1//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements basic block placement transformations using the CFG
10// structure and branch probability estimates.
11//
12// The pass strives to preserve the structure of the CFG (that is, retain
13// a topological ordering of basic blocks) in the absence of a *strong* signal
14// to the contrary from probabilities. However, within the CFG structure, it
15// attempts to choose an ordering which favors placing more likely sequences of
16// blocks adjacent to each other.
17//
18// The algorithm works from the inner-most loop within a function outward, and
19// at each stage walks through the basic blocks, trying to coalesce them into
20// sequential chains where allowed by the CFG (or demanded by heavy
21// probabilities). Finally, it walks the blocks in topological order, and the
22// first time it reaches a chain of basic blocks, it schedules them in the
23// function in-order.
24//
25//===----------------------------------------------------------------------===//
26
27#include "BranchFolding.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36#include "llvm/Analysis/ProfileSummaryInfo.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40#include "llvm/CodeGen/MachineFunction.h"
41#include "llvm/CodeGen/MachineFunctionPass.h"
42#include "llvm/CodeGen/MachineLoopInfo.h"
43#include "llvm/CodeGen/MachineModuleInfo.h"
44#include "llvm/CodeGen/MachinePostDominators.h"
45#include "llvm/CodeGen/MachineSizeOpts.h"
46#include "llvm/CodeGen/TailDuplicator.h"
47#include "llvm/CodeGen/TargetInstrInfo.h"
48#include "llvm/CodeGen/TargetLowering.h"
49#include "llvm/CodeGen/TargetPassConfig.h"
50#include "llvm/CodeGen/TargetSubtargetInfo.h"
51#include "llvm/IR/DebugLoc.h"
52#include "llvm/IR/Function.h"
53#include "llvm/InitializePasses.h"
54#include "llvm/Pass.h"
55#include "llvm/Support/Allocator.h"
56#include "llvm/Support/BlockFrequency.h"
57#include "llvm/Support/BranchProbability.h"
58#include "llvm/Support/CodeGen.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/Compiler.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Target/TargetMachine.h"
64#include <algorithm>
65#include <cassert>
66#include <cstdint>
67#include <iterator>
68#include <memory>
69#include <string>
70#include <tuple>
71#include <utility>
72#include <vector>
73
74using namespace llvm;
75
76#define DEBUG_TYPE "block-placement"
77
78STATISTIC(NumCondBranches, "Number of conditional branches");
79STATISTIC(NumUncondBranches, "Number of unconditional branches");
80STATISTIC(CondBranchTakenFreq,
81          "Potential frequency of taking conditional branches");
82STATISTIC(UncondBranchTakenFreq,
83          "Potential frequency of taking unconditional branches");
84
85static cl::opt<unsigned> AlignAllBlock(
86    "align-all-blocks",
87    cl::desc("Force the alignment of all blocks in the function in log2 format "
88             "(e.g 4 means align on 16B boundaries)."),
89    cl::init(0), cl::Hidden);
90
91static cl::opt<unsigned> AlignAllNonFallThruBlocks(
92    "align-all-nofallthru-blocks",
93    cl::desc("Force the alignment of all blocks that have no fall-through "
94             "predecessors (i.e. don't add nops that are executed). In log2 "
95             "format (e.g 4 means align on 16B boundaries)."),
96    cl::init(0), cl::Hidden);
97
98// FIXME: Find a good default for this flag and remove the flag.
99static cl::opt<unsigned> ExitBlockBias(
100    "block-placement-exit-block-bias",
101    cl::desc("Block frequency percentage a loop exit block needs "
102             "over the original exit to be considered the new exit."),
103    cl::init(0), cl::Hidden);
104
105// Definition:
106// - Outlining: placement of a basic block outside the chain or hot path.
107
108static cl::opt<unsigned> LoopToColdBlockRatio(
109    "loop-to-cold-block-ratio",
110    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
111             "(frequency of block) is greater than this ratio"),
112    cl::init(5), cl::Hidden);
113
114static cl::opt<bool> ForceLoopColdBlock(
115    "force-loop-cold-block",
116    cl::desc("Force outlining cold blocks from loops."),
117    cl::init(false), cl::Hidden);
118
119static cl::opt<bool>
120    PreciseRotationCost("precise-rotation-cost",
121                        cl::desc("Model the cost of loop rotation more "
122                                 "precisely by using profile data."),
123                        cl::init(false), cl::Hidden);
124
125static cl::opt<bool>
126    ForcePreciseRotationCost("force-precise-rotation-cost",
127                             cl::desc("Force the use of precise cost "
128                                      "loop rotation strategy."),
129                             cl::init(false), cl::Hidden);
130
131static cl::opt<unsigned> MisfetchCost(
132    "misfetch-cost",
133    cl::desc("Cost that models the probabilistic risk of an instruction "
134             "misfetch due to a jump comparing to falling through, whose cost "
135             "is zero."),
136    cl::init(1), cl::Hidden);
137
138static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
139                                      cl::desc("Cost of jump instructions."),
140                                      cl::init(1), cl::Hidden);
141static cl::opt<bool>
142TailDupPlacement("tail-dup-placement",
143              cl::desc("Perform tail duplication during placement. "
144                       "Creates more fallthrough opportunites in "
145                       "outline branches."),
146              cl::init(true), cl::Hidden);
147
148static cl::opt<bool>
149BranchFoldPlacement("branch-fold-placement",
150              cl::desc("Perform branch folding during placement. "
151                       "Reduces code size."),
152              cl::init(true), cl::Hidden);
153
154// Heuristic for tail duplication.
155static cl::opt<unsigned> TailDupPlacementThreshold(
156    "tail-dup-placement-threshold",
157    cl::desc("Instruction cutoff for tail duplication during layout. "
158             "Tail merging during layout is forced to have a threshold "
159             "that won't conflict."), cl::init(2),
160    cl::Hidden);
161
162// Heuristic for aggressive tail duplication.
163static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
164    "tail-dup-placement-aggressive-threshold",
165    cl::desc("Instruction cutoff for aggressive tail duplication during "
166             "layout. Used at -O3. Tail merging during layout is forced to "
167             "have a threshold that won't conflict."), cl::init(4),
168    cl::Hidden);
169
170// Heuristic for tail duplication.
171static cl::opt<unsigned> TailDupPlacementPenalty(
172    "tail-dup-placement-penalty",
173    cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
174             "Copying can increase fallthrough, but it also increases icache "
175             "pressure. This parameter controls the penalty to account for that. "
176             "Percent as integer."),
177    cl::init(2),
178    cl::Hidden);
179
180// Heuristic for triangle chains.
181static cl::opt<unsigned> TriangleChainCount(
182    "triangle-chain-count",
183    cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
184             "triangle tail duplication heuristic to kick in. 0 to disable."),
185    cl::init(2),
186    cl::Hidden);
187
188extern cl::opt<unsigned> StaticLikelyProb;
189extern cl::opt<unsigned> ProfileLikelyProb;
190
191// Internal option used to control BFI display only after MBP pass.
192// Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
193// -view-block-layout-with-bfi=
194extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
195
196// Command line option to specify the name of the function for CFG dump
197// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
198extern cl::opt<std::string> ViewBlockFreqFuncName;
199
200namespace {
201
202class BlockChain;
203
204/// Type for our function-wide basic block -> block chain mapping.
205using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
206
207/// A chain of blocks which will be laid out contiguously.
208///
209/// This is the datastructure representing a chain of consecutive blocks that
210/// are profitable to layout together in order to maximize fallthrough
211/// probabilities and code locality. We also can use a block chain to represent
212/// a sequence of basic blocks which have some external (correctness)
213/// requirement for sequential layout.
214///
215/// Chains can be built around a single basic block and can be merged to grow
216/// them. They participate in a block-to-chain mapping, which is updated
217/// automatically as chains are merged together.
218class BlockChain {
219  /// The sequence of blocks belonging to this chain.
220  ///
221  /// This is the sequence of blocks for a particular chain. These will be laid
222  /// out in-order within the function.
223  SmallVector<MachineBasicBlock *, 4> Blocks;
224
225  /// A handle to the function-wide basic block to block chain mapping.
226  ///
227  /// This is retained in each block chain to simplify the computation of child
228  /// block chains for SCC-formation and iteration. We store the edges to child
229  /// basic blocks, and map them back to their associated chains using this
230  /// structure.
231  BlockToChainMapType &BlockToChain;
232
233public:
234  /// Construct a new BlockChain.
235  ///
236  /// This builds a new block chain representing a single basic block in the
237  /// function. It also registers itself as the chain that block participates
238  /// in with the BlockToChain mapping.
239  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
240      : Blocks(1, BB), BlockToChain(BlockToChain) {
241    assert(BB && "Cannot create a chain with a null basic block");
242    BlockToChain[BB] = this;
243  }
244
245  /// Iterator over blocks within the chain.
246  using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
247  using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
248
249  /// Beginning of blocks within the chain.
250  iterator begin() { return Blocks.begin(); }
251  const_iterator begin() const { return Blocks.begin(); }
252
253  /// End of blocks within the chain.
254  iterator end() { return Blocks.end(); }
255  const_iterator end() const { return Blocks.end(); }
256
257  bool remove(MachineBasicBlock* BB) {
258    for(iterator i = begin(); i != end(); ++i) {
259      if (*i == BB) {
260        Blocks.erase(i);
261        return true;
262      }
263    }
264    return false;
265  }
266
267  /// Merge a block chain into this one.
268  ///
269  /// This routine merges a block chain into this one. It takes care of forming
270  /// a contiguous sequence of basic blocks, updating the edge list, and
271  /// updating the block -> chain mapping. It does not free or tear down the
272  /// old chain, but the old chain's block list is no longer valid.
273  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
274    assert(BB && "Can't merge a null block.");
275    assert(!Blocks.empty() && "Can't merge into an empty chain.");
276
277    // Fast path in case we don't have a chain already.
278    if (!Chain) {
279      assert(!BlockToChain[BB] &&
280             "Passed chain is null, but BB has entry in BlockToChain.");
281      Blocks.push_back(BB);
282      BlockToChain[BB] = this;
283      return;
284    }
285
286    assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
287    assert(Chain->begin() != Chain->end());
288
289    // Update the incoming blocks to point to this chain, and add them to the
290    // chain structure.
291    for (MachineBasicBlock *ChainBB : *Chain) {
292      Blocks.push_back(ChainBB);
293      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
294      BlockToChain[ChainBB] = this;
295    }
296  }
297
298#ifndef NDEBUG
299  /// Dump the blocks in this chain.
300  LLVM_DUMP_METHOD void dump() {
301    for (MachineBasicBlock *MBB : *this)
302      MBB->dump();
303  }
304#endif // NDEBUG
305
306  /// Count of predecessors of any block within the chain which have not
307  /// yet been scheduled.  In general, we will delay scheduling this chain
308  /// until those predecessors are scheduled (or we find a sufficiently good
309  /// reason to override this heuristic.)  Note that when forming loop chains,
310  /// blocks outside the loop are ignored and treated as if they were already
311  /// scheduled.
312  ///
313  /// Note: This field is reinitialized multiple times - once for each loop,
314  /// and then once for the function as a whole.
315  unsigned UnscheduledPredecessors = 0;
316};
317
318class MachineBlockPlacement : public MachineFunctionPass {
319  /// A type for a block filter set.
320  using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
321
322  /// Pair struct containing basic block and taildup profitability
323  struct BlockAndTailDupResult {
324    MachineBasicBlock *BB;
325    bool ShouldTailDup;
326  };
327
328  /// Triple struct containing edge weight and the edge.
329  struct WeightedEdge {
330    BlockFrequency Weight;
331    MachineBasicBlock *Src;
332    MachineBasicBlock *Dest;
333  };
334
335  /// work lists of blocks that are ready to be laid out
336  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
337  SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
338
339  /// Edges that have already been computed as optimal.
