1//===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion on machine instructions. We
10// attempt to remove as much code from the body of a loop as possible.
11//
12// This pass is not intended to be a replacement or a complete alternative
13// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14// constructs that are not exposed before lowering and instruction selection.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27#include "llvm/CodeGen/MachineDominators.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFunctionPass.h"
31#include "llvm/CodeGen/MachineInstr.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineMemOperand.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetLowering.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/CodeGen/TargetSchedule.h"
41#include "llvm/CodeGen/TargetSubtargetInfo.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/MC/MCInstrDesc.h"
45#include "llvm/MC/MCRegisterInfo.h"
46#include "llvm/Pass.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/raw_ostream.h"
51#include <algorithm>
52#include <cassert>
53#include <limits>
54#include <vector>
55
56using namespace llvm;
57
58#define DEBUG_TYPE "machinelicm"
59
60static cl::opt<bool>
61AvoidSpeculation("avoid-speculation",
62                 cl::desc("MachineLICM should avoid speculation"),
63                 cl::init(true), cl::Hidden);
64
65static cl::opt<bool>
66HoistCheapInsts("hoist-cheap-insts",
67                cl::desc("MachineLICM should hoist even cheap instructions"),
68                cl::init(false), cl::Hidden);
69
70static cl::opt<bool>
71SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
72                       cl::desc("MachineLICM should sink instructions into "
73                                "loops to avoid register spills"),
74                       cl::init(false), cl::Hidden);
75static cl::opt<bool>
76HoistConstStores("hoist-const-stores",
77                 cl::desc("Hoist invariant stores"),
78                 cl::init(true), cl::Hidden);
79// The default threshold of 100 (i.e. if target block is 100 times hotter)
80// is based on empirical data on a single target and is subject to tuning.
81static cl::opt<unsigned>
82BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
83                             cl::desc("Do not hoist instructions if target"
84                             "block is N times hotter than the source."),
85                             cl::init(100), cl::Hidden);
86
87enum class UseBFI { None, PGO, All };
88
89static cl::opt<UseBFI>
90DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
91                              cl::desc("Disable hoisting instructions to"
92                              " hotter blocks"),
93                              cl::init(UseBFI::None), cl::Hidden,
94                              cl::values(clEnumValN(UseBFI::None, "none",
95                              "disable the feature"),
96                              clEnumValN(UseBFI::PGO, "pgo",
97                              "enable the feature when using profile data"),
98                              clEnumValN(UseBFI::All, "all",
99                              "enable the feature with/wo profile data")));
100
101STATISTIC(NumHoisted,
102          "Number of machine instructions hoisted out of loops");
103STATISTIC(NumLowRP,
104          "Number of instructions hoisted in low reg pressure situation");
105STATISTIC(NumHighLatency,
106          "Number of high latency instructions hoisted");
107STATISTIC(NumCSEed,
108          "Number of hoisted machine instructions CSEed");
109STATISTIC(NumPostRAHoisted,
110          "Number of machine instructions hoisted out of loops post regalloc");
111STATISTIC(NumStoreConst,
112          "Number of stores of const phys reg hoisted out of loops");
113STATISTIC(NumNotHoistedDueToHotness,
114          "Number of instructions not hoisted due to block frequency");
115
116namespace {
117
118  class MachineLICMBase : public MachineFunctionPass {
119    const TargetInstrInfo *TII;
120    const TargetLoweringBase *TLI;
121    const TargetRegisterInfo *TRI;
122    const MachineFrameInfo *MFI;
123    MachineRegisterInfo *MRI;
124    TargetSchedModel SchedModel;
125    bool PreRegAlloc;
126    bool HasProfileData;
127
128    // Various analyses that we use...
129    AliasAnalysis        *AA;      // Alias analysis info.
130    MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info
131    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
132    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
133
134    // State that is updated as we process loops
135    bool         Changed;          // True if a loop is changed.
136    bool         FirstInLoop;      // True if it's the first LICM in the loop.
137    MachineLoop *CurLoop;          // The current loop we are working on.
138    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
139
140    // Exit blocks for CurLoop.
141    SmallVector<MachineBasicBlock *, 8> ExitBlocks;
142
143    bool isExitBlock(const MachineBasicBlock *MBB) const {
144      return is_contained(ExitBlocks, MBB);
145    }
146
147    // Track 'estimated' register pressure.
148    SmallSet<unsigned, 32> RegSeen;
149    SmallVector<unsigned, 8> RegPressure;
150
151    // Register pressure "limit" per register pressure set. If the pressure
152    // is higher than the limit, then it's considered high.
153    SmallVector<unsigned, 8> RegLimit;
154
155    // Register pressure on path leading from loop preheader to current BB.
156    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
157
158    // For each opcode, keep a list of potential CSE instructions.
159    DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
160
161    enum {
162      SpeculateFalse   = 0,
163      SpeculateTrue    = 1,
164      SpeculateUnknown = 2
165    };
166
167    // If a MBB does not dominate loop exiting blocks then it may not safe
168    // to hoist loads from this block.
169    // Tri-state: 0 - false, 1 - true, 2 - unknown
170    unsigned SpeculationState;
171
172  public:
173    MachineLICMBase(char &PassID, bool PreRegAlloc)
174        : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
175
176    bool runOnMachineFunction(MachineFunction &MF) override;
177
178    void getAnalysisUsage(AnalysisUsage &AU) const override {
179      AU.addRequired<MachineLoopInfo>();
180      if (DisableHoistingToHotterBlocks != UseBFI::None)
181        AU.addRequired<MachineBlockFrequencyInfo>();
182      AU.addRequired<MachineDominatorTree>();
183      AU.addRequired<AAResultsWrapperPass>();
184      AU.addPreserved<MachineLoopInfo>();
185      MachineFunctionPass::getAnalysisUsage(AU);
186    }
187
188    void releaseMemory() override {
189      RegSeen.clear();
190      RegPressure.clear();
191      RegLimit.clear();
192      BackTrace.clear();
193      CSEMap.clear();
194    }
195
196  private:
197    /// Keep track of information about hoisting candidates.
