll();
374
375  unsigned SubReg = MO.getSubReg();
376  if (SubReg == 0)
377    return RC.getLaneMask();
378  return TRI->getSubRegIndexLaneMask(SubReg);
379}
380
381bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
382  auto RegUse = CurrentVRegUses.find(MO.getReg());
383  if (RegUse == CurrentVRegUses.end())
384    return true;
385  return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
386}
387
388/// Adds register output and data dependencies from this SUnit to instructions
389/// that occur later in the same scheduling region if they read from or write to
390/// the virtual register defined at OperIdx.
391///
392/// TODO: Hoist loop induction variable increments. This has to be
393/// reevaluated. Generally, IV scheduling should be done before coalescing.
394void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
395  MachineInstr *MI = SU->getInstr();
396  MachineOperand &MO = MI->getOperand(OperIdx);
397  Register Reg = MO.getReg();
398
399  LaneBitmask DefLaneMask;
400  LaneBitmask KillLaneMask;
401  if (TrackLaneMasks) {
402    bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
403    DefLaneMask = getLaneMaskForMO(MO);
404    // If we have a <read-undef> flag, none of the lane values comes from an
405    // earlier instruction.
406    KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
407
408    if (MO.getSubReg() != 0 && MO.isUndef()) {
409      // There may be other subregister defs on the same instruction of the same
410      // register in later operands. The lanes of other defs will now be live
411      // after this instruction, so these should not be treated as killed by the
412      // instruction even though they appear to be killed in this one operand.
413      for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) {
414        const MachineOperand &OtherMO = MI->getOperand(I);
415        if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
416          KillLaneMask &= ~getLaneMaskForMO(OtherMO);
417      }
418    }
419
420    // Clear undef flag, we'll re-add it later once we know which subregister
421    // Def is first.
422    MO.setIsUndef(false);
423  } else {
424    DefLaneMask = LaneBitmask::getAll();
425    KillLaneMask = LaneBitmask::getAll();
426  }
427
428  if (MO.isDead()) {
429    assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
430  } else {
431    // Add data dependence to all uses we found so far.
432    const TargetSubtargetInfo &ST = MF.getSubtarget();
433    for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
434         E = CurrentVRegUses.end(); I != E; /*empty*/) {
435      LaneBitmask LaneMask = I->LaneMask;
436      // Ignore uses of other lanes.
437      if ((LaneMask & KillLaneMask).none()) {
438        ++I;
439        continue;
440      }
441
442      if ((LaneMask & DefLaneMask).any()) {
443        SUnit *UseSU = I->SU;
444        MachineInstr *Use = UseSU->getInstr();
445        SDep Dep(SU, SDep::Data, Reg);
446        Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
447                                                        I->OperandIndex));
448        ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
449        UseSU->addPred(Dep);
450      }
451
452      LaneMask &= ~KillLaneMask;
453      // If we found a Def for all lanes of this use, remove it from the list.
454      if (LaneMask.any()) {
455        I->LaneMask = LaneMask;
456        ++I;
457      } else
458        I = CurrentVRegUses.erase(I);
459    }
460  }
461
462  // Shortcut: Singly defined vregs do not have output/anti dependencies.
463  if (MRI.hasOneDef(Reg))
464    return;
465
466  // Add output dependence to the next nearest defs of this vreg.
467  //
468  // Unless this definition is dead, the output dependence should be
469  // transitively redundant with antidependencies from this definition's
470  // uses. We're conservative for now until we have a way to guarantee the uses
471  // are not eliminated sometime during scheduling. The output dependence edge
472  // is also useful if output latency exceeds def-use latency.
473  LaneBitmask LaneMask = DefLaneMask;
474  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
475                                     CurrentVRegDefs.end())) {
476    // Ignore defs for other lanes.
477    if ((V2SU.LaneMask & LaneMask).none())
478      continue;
479    // Add an output dependence.
480    SUnit *DefSU = V2SU.SU;
481    // Ignore additional defs of the same lanes in one instruction. This can
482    // happen because lanemasks are shared for targets with too many
483    // subregisters. We also use some representration tricks/hacks where we
484    // add super-register defs/uses, to imply that although we only access parts
485    // of the reg we care about the full one.
486    if (DefSU == SU)
487      continue;
488    SDep Dep(SU, SDep::Output, Reg);
489    Dep.setLatency(
490      SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
491    DefSU->addPred(Dep);
492
493    // Update current definition. This can get tricky if the def was about a
494    // bigger lanemask before. We then have to shrink it and create a new
495    // VReg2SUnit for the non-overlapping part.
496    LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
497    LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
498    V2SU.SU = SU;
499    V2SU.LaneMask = OverlapMask;
500    if (NonOverlapMask.any())
501      CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
502  }
503  // If there was no CurrentVRegDefs entry for some lanes yet, create one.