340  DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
341
342  /// Machine Function
343  MachineFunction *F;
344
345  /// A handle to the branch probability pass.
346  const MachineBranchProbabilityInfo *MBPI;
347
348  /// A handle to the function-wide block frequency pass.
349  std::unique_ptr<MBFIWrapper> MBFI;
350
351  /// A handle to the loop info.
352  MachineLoopInfo *MLI;
353
354  /// Preferred loop exit.
355  /// Member variable for convenience. It may be removed by duplication deep
356  /// in the call stack.
357  MachineBasicBlock *PreferredLoopExit;
358
359  /// A handle to the target's instruction info.
360  const TargetInstrInfo *TII;
361
362  /// A handle to the target's lowering info.
363  const TargetLoweringBase *TLI;
364
365  /// A handle to the post dominator tree.
366  MachinePostDominatorTree *MPDT;
367
368  ProfileSummaryInfo *PSI;
369
370  /// Duplicator used to duplicate tails during placement.
371  ///
372  /// Placement decisions can open up new tail duplication opportunities, but
373  /// since tail duplication affects placement decisions of later blocks, it
374  /// must be done inline.
375  TailDuplicator TailDup;
376
377  /// Partial tail duplication threshold.
378  BlockFrequency DupThreshold;
379
380  /// Allocator and owner of BlockChain structures.
381  ///
382  /// We build BlockChains lazily while processing the loop structure of
383  /// a function. To reduce malloc traffic, we allocate them using this
384  /// slab-like allocator, and destroy them after the pass completes. An
385  /// important guarantee is that this allocator produces stable pointers to
386  /// the chains.
387  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
388
389  /// Function wide BasicBlock to BlockChain mapping.
390  ///
391  /// This mapping allows efficiently moving from any given basic block to the
392  /// BlockChain it participates in, if any. We use it to, among other things,
393  /// allow implicitly defining edges between chains as the existing edges
394  /// between basic blocks.
395  DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
396
397#ifndef NDEBUG
398  /// The set of basic blocks that have terminators that cannot be fully
399  /// analyzed.  These basic blocks cannot be re-ordered safely by
400  /// MachineBlockPlacement, and we must preserve physical layout of these
401  /// blocks and their successors through the pass.
402  SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
403#endif
404
405  /// Scale the DupThreshold according to basic block size.
406  BlockFrequency scaleThreshold(MachineBasicBlock *BB);
407  void initDupThreshold();
408
409  /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
410  /// if the count goes to 0, add them to the appropriate work list.
411  void markChainSuccessors(
412      const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
413      const BlockFilterSet *BlockFilter = nullptr);
414
415  /// Decrease the UnscheduledPredecessors count for a single block, and
416  /// if the count goes to 0, add them to the appropriate work list.
417  void markBlockSuccessors(
418      const BlockChain &Chain, const MachineBasicBlock *BB,
419      const MachineBasicBlock *LoopHeaderBB,
420      const BlockFilterSet *BlockFilter = nullptr);
421
422  BranchProbability
423  collectViableSuccessors(
424      const MachineBasicBlock *BB, const BlockChain &Chain,
425      const BlockFilterSet *BlockFilter,
426      SmallVector<MachineBasicBlock *, 4> &Successors);
427  bool shouldPredBlockBeOutlined(
428      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
429      const BlockChain &Chain, const BlockFilterSet *BlockFilter,
430      BranchProbability SuccProb, BranchProbability HotProb);
431  bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
432                       BlockFilterSet *BlockFilter);
433  void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
434                               MachineBasicBlock *BB,
435                               BlockFilterSet *BlockFilter);
436  bool repeatedlyTailDuplicateBlock(
437      MachineBasicBlock *BB, MachineBasicBlock *&LPred,
438      const MachineBasicBlock *LoopHeaderBB,
439      BlockChain &Chain, BlockFilterSet *BlockFilter,
440      MachineFunction::iterator &PrevUnplacedBlockIt);
441  bool maybeTailDuplicateBlock(
442      MachineBasicBlock *BB, MachineBasicBlock *LPred,
443      BlockChain &Chain, BlockFilterSet *BlockFilter,
444      MachineFunction::iterator &PrevUnplacedBlockIt,
445      bool &DuplicatedToLPred);
446  bool hasBetterLayoutPredecessor(
447      const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
448      const BlockChain &SuccChain, BranchProbability SuccProb,
449      BranchProbability RealSuccProb, const BlockChain &Chain,
450      const BlockFilterSet *BlockFilter);
451  BlockAndTailDupResult selectBestSuccessor(
452      const MachineBasicBlock *BB, const BlockChain &Chain,
453      const BlockFilterSet *BlockFilter);
454  MachineBasicBlock *selectBestCandidateBlock(
455      const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
456  MachineBasicBlock *getFirstUnplacedBlock(
457      const BlockChain &PlacedChain,
458      MachineFunction::iterator &PrevUnplacedBlockIt,
459      const BlockFilterSet *BlockFilter);
460
461  /// Add a basic block to the work list if it is appropriate.
462  ///
463  /// If the optional parameter BlockFilter is provided, only MBB
464  /// present in the set will be added to the worklist. If nullptr
465  /// is provided, no filtering occurs.
466  void fillWorkLists(const MachineBasicBlock *MBB,
467                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
468                     const BlockFilterSet *BlockFilter);
469
470  void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
471                  BlockFilterSet *BlockFilter = nullptr);
472  bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
473                               const MachineBasicBlock *OldTop);
474  bool hasViableTopFallthrough(const MachineBasicBlock *Top,
475                               const BlockFilterSet &LoopBlockSet);
476  BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
477                                    const BlockFilterSet &LoopBlockSet);
478  BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
479                                  const MachineBasicBlock *OldTop,
480                                  const MachineBasicBlock *ExitBB,
481                                  const BlockFilterSet &LoopBlockSet);
482  MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
483      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
484  MachineBasicBlock *findBestLoopTop(
485      const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
486  MachineBasicBlock *findBestLoopExit(
487      const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
488      BlockFrequency &ExitFreq);
489  BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
490  void buildLoopChains(const MachineLoop &L);
491  void rotateLoop(
492      BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
493      BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
494  void rotateLoopWithProfile(
495      BlockChain &LoopChain, const MachineLoop &L,
496      const BlockFilterSet &LoopBlockSet);
497  void buildCFGChains();
498  void optimizeBranches();
499  void alignBlocks();
500  /// Returns true if a block should be tail-duplicated to increase fallthrough
501  /// opportunities.
502  bool shouldTailDuplicate(MachineBasicBlock *BB);
503  /// Check the edge frequencies to see if tail duplication will increase
504  /// fallthroughs.
505  bool isProfitableToTailDup(
506    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
507    BranchProbability QProb,
508    const BlockChain &Chain, const BlockFilterSet *BlockFilter);
509
510  /// Check for a trellis layout.
511  bool isTrellis(const MachineBasicBlock *BB,
512                 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
513                 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
514
515  /// Get the best successor given a trellis layout.
516  BlockAndTailDupResult getBestTrellisSuccessor(
517      const MachineBasicBlock *BB,
518      const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
519      BranchProbability AdjustedSumProb, const BlockChain &Chain,
520      const BlockFilterSet *BlockFilter);
521
522  /// Get the best pair of non-conflicting edges.
523  static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
524      const MachineBasicBlock *BB,
525      MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
526
527  /// Returns true if a block can tail duplicate into all unplaced
528  /// predecessors. Filters based on loop.
529  bool canTailDuplicateUnplacedPreds(
530      const MachineBasicBlock *BB, MachineBasicBlock *Succ,
531      const BlockChain &Chain, const BlockFilterSet *BlockFilter);
532
533  /// Find chains of triangles to tail-duplicate where a global analysis works,
534  /// but a local analysis would not find them.
535  void precomputeTriangleChains();
536
537public:
538  static char ID; // Pass identification, replacement for typeid
539
540  MachineBlockPlacement() : MachineFunctionPass(ID) {
541    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
542  }
543
544  bool runOnMachineFunction(MachineFunction &F) override;
545
546  bool allowTailDupPlacement() const {
547    assert(F);
548    return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
549  }
550
551  void getAnalysisUsage(AnalysisUsage &AU) const override {
552    AU.addRequired<MachineBranchProbabilityInfo>();
553    AU.addRequired<MachineBlockFrequencyInfo>();
554    if (TailDupPlacement)
555      AU.addRequired<MachinePostDominatorTree>();
556    AU.addRequired<MachineLoopInfo>();
557    AU.addRequired<ProfileSummaryInfoWrapperPass>();
558    AU.addRequired<TargetPassConfig>();
559    MachineFunctionPass::getAnalysisUsage(AU);
560  }
561};
562
563} // end anonymous namespace
564
565char MachineBlockPlacement::ID = 0;
566
567char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
568
569INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
570                      "Branch Probability Basic Block Placement", false, false)
571INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
572INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
573INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
574INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
575INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
576INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
577                    "Branch Probability Basic Block Placement", false, false)
578
579#ifndef NDEBUG
580/// Helper to print the name of a MBB.
581///
582/// Only used by debug logging.
583static std::string getBlockName(const MachineBasicBlock *BB) {
584  std::string Result;
585  raw_string_ostream OS(Result);
586  OS << printMBBReference(*BB);
587  OS << " ('" << BB->getName() << "')";
588  OS.flush();
589  return Result;
590}
591#endif
592
593/// Mark a chain's successors as having one fewer preds.
594///
595/// When a chain is being merged into the "placed" chain, this routine will
596/// quickly walk the successors of each block in the chain and mark them as
597/// having one fewer active predecessor. It also adds any successors of this
598/// chain which reach the zero-predecessor state to the appropriate worklist.
599void MachineBlockPlacement::markChainSuccessors(
600    const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
601    const BlockFilterSet *BlockFilter) {
602  // Walk all the blocks in this chain, marking their successors as having
603  // a predecessor placed.
604  for (MachineBasicBlock *MBB : Chain) {
605    markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
606  }
607}
608
609/// Mark a single block's successors as having one fewer preds.
610///
611/// Under normal circumstances, this is only called by markChainSuccessors,
612/// but if a block that was to be placed is completely tail-duplicated away,
613/// and was duplicated into the chain end, we need to redo markBlockSuccessors
614/// for just that block.
615void MachineBlockPlacement::markBlockSuccessors(
616    const BlockChain &Chain, const MachineBasicBlock *MBB,
617    const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
618  // Add any successors for which this is the only un-placed in-loop
619  // predecessor to the worklist as a viable candidate for CFG-neutral
620  // placement. No subsequent placement of this block will violate the CFG
621  // shape, so we get to use heuristics to choose a favorable placement.
622  for (MachineBasicBlock *Succ : MBB->successors()) {
623    if (BlockFilter && !BlockFilter->count(Succ))
624      continue;
625    BlockChain &SuccChain = *BlockToChain[Succ];
626    // Disregard edges within a fixed chain, or edges to the loop header.
627    if (&Chain == &SuccChain || Succ == LoopHeaderBB)
628      continue;
629
630    // This is a cross-chain edge that is within the loop, so decrement the
631    // loop predecessor count of the destination chain.
632    if (SuccChain.UnscheduledPredecessors == 0 ||
633        --SuccChain.UnscheduledPredecessors > 0)
634      continue;
635
636    auto *NewBB = *SuccChain.begin();
637    if (NewBB->isEHPad())
638      EHPadWorkList.push_back(NewBB);
639    else
640      BlockWorkList.push_back(NewBB);
641  }
642}
643
644/// This helper function collects the set of successors of block
645/// \p BB that are allowed to be its layout successors, and return
646/// the total branch probability of edges from \p BB to those
647/// blocks.