198    struct CandidateInfo {
199      MachineInstr *MI;
200      unsigned      Def;
201      int           FI;
202
203      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
204        : MI(mi), Def(def), FI(fi) {}
205    };
206
207    void HoistRegionPostRA();
208
209    void HoistPostRA(MachineInstr *MI, unsigned Def);
210
211    void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
212                   BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
213                   SmallVectorImpl<CandidateInfo> &Candidates);
214
215    void AddToLiveIns(unsigned Reg);
216
217    bool IsLICMCandidate(MachineInstr &I);
218
219    bool IsLoopInvariantInst(MachineInstr &I);
220
221    bool HasLoopPHIUse(const MachineInstr *MI) const;
222
223    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
224                               unsigned Reg) const;
225
226    bool IsCheapInstruction(MachineInstr &MI) const;
227
228    bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
229                                 bool Cheap);
230
231    void UpdateBackTraceRegPressure(const MachineInstr *MI);
232
233    bool IsProfitableToHoist(MachineInstr &MI);
234
235    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
236
237    void EnterScope(MachineBasicBlock *MBB);
238
239    void ExitScope(MachineBasicBlock *MBB);
240
241    void ExitScopeIfDone(
242        MachineDomTreeNode *Node,
243        DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
244        DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
245
246    void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
247
248    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
249
250    void SinkIntoLoop();
251
252    void InitRegPressure(MachineBasicBlock *BB);
253
254    DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
255                                             bool ConsiderSeen,
256                                             bool ConsiderUnseenAsDef);
257
258    void UpdateRegPressure(const MachineInstr *MI,
259                           bool ConsiderUnseenAsDef = false);
260
261    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
262
263    const MachineInstr *
264    LookForDuplicate(const MachineInstr *MI,
265                     std::vector<const MachineInstr *> &PrevMIs);
266
267    bool EliminateCSE(
268        MachineInstr *MI,
269        DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
270
271    bool MayCSE(MachineInstr *MI);
272
273    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
274
275    void InitCSEMap(MachineBasicBlock *BB);
276
277    bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
278                            MachineBasicBlock *TgtBlock);
279    MachineBasicBlock *getCurPreheader();
280  };
281
282  class MachineLICM : public MachineLICMBase {
283  public:
284    static char ID;
285    MachineLICM() : MachineLICMBase(ID, false) {
286      initializeMachineLICMPass(*PassRegistry::getPassRegistry());
287    }
288  };
289
290  class EarlyMachineLICM : public MachineLICMBase {
291  public:
292    static char ID;
293    EarlyMachineLICM() : MachineLICMBase(ID, true) {
294      initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
295    }
296  };
297
298} // end anonymous namespace
299
300char MachineLICM::ID;
301char EarlyMachineLICM::ID;
302
303char &llvm::MachineLICMID = MachineLICM::ID;
304char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
305
306INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
307                      "Machine Loop Invariant Code Motion", false, false)
308INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
309INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
310INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
311INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
312INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
313                    "Machine Loop Invariant Code Motion", false, false)
314
315INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
316                      "Early Machine Loop Invariant Code Motion", false, false)
317INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
318INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
319INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
320INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
321INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
322                    "Early Machine Loop Invariant Code Motion", false, false)
323
324/// Test if the given loop is the outer-most loop that has a unique predecessor.
325static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
326  // Check whether this loop even has a unique predecessor.
327  if (!CurLoop->getLoopPredecessor())
328    return false;
329  // Ok, now check to see if any of its outer loops do.
330  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
331    if (L->getLoopPredecessor())
332      return false;
333  // None of them did, so this is the outermost with a unique predecessor.
334  return true;
335}
336
337bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
338  if (skipFunction(MF.getFunction()))
339    return false;
340
341  Changed = FirstInLoop = false;
342  const TargetSubtargetInfo &ST = MF.getSubtarget();
343  TII = ST.getInstrInfo();
344  TLI = ST.getTargetLowering();
345  TRI = ST.getRegisterInfo();
346  MFI = &MF.getFrameInfo();
347  MRI = &MF.getRegInfo();
348  SchedModel.init(&ST);
349
350  PreRegAlloc = MRI->isSSA();
351  HasProfileData = MF.getFunction().hasProfileData();
352
353  if (PreRegAlloc)
354    LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
355  else
356    LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
357  LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
358
359  if (PreRegAlloc) {
360    // Estimate register pressure during pre-regalloc pass.
361    unsigned NumRPS = TRI->getNumRegPressureSets();
362    RegPressure.resize(NumRPS);
363    std::fill(RegPressure.begin(), RegPressure.end(), 0);
364    RegLimit.resize(NumRPS);
365    for (unsigned i = 0, e = NumRPS; i != e; ++i)
366      RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
367  }
368
369  // Get our Loop information...
370  if (DisableHoistingToHotterBlocks != UseBFI::None)
371    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
372  MLI = &getAnalysis<MachineLoopInfo>();
373  DT  = &getAnalysis<MachineDominatorTree>();
374  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
375
376  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
377  while (!Worklist.empty()) {
378    CurLoop = Worklist.pop_back_val();
379    CurPreheader = nullptr;
380    ExitBlocks.clear();
381
382    // If this is done before regalloc, only visit outer-most preheader-sporting
383    // loops.
384    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
385      Worklist.append(CurLoop->begin(), CurLoop->end());
386      continue;
387    }
388
389    CurLoop->getExitBlocks(ExitBlocks);
390
391    if (!PreRegAlloc)
392      HoistRegionPostRA();
393    else {
394      // CSEMap is initialized for loop header when the first instruction is
395      // being hoisted.
396      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
397      FirstInLoop = true;
398      HoistOutOfLoop(N);
399      CSEMap.clear();
400
401      if (SinkInstsToAvoidSpills)
402        SinkIntoLoop();
403    }
404  }
405
406  return Changed;
407}
408
409/// Return true if instruction stores to the specified frame.
410static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
411  // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
412  // true since they have no memory operands.
413  if (!MI->mayStore())
414     return false;
415  // If we lost memory operands, conservatively assume that the instruction
416  // writes to all slots.
417  if (MI->memoperands_empty())
418    return true;
419  for (const MachineMemOperand *MemOp : MI->memoperands()) {
420    if (!MemOp->isStore() || !MemOp->getPseudoValue())
421      continue;
422    if (const FixedStackPseudoSourceValue *Value =
423        dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
424      if (Value->getFrameIndex() == FI)
425        return true;
426    }
427  }
428  return false;
429}
430
431/// Examine the instruction for potentai LICM candidate. Also
432/// gather register def and frame object update information.
433void MachineLICMBase::ProcessMI(MachineInstr *MI,
434                                BitVector &PhysRegDefs,
435                                BitVector &PhysRegClobbers,
436                                SmallSet<int, 32> &StoredFIs,
437                                SmallVectorImpl<CandidateInfo> &Candidates) {
438  bool RuledOut = false;
439  bool HasNonInvariantUse = false;
440  unsigned Def = 0;
441  for (const MachineOperand &MO : MI->operands()) {
442    if (MO.isFI()) {
443      // Remember if the instruction stores to the frame index.