504  if (LaneMask.any())
505    CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
506}
507
508/// Adds a register data dependency if the instruction that defines the
509/// virtual register used at OperIdx is mapped to an SUnit. Add a register
510/// antidependency from this SUnit to instructions that occur later in the same
511/// scheduling region if they write the virtual register.
512///
513/// TODO: Handle ExitSU "uses" properly.
514void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
515  const MachineInstr *MI = SU->getInstr();
516  const MachineOperand &MO = MI->getOperand(OperIdx);
517  Register Reg = MO.getReg();
518
519  // Remember the use. Data dependencies will be added when we find the def.
520  LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
521                                        : LaneBitmask::getAll();
522  CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
523
524  // Add antidependences to the following defs of the vreg.
525  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
526                                     CurrentVRegDefs.end())) {
527    // Ignore defs for unrelated lanes.
528    LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
529    if ((PrevDefLaneMask & LaneMask).none())
530      continue;
531    if (V2SU.SU == SU)
532      continue;
533
534    V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
535  }
536}
537
538/// Returns true if MI is an instruction we are unable to reason about
539/// (like a call or something with unmodeled side effects).
540static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) {
541  return MI->isCall() || MI->hasUnmodeledSideEffects() ||
542         (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
543}
544
545void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
546                                            unsigned Latency) {
547  if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
548    SDep Dep(SUa, SDep::MayAliasMem);
549    Dep.setLatency(Latency);
550    SUb->addPred(Dep);
551  }
552}
553
554/// Creates an SUnit for each real instruction, numbered in top-down
555/// topological order. The instruction order A < B, implies that no edge exists
556/// from B to A.
557///
558/// Map each real instruction to its SUnit.
559///
560/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
561/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
562/// instead of pointers.
563///
564/// MachineScheduler relies on initSUnits numbering the nodes by their order in
565/// the original instruction list.
566void ScheduleDAGInstrs::initSUnits() {
567  // We'll be allocating one SUnit for each real instruction in the region,
568  // which is contained within a basic block.
569  SUnits.reserve(NumRegionInstrs);
570
571  for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
572    if (MI.isDebugInstr())
573      continue;
574
575    SUnit *SU = newSUnit(&MI);
576    MISUnitMap[&MI] = SU;
577
578    SU->isCall = MI.isCall();
579    SU->isCommutable = MI.isCommutable();
580
581    // Assign the Latency field of SU using target-provided information.
582    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
583
584    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
585    //
586    // Reserved resources block an instruction from issuing and stall the
587    // entire pipeline. These are identified by BufferSize=0.
588    //
589    // Unbuffered resources prevent execution of subsequent instructions that
590    // require the same resources. This is used for in-order execution pipelines
591    // within an out-of-order core. These are identified by BufferSize=1.
592    if (SchedModel.hasInstrSchedModel()) {
593      const MCSchedClassDesc *SC = getSchedClass(SU);
594      for (const MCWriteProcResEntry &PRE :
595           make_range(SchedModel.getWriteProcResBegin(SC),
596                      SchedModel.getWriteProcResEnd(SC))) {
597        switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
598        case 0:
599          SU->hasReservedResource = true;
600          break;
601        case 1:
602          SU->isUnbuffered = true;
603          break;
604        default:
605          break;
606        }
607      }
608    }
609  }
610}
611
612class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
613  /// Current total number of SUs in map.
614  unsigned NumNodes = 0;
615
616  /// 1 for loads, 0 for stores. (see comment in SUList)
617  unsigned TrueMemOrderLatency;
618
619public:
620  Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
621
622  /// To keep NumNodes up to date, insert() is used instead of
623  /// this operator w/ push_back().
624  ValueType &operator[](const SUList &Key) {
625    llvm_unreachable("Don't use. Use insert() instead."); };
626
627  /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
628  /// reduce().
629  void inline insert(SUnit *SU, ValueType V) {
630    MapVector::operator[](V).push_back(SU);
631    NumNodes++;
632  }
633
634  /// Clears the list of SUs mapped to V.
635  void inline clearList(ValueType V) {
636    iterator Itr = find(V);
637    if (Itr != end()) {
638      assert(NumNodes >= Itr->second.size());
639      NumNodes -= Itr->second.size();
640
641      Itr->second.clear();
642    }
643  }
644
645  /// Clears map from all contents.
646  void clear() {
647    MapVector<ValueType, SUList>::clear();
648    NumNodes = 0;
649  }
650
651  unsigned inline size() const { return NumNodes; }
652
653  /// Counts the number of SUs in this map after a reduction.