648BranchProbability MachineBlockPlacement::collectViableSuccessors(
649    const MachineBasicBlock *BB, const BlockChain &Chain,
650    const BlockFilterSet *BlockFilter,
651    SmallVector<MachineBasicBlock *, 4> &Successors) {
652  // Adjust edge probabilities by excluding edges pointing to blocks that is
653  // either not in BlockFilter or is already in the current chain. Consider the
654  // following CFG:
655  //
656  //     --->A
657  //     |  / \
658  //     | B   C
659  //     |  \ / \
660  //     ----D   E
661  //
662  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
663  // A->C is chosen as a fall-through, D won't be selected as a successor of C
664  // due to CFG constraint (the probability of C->D is not greater than
665  // HotProb to break topo-order). If we exclude E that is not in BlockFilter
666  // when calculating the probability of C->D, D will be selected and we
667  // will get A C D B as the layout of this loop.
668  auto AdjustedSumProb = BranchProbability::getOne();
669  for (MachineBasicBlock *Succ : BB->successors()) {
670    bool SkipSucc = false;
671    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
672      SkipSucc = true;
673    } else {
674      BlockChain *SuccChain = BlockToChain[Succ];
675      if (SuccChain == &Chain) {
676        SkipSucc = true;
677      } else if (Succ != *SuccChain->begin()) {
678        LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ)
679                          << " -> Mid chain!\n");
680        continue;
681      }
682    }
683    if (SkipSucc)
684      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
685    else
686      Successors.push_back(Succ);
687  }
688
689  return AdjustedSumProb;
690}
691
692/// The helper function returns the branch probability that is adjusted
693/// or normalized over the new total \p AdjustedSumProb.
694static BranchProbability
695getAdjustedProbability(BranchProbability OrigProb,
696                       BranchProbability AdjustedSumProb) {
697  BranchProbability SuccProb;
698  uint32_t SuccProbN = OrigProb.getNumerator();
699  uint32_t SuccProbD = AdjustedSumProb.getNumerator();
700  if (SuccProbN >= SuccProbD)
701    SuccProb = BranchProbability::getOne();
702  else
703    SuccProb = BranchProbability(SuccProbN, SuccProbD);
704
705  return SuccProb;
706}
707
708/// Check if \p BB has exactly the successors in \p Successors.
709static bool
710hasSameSuccessors(MachineBasicBlock &BB,
711                  SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
712  if (BB.succ_size() != Successors.size())
713    return false;
714  // We don't want to count self-loops
715  if (Successors.count(&BB))
716    return false;
717  for (MachineBasicBlock *Succ : BB.successors())
718    if (!Successors.count(Succ))
719      return false;
720  return true;
721}
722
723/// Check if a block should be tail duplicated to increase fallthrough
724/// opportunities.
725/// \p BB Block to check.
726bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
727  // Blocks with single successors don't create additional fallthrough
728  // opportunities. Don't duplicate them. TODO: When conditional exits are
729  // analyzable, allow them to be duplicated.
730  bool IsSimple = TailDup.isSimpleBB(BB);
731
732  if (BB->succ_size() == 1)
733    return false;
734  return TailDup.shouldTailDuplicate(IsSimple, *BB);
735}
736
737/// Compare 2 BlockFrequency's with a small penalty for \p A.
738/// In order to be conservative, we apply a X% penalty to account for
739/// increased icache pressure and static heuristics. For small frequencies
740/// we use only the numerators to improve accuracy. For simplicity, we assume the
741/// penalty is less than 100%
742/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
743static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
744                            uint64_t EntryFreq) {
745  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
746  BlockFrequency Gain = A - B;
747  return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
748}
749
750/// Check the edge frequencies to see if tail duplication will increase
751/// fallthroughs. It only makes sense to call this function when
752/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
753/// always locally profitable if we would have picked \p Succ without
754/// considering duplication.
755bool MachineBlockPlacement::isProfitableToTailDup(
756    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
757    BranchProbability QProb,
758    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
759  // We need to do a probability calculation to make sure this is profitable.
760  // First: does succ have a successor that post-dominates? This affects the
761  // calculation. The 2 relevant cases are:
762  //    BB         BB
763  //    | \Qout    | \Qout
764  //   P|  C       |P C
765  //    =   C'     =   C'
766  //    |  /Qin    |  /Qin
767  //    | /        | /
768  //    Succ       Succ
769  //    / \        | \  V
770  //  U/   =V      |U \
771  //  /     \      =   D
772  //  D      E     |  /
773  //               | /
774  //               |/
775  //               PDom
776  //  '=' : Branch taken for that CFG edge
777  // In the second case, Placing Succ while duplicating it into C prevents the
778  // fallthrough of Succ into either D or PDom, because they now have C as an
779  // unplaced predecessor
780
781  // Start by figuring out which case we fall into
782  MachineBasicBlock *PDom = nullptr;
783  SmallVector<MachineBasicBlock *, 4> SuccSuccs;
784  // Only scan the relevant successors
785  auto AdjustedSuccSumProb =
786      collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
787  BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
788  auto BBFreq = MBFI->getBlockFreq(BB);
789  auto SuccFreq = MBFI->getBlockFreq(Succ);
790  BlockFrequency P = BBFreq * PProb;
791  BlockFrequency Qout = BBFreq * QProb;
792  uint64_t EntryFreq = MBFI->getEntryFreq();
793  // If there are no more successors, it is profitable to copy, as it strictly
794  // increases fallthrough.
795  if (SuccSuccs.size() == 0)
796    return greaterWithBias(P, Qout, EntryFreq);
797
798  auto BestSuccSucc = BranchProbability::getZero();
799  // Find the PDom or the best Succ if no PDom exists.
800  for (MachineBasicBlock *SuccSucc : SuccSuccs) {
801    auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
802    if (Prob > BestSuccSucc)
803      BestSuccSucc = Prob;
804    if (PDom == nullptr)
805      if (MPDT->dominates(SuccSucc, Succ)) {
806        PDom = SuccSucc;
807        break;
808      }
809  }
810  // For the comparisons, we need to know Succ's best incoming edge that isn't
811  // from BB.
812  auto SuccBestPred = BlockFrequency(0);
813  for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
814    if (SuccPred == Succ || SuccPred == BB
815        || BlockToChain[SuccPred] == &Chain
816        || (BlockFilter && !BlockFilter->count(SuccPred)))
817      continue;
818    auto Freq = MBFI->getBlockFreq(SuccPred)
819        * MBPI->getEdgeProbability(SuccPred, Succ);
820    if (Freq > SuccBestPred)
821      SuccBestPred = Freq;
822  }
823  // Qin is Succ's best unplaced incoming edge that isn't BB
824  BlockFrequency Qin = SuccBestPred;
825  // If it doesn't have a post-dominating successor, here is the calculation:
826  //    BB        BB
827  //    | \Qout   |  \
828  //   P|  C      |   =
829  //    =   C'    |    C
830  //    |  /Qin   |     |
831  //    | /       |     C' (+Succ)
832  //    Succ      Succ /|
833  //    / \       |  \/ |
834  //  U/   =V     |  == |
835  //  /     \     | /  \|
836  //  D      E    D     E
837  //  '=' : Branch taken for that CFG edge
838  //  Cost in the first case is: P + V
839  //  For this calculation, we always assume P > Qout. If Qout > P
840  //  The result of this function will be ignored at the caller.
841  //  Let F = SuccFreq - Qin
842  //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
843
844  if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
845    BranchProbability UProb = BestSuccSucc;
846    BranchProbability VProb = AdjustedSuccSumProb - UProb;
847    BlockFrequency F = SuccFreq - Qin;
848    BlockFrequency V = SuccFreq * VProb;
849    BlockFrequency QinU = std::min(Qin, F) * UProb;
850    BlockFrequency BaseCost = P + V;
851    BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
852    return greaterWithBias(BaseCost, DupCost, EntryFreq);
853  }
854  BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
855  BranchProbability VProb = AdjustedSuccSumProb - UProb;
856  BlockFrequency U = SuccFreq * UProb;
857  BlockFrequency V = SuccFreq * VProb;
858  BlockFrequency F = SuccFreq - Qin;
859  // If there is a post-dominating successor, here is the calculation:
860  // BB         BB                 BB          BB
861  // | \Qout    |   \               | \Qout     |  \
862  // |P C       |    =              |P C        |   =
863  // =   C'     |P    C             =   C'      |P   C
864  // |  /Qin    |      |            |  /Qin     |     |
865  // | /        |      C' (+Succ)   | /         |     C' (+Succ)
866  // Succ       Succ  /|            Succ        Succ /|
867  // | \  V     |   \/ |            | \  V      |  \/ |
868  // |U \       |U  /\ =?           |U =        |U /\ |
869  // =   D      = =  =?|            |   D       | =  =|
870  // |  /       |/     D            |  /        |/    D
871  // | /        |     /             | =         |    /
872  // |/         |    /              |/          |   =
873  // Dom         Dom                Dom         Dom
874  //  '=' : Branch taken for that CFG edge
875  // The cost for taken branches in the first case is P + U
876  // Let F = SuccFreq - Qin
877  // The cost in the second case (assuming independence), given the layout:
878  // BB, Succ, (C+Succ), D, Dom or the layout:
879  // BB, Succ, D, Dom, (C+Succ)
880  // is Qout + max(F, Qin) * U + min(F, Qin)
881  // compare P + U vs Qout + P * U + Qin.
882  //
883  // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
884  //
885  // For the 3rd case, the cost is P + 2 * V
886  // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
887  // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
888  if (UProb > AdjustedSuccSumProb / 2 &&
889      !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
890                                  Chain, BlockFilter))
891    // Cases 3 & 4
892    return greaterWithBias(
893        (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
894        EntryFreq);
895  // Cases 1 & 2
896  return greaterWithBias((P + U),
897                         (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
898                          std::max(Qin, F) * UProb),
899                         EntryFreq);
900}
901
902/// Check for a trellis layout. \p BB is the upper part of a trellis if its
903/// successors form the lower part of a trellis. A successor set S forms the
904/// lower part of a trellis if all of the predecessors of S are either in S or
905/// have all of S as successors. We ignore trellises where BB doesn't have 2
906/// successors because for fewer than 2, it's trivial, and for 3 or greater they
907/// are very uncommon and complex to compute optimally. Allowing edges within S
908/// is not strictly a trellis, but the same algorithm works, so we allow it.
909bool MachineBlockPlacement::isTrellis(
910    const MachineBasicBlock *BB,
911    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
912    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
913  // Technically BB could form a trellis with branching factor higher than 2.
914  // But that's extremely uncommon.
915  if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
916    return false;
917
918  SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
919                                                       BB->succ_end());
920  // To avoid reviewing the same predecessors twice.
921  SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
922
923  for (MachineBasicBlock *Succ : ViableSuccs) {
924    int PredCount = 0;
925    for (auto SuccPred : Succ->predecessors()) {
926      // Allow triangle successors, but don't count them.
927      if (Successors.count(SuccPred)) {
928        // Make sure that it is actually a triangle.
929        for (MachineBasicBlock *CheckSucc : SuccPred->successors())
930          if (!Successors.count(CheckSucc))
931            return false;
932        continue;
933      }
934      const BlockChain *PredChain = BlockToChain[SuccPred];
935      if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
936          PredChain == &Chain || PredChain == BlockToChain[Succ])
937        continue;
938      ++PredCount;
939      // Perform the successor check only once.
940      if (!SeenPreds.insert(SuccPred).second)
941        continue;
942      if (!hasSameSuccessors(*SuccPred, Successors))
943        return false;
944    }
945    // If one of the successors has only BB as a predecessor, it is not a
946    // trellis.