444      int FI = MO.getIndex();
445      if (!StoredFIs.count(FI) &&
446          MFI->isSpillSlotObjectIndex(FI) &&
447          InstructionStoresToFI(MI, FI))
448        StoredFIs.insert(FI);
449      HasNonInvariantUse = true;
450      continue;
451    }
452
453    // We can't hoist an instruction defining a physreg that is clobbered in
454    // the loop.
455    if (MO.isRegMask()) {
456      PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
457      continue;
458    }
459
460    if (!MO.isReg())
461      continue;
462    Register Reg = MO.getReg();
463    if (!Reg)
464      continue;
465    assert(Register::isPhysicalRegister(Reg) &&
466           "Not expecting virtual register!");
467
468    if (!MO.isDef()) {
469      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
470        // If it's using a non-loop-invariant register, then it's obviously not
471        // safe to hoist.
472        HasNonInvariantUse = true;
473      continue;
474    }
475
476    if (MO.isImplicit()) {
477      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
478        PhysRegClobbers.set(*AI);
479      if (!MO.isDead())
480        // Non-dead implicit def? This cannot be hoisted.
481        RuledOut = true;
482      // No need to check if a dead implicit def is also defined by
483      // another instruction.
484      continue;
485    }
486
487    // FIXME: For now, avoid instructions with multiple defs, unless
488    // it's a dead implicit def.
489    if (Def)
490      RuledOut = true;
491    else
492      Def = Reg;
493
494    // If we have already seen another instruction that defines the same
495    // register, then this is not safe.  Two defs is indicated by setting a
496    // PhysRegClobbers bit.
497    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
498      if (PhysRegDefs.test(*AS))
499        PhysRegClobbers.set(*AS);
500    }
501    // Need a second loop because MCRegAliasIterator can visit the same
502    // register twice.
503    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
504      PhysRegDefs.set(*AS);
505
506    if (PhysRegClobbers.test(Reg))
507      // MI defined register is seen defined by another instruction in
508      // the loop, it cannot be a LICM candidate.
509      RuledOut = true;
510  }
511
512  // Only consider reloads for now and remats which do not have register
513  // operands. FIXME: Consider unfold load folding instructions.
514  if (Def && !RuledOut) {
515    int FI = std::numeric_limits<int>::min();
516    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
517        (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
518      Candidates.push_back(CandidateInfo(MI, Def, FI));
519  }
520}
521
522/// Walk the specified region of the CFG and hoist loop invariants out to the
523/// preheader.
524void MachineLICMBase::HoistRegionPostRA() {
525  MachineBasicBlock *Preheader = getCurPreheader();
526  if (!Preheader)
527    return;
528
529  unsigned NumRegs = TRI->getNumRegs();
530  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
531  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
532
533  SmallVector<CandidateInfo, 32> Candidates;
534  SmallSet<int, 32> StoredFIs;
535
536  // Walk the entire region, count number of defs for each register, and
537  // collect potential LICM candidates.
538  for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
539    // If the header of the loop containing this basic block is a landing pad,
540    // then don't try to hoist instructions out of this loop.
541    const MachineLoop *ML = MLI->getLoopFor(BB);
542    if (ML && ML->getHeader()->isEHPad()) continue;
543
544    // Conservatively treat live-in's as an external def.
545    // FIXME: That means a reload that're reused in successor block(s) will not
546    // be LICM'ed.
547    for (const auto &LI : BB->liveins()) {
548      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
549        PhysRegDefs.set(*AI);
550    }
551
552    SpeculationState = SpeculateUnknown;
553    for (MachineInstr &MI : *BB)
554      ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
555  }
556
557  // Gather the registers read / clobbered by the terminator.
558  BitVector TermRegs(NumRegs);
559  MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
560  if (TI != Preheader->end()) {
561    for (const MachineOperand &MO : TI->operands()) {
562      if (!MO.isReg())
563        continue;
564      Register Reg = MO.getReg();
565      if (!Reg)
566        continue;
567      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
568        TermRegs.set(*AI);
569    }
570  }
571
572  // Now evaluate whether the potential candidates qualify.
573  // 1. Check if the candidate defined register is defined by another
574  //    instruction in the loop.
575  // 2. If the candidate is a load from stack slot (always true for now),
576  //    check if the slot is stored anywhere in the loop.
577  // 3. Make sure candidate def should not clobber
578  //    registers read by the terminator. Similarly its def should not be
579  //    clobbered by the terminator.
580  for (CandidateInfo &Candidate : Candidates) {
581    if (Candidate.FI != std::numeric_limits<int>::min() &&
582        StoredFIs.count(Candidate.FI))
583      continue;
584
585    unsigned Def = Candidate.Def;
586    if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
587      bool Safe = true;
588      MachineInstr *MI = Candidate.MI;
589      for (const MachineOperand &MO : MI->operands()) {
590        if (!MO.isReg() || MO.isDef() || !MO.getReg())
591          continue;
592        Register Reg = MO.getReg();
593        if (PhysRegDefs.test(Reg) ||
594            PhysRegClobbers.test(Reg)) {
595          // If it's using a non-loop-invariant register, then it's obviously
596          // not safe to hoist.
597          Safe = false;
598          break;
599        }
600      }
601      if (Safe)
602        HoistPostRA(MI, Candidate.Def);
603    }
604  }
605}
606
607/// Add register 'Reg' to the livein sets of BBs in the current loop, and make
608/// sure it is not killed by any instructions in the loop.
609void MachineLICMBase::AddToLiveIns(unsigned Reg) {
610  for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
611    if (!BB->isLiveIn(Reg))
612      BB->addLiveIn(Reg);
613    for (MachineInstr &MI : *BB) {
614      for (MachineOperand &MO : MI.operands()) {
615        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
616        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
617          MO.setIsKill(false);
618      }
619    }
620  }
621}
622
623/// When an instruction is found to only use loop invariant operands that is
624/// safe to hoist, this instruction is called to do the dirty work.
625void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
626  MachineBasicBlock *Preheader = getCurPreheader();
627
628  // Now move the instructions to the predecessor, inserting it before any
629  // terminator instructions.
630  LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
631                    << " from " << printMBBReference(*MI->getParent()) << ": "
632                    << *MI);
633
634  // Splice the instruction to the preheader.