654  void reComputeSize() {
655    NumNodes = 0;
656    for (auto &I : *this)
657      NumNodes += I.second.size();
658  }
659
660  unsigned inline getTrueMemOrderLatency() const {
661    return TrueMemOrderLatency;
662  }
663
664  void dump();
665};
666
667void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
668                                             Value2SUsMap &Val2SUsMap) {
669  for (auto &I : Val2SUsMap)
670    addChainDependencies(SU, I.second,
671                         Val2SUsMap.getTrueMemOrderLatency());
672}
673
674void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
675                                             Value2SUsMap &Val2SUsMap,
676                                             ValueType V) {
677  Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
678  if (Itr != Val2SUsMap.end())
679    addChainDependencies(SU, Itr->second,
680                         Val2SUsMap.getTrueMemOrderLatency());
681}
682
683void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
684  assert(BarrierChain != nullptr);
685
686  for (auto &I : map) {
687    SUList &sus = I.second;
688    for (auto *SU : sus)
689      SU->addPredBarrier(BarrierChain);
690  }
691  map.clear();
692}
693
694void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
695  assert(BarrierChain != nullptr);
696
697  // Go through all lists of SUs.
698  for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
699    Value2SUsMap::iterator CurrItr = I++;
700    SUList &sus = CurrItr->second;
701    SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
702    for (; SUItr != SUEE; ++SUItr) {
703      // Stop on BarrierChain or any instruction above it.
704      if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
705        break;
706
707      (*SUItr)->addPredBarrier(BarrierChain);
708    }
709
710    // Remove also the BarrierChain from list if present.
711    if (SUItr != SUEE && *SUItr == BarrierChain)
712      SUItr++;
713
714    // Remove all SUs that are now successors of BarrierChain.
715    if (SUItr != sus.begin())
716      sus.erase(sus.begin(), SUItr);
717  }
718
719  // Remove all entries with empty su lists.
720  map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
721      return (mapEntry.second.empty()); });
722
723  // Recompute the size of the map (NumNodes).
724  map.reComputeSize();
725}
726
727void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
728                                        RegPressureTracker *RPTracker,
729                                        PressureDiffs *PDiffs,
730                                        LiveIntervals *LIS,
731                                        bool TrackLaneMasks) {
732  const TargetSubtargetInfo &ST = MF.getSubtarget();
733  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
734                                                       : ST.useAA();
735  AAForDep = UseAA ? AA : nullptr;
736
737  BarrierChain = nullptr;
738
739  this->TrackLaneMasks = TrackLaneMasks;
740  MISUnitMap.clear();
741  ScheduleDAG::clearDAG();
742
743  // Create an SUnit for each real instruction.
744  initSUnits();
745
746  if (PDiffs)
747    PDiffs->init(SUnits.size());
748
749  // We build scheduling units by walking a block's instruction list
750  // from bottom to top.
751
752  // Each MIs' memory operand(s) is analyzed to a list of underlying
753  // objects. The SU is then inserted in the SUList(s) mapped from the
754  // Value(s). Each Value thus gets mapped to lists of SUs depending
755  // on it, stores and loads kept separately. Two SUs are trivially
756  // non-aliasing if they both depend on only identified Values and do
757  // not share any common Value.
758  Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
759
760  // Certain memory accesses are known to not alias any SU in Stores
761  // or Loads, and have therefore their own 'NonAlias'
762  // domain. E.g. spill / reload instructions never alias LLVM I/R
763  // Values. It would be nice to assume that this type of memory
764  // accesses always have a proper memory operand modelling, and are
765  // therefore never unanalyzable, but this is conservatively not
766  // done.
767  Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
768
769  // Track all instructions that may raise floating-point exceptions.
770  // These do not depend on one other (or normal loads or stores), but
771  // must not be rescheduled across global barriers.  Note that we don't
772  // really need a "map" here since we don't track those MIs by value;
773  // using the same Value2SUsMap data type here is simply a matter of
774  // convenience.
775  Value2SUsMap FPExceptions;
776
777  // Remove any stale debug info; sometimes BuildSchedGraph is called again
778  // without emitting the info from the previous call.
779  DbgValues.clear();
780  FirstDbgValue = nullptr;
781
782  assert(Defs.empty() && Uses.empty() &&
783         "Only BuildGraph should update Defs/Uses");
784  Defs.setUniverse(TRI->getNumRegs());
785  Uses.setUniverse(TRI->getNumRegs());
786
787  assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
788  assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
789  unsigned NumVirtRegs = MRI.getNumVirtRegs();
790  CurrentVRegDefs.setUniverse(NumVirtRegs);
791  CurrentVRegUses.setUniverse(NumVirtRegs);
792
793  // Model data dependencies between instructions being scheduled and the
794  // ExitSU.