947    if (PredCount < 1)
948      return false;
949  }
950  return true;
951}
952
953/// Pick the highest total weight pair of edges that can both be laid out.
954/// The edges in \p Edges[0] are assumed to have a different destination than
955/// the edges in \p Edges[1]. Simple counting shows that the best pair is either
956/// the individual highest weight edges to the 2 different destinations, or in
957/// case of a conflict, one of them should be replaced with a 2nd best edge.
958std::pair<MachineBlockPlacement::WeightedEdge,
959          MachineBlockPlacement::WeightedEdge>
960MachineBlockPlacement::getBestNonConflictingEdges(
961    const MachineBasicBlock *BB,
962    MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
963        Edges) {
964  // Sort the edges, and then for each successor, find the best incoming
965  // predecessor. If the best incoming predecessors aren't the same,
966  // then that is clearly the best layout. If there is a conflict, one of the
967  // successors will have to fallthrough from the second best predecessor. We
968  // compare which combination is better overall.
969
970  // Sort for highest frequency.
971  auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
972
973  llvm::stable_sort(Edges[0], Cmp);
974  llvm::stable_sort(Edges[1], Cmp);
975  auto BestA = Edges[0].begin();
976  auto BestB = Edges[1].begin();
977  // Arrange for the correct answer to be in BestA and BestB
978  // If the 2 best edges don't conflict, the answer is already there.
979  if (BestA->Src == BestB->Src) {
980    // Compare the total fallthrough of (Best + Second Best) for both pairs
981    auto SecondBestA = std::next(BestA);
982    auto SecondBestB = std::next(BestB);
983    BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
984    BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
985    if (BestAScore < BestBScore)
986      BestA = SecondBestA;
987    else
988      BestB = SecondBestB;
989  }
990  // Arrange for the BB edge to be in BestA if it exists.
991  if (BestB->Src == BB)
992    std::swap(BestA, BestB);
993  return std::make_pair(*BestA, *BestB);
994}
995
996/// Get the best successor from \p BB based on \p BB being part of a trellis.
997/// We only handle trellises with 2 successors, so the algorithm is
998/// straightforward: Find the best pair of edges that don't conflict. We find
999/// the best incoming edge for each successor in the trellis. If those conflict,
1000/// we consider which of them should be replaced with the second best.
1001/// Upon return the two best edges will be in \p BestEdges. If one of the edges
1002/// comes from \p BB, it will be in \p BestEdges[0]
1003MachineBlockPlacement::BlockAndTailDupResult
1004MachineBlockPlacement::getBestTrellisSuccessor(
1005    const MachineBasicBlock *BB,
1006    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1007    BranchProbability AdjustedSumProb, const BlockChain &Chain,
1008    const BlockFilterSet *BlockFilter) {
1009
1010  BlockAndTailDupResult Result = {nullptr, false};
1011  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1012                                                       BB->succ_end());
1013
1014  // We assume size 2 because it's common. For general n, we would have to do
1015  // the Hungarian algorithm, but it's not worth the complexity because more
1016  // than 2 successors is fairly uncommon, and a trellis even more so.
1017  if (Successors.size() != 2 || ViableSuccs.size() != 2)
1018    return Result;
1019
1020  // Collect the edge frequencies of all edges that form the trellis.
1021  SmallVector<WeightedEdge, 8> Edges[2];
1022  int SuccIndex = 0;
1023  for (auto Succ : ViableSuccs) {
1024    for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1025      // Skip any placed predecessors that are not BB
1026      if (SuccPred != BB)
1027        if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1028            BlockToChain[SuccPred] == &Chain ||
1029            BlockToChain[SuccPred] == BlockToChain[Succ])
1030          continue;
1031      BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1032                                MBPI->getEdgeProbability(SuccPred, Succ);
1033      Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1034    }
1035    ++SuccIndex;
1036  }
1037
1038  // Pick the best combination of 2 edges from all the edges in the trellis.
1039  WeightedEdge BestA, BestB;
1040  std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1041
1042  if (BestA.Src != BB) {
1043    // If we have a trellis, and BB doesn't have the best fallthrough edges,
1044    // we shouldn't choose any successor. We've already looked and there's a
1045    // better fallthrough edge for all the successors.
1046    LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1047    return Result;
1048  }
1049
1050  // Did we pick the triangle edge? If tail-duplication is profitable, do
1051  // that instead. Otherwise merge the triangle edge now while we know it is
1052  // optimal.
1053  if (BestA.Dest == BestB.Src) {
1054    // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1055    // would be better.
1056    MachineBasicBlock *Succ1 = BestA.Dest;
1057    MachineBasicBlock *Succ2 = BestB.Dest;
1058    // Check to see if tail-duplication would be profitable.
1059    if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1060        canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1061        isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1062                              Chain, BlockFilter)) {
1063      LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1064                     MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1065                 dbgs() << "    Selected: " << getBlockName(Succ2)
1066                        << ", probability: " << Succ2Prob
1067                        << " (Tail Duplicate)\n");
1068      Result.BB = Succ2;
1069      Result.ShouldTailDup = true;
1070      return Result;
1071    }
1072  }
1073  // We have already computed the optimal edge for the other side of the
1074  // trellis.
1075  ComputedEdges[BestB.Src] = { BestB.Dest, false };
1076
1077  auto TrellisSucc = BestA.Dest;
1078  LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1079                 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1080             dbgs() << "    Selected: " << getBlockName(TrellisSucc)
1081                    << ", probability: " << SuccProb << " (Trellis)\n");
1082  Result.BB = TrellisSucc;
1083  return Result;
1084}
1085
1086/// When the option allowTailDupPlacement() is on, this method checks if the
1087/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1088/// into all of its unplaced, unfiltered predecessors, that are not BB.
1089bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1090    const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1091    const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1092  if (!shouldTailDuplicate(Succ))
1093    return false;
1094
1095  // The result of canTailDuplicate.
1096  bool Duplicate = true;
1097  // Number of possible duplication.
1098  unsigned int NumDup = 0;
1099
1100  // For CFG checking.
1101  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1102                                                       BB->succ_end());
1103  for (MachineBasicBlock *Pred : Succ->predecessors()) {
1104    // Make sure all unplaced and unfiltered predecessors can be
1105    // tail-duplicated into.
1106    // Skip any blocks that are already placed or not in this loop.
1107    if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1108        || BlockToChain[Pred] == &Chain)
1109      continue;
1110    if (!TailDup.canTailDuplicate(Succ, Pred)) {
1111      if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1112        // This will result in a trellis after tail duplication, so we don't
1113        // need to copy Succ into this predecessor. In the presence
1114        // of a trellis tail duplication can continue to be profitable.
1115        // For example:
1116        // A            A
1117        // |\           |\
1118        // | \          | \
1119        // |  C         |  C+BB
1120        // | /          |  |
1121        // |/           |  |
1122        // BB    =>     BB |
1123        // |\           |\/|
1124        // | \          |/\|
1125        // |  D         |  D
1126        // | /          | /
1127        // |/           |/
1128        // Succ         Succ
1129        //
1130        // After BB was duplicated into C, the layout looks like the one on the
1131        // right. BB and C now have the same successors. When considering
1132        // whether Succ can be duplicated into all its unplaced predecessors, we
1133        // ignore C.
1134        // We can do this because C already has a profitable fallthrough, namely
1135        // D. TODO(iteratee): ignore sufficiently cold predecessors for
1136        // duplication and for this test.
1137        //
1138        // This allows trellises to be laid out in 2 separate chains
1139        // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1140        // because it allows the creation of 2 fallthrough paths with links
1141        // between them, and we correctly identify the best layout for these
1142        // CFGs. We want to extend trellises that the user created in addition
1143        // to trellises created by tail-duplication, so we just look for the
1144        // CFG.
1145        continue;
1146      Duplicate = false;
1147      continue;
1148    }
1149    NumDup++;
1150  }
1151
1152  // No possible duplication in current filter set.
1153  if (NumDup == 0)
1154    return false;
1155
1156  // If profile information is available, findDuplicateCandidates can do more
1157  // precise benefit analysis.
1158  if (F->getFunction().hasProfileData())
1159    return true;
1160
1161  // This is mainly for function exit BB.
1162  // The integrated tail duplication is really designed for increasing
1163  // fallthrough from predecessors from Succ to its successors. We may need
1164  // other machanism to handle different cases.
1165  if (Succ->succ_size() == 0)
1166    return true;
1167
1168  // Plus the already placed predecessor.
1169  NumDup++;
1170
1171  // If the duplication candidate has more unplaced predecessors than
1172  // successors, the extra duplication can't bring more fallthrough.
1173  //
1174  //     Pred1 Pred2 Pred3
1175  //         \   |   /
1176  //          \  |  /
1177  //           \ | /
1178  //            Dup
1179  //            / \
1180  //           /   \
1181  //       Succ1  Succ2
1182  //
1183  // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1184  // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1185  // but the duplication into Pred3 can't increase fallthrough.
1186  //
1187  // A small number of extra duplication may not hurt too much. We need a better
1188  // heuristic to handle it.
1189  if ((NumDup > Succ->succ_size()) || !Duplicate)
1190    return false;
1191
1192  return true;
1193}
1194
1195/// Find chains of triangles where we believe it would be profitable to
1196/// tail-duplicate them all, but a local analysis would not find them.
1197/// There are 3 ways this can be profitable:
1198/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1199///    longer chains)
1200/// 2) The chains are statically correlated. Branch probabilities have a very
1201///    U-shaped distribution.
1202///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1203///    If the branches in a chain are likely to be from the same side of the
1204///    distribution as their predecessor, but are independent at runtime, this
1205///    transformation is profitable. (Because the cost of being wrong is a small
1206///    fixed cost, unlike the standard triangle layout where the cost of being
1207///    wrong scales with the # of triangles.)
1208/// 3) The chains are dynamically correlated. If the probability that a previous
1209///    branch was taken positively influences whether the next branch will be
1210///    taken
1211/// We believe that 2 and 3 are common enough to justify the small margin in 1.
1212void MachineBlockPlacement::precomputeTriangleChains() {
1213  struct TriangleChain {
1214    std::vector<MachineBasicBlock *> Edges;
1215
1216    TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1217        : Edges({src, dst}) {}
1218
1219    void append(MachineBasicBlock *dst) {
1220      assert(getKey()->isSuccessor(dst) &&
1221             "Attempting to append a block that is not a successor.");
1222      Edges.push_back(dst);
1223    }
1224
1225    unsigned count() const { return Edges.size() - 1; }
1226
1227    MachineBasicBlock *getKey() const {
1228      return Edges.back();
1229    }
1230  };
1231
1232  if (TriangleChainCount == 0)
1233    return;
1234
1235  LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1236  // Map from last block to the chain that contains it. This allows us to extend
1237  // chains as we find new triangles.
1238  DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1239  for (MachineBasicBlock &BB : *F) {
1240    // If BB doesn't have 2 successors, it doesn't start a triangle.
1241    if (BB.succ_size() != 2)
1242      continue;
1243    MachineBasicBlock *PDom = nullptr;
1244    for (MachineBasicBlock *Succ : BB.successors()) {
1245      if (!MPDT->dominates(Succ, &BB))
1246        continue;
1247      PDom = Succ;
1248      break;
1249    }
1250    // If BB doesn't have a post-dominating successor, it doesn't form a
1251    // triangle.
1252    if (PDom == nullptr)
1253      continue;
1254    // If PDom has a hint that it is low probability, skip this triangle.
1255    if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1256      continue;
1257    // If PDom isn't eligible for duplication, this isn't the kind of triangle
1258    // we're looking for.
1259    if (!shouldTailDuplicate(PDom))
1260      continue;
1261    bool CanTailDuplicate = true;
1262    // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1263    // isn't the kind of triangle we're looking for.