635  MachineBasicBlock *MBB = MI->getParent();
636  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
637
638  // Since we are moving the instruction out of its basic block, we do not
639  // retain its debug location. Doing so would degrade the debugging
640  // experience and adversely affect the accuracy of profiling information.
641  assert(!MI->isDebugInstr() && "Should not hoist debug inst");
642  MI->setDebugLoc(DebugLoc());
643
644  // Add register to livein list to all the BBs in the current loop since a
645  // loop invariant must be kept live throughout the whole loop. This is
646  // important to ensure later passes do not scavenge the def register.
647  AddToLiveIns(Def);
648
649  ++NumPostRAHoisted;
650  Changed = true;
651}
652
653/// Check if this mbb is guaranteed to execute. If not then a load from this mbb
654/// may not be safe to hoist.
655bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
656  if (SpeculationState != SpeculateUnknown)
657    return SpeculationState == SpeculateFalse;
658
659  if (BB != CurLoop->getHeader()) {
660    // Check loop exiting blocks.
661    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
662    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
663    for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
664      if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
665        SpeculationState = SpeculateTrue;
666        return false;
667      }
668  }
669
670  SpeculationState = SpeculateFalse;
671  return true;
672}
673
674void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
675  LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
676
677  // Remember livein register pressure.
678  BackTrace.push_back(RegPressure);
679}
680
681void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
682  LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
683  BackTrace.pop_back();
684}
685
686/// Destroy scope for the MBB that corresponds to the given dominator tree node
687/// if its a leaf or all of its children are done. Walk up the dominator tree to
688/// destroy ancestors which are now done.
689void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
690    DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
691    DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
692  if (OpenChildren[Node])
693    return;
694
695  // Pop scope.
696  ExitScope(Node->getBlock());
697
698  // Now traverse upwards to pop ancestors whose offsprings are all done.
699  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
700    unsigned Left = --OpenChildren[Parent];
701    if (Left != 0)
702      break;
703    ExitScope(Parent->getBlock());
704    Node = Parent;
705  }
706}
707
708/// Walk the specified loop in the CFG (defined by all blocks dominated by the
709/// specified header block, and that are in the current loop) in depth first
710/// order w.r.t the DominatorTree. This allows us to visit definitions before
711/// uses, allowing us to hoist a loop body in one pass without iteration.
712void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
713  MachineBasicBlock *Preheader = getCurPreheader();
714  if (!Preheader)
715    return;
716
717  SmallVector<MachineDomTreeNode*, 32> Scopes;
718  SmallVector<MachineDomTreeNode*, 8> WorkList;
719  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
720  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
721
722  // Perform a DFS walk to determine the order of visit.
723  WorkList.push_back(HeaderN);
724  while (!WorkList.empty()) {
725    MachineDomTreeNode *Node = WorkList.pop_back_val();
726    assert(Node && "Null dominator tree node?");
727    MachineBasicBlock *BB = Node->getBlock();
728
729    // If the header of the loop containing this basic block is a landing pad,
730    // then don't try to hoist instructions out of this loop.
731    const MachineLoop *ML = MLI->getLoopFor(BB);
732    if (ML && ML->getHeader()->isEHPad())
733      continue;
734
735    // If this subregion is not in the top level loop at all, exit.
736    if (!CurLoop->contains(BB))
737      continue;
738
739    Scopes.push_back(Node);
740    unsigned NumChildren = Node->getNumChildren();
741
742    // Don't hoist things out of a large switch statement.  This often causes
743    // code to be hoisted that wasn't going to be executed, and increases
744    // register pressure in a situation where it's likely to matter.
745    if (BB->succ_size() >= 25)
746      NumChildren = 0;
747
748    OpenChildren[Node] = NumChildren;
749    if (NumChildren) {
750      // Add children in reverse order as then the next popped worklist node is
751      // the first child of this node.  This means we ultimately traverse the
752      // DOM tree in exactly the same order as if we'd recursed.
753      for (MachineDomTreeNode *Child : reverse(Node->children())) {
754        ParentMap[Child] = Node;
755        WorkList.push_back(Child);
756      }
757    }
758  }
759
760  if (Scopes.size() == 0)
761    return;
762
763  // Compute registers which are livein into the loop headers.
764  RegSeen.clear();
765  BackTrace.clear();
766  InitRegPressure(Preheader);
767
768  // Now perform LICM.
769  for (MachineDomTreeNode *Node : Scopes) {
770    MachineBasicBlock *MBB = Node->getBlock();
771
772    EnterScope(MBB);
773
774    // Process the block
775    SpeculationState = SpeculateUnknown;
776    for (MachineBasicBlock::iterator
777         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
778      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
779      MachineInstr *MI = &*MII;
780      if (!Hoist(MI, Preheader))
781        UpdateRegPressure(MI);
782      // If we have hoisted an instruction that may store, it can only be a
783      // constant store.
784      MII = NextMII;
785    }
786
787    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
788    ExitScopeIfDone(Node, OpenChildren, ParentMap);
789  }
790}
791
792/// Sink instructions into loops if profitable. This especially tries to prevent
793/// register spills caused by register pressure if there is little to no
794/// overhead moving instructions into loops.
795void MachineLICMBase::SinkIntoLoop() {
796  MachineBasicBlock *Preheader = getCurPreheader();
797  if (!Preheader)
798    return;
799
800  SmallVector<MachineInstr *, 8> Candidates;
801  for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
802       I != Preheader->instr_end(); ++I) {
803    // We need to ensure that we can safely move this instruction into the loop.
804    // As such, it must not have side-effects, e.g. such as a call has.
805    if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
806      Candidates.push_back(&*I);
807  }
808
809  for (MachineInstr *I : Candidates) {
810    const MachineOperand &MO = I->getOperand(0);
811    if (!MO.isDef() || !MO.isReg() || !MO.getReg())
812      continue;
813    if (!MRI->hasOneDef(MO.getReg()))
814      continue;
815    bool CanSink = true;
816    MachineBasicBlock *B = nullptr;
817    for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
818      // FIXME: Come up with a proper cost model that estimates whether sinking
819      // the instruction (and thus possibly executing it on every loop
820      // iteration) is more expensive than a register.
821      // For now assumes that copies are cheap and thus almost always worth it.
822      if (!MI.isCopy()) {
823        CanSink = false;
824        break;
825      }
826      if (!B) {
827        B = MI.getParent();
828        continue;
829      }
830      B = DT->findNearestCommonDominator(B, MI.getParent());
831      if (!B) {
832        CanSink = false;
833        break;
834      }
835    }
836    if (!CanSink || !B || B == Preheader)
837      continue;
838
839    LLVM_DEBUG(dbgs() << "Sinking to " << printMBBReference(*B) << " from "
840                      << printMBBReference(*I->getParent()) << ": " << *I);
841    B->splice(B->getFirstNonPHI(), Preheader, I);
842
843    // The instruction is is moved from its basic block, so do not retain the
844    // debug information.