795  addSchedBarrierDeps();
796
797  // Walk the list of instructions, from bottom moving up.
798  MachineInstr *DbgMI = nullptr;
799  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
800       MII != MIE; --MII) {
801    MachineInstr &MI = *std::prev(MII);
802    if (DbgMI) {
803      DbgValues.push_back(std::make_pair(DbgMI, &MI));
804      DbgMI = nullptr;
805    }
806
807    if (MI.isDebugValue()) {
808      DbgMI = &MI;
809      continue;
810    }
811    if (MI.isDebugLabel())
812      continue;
813
814    SUnit *SU = MISUnitMap[&MI];
815    assert(SU && "No SUnit mapped to this MI");
816
817    if (RPTracker) {
818      RegisterOperands RegOpers;
819      RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
820      if (TrackLaneMasks) {
821        SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
822        RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
823      }
824      if (PDiffs != nullptr)
825        PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
826
827      if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
828        RPTracker->recedeSkipDebugValues();
829      assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
830      RPTracker->recede(RegOpers);
831    }
832
833    assert(
834        (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
835        "Cannot schedule terminators or labels!");
836
837    // Add register-based dependencies (data, anti, and output).
838    // For some instructions (calls, returns, inline-asm, etc.) there can
839    // be explicit uses and implicit defs, in which case the use will appear
840    // on the operand list before the def. Do two passes over the operand
841    // list to make sure that defs are processed before any uses.
842    bool HasVRegDef = false;
843    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
844      const MachineOperand &MO = MI.getOperand(j);
845      if (!MO.isReg() || !MO.isDef())
846        continue;
847      Register Reg = MO.getReg();
848      if (Register::isPhysicalRegister(Reg)) {
849        addPhysRegDeps(SU, j);
850      } else if (Register::isVirtualRegister(Reg)) {
851        HasVRegDef = true;
852        addVRegDefDeps(SU, j);
853      }
854    }
855    // Now process all uses.
856    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
857      const MachineOperand &MO = MI.getOperand(j);
858      // Only look at use operands.
859      // We do not need to check for MO.readsReg() here because subsequent
860      // subregister defs will get output dependence edges and need no
861      // additional use dependencies.
862      if (!MO.isReg() || !MO.isUse())
863        continue;
864      Register Reg = MO.getReg();
865      if (Register::isPhysicalRegister(Reg)) {
866        addPhysRegDeps(SU, j);
867      } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
868        addVRegUseDeps(SU, j);
869      }
870    }
871
872    // If we haven't seen any uses in this scheduling region, create a
873    // dependence edge to ExitSU to model the live-out latency. This is required
874    // for vreg defs with no in-region use, and prefetches with no vreg def.
875    //
876    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
877    // check currently relies on being called before adding chain deps.
878    if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
879      SDep Dep(SU, SDep::Artificial);
880      Dep.setLatency(SU->Latency - 1);
881      ExitSU.addPred(Dep);
882    }
883
884    // Add memory dependencies (Note: isStoreToStackSlot and
885    // isLoadFromStackSLot are not usable after stack slots are lowered to
886    // actual addresses).
887
888    // This is a barrier event that acts as a pivotal node in the DAG.
889    if (isGlobalMemoryObject(AA, &MI)) {
890
891      // Become the barrier chain.
892      if (BarrierChain)
893        BarrierChain->addPredBarrier(SU);
894      BarrierChain = SU;
895
896      LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
897                        << BarrierChain->NodeNum << ").\n";);
898
899      // Add dependencies against everything below it and clear maps.
900      addBarrierChain(Stores);
901      addBarrierChain(Loads);
902      addBarrierChain(NonAliasStores);
903      addBarrierChain(NonAliasLoads);
904      addBarrierChain(FPExceptions);
905
906      continue;
907    }
908
909    // Instructions that may raise FP exceptions may not be moved
910    // across any global barriers.
911    if (MI.mayRaiseFPException()) {
912      if (BarrierChain)
913        BarrierChain->addPredBarrier(SU);
914
915      FPExceptions.insert(SU, UnknownValue);
916
917      if (FPExceptions.size() >= HugeRegion) {
918        LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
919        Value2SUsMap empty;
920        reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
921      }
922    }
923
924    // If it's not a store or a variant load, we're done.
925    if (!MI.mayStore() &&
926        !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
927      continue;
928
929    // Always add dependecy edge to BarrierChain if present.
930    if (BarrierChain)
931      BarrierChain->addPredBarrier(SU);
932
933    // Find the underlying objects for MI. The Objs vector is either
934    // empty, or filled with the Values of memory locations which this
935    // SU depends on.