1264    for (MachineBasicBlock* Pred : PDom->predecessors()) {
1265      if (Pred == &BB)
1266        continue;
1267      if (!TailDup.canTailDuplicate(PDom, Pred)) {
1268        CanTailDuplicate = false;
1269        break;
1270      }
1271    }
1272    // If we can't tail-duplicate PDom to its predecessors, then skip this
1273    // triangle.
1274    if (!CanTailDuplicate)
1275      continue;
1276
1277    // Now we have an interesting triangle. Insert it if it's not part of an
1278    // existing chain.
1279    // Note: This cannot be replaced with a call insert() or emplace() because
1280    // the find key is BB, but the insert/emplace key is PDom.
1281    auto Found = TriangleChainMap.find(&BB);
1282    // If it is, remove the chain from the map, grow it, and put it back in the
1283    // map with the end as the new key.
1284    if (Found != TriangleChainMap.end()) {
1285      TriangleChain Chain = std::move(Found->second);
1286      TriangleChainMap.erase(Found);
1287      Chain.append(PDom);
1288      TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1289    } else {
1290      auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1291      assert(InsertResult.second && "Block seen twice.");
1292      (void)InsertResult;
1293    }
1294  }
1295
1296  // Iterating over a DenseMap is safe here, because the only thing in the body
1297  // of the loop is inserting into another DenseMap (ComputedEdges).
1298  // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1299  for (auto &ChainPair : TriangleChainMap) {
1300    TriangleChain &Chain = ChainPair.second;
1301    // Benchmarking has shown that due to branch correlation duplicating 2 or
1302    // more triangles is profitable, despite the calculations assuming
1303    // independence.
1304    if (Chain.count() < TriangleChainCount)
1305      continue;
1306    MachineBasicBlock *dst = Chain.Edges.back();
1307    Chain.Edges.pop_back();
1308    for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1309      LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1310                        << getBlockName(dst)
1311                        << " as pre-computed based on triangles.\n");
1312
1313      auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1314      assert(InsertResult.second && "Block seen twice.");
1315      (void)InsertResult;
1316
1317      dst = src;
1318    }
1319  }
1320}
1321
1322// When profile is not present, return the StaticLikelyProb.
1323// When profile is available, we need to handle the triangle-shape CFG.
1324static BranchProbability getLayoutSuccessorProbThreshold(
1325      const MachineBasicBlock *BB) {
1326  if (!BB->getParent()->getFunction().hasProfileData())
1327    return BranchProbability(StaticLikelyProb, 100);
1328  if (BB->succ_size() == 2) {
1329    const MachineBasicBlock *Succ1 = *BB->succ_begin();
1330    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1331    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1332      /* See case 1 below for the cost analysis. For BB->Succ to
1333       * be taken with smaller cost, the following needs to hold:
1334       *   Prob(BB->Succ) > 2 * Prob(BB->Pred)
1335       *   So the threshold T in the calculation below
1336       *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1337       *   So T / (1 - T) = 2, Yielding T = 2/3
1338       * Also adding user specified branch bias, we have
1339       *   T = (2/3)*(ProfileLikelyProb/50)
1340       *     = (2*ProfileLikelyProb)/150)
1341       */
1342      return BranchProbability(2 * ProfileLikelyProb, 150);
1343    }
1344  }
1345  return BranchProbability(ProfileLikelyProb, 100);
1346}
1347
1348/// Checks to see if the layout candidate block \p Succ has a better layout
1349/// predecessor than \c BB. If yes, returns true.
1350/// \p SuccProb: The probability adjusted for only remaining blocks.
1351///   Only used for logging
1352/// \p RealSuccProb: The un-adjusted probability.
1353/// \p Chain: The chain that BB belongs to and Succ is being considered for.
1354/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1355///    considered
1356bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1357    const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1358    const BlockChain &SuccChain, BranchProbability SuccProb,
1359    BranchProbability RealSuccProb, const BlockChain &Chain,
1360    const BlockFilterSet *BlockFilter) {
1361
1362  // There isn't a better layout when there are no unscheduled predecessors.
1363  if (SuccChain.UnscheduledPredecessors == 0)
1364    return false;
1365
1366  // There are two basic scenarios here:
1367  // -------------------------------------
1368  // Case 1: triangular shape CFG (if-then):
1369  //     BB
1370  //     | \
1371  //     |  \
1372  //     |   Pred
1373  //     |   /
1374  //     Succ
1375  // In this case, we are evaluating whether to select edge -> Succ, e.g.
1376  // set Succ as the layout successor of BB. Picking Succ as BB's
1377  // successor breaks the CFG constraints (FIXME: define these constraints).
1378  // With this layout, Pred BB
1379  // is forced to be outlined, so the overall cost will be cost of the
1380  // branch taken from BB to Pred, plus the cost of back taken branch
1381  // from Pred to Succ, as well as the additional cost associated
1382  // with the needed unconditional jump instruction from Pred To Succ.
1383
1384  // The cost of the topological order layout is the taken branch cost
1385  // from BB to Succ, so to make BB->Succ a viable candidate, the following
1386  // must hold:
1387  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1388  //      < freq(BB->Succ) *  taken_branch_cost.
1389  // Ignoring unconditional jump cost, we get
1390  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1391  //    prob(BB->Succ) > 2 * prob(BB->Pred)
1392  //
1393  // When real profile data is available, we can precisely compute the
1394  // probability threshold that is needed for edge BB->Succ to be considered.
1395  // Without profile data, the heuristic requires the branch bias to be
1396  // a lot larger to make sure the signal is very strong (e.g. 80% default).
1397  // -----------------------------------------------------------------
1398  // Case 2: diamond like CFG (if-then-else):
1399  //     S
1400  //    / \
1401  //   |   \
1402  //  BB    Pred
1403  //   \    /
1404  //    Succ
1405  //    ..
1406  //
1407  // The current block is BB and edge BB->Succ is now being evaluated.
1408  // Note that edge S->BB was previously already selected because
1409  // prob(S->BB) > prob(S->Pred).
1410  // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1411  // choose Pred, we will have a topological ordering as shown on the left
1412  // in the picture below. If we choose Succ, we have the solution as shown
1413  // on the right:
1414  //
1415  //   topo-order:
1416  //
1417  //       S-----                             ---S
1418  //       |    |                             |  |
1419  //    ---BB   |                             |  BB
1420  //    |       |                             |  |
1421  //    |  Pred--                             |  Succ--
1422  //    |  |                                  |       |
1423  //    ---Succ                               ---Pred--
1424  //
1425  // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
1426  //      = freq(S->Pred) + freq(S->BB)
1427  //
1428  // If we have profile data (i.e, branch probabilities can be trusted), the
1429  // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1430  // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1431  // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1432  // means the cost of topological order is greater.
1433  // When profile data is not available, however, we need to be more
1434  // conservative. If the branch prediction is wrong, breaking the topo-order
1435  // will actually yield a layout with large cost. For this reason, we need
1436  // strong biased branch at block S with Prob(S->BB) in order to select
1437  // BB->Succ. This is equivalent to looking the CFG backward with backward
1438  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1439  // profile data).
1440  // --------------------------------------------------------------------------
1441  // Case 3: forked diamond
1442  //       S
1443  //      / \
1444  //     /   \
1445  //   BB    Pred
1446  //   | \   / |
1447  //   |  \ /  |
1448  //   |   X   |
1449  //   |  / \  |
1450  //   | /   \ |
1451  //   S1     S2
1452  //
1453  // The current block is BB and edge BB->S1 is now being evaluated.
1454  // As above S->BB was already selected because
1455  // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1456  //
1457  // topo-order:
1458  //
1459  //     S-------|                     ---S
1460  //     |       |                     |  |
1461  //  ---BB      |                     |  BB
1462  //  |          |                     |  |
1463  //  |  Pred----|                     |  S1----
1464  //  |  |                             |       |
1465  //  --(S1 or S2)                     ---Pred--
1466  //                                        |
1467  //                                       S2
1468  //
1469  // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1470  //    + min(freq(Pred->S1), freq(Pred->S2))
1471  // Non-topo-order cost:
1472  // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1473  // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1474  // is 0. Then the non topo layout is better when
1475  // freq(S->Pred) < freq(BB->S1).
1476  // This is exactly what is checked below.
1477  // Note there are other shapes that apply (Pred may not be a single block,
1478  // but they all fit this general pattern.)
1479  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1480
1481  // Make sure that a hot successor doesn't have a globally more
1482  // important predecessor.
1483  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1484  bool BadCFGConflict = false;
1485
1486  for (MachineBasicBlock *Pred : Succ->predecessors()) {
1487    BlockChain *PredChain = BlockToChain[Pred];
1488    if (Pred == Succ || PredChain == &SuccChain ||
1489        (BlockFilter && !BlockFilter->count(Pred)) ||
1490        PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1491        // This check is redundant except for look ahead. This function is
1492        // called for lookahead by isProfitableToTailDup when BB hasn't been
1493        // placed yet.
1494        (Pred == BB))
1495      continue;
1496    // Do backward checking.
1497    // For all cases above, we need a backward checking to filter out edges that
1498    // are not 'strongly' biased.
1499    // BB  Pred
1500    //  \ /
1501    //  Succ
1502    // We select edge BB->Succ if
1503    //      freq(BB->Succ) > freq(Succ) * HotProb
1504    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1505    //      HotProb
1506    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1507    // Case 1 is covered too, because the first equation reduces to:
1508    // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1509    BlockFrequency PredEdgeFreq =
1510        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1511    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1512      BadCFGConflict = true;
1513      break;
1514    }
1515  }
1516
1517  if (BadCFGConflict) {
1518    LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> "
1519                      << SuccProb << " (prob) (non-cold CFG conflict)\n");
1520    return true;
1521  }
1522
1523  return false;
1524}
1525
1526/// Select the best successor for a block.
1527///
1528/// This looks across all successors of a particular block and attempts to
1529/// select the "best" one to be the layout successor. It only considers direct
1530/// successors which also pass the block filter. It will attempt to avoid
1531/// breaking CFG structure, but cave and break such structures in the case of
1532/// very hot successor edges.
1533///
1534/// \returns The best successor block found, or null if none are viable, along
1535/// with a boolean indicating if tail duplication is necessary.
1536MachineBlockPlacement::BlockAndTailDupResult
1537MachineBlockPlacement::selectBestSuccessor(
1538    const MachineBasicBlock *BB, const BlockChain &Chain,
1539    const BlockFilterSet *BlockFilter) {
1540  const BranchProbability HotProb(StaticLikelyProb, 100);
1541
1542  BlockAndTailDupResult BestSucc = { nullptr, false };
1543  auto BestProb = BranchProbability::getZero();
1544
1545  SmallVector<MachineBasicBlock *, 4> Successors;
1546  auto AdjustedSumProb =
1547      collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1548
1549  LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1550                    << "\n");
1551
1552  // if we already precomputed the best successor for BB, return that if still
1553  // applicable.
1554  auto FoundEdge = ComputedEdges.find(BB);
1555  if (FoundEdge != ComputedEdges.end()) {
1556    MachineBasicBlock *Succ = FoundEdge->second.BB;
1557    ComputedEdges.erase(FoundEdge);
1558    BlockChain *SuccChain = BlockToChain[Succ];
1559    if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1560        SuccChain != &Chain && Succ == *SuccChain->begin())
1561      return FoundEdge->second;
1562  }
1563
1564  // if BB is part of a trellis, Use the trellis to determine the optimal
1565  // fallthrough edges
1566  if (isTrellis(BB, Successors, Chain, BlockFilter))
1567    return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1568                                   BlockFilter);
1569
1570  // For blocks with CFG violations, we may be able to lay them out anyway with
1571  // tail-duplication. We keep this vector so we can perform the probability
1572  // calculations the minimum number of times.