845    assert(!I->isDebugInstr() && "Should not sink debug inst");
846    I->setDebugLoc(DebugLoc());
847  }
848}
849
850static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
851  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
852}
853
854/// Find all virtual register references that are liveout of the preheader to
855/// initialize the starting "register pressure". Note this does not count live
856/// through (livein but not used) registers.
857void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
858  std::fill(RegPressure.begin(), RegPressure.end(), 0);
859
860  // If the preheader has only a single predecessor and it ends with a
861  // fallthrough or an unconditional branch, then scan its predecessor for live
862  // defs as well. This happens whenever the preheader is created by splitting
863  // the critical edge from the loop predecessor to the loop header.
864  if (BB->pred_size() == 1) {
865    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
866    SmallVector<MachineOperand, 4> Cond;
867    if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
868      InitRegPressure(*BB->pred_begin());
869  }
870
871  for (const MachineInstr &MI : *BB)
872    UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
873}
874
875/// Update estimate of register pressure after the specified instruction.
876void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
877                                        bool ConsiderUnseenAsDef) {
878  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
879  for (const auto &RPIdAndCost : Cost) {
880    unsigned Class = RPIdAndCost.first;
881    if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
882      RegPressure[Class] = 0;
883    else
884      RegPressure[Class] += RPIdAndCost.second;
885  }
886}
887
888/// Calculate the additional register pressure that the registers used in MI
889/// cause.
890///
891/// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
892/// figure out which usages are live-ins.
893/// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
894DenseMap<unsigned, int>
895MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
896                                  bool ConsiderUnseenAsDef) {
897  DenseMap<unsigned, int> Cost;
898  if (MI->isImplicitDef())
899    return Cost;
900  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
901    const MachineOperand &MO = MI->getOperand(i);
902    if (!MO.isReg() || MO.isImplicit())
903      continue;
904    Register Reg = MO.getReg();
905    if (!Register::isVirtualRegister(Reg))
906      continue;
907
908    // FIXME: It seems bad to use RegSeen only for some of these calculations.
909    bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
910    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
911
912    RegClassWeight W = TRI->getRegClassWeight(RC);
913    int RCCost = 0;
914    if (MO.isDef())
915      RCCost = W.RegWeight;
916    else {
917      bool isKill = isOperandKill(MO, MRI);
918      if (isNew && !isKill && ConsiderUnseenAsDef)
919        // Haven't seen this, it must be a livein.
920        RCCost = W.RegWeight;
921      else if (!isNew && isKill)
922        RCCost = -W.RegWeight;
923    }
924    if (RCCost == 0)
925      continue;
926    const int *PS = TRI->getRegClassPressureSets(RC);
927    for (; *PS != -1; ++PS) {
928      if (Cost.find(*PS) == Cost.end())
929        Cost[*PS] = RCCost;
930      else
931        Cost[*PS] += RCCost;
932    }
933  }
934  return Cost;
935}
936
937/// Return true if this machine instruction loads from global offset table or
938/// constant pool.
939static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
940  assert(MI.mayLoad() && "Expected MI that loads!");
941
942  // If we lost memory operands, conservatively assume that the instruction
943  // reads from everything..
944  if (MI.memoperands_empty())
945    return true;
946
947  for (MachineMemOperand *MemOp : MI.memoperands())
948    if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
949      if (PSV->isGOT() || PSV->isConstantPool())
950        return true;
951
952  return false;
953}
954
955// This function iterates through all the operands of the input store MI and
956// checks that each register operand statisfies isCallerPreservedPhysReg.
957// This means, the value being stored and the address where it is being stored
958// is constant throughout the body of the function (not including prologue and
959// epilogue). When called with an MI that isn't a store, it returns false.
960// A future improvement can be to check if the store registers are constant
961// throughout the loop rather than throughout the funtion.
962static bool isInvariantStore(const MachineInstr &MI,
963                             const TargetRegisterInfo *TRI,
964                             const MachineRegisterInfo *MRI) {
965
966  bool FoundCallerPresReg = false;
967  if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
968      (MI.getNumOperands() == 0))
969    return false;
970
971  // Check that all register operands are caller-preserved physical registers.
972  for (const MachineOperand &MO : MI.operands()) {
973    if (MO.isReg()) {
974      Register Reg = MO.getReg();
975      // If operand is a virtual register, check if it comes from a copy of a
976      // physical register.
977      if (Register::isVirtualRegister(Reg))
978        Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
979      if (Register::isVirtualRegister(Reg))
980        return false;
981      if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
982        return false;
983      else
984        FoundCallerPresReg = true;
985    } else if (!MO.isImm()) {
986        return false;
987    }
988  }
989  return FoundCallerPresReg;
990}
991
992// Return true if the input MI is a copy instruction that feeds an invariant
993// store instruction. This means that the src of the copy has to satisfy
994// isCallerPreservedPhysReg and atleast one of it's users should satisfy
995// isInvariantStore.
996static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
997                                        const MachineRegisterInfo *MRI,
998                                        const TargetRegisterInfo *TRI) {
999
1000  // FIXME: If targets would like to look through instructions that aren't
1001  // pure copies, this can be updated to a query.
1002  if (!MI.isCopy())
1003    return false;
1004
1005  const MachineFunction *MF = MI.getMF();
1006  // Check that we are copying a constant physical register.
1007  Register CopySrcReg = MI.getOperand(1).getReg();
1008  if (Register::isVirtualRegister(CopySrcReg))
1009    return false;
1010
1011  if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
1012    return false;
1013
1014  Register CopyDstReg = MI.getOperand(0).getReg();
1015  // Check if any of the uses of the copy are invariant stores.
1016  assert(Register::isVirtualRegister(CopyDstReg) &&
1017         "copy dst is not a virtual reg");
1018
1019  for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
1020    if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
1021      return true;
1022  }
1023  return false;
1024}
1025
1026/// Returns true if the instruction may be a suitable candidate for LICM.
1027/// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
1028bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
1029  // Check if it's safe to move the instruction.
1030  bool DontMoveAcrossStore = true;
1031  if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
1032      !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
1033    return false;
1034  }
1035
1036  // If it is load then check if it is guaranteed to execute by making sure that
1037  // it dominates all exiting blocks. If it doesn't, then there is a path out of
1038  // the loop which does not execute this load, so we can't hoist it. Loads
1039  // from constant memory are not safe to speculate all the time, for example
1040  // indexed load from a jump table.