936    UnderlyingObjectsVector Objs;
937    bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
938                                                  MF.getDataLayout());
939
940    if (MI.mayStore()) {
941      if (!ObjsFound) {
942        // An unknown store depends on all stores and loads.
943        addChainDependencies(SU, Stores);
944        addChainDependencies(SU, NonAliasStores);
945        addChainDependencies(SU, Loads);
946        addChainDependencies(SU, NonAliasLoads);
947
948        // Map this store to 'UnknownValue'.
949        Stores.insert(SU, UnknownValue);
950      } else {
951        // Add precise dependencies against all previously seen memory
952        // accesses mapped to the same Value(s).
953        for (const UnderlyingObject &UnderlObj : Objs) {
954          ValueType V = UnderlObj.getValue();
955          bool ThisMayAlias = UnderlObj.mayAlias();
956
957          // Add dependencies to previous stores and loads mapped to V.
958          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
959          addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
960        }
961        // Update the store map after all chains have been added to avoid adding
962        // self-loop edge if multiple underlying objects are present.
963        for (const UnderlyingObject &UnderlObj : Objs) {
964          ValueType V = UnderlObj.getValue();
965          bool ThisMayAlias = UnderlObj.mayAlias();
966
967          // Map this store to V.
968          (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
969        }
970        // The store may have dependencies to unanalyzable loads and
971        // stores.
972        addChainDependencies(SU, Loads, UnknownValue);
973        addChainDependencies(SU, Stores, UnknownValue);
974      }
975    } else { // SU is a load.
976      if (!ObjsFound) {
977        // An unknown load depends on all stores.
978        addChainDependencies(SU, Stores);
979        addChainDependencies(SU, NonAliasStores);
980
981        Loads.insert(SU, UnknownValue);
982      } else {
983        for (const UnderlyingObject &UnderlObj : Objs) {
984          ValueType V = UnderlObj.getValue();
985          bool ThisMayAlias = UnderlObj.mayAlias();
986
987          // Add precise dependencies against all previously seen stores
988          // mapping to the same Value(s).
989          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
990
991          // Map this load to V.
992          (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
993        }
994        // The load may have dependencies to unanalyzable stores.
995        addChainDependencies(SU, Stores, UnknownValue);
996      }
997    }
998
999    // Reduce maps if they grow huge.
1000    if (Stores.size() + Loads.size() >= HugeRegion) {
1001      LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1002      reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1003    }
1004    if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1005      LLVM_DEBUG(
1006          dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1007      reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1008    }
1009  }
1010
1011  if (DbgMI)
1012    FirstDbgValue = DbgMI;
1013
1014  Defs.clear();
1015  Uses.clear();
1016  CurrentVRegDefs.clear();
1017  CurrentVRegUses.clear();
1018
1019  Topo.MarkDirty();
1020}
1021
1022raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1023  PSV->printCustom(OS);
1024  return OS;
1025}
1026
1027void ScheduleDAGInstrs::Value2SUsMap::dump() {
1028  for (auto &Itr : *this) {
1029    if (Itr.first.is<const Value*>()) {
1030      const Value *V = Itr.first.get<const Value*>();
1031      if (isa<UndefValue>(V))
1032        dbgs() << "Unknown";
1033      else
1034        V->printAsOperand(dbgs());
1035    }
1036    else if (Itr.first.is<const PseudoSourceValue*>())
1037      dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
1038    else
1039      llvm_unreachable("Unknown Value type.");
1040
1041    dbgs() << " : ";
1042    dumpSUList(Itr.second);
1043  }
1044}
1045
1046void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1047                                              Value2SUsMap &loads, unsigned N) {
1048  LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1049             dbgs() << "Loading SUnits:\n"; loads.dump());
1050
1051  // Insert all SU's NodeNums into a vector and sort it.
1052  std::vector<unsigned> NodeNums;
1053  NodeNums.reserve(stores.size() + loads.size());
1054  for (auto &I : stores)
1055    for (auto *SU : I.second)
1056      NodeNums.push_back(SU->NodeNum);
1057  for (auto &I : loads)
1058    for (auto *SU : I.second)
1059      NodeNums.push_back(SU->NodeNum);
1060  llvm::sort(NodeNums);
1061
1062  // The N last elements in NodeNums will be removed, and the SU with
1063  // the lowest NodeNum of them will become the new BarrierChain to
1064  // let the not yet seen SUs have a dependency to the removed SUs.
1065  assert(N <= NodeNums.size());
1066  SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1067  if (BarrierChain) {
1068    // The aliasing and non-aliasing maps reduce independently of each
1069    // other, but share a common BarrierChain. Check if the
1070    // newBarrierChain is above the former one. If it is not, it may
1071    // introduce a loop to use newBarrierChain, so keep the old one.