1573  SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1574      DupCandidates;
1575  for (MachineBasicBlock *Succ : Successors) {
1576    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1577    BranchProbability SuccProb =
1578        getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1579
1580    BlockChain &SuccChain = *BlockToChain[Succ];
1581    // Skip the edge \c BB->Succ if block \c Succ has a better layout
1582    // predecessor that yields lower global cost.
1583    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1584                                   Chain, BlockFilter)) {
1585      // If tail duplication would make Succ profitable, place it.
1586      if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1587        DupCandidates.emplace_back(SuccProb, Succ);
1588      continue;
1589    }
1590
1591    LLVM_DEBUG(
1592        dbgs() << "    Candidate: " << getBlockName(Succ)
1593               << ", probability: " << SuccProb
1594               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1595               << "\n");
1596
1597    if (BestSucc.BB && BestProb >= SuccProb) {
1598      LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n");
1599      continue;
1600    }
1601
1602    LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n");
1603    BestSucc.BB = Succ;
1604    BestProb = SuccProb;
1605  }
1606  // Handle the tail duplication candidates in order of decreasing probability.
1607  // Stop at the first one that is profitable. Also stop if they are less
1608  // profitable than BestSucc. Position is important because we preserve it and
1609  // prefer first best match. Here we aren't comparing in order, so we capture
1610  // the position instead.
1611  llvm::stable_sort(DupCandidates,
1612                    [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1613                       std::tuple<BranchProbability, MachineBasicBlock *> R) {
1614                      return std::get<0>(L) > std::get<0>(R);
1615                    });
1616  for (auto &Tup : DupCandidates) {
1617    BranchProbability DupProb;
1618    MachineBasicBlock *Succ;
1619    std::tie(DupProb, Succ) = Tup;
1620    if (DupProb < BestProb)
1621      break;
1622    if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1623        && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1624      LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ)
1625                        << ", probability: " << DupProb
1626                        << " (Tail Duplicate)\n");
1627      BestSucc.BB = Succ;
1628      BestSucc.ShouldTailDup = true;
1629      break;
1630    }
1631  }
1632
1633  if (BestSucc.BB)
1634    LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n");
1635
1636  return BestSucc;
1637}
1638
1639/// Select the best block from a worklist.
1640///
1641/// This looks through the provided worklist as a list of candidate basic
1642/// blocks and select the most profitable one to place. The definition of
1643/// profitable only really makes sense in the context of a loop. This returns
1644/// the most frequently visited block in the worklist, which in the case of
1645/// a loop, is the one most desirable to be physically close to the rest of the
1646/// loop body in order to improve i-cache behavior.
1647///
1648/// \returns The best block found, or null if none are viable.
1649MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1650    const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1651  // Once we need to walk the worklist looking for a candidate, cleanup the
1652  // worklist of already placed entries.
1653  // FIXME: If this shows up on profiles, it could be folded (at the cost of
1654  // some code complexity) into the loop below.
1655  WorkList.erase(llvm::remove_if(WorkList,
1656                                 [&](MachineBasicBlock *BB) {
1657                                   return BlockToChain.lookup(BB) == &Chain;
1658                                 }),
1659                 WorkList.end());
1660
1661  if (WorkList.empty())
1662    return nullptr;
1663
1664  bool IsEHPad = WorkList[0]->isEHPad();
1665
1666  MachineBasicBlock *BestBlock = nullptr;
1667  BlockFrequency BestFreq;
1668  for (MachineBasicBlock *MBB : WorkList) {
1669    assert(MBB->isEHPad() == IsEHPad &&
1670           "EHPad mismatch between block and work list.");
1671
1672    BlockChain &SuccChain = *BlockToChain[MBB];
1673    if (&SuccChain == &Chain)
1674      continue;
1675
1676    assert(SuccChain.UnscheduledPredecessors == 0 &&
1677           "Found CFG-violating block");
1678
1679    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1680    LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
1681               MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1682
1683    // For ehpad, we layout the least probable first as to avoid jumping back
1684    // from least probable landingpads to more probable ones.
1685    //
1686    // FIXME: Using probability is probably (!) not the best way to achieve
1687    // this. We should probably have a more principled approach to layout
1688    // cleanup code.
1689    //
1690    // The goal is to get:
1691    //
1692    //                 +--------------------------+
1693    //                 |                          V
1694    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
1695    //
1696    // Rather than:
1697    //
1698    //                 +-------------------------------------+
1699    //                 V                                     |
1700    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
1701    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1702      continue;
1703
1704    BestBlock = MBB;
1705    BestFreq = CandidateFreq;
1706  }
1707
1708  return BestBlock;
1709}
1710
1711/// Retrieve the first unplaced basic block.
1712///
1713/// This routine is called when we are unable to use the CFG to walk through
1714/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1715/// We walk through the function's blocks in order, starting from the
1716/// LastUnplacedBlockIt. We update this iterator on each call to avoid
1717/// re-scanning the entire sequence on repeated calls to this routine.
1718MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1719    const BlockChain &PlacedChain,
1720    MachineFunction::iterator &PrevUnplacedBlockIt,
1721    const BlockFilterSet *BlockFilter) {
1722  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1723       ++I) {
1724    if (BlockFilter && !BlockFilter->count(&*I))
1725      continue;
1726    if (BlockToChain[&*I] != &PlacedChain) {
1727      PrevUnplacedBlockIt = I;
1728      // Now select the head of the chain to which the unplaced block belongs
1729      // as the block to place. This will force the entire chain to be placed,
1730      // and satisfies the requirements of merging chains.
1731      return *BlockToChain[&*I]->begin();
1732    }
1733  }
1734  return nullptr;
1735}
1736
1737void MachineBlockPlacement::fillWorkLists(
1738    const MachineBasicBlock *MBB,
1739    SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1740    const BlockFilterSet *BlockFilter = nullptr) {
1741  BlockChain &Chain = *BlockToChain[MBB];
1742  if (!UpdatedPreds.insert(&Chain).second)
1743    return;
1744
1745  assert(
1746      Chain.UnscheduledPredecessors == 0 &&
1747      "Attempting to place block with unscheduled predecessors in worklist.");
1748  for (MachineBasicBlock *ChainBB : Chain) {
1749    assert(BlockToChain[ChainBB] == &Chain &&
1750           "Block in chain doesn't match BlockToChain map.");
1751    for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1752      if (BlockFilter && !BlockFilter->count(Pred))
1753        continue;
1754      if (BlockToChain[Pred] == &Chain)
1755        continue;
1756      ++Chain.UnscheduledPredecessors;
1757    }
1758  }
1759
1760  if (Chain.UnscheduledPredecessors != 0)
1761    return;
1762
1763  MachineBasicBlock *BB = *Chain.begin();
1764  if (BB->isEHPad())
1765    EHPadWorkList.push_back(BB);
1766  else
1767    BlockWorkList.push_back(BB);
1768}
1769
1770void MachineBlockPlacement::buildChain(
1771    const MachineBasicBlock *HeadBB, BlockChain &Chain,
1772    BlockFilterSet *BlockFilter) {
1773  assert(HeadBB && "BB must not be null.\n");
1774  assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1775  MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1776
1777  const MachineBasicBlock *LoopHeaderBB = HeadBB;
1778  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1779  MachineBasicBlock *BB = *std::prev(Chain.end());
1780  while (true) {
1781    assert(BB && "null block found at end of chain in loop.");
1782    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1783    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1784
1785
1786    // Look for the best viable successor if there is one to place immediately
1787    // after this block.
1788    auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1789    MachineBasicBlock* BestSucc = Result.BB;
1790    bool ShouldTailDup = Result.ShouldTailDup;
1791    if (allowTailDupPlacement())
1792      ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1793                                                                  Chain,
1794                                                                  BlockFilter));
1795
1796    // If an immediate successor isn't available, look for the best viable
1797    // block among those we've identified as not violating the loop's CFG at
1798    // this point. This won't be a fallthrough, but it will increase locality.
1799    if (!BestSucc)
1800      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1801    if (!BestSucc)
1802      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1803
1804    if (!BestSucc) {
1805      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1806      if (!BestSucc)
1807        break;
1808
1809      LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1810                           "layout successor until the CFG reduces\n");
1811    }
1812
1813    // Placement may have changed tail duplication opportunities.
1814    // Check for that now.
1815    if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1816      repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1817                                       BlockFilter, PrevUnplacedBlockIt);
1818      // If the chosen successor was duplicated into BB, don't bother laying
1819      // it out, just go round the loop again with BB as the chain end.
1820      if (!BB->isSuccessor(BestSucc))
1821        continue;
1822    }
1823
1824    // Place this block, updating the datastructures to reflect its placement.
1825    BlockChain &SuccChain = *BlockToChain[BestSucc];
1826    // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1827    // we selected a successor that didn't fit naturally into the CFG.
1828    SuccChain.UnscheduledPredecessors = 0;
1829    LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1830                      << getBlockName(BestSucc) << "\n");
1831    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1832    Chain.merge(BestSucc, &SuccChain);
1833    BB = *std::prev(Chain.end());
1834  }
1835
1836  LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1837                    << getBlockName(*Chain.begin()) << "\n");
1838}
1839
1840// If bottom of block BB has only one successor OldTop, in most cases it is
1841// profitable to move it before OldTop, except the following case:
1842//
1843//     -->OldTop<-
1844//     |    .    |
1845//     |    .    |
1846//     |    .    |
1847//     ---Pred   |
1848//          |    |
1849//         BB-----
1850//
1851// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1852// layout the other successor below it, so it can't reduce taken branch.
1853// In this case we keep its original layout.
1854bool
1855MachineBlockPlacement::canMoveBottomBlockToTop(
1856    const MachineBasicBlock *BottomBlock,
1857    const MachineBasicBlock *OldTop) {
1858  if (BottomBlock->pred_size() != 1)
1859    return true;
1860  MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1861  if (Pred->succ_size() != 2)
1862    return true;
1863
1864  MachineBasicBlock *OtherBB = *Pred->succ_begin();
1865  if (OtherBB == BottomBlock)
1866    OtherBB = *Pred->succ_rbegin();
1867  if (OtherBB == OldTop)
1868    return false;
1869
1870  return true;
1871}
1872
1873// Find out the possible fall through frequence to the top of a loop.
1874BlockFrequency
1875MachineBlockPlacement::TopFallThroughFreq(
1876    const MachineBasicBlock *Top,
1877    const BlockFilterSet &LoopBlockSet) {
1878  BlockFrequency MaxFreq = 0;
1879  for (MachineBasicBlock *Pred : Top->predecessors()) {
1880    BlockChain *PredChain = BlockToChain[Pred];
1881    if (!LoopBlockSet.count(Pred) &&
1882        (!PredChain || Pred == *std::prev(PredChain->end()))) {
1883      // Found a Pred block can be placed before Top.
1884      // Check if Top is the best successor of Pred.
1885      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1886      bool TopOK = true;
1887      for (MachineBasicBlock *Succ : Pred->successors()) {
1888        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1889        BlockChain *SuccChain = BlockToChain[Succ];
1890        // Check if Succ can be placed after Pred.
1891        // Succ should not be in any chain, or it is the head of some chain.
1892        if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1893            (!SuccChain || Succ == *SuccChain->begin())) {
1894          TopOK = false;
1895          break;
1896        }
1897      }
1898      if (TopOK) {
1899        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1900                                  MBPI->getEdgeProbability(Pred, Top);
1901        if (EdgeFreq > MaxFreq)
1902          MaxFreq = EdgeFreq;
1903      }
1904    }
1905  }
1906  return MaxFreq;
1907}
1908
1909// Compute the fall through gains when move NewTop before OldTop.