1041  // Stores and side effects are already checked by isSafeToMove.
1042  if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
1043      !IsGuaranteedToExecute(I.getParent()))
1044    return false;
1045
1046  return true;
1047}
1048
1049/// Returns true if the instruction is loop invariant.
1050/// I.e., all virtual register operands are defined outside of the loop,
1051/// physical registers aren't accessed explicitly, and there are no side
1052/// effects that aren't captured by the operands or other flags.
1053bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1054  if (!IsLICMCandidate(I))
1055    return false;
1056
1057  // The instruction is loop invariant if all of its operands are.
1058  for (const MachineOperand &MO : I.operands()) {
1059    if (!MO.isReg())
1060      continue;
1061
1062    Register Reg = MO.getReg();
1063    if (Reg == 0) continue;
1064
1065    // Don't hoist an instruction that uses or defines a physical register.
1066    if (Register::isPhysicalRegister(Reg)) {
1067      if (MO.isUse()) {
1068        // If the physreg has no defs anywhere, it's just an ambient register
1069        // and we can freely move its uses. Alternatively, if it's allocatable,
1070        // it could get allocated to something with a def during allocation.
1071        // However, if the physreg is known to always be caller saved/restored
1072        // then this use is safe to hoist.
1073        if (!MRI->isConstantPhysReg(Reg) &&
1074            !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
1075          return false;
1076        // Otherwise it's safe to move.
1077        continue;
1078      } else if (!MO.isDead()) {
1079        // A def that isn't dead. We can't move it.
1080        return false;
1081      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1082        // If the reg is live into the loop, we can't hoist an instruction
1083        // which would clobber it.
1084        return false;
1085      }
1086    }
1087
1088    if (!MO.isUse())
1089      continue;
1090
1091    assert(MRI->getVRegDef(Reg) &&
1092           "Machine instr not mapped for this vreg?!");
1093
1094    // If the loop contains the definition of an operand, then the instruction
1095    // isn't loop invariant.
1096    if (CurLoop->contains(MRI->getVRegDef(Reg)))
1097      return false;
1098  }
1099
1100  // If we got this far, the instruction is loop invariant!
1101  return true;
1102}
1103
1104/// Return true if the specified instruction is used by a phi node and hoisting
1105/// it could cause a copy to be inserted.
1106bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1107  SmallVector<const MachineInstr*, 8> Work(1, MI);
1108  do {
1109    MI = Work.pop_back_val();
1110    for (const MachineOperand &MO : MI->operands()) {
1111      if (!MO.isReg() || !MO.isDef())
1112        continue;
1113      Register Reg = MO.getReg();
1114      if (!Register::isVirtualRegister(Reg))
1115        continue;
1116      for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1117        // A PHI may cause a copy to be inserted.
1118        if (UseMI.isPHI()) {
1119          // A PHI inside the loop causes a copy because the live range of Reg is
1120          // extended across the PHI.
1121          if (CurLoop->contains(&UseMI))
1122            return true;
1123          // A PHI in an exit block can cause a copy to be inserted if the PHI
1124          // has multiple predecessors in the loop with different values.
1125          // For now, approximate by rejecting all exit blocks.
1126          if (isExitBlock(UseMI.getParent()))
1127            return true;
1128          continue;
1129        }
1130        // Look past copies as well.
1131        if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1132          Work.push_back(&UseMI);
1133      }
1134    }
1135  } while (!Work.empty());
1136  return false;
1137}
1138
1139/// Compute operand latency between a def of 'Reg' and an use in the current
1140/// loop, return true if the target considered it high.
1141bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
1142                                            unsigned DefIdx,
1143                                            unsigned Reg) const {
1144  if (MRI->use_nodbg_empty(Reg))
1145    return false;
1146
1147  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1148    if (UseMI.isCopyLike())
1149      continue;
1150    if (!CurLoop->contains(UseMI.getParent()))
1151      continue;
1152    for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1153      const MachineOperand &MO = UseMI.getOperand(i);
1154      if (!MO.isReg() || !MO.isUse())
1155        continue;
1156      Register MOReg = MO.getReg();
1157      if (MOReg != Reg)
1158        continue;
1159
1160      if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1161        return true;
1162    }
1163
1164    // Only look at the first in loop use.
1165    break;
1166  }
1167
1168  return false;
1169}
1170
1171/// Return true if the instruction is marked "cheap" or the operand latency
1172/// between its def and a use is one or less.
1173bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1174  if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1175    return true;
1176
1177  bool isCheap = false;
1178  unsigned NumDefs = MI.getDesc().getNumDefs();
1179  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1180    MachineOperand &DefMO = MI.getOperand(i);
1181    if (!DefMO.isReg() || !DefMO.isDef())
1182      continue;
1183    --NumDefs;
1184    Register Reg = DefMO.getReg();
1185    if (Register::isPhysicalRegister(Reg))
1186      continue;
1187
1188    if (!TII->hasLowDefLatency(SchedModel, MI, i))
1189      return false;
1190    isCheap = true;
1191  }
1192
1193  return isCheap;
1194}
1195
1196/// Visit BBs from header to current BB, check if hoisting an instruction of the
1197/// given cost matrix can cause high register pressure.
1198bool
1199MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1200                                         bool CheapInstr) {
1201  for (const auto &RPIdAndCost : Cost) {
1202    if (RPIdAndCost.second <= 0)
1203      continue;
1204
1205    unsigned Class = RPIdAndCost.first;
1206    int Limit = RegLimit[Class];
1207
1208    // Don't hoist cheap instructions if they would increase register pressure,
1209    // even if we're under the limit.
1210    if (CheapInstr && !HoistCheapInsts)
1211      return true;
1212
1213    for (const auto &RP : BackTrace)
1214      if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1215        return true;
1216  }
1217
1218  return false;
1219}
1220
1221/// Traverse the back trace from header to the current block and update their
1222/// register pressures to reflect the effect of hoisting MI from the current
1223/// block to the preheader.
1224void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1225  // First compute the 'cost' of the instruction, i.e. its contribution
1226  // to register pressure.
1227  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1228                               /*ConsiderUnseenAsDef=*/false);
1229
1230  // Update register pressure of blocks from loop header to current block.
1231  for (auto &RP : BackTrace)
1232    for (const auto &RPIdAndCost : Cost)
1233      RP[RPIdAndCost.first] += RPIdAndCost.second;
1234}
1235
1236/// Return true if it is potentially profitable to hoist the given loop
1237/// invariant.