1072    if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1073      BarrierChain->addPredBarrier(newBarrierChain);
1074      BarrierChain = newBarrierChain;
1075      LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1076                        << BarrierChain->NodeNum << ").\n";);
1077    }
1078    else
1079      LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1080                        << BarrierChain->NodeNum << ").\n";);
1081  }
1082  else
1083    BarrierChain = newBarrierChain;
1084
1085  insertBarrierChain(stores);
1086  insertBarrierChain(loads);
1087
1088  LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1089             dbgs() << "Loading SUnits:\n"; loads.dump());
1090}
1091
1092static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1093                        MachineInstr &MI, bool addToLiveRegs) {
1094  for (MachineOperand &MO : MI.operands()) {
1095    if (!MO.isReg() || !MO.readsReg())
1096      continue;
1097    Register Reg = MO.getReg();
1098    if (!Reg)
1099      continue;
1100
1101    // Things that are available after the instruction are killed by it.
1102    bool IsKill = LiveRegs.available(MRI, Reg);
1103    MO.setIsKill(IsKill);
1104    if (addToLiveRegs)
1105      LiveRegs.addReg(Reg);
1106  }
1107}
1108
1109void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1110  LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1111
1112  LiveRegs.init(*TRI);
1113  LiveRegs.addLiveOuts(MBB);
1114
1115  // Examine block from end to start...
1116  for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
1117    if (MI.isDebugInstr())
1118      continue;
1119
1120    // Update liveness.  Registers that are defed but not used in this
1121    // instruction are now dead. Mark register and all subregs as they
1122    // are completely defined.
1123    for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1124      const MachineOperand &MO = *O;
1125      if (MO.isReg()) {
1126        if (!MO.isDef())
1127          continue;
1128        Register Reg = MO.getReg();
1129        if (!Reg)
1130          continue;
1131        LiveRegs.removeReg(Reg);
1132      } else if (MO.isRegMask()) {
1133        LiveRegs.removeRegsInMask(MO);
1134      }
1135    }
1136
1137    // If there is a bundle header fix it up first.
1138    if (!MI.isBundled()) {
1139      toggleKills(MRI, LiveRegs, MI, true);
1140    } else {
1141      MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1142      if (MI.isBundle())
1143        toggleKills(MRI, LiveRegs, MI, false);
1144
1145      // Some targets make the (questionable) assumtion that the instructions
1146      // inside the bundle are ordered and consequently only the last use of
1147      // a register inside the bundle can kill it.
1148      MachineBasicBlock::instr_iterator I = std::next(Bundle);
1149      while (I->isBundledWithSucc())
1150        ++I;
1151      do {
1152        if (!I->isDebugInstr())
1153          toggleKills(MRI, LiveRegs, *I, true);
1154        --I;
1155      } while (I != Bundle);
1156    }
1157  }
1158}
1159
1160void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1161#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1162  dumpNodeName(SU);
1163  dbgs() << ": ";
1164  SU.getInstr()->dump();
1165#endif
1166}
1167
1168void ScheduleDAGInstrs::dump() const {
1169#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1170  if (EntrySU.getInstr() != nullptr)
1171    dumpNodeAll(EntrySU);
1172  for (const SUnit &SU : SUnits)
1173    dumpNodeAll(SU);
1174  if (ExitSU.getInstr() != nullptr)
1175    dumpNodeAll(ExitSU);
1176#endif
1177}
1178
1179std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1180  std::string s;
1181  raw_string_ostream oss(s);
1182  if (SU == &EntrySU)
1183    oss << "<entry>";
1184  else if (SU == &ExitSU)
1185    oss << "<exit>";
1186  else
1187    SU->getInstr()->print(oss, /*SkipOpers=*/true);
1188  return oss.str();
1189}
1190
1191/// Return the basic block label. It is not necessarilly unique because a block
1192/// contains multiple scheduling regions. But it is fine for visualization.
1193std::string ScheduleDAGInstrs::getDAGName() const {
1194  return "dag." + BB->getFullName();
1195}
1196
1197bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1198  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1199}
1200
1201bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1202  if (SuccSU != &ExitSU) {
1203    // Do not use WillCreateCycle, it assumes SD scheduling.
1204    // If Pred is reachable from Succ, then the edge creates a cycle.
1205    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1206      return false;
1207    Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1208  }
1209  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1210  // Return true regardless of whether a new edge needed to be inserted.
1211  return true;
1212}
1213
1214//===----------------------------------------------------------------------===//
1215// SchedDFSResult Implementation
1216//===----------------------------------------------------------------------===//
1217
1218namespace llvm {
1219
1220/// Internal state used to compute SchedDFSResult.
1221class SchedDFSImpl {
1222  SchedDFSResult &R;
1223
1224  /// Join DAG nodes into equivalence classes by their subtree.