1910//
1911// In following diagram, edges marked as "-" are reduced fallthrough, edges
1912// marked as "+" are increased fallthrough, this function computes
1913//
1914//      SUM(increased fallthrough) - SUM(decreased fallthrough)
1915//
1916//              |
1917//              | -
1918//              V
1919//        --->OldTop
1920//        |     .
1921//        |     .
1922//       +|     .    +
1923//        |   Pred --->
1924//        |     |-
1925//        |     V
1926//        --- NewTop <---
1927//              |-
1928//              V
1929//
1930BlockFrequency
1931MachineBlockPlacement::FallThroughGains(
1932    const MachineBasicBlock *NewTop,
1933    const MachineBasicBlock *OldTop,
1934    const MachineBasicBlock *ExitBB,
1935    const BlockFilterSet &LoopBlockSet) {
1936  BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1937  BlockFrequency FallThrough2Exit = 0;
1938  if (ExitBB)
1939    FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1940        MBPI->getEdgeProbability(NewTop, ExitBB);
1941  BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1942      MBPI->getEdgeProbability(NewTop, OldTop);
1943
1944  // Find the best Pred of NewTop.
1945   MachineBasicBlock *BestPred = nullptr;
1946   BlockFrequency FallThroughFromPred = 0;
1947   for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1948     if (!LoopBlockSet.count(Pred))
1949       continue;
1950     BlockChain *PredChain = BlockToChain[Pred];
1951     if (!PredChain || Pred == *std::prev(PredChain->end())) {
1952       BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1953           MBPI->getEdgeProbability(Pred, NewTop);
1954       if (EdgeFreq > FallThroughFromPred) {
1955         FallThroughFromPred = EdgeFreq;
1956         BestPred = Pred;
1957       }
1958     }
1959   }
1960
1961   // If NewTop is not placed after Pred, another successor can be placed
1962   // after Pred.
1963   BlockFrequency NewFreq = 0;
1964   if (BestPred) {
1965     for (MachineBasicBlock *Succ : BestPred->successors()) {
1966       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1967         continue;
1968       if (ComputedEdges.find(Succ) != ComputedEdges.end())
1969         continue;
1970       BlockChain *SuccChain = BlockToChain[Succ];
1971       if ((SuccChain && (Succ != *SuccChain->begin())) ||
1972           (SuccChain == BlockToChain[BestPred]))
1973         continue;
1974       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1975           MBPI->getEdgeProbability(BestPred, Succ);
1976       if (EdgeFreq > NewFreq)
1977         NewFreq = EdgeFreq;
1978     }
1979     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1980         MBPI->getEdgeProbability(BestPred, NewTop);
1981     if (NewFreq > OrigEdgeFreq) {
1982       // If NewTop is not the best successor of Pred, then Pred doesn't
1983       // fallthrough to NewTop. So there is no FallThroughFromPred and
1984       // NewFreq.
1985       NewFreq = 0;
1986       FallThroughFromPred = 0;
1987     }
1988   }
1989
1990   BlockFrequency Result = 0;
1991   BlockFrequency Gains = BackEdgeFreq + NewFreq;
1992   BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1993       FallThroughFromPred;
1994   if (Gains > Lost)
1995     Result = Gains - Lost;
1996   return Result;
1997}
1998
1999/// Helper function of findBestLoopTop. Find the best loop top block
2000/// from predecessors of old top.
2001///
2002/// Look for a block which is strictly better than the old top for laying
2003/// out before the old top of the loop. This looks for only two patterns:
2004///
2005///     1. a block has only one successor, the old loop top
2006///
2007///        Because such a block will always result in an unconditional jump,
2008///        rotating it in front of the old top is always profitable.
2009///
2010///     2. a block has two successors, one is old top, another is exit
2011///        and it has more than one predecessors
2012///
2013///        If it is below one of its predecessors P, only P can fall through to
2014///        it, all other predecessors need a jump to it, and another conditional
2015///        jump to loop header. If it is moved before loop header, all its
2016///        predecessors jump to it, then fall through to loop header. So all its
2017///        predecessors except P can reduce one taken branch.
2018///        At the same time, move it before old top increases the taken branch
2019///        to loop exit block, so the reduced taken branch will be compared with
2020///        the increased taken branch to the loop exit block.
2021MachineBasicBlock *
2022MachineBlockPlacement::findBestLoopTopHelper(
2023    MachineBasicBlock *OldTop,
2024    const MachineLoop &L,
2025    const BlockFilterSet &LoopBlockSet) {
2026  // Check that the header hasn't been fused with a preheader block due to
2027  // crazy branches. If it has, we need to start with the header at the top to
2028  // prevent pulling the preheader into the loop body.
2029  BlockChain &HeaderChain = *BlockToChain[OldTop];
2030  if (!LoopBlockSet.count(*HeaderChain.begin()))
2031    return OldTop;
2032
2033  LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2034                    << "\n");
2035
2036  BlockFrequency BestGains = 0;
2037  MachineBasicBlock *BestPred = nullptr;
2038  for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2039    if (!LoopBlockSet.count(Pred))
2040      continue;
2041    if (Pred == L.getHeader())
2042      continue;
2043    LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has "
2044                      << Pred->succ_size() << " successors, ";
2045               MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2046    if (Pred->succ_size() > 2)
2047      continue;
2048
2049    MachineBasicBlock *OtherBB = nullptr;
2050    if (Pred->succ_size() == 2) {
2051      OtherBB = *Pred->succ_begin();
2052      if (OtherBB == OldTop)
2053        OtherBB = *Pred->succ_rbegin();
2054    }
2055
2056    if (!canMoveBottomBlockToTop(Pred, OldTop))
2057      continue;
2058
2059    BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2060                                            LoopBlockSet);
2061    if ((Gains > 0) && (Gains > BestGains ||
2062        ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2063      BestPred = Pred;
2064      BestGains = Gains;
2065    }
2066  }
2067
2068  // If no direct predecessor is fine, just use the loop header.
2069  if (!BestPred) {
2070    LLVM_DEBUG(dbgs() << "    final top unchanged\n");
2071    return OldTop;
2072  }
2073
2074  // Walk backwards through any straight line of predecessors.
2075  while (BestPred->pred_size() == 1 &&
2076         (*BestPred->pred_begin())->succ_size() == 1 &&
2077         *BestPred->pred_begin() != L.getHeader())
2078    BestPred = *BestPred->pred_begin();
2079
2080  LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
2081  return BestPred;
2082}
2083
2084/// Find the best loop top block for layout.
2085///
2086/// This function iteratively calls findBestLoopTopHelper, until no new better
2087/// BB can be found.
2088MachineBasicBlock *
2089MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2090                                       const BlockFilterSet &LoopBlockSet) {
2091  // Placing the latch block before the header may introduce an extra branch
2092  // that skips this block the first time the loop is executed, which we want
2093  // to avoid when optimising for size.
2094  // FIXME: in theory there is a case that does not introduce a new branch,
2095  // i.e. when the layout predecessor does not fallthrough to the loop header.
2096  // In practice this never happens though: there always seems to be a preheader
2097  // that can fallthrough and that is also placed before the header.
2098  bool OptForSize = F->getFunction().hasOptSize() ||
2099                    llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2100  if (OptForSize)
2101    return L.getHeader();
2102
2103  MachineBasicBlock *OldTop = nullptr;
2104  MachineBasicBlock *NewTop = L.getHeader();
2105  while (NewTop != OldTop) {
2106    OldTop = NewTop;
2107    NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2108    if (NewTop != OldTop)
2109      ComputedEdges[NewTop] = { OldTop, false };
2110  }
2111  return NewTop;
2112}
2113
2114/// Find the best loop exiting block for layout.
2115///
2116/// This routine implements the logic to analyze the loop looking for the best
2117/// block to layout at the top of the loop. Typically this is done to maximize
2118/// fallthrough opportunities.
2119MachineBasicBlock *
2120MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2121                                        const BlockFilterSet &LoopBlockSet,
2122                                        BlockFrequency &ExitFreq) {
2123  // We don't want to layout the loop linearly in all cases. If the loop header
2124  // is just a normal basic block in the loop, we want to look for what block
2125  // within the loop is the best one to layout at the top. However, if the loop
2126  // header has be pre-merged into a chain due to predecessors not having
2127  // analyzable branches, *and* the predecessor it is merged with is *not* part
2128  // of the loop, rotating the header into the middle of the loop will create
2129  // a non-contiguous range of blocks which is Very Bad. So start with the
2130  // header and only rotate if safe.
2131  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2132  if (!LoopBlockSet.count(*HeaderChain.begin()))
2133    return nullptr;
2134
2135  BlockFrequency BestExitEdgeFreq;
2136  unsigned BestExitLoopDepth = 0;
2137  MachineBasicBlock *ExitingBB = nullptr;
2138  // If there are exits to outer loops, loop rotation can severely limit
2139  // fallthrough opportunities unless it selects such an exit. Keep a set of
2140  // blocks where rotating to exit with that block will reach an outer loop.
2141  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2142
2143  LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2144                    << getBlockName(L.getHeader()) << "\n");
2145  for (MachineBasicBlock *MBB : L.getBlocks()) {
2146    BlockChain &Chain = *BlockToChain[MBB];
2147    // Ensure that this block is at the end of a chain; otherwise it could be
2148    // mid-way through an inner loop or a successor of an unanalyzable branch.
2149    if (MBB != *std::prev(Chain.end()))
2150      continue;
2151
2152    // Now walk the successors. We need to establish whether this has a viable
2153    // exiting successor and whether it has a viable non-exiting successor.
2154    // We store the old exiting state and restore it if a viable looping
2155    // successor isn't found.
2156    MachineBasicBlock *OldExitingBB = ExitingBB;
2157    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2158    bool HasLoopingSucc = false;
2159    for (MachineBasicBlock *Succ : MBB->successors()) {
2160      if (Succ->isEHPad())
2161        continue;
2162      if (Succ == MBB)
2163        continue;
2164      BlockChain &SuccChain = *BlockToChain[Succ];
2165      // Don't split chains, either this chain or the successor's chain.
2166      if (&Chain == &SuccChain) {
2167        LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2168                          << getBlockName(Succ) << " (chain conflict)\n");
2169        continue;
2170      }
2171
2172      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2173      if (LoopBlockSet.count(Succ)) {
2174        LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
2175                          << getBlockName(Succ) << " (" << SuccProb << ")\n");
2176        HasLoopingSucc = true;
2177        continue;
2178      }
2179
2180      unsigned SuccLoopDepth = 0;
2181      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2182        SuccLoopDepth = ExitLoop->getLoopDepth();
2183        if (ExitLoop->contains(&L))
2184          BlocksExitingToOuterLoop.insert(MBB);
2185      }
2186
2187      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2188      LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
2189                        << getBlockName(Succ) << " [L:" << SuccLoopDepth
2190                        << "] (";
2191                 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2192      // Note that we bias this toward an existing layout successor to retain
2193      // incoming order in the absence of better information. The exit must have
2194      // a frequency higher than the current exit before we consider breaking
2195      // the layout.
2196      BranchProbability Bias(100 - ExitBlockBias, 100);
2197      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2198          ExitEdgeFreq > BestExitEdgeFreq ||
2199          (MBB->isLayoutSuccessor(Succ) &&
2200           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2201        BestExitEdgeFreq = ExitEdgeFreq;
2202        ExitingBB = MBB;
2203      }
2204    }
2205
2206    if (!HasLoopingSucc) {
2207      // Restore the old exiting state, no viable looping successor was found.
2208      ExitingBB = OldExitingBB;
2209      BestExitEdgeFreq = OldBestExitEdgeFreq;
2210    }
2211  }
2212  // Without a candidate exiting block or with only a single block in the
2213  // loop, just use the loop header to layout the loop.