1238bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1239  if (MI.isImplicitDef())
1240    return true;
1241
1242  // Besides removing computation from the loop, hoisting an instruction has
1243  // these effects:
1244  //
1245  // - The value defined by the instruction becomes live across the entire
1246  //   loop. This increases register pressure in the loop.
1247  //
1248  // - If the value is used by a PHI in the loop, a copy will be required for
1249  //   lowering the PHI after extending the live range.
1250  //
1251  // - When hoisting the last use of a value in the loop, that value no longer
1252  //   needs to be live in the loop. This lowers register pressure in the loop.
1253
1254  if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1255    return true;
1256
1257  bool CheapInstr = IsCheapInstruction(MI);
1258  bool CreatesCopy = HasLoopPHIUse(&MI);
1259
1260  // Don't hoist a cheap instruction if it would create a copy in the loop.
1261  if (CheapInstr && CreatesCopy) {
1262    LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1263    return false;
1264  }
1265
1266  // Rematerializable instructions should always be hoisted since the register
1267  // allocator can just pull them down again when needed.
1268  if (TII->isTriviallyReMaterializable(MI, AA))
1269    return true;
1270
1271  // FIXME: If there are long latency loop-invariant instructions inside the
1272  // loop at this point, why didn't the optimizer's LICM hoist them?
1273  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1274    const MachineOperand &MO = MI.getOperand(i);
1275    if (!MO.isReg() || MO.isImplicit())
1276      continue;
1277    Register Reg = MO.getReg();
1278    if (!Register::isVirtualRegister(Reg))
1279      continue;
1280    if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1281      LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1282      ++NumHighLatency;
1283      return true;
1284    }
1285  }
1286
1287  // Estimate register pressure to determine whether to LICM the instruction.
1288  // In low register pressure situation, we can be more aggressive about
1289  // hoisting. Also, favors hoisting long latency instructions even in
1290  // moderately high pressure situation.
1291  // Cheap instructions will only be hoisted if they don't increase register
1292  // pressure at all.
1293  auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1294                               /*ConsiderUnseenAsDef=*/false);
1295
1296  // Visit BBs from header to current BB, if hoisting this doesn't cause
1297  // high register pressure, then it's safe to proceed.
1298  if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1299    LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1300    ++NumLowRP;
1301    return true;
1302  }
1303
1304  // Don't risk increasing register pressure if it would create copies.
1305  if (CreatesCopy) {
1306    LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1307    return false;
1308  }
1309
1310  // Do not "speculate" in high register pressure situation. If an
1311  // instruction is not guaranteed to be executed in the loop, it's best to be
1312  // conservative.
1313  if (AvoidSpeculation &&
1314      (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1315    LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1316    return false;
1317  }
1318
1319  // High register pressure situation, only hoist if the instruction is going
1320  // to be remat'ed.
1321  if (!TII->isTriviallyReMaterializable(MI, AA) &&
1322      !MI.isDereferenceableInvariantLoad(AA)) {
1323    LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1324    return false;
1325  }
1326
1327  return true;
1328}
1329
1330/// Unfold a load from the given machineinstr if the load itself could be
1331/// hoisted. Return the unfolded and hoistable load, or null if the load
1332/// couldn't be unfolded or if it wouldn't be hoistable.
1333MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1334  // Don't unfold simple loads.
1335  if (MI->canFoldAsLoad())
1336    return nullptr;
1337
1338  // If not, we may be able to unfold a load and hoist that.
1339  // First test whether the instruction is loading from an amenable
1340  // memory location.
1341  if (!MI->isDereferenceableInvariantLoad(AA))
1342    return nullptr;
1343
1344  // Next determine the register class for a temporary register.
1345  unsigned LoadRegIndex;
1346  unsigned NewOpc =
1347    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1348                                    /*UnfoldLoad=*/true,
1349                                    /*UnfoldStore=*/false,
1350                                    &LoadRegIndex);
1351  if (NewOpc == 0) return nullptr;
1352  const MCInstrDesc &MID = TII->get(NewOpc);
1353  MachineFunction &MF = *MI->getMF();
1354  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1355  // Ok, we're unfolding. Create a temporary register and do the unfold.
1356  Register Reg = MRI->createVirtualRegister(RC);
1357
1358  SmallVector<MachineInstr *, 2> NewMIs;
1359  bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1360                                          /*UnfoldLoad=*/true,
1361                                          /*UnfoldStore=*/false, NewMIs);
1362  (void)Success;
1363  assert(Success &&
1364         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1365         "succeeded!");
1366  assert(NewMIs.size() == 2 &&
1367         "Unfolded a load into multiple instructions!");
1368  MachineBasicBlock *MBB = MI->getParent();
1369  MachineBasicBlock::iterator Pos = MI;
1370  MBB->insert(Pos, NewMIs[0]);
1371  MBB->insert(Pos, NewMIs[1]);
1372  // If unfolding produced a load that wasn't loop-invariant or profitable to
1373  // hoist, discard the new instructions and bail.
1374  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1375    NewMIs[0]->eraseFromParent();
1376    NewMIs[1]->eraseFromParent();
1377    return nullptr;
1378  }
1379
1380  // Update register pressure for the unfolded instruction.
1381  UpdateRegPressure(NewMIs[1]);
1382
1383  // Otherwise we successfully unfolded a load that we can hoist.
1384
1385  // Update the call site info.
1386  if (MI->shouldUpdateCallSiteInfo())
1387    MF.eraseCallSiteInfo(MI);
1388
1389  MI->eraseFromParent();
1390  return NewMIs[0];
1391}
1392
1393/// Initialize the CSE map with instructions that are in the current loop
1394/// preheader that may become duplicates of instructions that are hoisted
1395/// out of the loop.
1396void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1397  for (MachineInstr &MI : *BB)
1398    CSEMap[MI.getOpcode()].push_back(&MI);
1399}
1400
1401/// Find an instruction amount PrevMIs that is a duplicate of MI.
1402/// Return this instruction if it's found.
1403const MachineInstr*
1404MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1405                                  std::vector<const MachineInstr*> &PrevMIs) {
1406  for (const MachineInstr *PrevMI : PrevMIs)
1407    if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1408      return PrevMI;
1409
1410  return nullptr;
1411}
1412
1413/// Given a LICM'ed instruction, look for an instruction on the preheader that
1414/// computes the same value. If it's found, do a RAU on with the definition of
1415/// the existing instruction rather than hoisting the instruction to the
1416/// preheader.