1225  IntEqClasses SubtreeClasses;
1226  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1227  std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1228
1229  struct RootData {
1230    unsigned NodeID;
1231    unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
1232    unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1233                                /// children.
1234
1235    RootData(unsigned id): NodeID(id),
1236                           ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1237
1238    unsigned getSparseSetIndex() const { return NodeID; }
1239  };
1240
1241  SparseSet<RootData> RootSet;
1242
1243public:
1244  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1245    RootSet.setUniverse(R.DFSNodeData.size());
1246  }
1247
1248  /// Returns true if this node been visited by the DFS traversal.
1249  ///
1250  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1251  /// ID. Later, SubtreeID is updated but remains valid.
1252  bool isVisited(const SUnit *SU) const {
1253    return R.DFSNodeData[SU->NodeNum].SubtreeID
1254      != SchedDFSResult::InvalidSubtreeID;
1255  }
1256
1257  /// Initializes this node's instruction count. We don't need to flag the node
1258  /// visited until visitPostorder because the DAG cannot have cycles.
1259  void visitPreorder(const SUnit *SU) {
1260    R.DFSNodeData[SU->NodeNum].InstrCount =
1261      SU->getInstr()->isTransient() ? 0 : 1;
1262  }
1263
1264  /// Called once for each node after all predecessors are visited. Revisit this
1265  /// node's predecessors and potentially join them now that we know the ILP of
1266  /// the other predecessors.
1267  void visitPostorderNode(const SUnit *SU) {
1268    // Mark this node as the root of a subtree. It may be joined with its
1269    // successors later.
1270    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1271    RootData RData(SU->NodeNum);
1272    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1273
1274    // If any predecessors are still in their own subtree, they either cannot be
1275    // joined or are large enough to remain separate. If this parent node's
1276    // total instruction count is not greater than a child subtree by at least
1277    // the subtree limit, then try to join it now since splitting subtrees is
1278    // only useful if multiple high-pressure paths are possible.
1279    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1280    for (const SDep &PredDep : SU->Preds) {
1281      if (PredDep.getKind() != SDep::Data)
1282        continue;
1283      unsigned PredNum = PredDep.getSUnit()->NodeNum;
1284      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1285        joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1286
1287      // Either link or merge the TreeData entry from the child to the parent.
1288      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1289        // If the predecessor's parent is invalid, this is a tree edge and the
1290        // current node is the parent.
1291        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1292          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1293      }
1294      else if (RootSet.count(PredNum)) {
1295        // The predecessor is not a root, but is still in the root set. This
1296        // must be the new parent that it was just joined to. Note that
1297        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1298        // set to the original parent.
1299        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1300        RootSet.erase(PredNum);
1301      }
1302    }
1303    RootSet[SU->NodeNum] = RData;
1304  }
1305
1306  /// Called once for each tree edge after calling visitPostOrderNode on
1307  /// the predecessor. Increment the parent node's instruction count and
1308  /// preemptively join this subtree to its parent's if it is small enough.
1309  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1310    R.DFSNodeData[Succ->NodeNum].InstrCount
1311      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1312    joinPredSubtree(PredDep, Succ);
1313  }
1314
1315  /// Adds a connection for cross edges.
1316  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1317    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1318  }
1319
1320  /// Sets each node's subtree ID to the representative ID and record
1321  /// connections between trees.
1322  void finalize() {
1323    SubtreeClasses.compress();
1324    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1325    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1326           && "number of roots should match trees");
1327    for (const RootData &Root : RootSet) {
1328      unsigned TreeID = SubtreeClasses[Root.NodeID];
1329      if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1330        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1331      R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1332      // Note that SubInstrCount may be greater than InstrCount if we joined
1333      // subtrees across a cross edge. InstrCount will be attributed to the
1334      // original parent, while SubInstrCount will be attributed to the joined
1335      // parent.
1336    }
1337    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1338    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1339    LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1340    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1341      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1342      LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1343                        << R.DFSNodeData[Idx].SubtreeID << '\n');
1344    }
1345    for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1346      unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1347      unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1348      if (PredTree == SuccTree)
1349        continue;
1350      unsigned Depth = P.first->getDepth();
1351      addConnection(PredTree, SuccTree, Depth);
1352      addConnection(SuccTree, PredTree, Depth);
1353    }
1354  }
1355
1356protected:
1357  /// Joins the predecessor subtree with the successor that is its DFS parent.
1358  /// Applies some heuristics before joining.
1359  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1360                       bool CheckLimit = true) {
1361    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1362
1363    // Check if the predecessor is already joined.
1364    const SUnit *PredSU = PredDep.getSUnit();
1365    unsigned PredNum = PredSU->NodeNum;
1366    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1367      return false;
1368
1369    // Four is the magic number of successors before a node is considered a
1370    // pinch point.