1417bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1418    DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1419  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1420  // the undef property onto uses.
1421  if (CI == CSEMap.end() || MI->isImplicitDef())
1422    return false;
1423
1424  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1425    LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1426
1427    // Replace virtual registers defined by MI by their counterparts defined
1428    // by Dup.
1429    SmallVector<unsigned, 2> Defs;
1430    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1431      const MachineOperand &MO = MI->getOperand(i);
1432
1433      // Physical registers may not differ here.
1434      assert((!MO.isReg() || MO.getReg() == 0 ||
1435              !Register::isPhysicalRegister(MO.getReg()) ||
1436              MO.getReg() == Dup->getOperand(i).getReg()) &&
1437             "Instructions with different phys regs are not identical!");
1438
1439      if (MO.isReg() && MO.isDef() &&
1440          !Register::isPhysicalRegister(MO.getReg()))
1441        Defs.push_back(i);
1442    }
1443
1444    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1445    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1446      unsigned Idx = Defs[i];
1447      Register Reg = MI->getOperand(Idx).getReg();
1448      Register DupReg = Dup->getOperand(Idx).getReg();
1449      OrigRCs.push_back(MRI->getRegClass(DupReg));
1450
1451      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1452        // Restore old RCs if more than one defs.
1453        for (unsigned j = 0; j != i; ++j)
1454          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1455        return false;
1456      }
1457    }
1458
1459    for (unsigned Idx : Defs) {
1460      Register Reg = MI->getOperand(Idx).getReg();
1461      Register DupReg = Dup->getOperand(Idx).getReg();
1462      MRI->replaceRegWith(Reg, DupReg);
1463      MRI->clearKillFlags(DupReg);
1464    }
1465
1466    MI->eraseFromParent();
1467    ++NumCSEed;
1468    return true;
1469  }
1470  return false;
1471}
1472
1473/// Return true if the given instruction will be CSE'd if it's hoisted out of
1474/// the loop.
1475bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1476  unsigned Opcode = MI->getOpcode();
1477  DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1478    CI = CSEMap.find(Opcode);
1479  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1480  // the undef property onto uses.
1481  if (CI == CSEMap.end() || MI->isImplicitDef())
1482    return false;
1483
1484  return LookForDuplicate(MI, CI->second) != nullptr;
1485}
1486
1487/// When an instruction is found to use only loop invariant operands
1488/// that are safe to hoist, this instruction is called to do the dirty work.
1489/// It returns true if the instruction is hoisted.
1490bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1491  MachineBasicBlock *SrcBlock = MI->getParent();
1492
1493  // Disable the instruction hoisting due to block hotness
1494  if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1495      (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1496      isTgtHotterThanSrc(SrcBlock, Preheader)) {
1497    ++NumNotHoistedDueToHotness;
1498    return false;
1499  }
1500  // First check whether we should hoist this instruction.
1501  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1502    // If not, try unfolding a hoistable load.
1503    MI = ExtractHoistableLoad(MI);
1504    if (!MI) return false;
1505  }
1506
1507  // If we have hoisted an instruction that may store, it can only be a constant
1508  // store.
1509  if (MI->mayStore())
1510    NumStoreConst++;
1511
1512  // Now move the instructions to the predecessor, inserting it before any
1513  // terminator instructions.
1514  LLVM_DEBUG({
1515    dbgs() << "Hoisting " << *MI;
1516    if (MI->getParent()->getBasicBlock())
1517      dbgs() << " from " << printMBBReference(*MI->getParent());
1518    if (Preheader->getBasicBlock())
1519      dbgs() << " to " << printMBBReference(*Preheader);
1520    dbgs() << "\n";
1521  });
1522
1523  // If this is the first instruction being hoisted to the preheader,
1524  // initialize the CSE map with potential common expressions.
1525  if (FirstInLoop) {
1526    InitCSEMap(Preheader);
1527    FirstInLoop = false;
1528  }
1529
1530  // Look for opportunity to CSE the hoisted instruction.
1531  unsigned Opcode = MI->getOpcode();
1532  DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1533    CI = CSEMap.find(Opcode);
1534  if (!EliminateCSE(MI, CI)) {
1535    // Otherwise, splice the instruction to the preheader.
1536    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1537
1538    // Since we are moving the instruction out of its basic block, we do not
1539    // retain its debug location. Doing so would degrade the debugging
1540    // experience and adversely affect the accuracy of profiling information.
1541    assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1542    MI->setDebugLoc(DebugLoc());
1543
1544    // Update register pressure for BBs from header to this block.
1545    UpdateBackTraceRegPressure(MI);
1546
1547    // Clear the kill flags of any register this instruction defines,
1548    // since they may need to be live throughout the entire loop
1549    // rather than just live for part of it.
1550    for (MachineOperand &MO : MI->operands())
1551      if (MO.isReg() && MO.isDef() && !MO.isDead())
1552        MRI->clearKillFlags(MO.getReg());
1553
1554    // Add to the CSE map.
1555    if (CI != CSEMap.end())
1556      CI->second.push_back(MI);
1557    else
1558      CSEMap[Opcode].push_back(MI);
1559  }
1560
1561  ++NumHoisted;
1562  Changed = true;
1563
1564  return true;
1565}
1566
1567/// Get the preheader for the current loop, splitting a critical edge if needed.
1568MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1569  // Determine the block to which to hoist instructions. If we can't find a
1570  // suitable loop predecessor, we can't do any hoisting.
1571
1572  // If we've tried to get a preheader and failed, don't try again.
1573  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1574    return nullptr;
1575
1576  if (!CurPreheader) {
1577    CurPreheader = CurLoop->getLoopPreheader();
1578    if (!CurPreheader) {
1579      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1580      if (!Pred) {
1581        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1582        return nullptr;
1583      }
1584
1585      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1586      if (!CurPreheader) {
1587        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1588        return nullptr;
1589      }
1590    }
1591  }
1592  return CurPreheader;
1593}
1594
1595/// Is the target basic block at least "BlockFrequencyRatioThreshold"
1596/// times hotter than the source basic block.
1597bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1598                                         MachineBasicBlock *TgtBlock) {
1599  // Parse source and target basic block frequency from MBFI
1600  uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1601  uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1602
1603  // Disable the hoisting if source block frequency is zero
1604  if (!SrcBF)
1605    return true;
1606
1607  double Ratio = (double)DstBF / SrcBF;
1608
1609  // Compare the block frequency ratio with the threshold
1610  return Ratio > BlockFrequencyRatioThreshold;
1611}
1612