1371    unsigned NumDataSucs = 0;
1372    for (const SDep &SuccDep : PredSU->Succs) {
1373      if (SuccDep.getKind() == SDep::Data) {
1374        if (++NumDataSucs >= 4)
1375          return false;
1376      }
1377    }
1378    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1379      return false;
1380    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1381    SubtreeClasses.join(Succ->NodeNum, PredNum);
1382    return true;
1383  }
1384
1385  /// Called by finalize() to record a connection between trees.
1386  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1387    if (!Depth)
1388      return;
1389
1390    do {
1391      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1392        R.SubtreeConnections[FromTree];
1393      for (SchedDFSResult::Connection &C : Connections) {
1394        if (C.TreeID == ToTree) {
1395          C.Level = std::max(C.Level, Depth);
1396          return;
1397        }
1398      }
1399      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1400      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1401    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1402  }
1403};
1404
1405} // end namespace llvm
1406
1407namespace {
1408
1409/// Manage the stack used by a reverse depth-first search over the DAG.
1410class SchedDAGReverseDFS {
1411  std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1412
1413public:
1414  bool isComplete() const { return DFSStack.empty(); }
1415
1416  void follow(const SUnit *SU) {
1417    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1418  }
1419  void advance() { ++DFSStack.back().second; }
1420
1421  const SDep *backtrack() {
1422    DFSStack.pop_back();
1423    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1424  }
1425
1426  const SUnit *getCurr() const { return DFSStack.back().first; }
1427
1428  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1429
1430  SUnit::const_pred_iterator getPredEnd() const {
1431    return getCurr()->Preds.end();
1432  }
1433};
1434
1435} // end anonymous namespace
1436
1437static bool hasDataSucc(const SUnit *SU) {
1438  for (const SDep &SuccDep : SU->Succs) {
1439    if (SuccDep.getKind() == SDep::Data &&
1440        !SuccDep.getSUnit()->isBoundaryNode())
1441      return true;
1442  }
1443  return false;
1444}
1445
1446/// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1447/// search from this root.
1448void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1449  if (!IsBottomUp)
1450    llvm_unreachable("Top-down ILP metric is unimplemented");
1451
1452  SchedDFSImpl Impl(*this);
1453  for (const SUnit &SU : SUnits) {
1454    if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1455      continue;
1456
1457    SchedDAGReverseDFS DFS;
1458    Impl.visitPreorder(&SU);
1459    DFS.follow(&SU);
1460    while (true) {
1461      // Traverse the leftmost path as far as possible.
1462      while (DFS.getPred() != DFS.getPredEnd()) {
1463        const SDep &PredDep = *DFS.getPred();
1464        DFS.advance();
1465        // Ignore non-data edges.
1466        if (PredDep.getKind() != SDep::Data
1467            || PredDep.getSUnit()->isBoundaryNode()) {
1468          continue;
1469        }
1470        // An already visited edge is a cross edge, assuming an acyclic DAG.
1471        if (Impl.isVisited(PredDep.getSUnit())) {
1472          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1473          continue;
1474        }
1475        Impl.visitPreorder(PredDep.getSUnit());
1476        DFS.follow(PredDep.getSUnit());
1477      }
1478      // Visit the top of the stack in postorder and backtrack.
1479      const SUnit *Child = DFS.getCurr();
1480      const SDep *PredDep = DFS.backtrack();
1481      Impl.visitPostorderNode(Child);
1482      if (PredDep)
1483        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1484      if (DFS.isComplete())
1485        break;
1486    }
1487  }
1488  Impl.finalize();
1489}
1490
1491/// The root of the given SubtreeID was just scheduled. For all subtrees
1492/// connected to this tree, record the depth of the connection so that the
1493/// nearest connected subtrees can be prioritized.
1494void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1495  for (const Connection &C : SubtreeConnections[SubtreeID]) {
1496    SubtreeConnectLevels[C.TreeID] =
1497      std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1498    LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
1499                      << SubtreeConnectLevels[C.TreeID] << '\n');
1500  }
1501}
1502
1503#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1504LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1505  OS << InstrCount << " / " << Length << " = ";
1506  if (!Length)
1507    OS << "BADILP";
1508  else
1509    OS << format("%g", ((double)InstrCount / Length));
1510}
1511
1512LLVM_DUMP_METHOD void ILPValue::dump() const {
1513  dbgs() << *this << '\n';
1514}
1515
1516namespace llvm {
1517
1518LLVM_DUMP_METHOD
1519raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1520  Val.print(OS);
1521  return OS;
1522}
1523
1524} // end namespace llvm
1525
1526#endif
1527