2214  if (!ExitingBB) {
2215    LLVM_DEBUG(
2216        dbgs() << "    No other candidate exit blocks, using loop header\n");
2217    return nullptr;
2218  }
2219  if (L.getNumBlocks() == 1) {
2220    LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
2221    return nullptr;
2222  }
2223
2224  // Also, if we have exit blocks which lead to outer loops but didn't select
2225  // one of them as the exiting block we are rotating toward, disable loop
2226  // rotation altogether.
2227  if (!BlocksExitingToOuterLoop.empty() &&
2228      !BlocksExitingToOuterLoop.count(ExitingBB))
2229    return nullptr;
2230
2231  LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB)
2232                    << "\n");
2233  ExitFreq = BestExitEdgeFreq;
2234  return ExitingBB;
2235}
2236
2237/// Check if there is a fallthrough to loop header Top.
2238///
2239///   1. Look for a Pred that can be layout before Top.
2240///   2. Check if Top is the most possible successor of Pred.
2241bool
2242MachineBlockPlacement::hasViableTopFallthrough(
2243    const MachineBasicBlock *Top,
2244    const BlockFilterSet &LoopBlockSet) {
2245  for (MachineBasicBlock *Pred : Top->predecessors()) {
2246    BlockChain *PredChain = BlockToChain[Pred];
2247    if (!LoopBlockSet.count(Pred) &&
2248        (!PredChain || Pred == *std::prev(PredChain->end()))) {
2249      // Found a Pred block can be placed before Top.
2250      // Check if Top is the best successor of Pred.
2251      auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2252      bool TopOK = true;
2253      for (MachineBasicBlock *Succ : Pred->successors()) {
2254        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2255        BlockChain *SuccChain = BlockToChain[Succ];
2256        // Check if Succ can be placed after Pred.
2257        // Succ should not be in any chain, or it is the head of some chain.
2258        if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2259          TopOK = false;
2260          break;
2261        }
2262      }
2263      if (TopOK)
2264        return true;
2265    }
2266  }
2267  return false;
2268}
2269
2270/// Attempt to rotate an exiting block to the bottom of the loop.
2271///
2272/// Once we have built a chain, try to rotate it to line up the hot exit block
2273/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2274/// branches. For example, if the loop has fallthrough into its header and out
2275/// of its bottom already, don't rotate it.
2276void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2277                                       const MachineBasicBlock *ExitingBB,
2278                                       BlockFrequency ExitFreq,
2279                                       const BlockFilterSet &LoopBlockSet) {
2280  if (!ExitingBB)
2281    return;
2282
2283  MachineBasicBlock *Top = *LoopChain.begin();
2284  MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2285
2286  // If ExitingBB is already the last one in a chain then nothing to do.
2287  if (Bottom == ExitingBB)
2288    return;
2289
2290  bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2291
2292  // If the header has viable fallthrough, check whether the current loop
2293  // bottom is a viable exiting block. If so, bail out as rotating will
2294  // introduce an unnecessary branch.
2295  if (ViableTopFallthrough) {
2296    for (MachineBasicBlock *Succ : Bottom->successors()) {
2297      BlockChain *SuccChain = BlockToChain[Succ];
2298      if (!LoopBlockSet.count(Succ) &&
2299          (!SuccChain || Succ == *SuccChain->begin()))
2300        return;
2301    }
2302
2303    // Rotate will destroy the top fallthrough, we need to ensure the new exit
2304    // frequency is larger than top fallthrough.
2305    BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2306    if (FallThrough2Top >= ExitFreq)
2307      return;
2308  }
2309
2310  BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2311  if (ExitIt == LoopChain.end())
2312    return;
2313
2314  // Rotating a loop exit to the bottom when there is a fallthrough to top
2315  // trades the entry fallthrough for an exit fallthrough.
2316  // If there is no bottom->top edge, but the chosen exit block does have
2317  // a fallthrough, we break that fallthrough for nothing in return.
2318
2319  // Let's consider an example. We have a built chain of basic blocks
2320  // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2321  // By doing a rotation we get
2322  // Bk+1, ..., Bn, B1, ..., Bk
2323  // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2324  // If we had a fallthrough Bk -> Bk+1 it is broken now.
2325  // It might be compensated by fallthrough Bn -> B1.
2326  // So we have a condition to avoid creation of extra branch by loop rotation.
2327  // All below must be true to avoid loop rotation:
2328  //   If there is a fallthrough to top (B1)
2329  //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2330  //   There is no fallthrough from bottom (Bn) to top (B1).
2331  // Please note that there is no exit fallthrough from Bn because we checked it
2332  // above.
2333  if (ViableTopFallthrough) {
2334    assert(std::next(ExitIt) != LoopChain.end() &&
2335           "Exit should not be last BB");
2336    MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2337    if (ExitingBB->isSuccessor(NextBlockInChain))
2338      if (!Bottom->isSuccessor(Top))
2339        return;
2340  }
2341
2342  LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2343                    << " at bottom\n");
2344  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2345}
2346
2347/// Attempt to rotate a loop based on profile data to reduce branch cost.
2348///
2349/// With profile data, we can determine the cost in terms of missed fall through
2350/// opportunities when rotating a loop chain and select the best rotation.
2351/// Basically, there are three kinds of cost to consider for each rotation:
2352///    1. The possibly missed fall through edge (if it exists) from BB out of
2353///    the loop to the loop header.
2354///    2. The possibly missed fall through edges (if they exist) from the loop
2355///    exits to BB out of the loop.
2356///    3. The missed fall through edge (if it exists) from the last BB to the
2357///    first BB in the loop chain.
2358///  Therefore, the cost for a given rotation is the sum of costs listed above.
2359///  We select the best rotation with the smallest cost.
2360void MachineBlockPlacement::rotateLoopWithProfile(
2361    BlockChain &LoopChain, const MachineLoop &L,
2362    const BlockFilterSet &LoopBlockSet) {
2363  auto RotationPos = LoopChain.end();
2364
2365  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2366
2367  // A utility lambda that scales up a block frequency by dividing it by a
2368  // branch probability which is the reciprocal of the scale.
2369  auto ScaleBlockFrequency = [](BlockFrequency Freq,
2370                                unsigned Scale) -> BlockFrequency {
2371    if (Scale == 0)
2372      return 0;
2373    // Use operator / between BlockFrequency and BranchProbability to implement
2374    // saturating multiplication.
2375    return Freq / BranchProbability(1, Scale);
2376  };
2377
2378  // Compute the cost of the missed fall-through edge to the loop header if the
2379  // chain head is not the loop header. As we only consider natural loops with
2380  // single header, this computation can be done only once.
2381  BlockFrequency HeaderFallThroughCost(0);
2382  MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2383  for (auto *Pred : ChainHeaderBB->predecessors()) {
2384    BlockChain *PredChain = BlockToChain[Pred];
2385    if (!LoopBlockSet.count(Pred) &&
2386        (!PredChain || Pred == *std::prev(PredChain->end()))) {
2387      auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2388          MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2389      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2390      // If the predecessor has only an unconditional jump to the header, we
2391      // need to consider the cost of this jump.
2392      if (Pred->succ_size() == 1)
2393        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2394      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2395    }
2396  }
2397
2398  // Here we collect all exit blocks in the loop, and for each exit we find out
2399  // its hottest exit edge. For each loop rotation, we define the loop exit cost
2400  // as the sum of frequencies of exit edges we collect here, excluding the exit
2401  // edge from the tail of the loop chain.
2402  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2403  for (auto BB : LoopChain) {
2404    auto LargestExitEdgeProb = BranchProbability::getZero();
2405    for (auto *Succ : BB->successors()) {
2406      BlockChain *SuccChain = BlockToChain[Succ];
2407      if (!LoopBlockSet.count(Succ) &&
2408          (!SuccChain || Succ == *SuccChain->begin())) {
2409        auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2410        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2411      }
2412    }
2413    if (LargestExitEdgeProb > BranchProbability::getZero()) {
2414      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2415      ExitsWithFreq.emplace_back(BB, ExitFreq);
2416    }
2417  }
2418
2419  // In this loop we iterate every block in the loop chain and calculate the
2420  // cost assuming the block is the head of the loop chain. When the loop ends,
2421  // we should have found the best candidate as the loop chain's head.
2422  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2423            EndIter = LoopChain.end();
2424       Iter != EndIter; Iter++, TailIter++) {
2425    // TailIter is used to track the tail of the loop chain if the block we are
2426    // checking (pointed by Iter) is the head of the chain.
2427    if (TailIter == LoopChain.end())
2428      TailIter = LoopChain.begin();
2429
2430    auto TailBB = *TailIter;
2431
2432    // Calculate the cost by putting this BB to the top.
2433    BlockFrequency Cost = 0;
2434
2435    // If the current BB is the loop header, we need to take into account the
2436    // cost of the missed fall through edge from outside of the loop to the
2437    // header.
2438    if (Iter != LoopChain.begin())
2439      Cost += HeaderFallThroughCost;
2440
2441    // Collect the loop exit cost by summing up frequencies of all exit edges
2442    // except the one from the chain tail.
2443    for (auto &ExitWithFreq : ExitsWithFreq)
2444      if (TailBB != ExitWithFreq.first)
2445        Cost += ExitWithFreq.second;
2446
2447    // The cost of breaking the once fall-through edge from the tail to the top
2448    // of the loop chain. Here we need to consider three cases:
2449    // 1. If the tail node has only one successor, then we will get an
2450    //    additional jmp instruction. So the cost here is (MisfetchCost +
2451    //    JumpInstCost) * tail node frequency.
2452    // 2. If the tail node has two successors, then we may still get an
2453    //    additional jmp instruction if the layout successor after the loop
2454    //    chain is not its CFG successor. Note that the more frequently executed
2455    //    jmp instruction will be put ahead of the other one. Assume the
2456    //    frequency of those two branches are x and y, where x is the frequency
2457    //    of the edge to the chain head, then the cost will be
2458    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2459    // 3. If the tail node has more than two successors (this rarely happens),
2460    //    we won't consider any additional cost.
2461    if (TailBB->isSuccessor(*Iter)) {
2462      auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2463      if (TailBB->succ_size() == 1)
2464        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2465                                    MisfetchCost + JumpInstCost);
2466      else if (TailBB->succ_size() == 2) {
2467        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2468        auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2469        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2470                                  ? TailBBFreq * TailToHeadProb.getCompl()
2471                                  : TailToHeadFreq;
2472        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2473                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2474      }
2475    }
2476
2477    LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2478                      << getBlockName(*Iter)
2479                      << " to the top: " << Cost.getFrequency() << "\n");
2480
2481    if (Cost < SmallestRotationCost) {
2482      SmallestRotationCost = Cost;
2483      RotationPos = Iter;
2484    }
2485  }
2486
2487  if (RotationPos != LoopChain.end()) {
2488    LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2489                      << " to the top\n");
2490    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2491  }
2492}
2493
2494/// Collect blocks in the given loop that are to be placed.
2495///
2496/// When profile data is available, exclude cold blocks from the returned set;
2497/// otherwise, collect all blocks in the loop.
2498MachineBlockPlacement::BlockFilterSet
2499MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2500  BlockFilterSet LoopBlockSet;
2501
2502  // Filter cold blocks off from LoopBlockSet when profile data is available.
2503  // Collect the sum of frequencies of incoming edges to the loop header from
2504  // outside. If we treat the loop as a super block, this is the frequency of
2505  // the loop. Then for each block in the loop, we calculate the ratio between
2506  // its frequency and the frequency of the loop block. When it is too small,
2507  // don't add it to the loop chain. If there are outer loops, then this block
2508  // will be merged into the first outer loop chain for which this block is not
2509  // cold anymore. This needs precise profile data and we only do this when
2510  // profile data is available.
2511  if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2512    BlockFrequency LoopFreq(0);
2513    for (auto LoopPred : L.getHeader()->predecessors())
2514      if (!L.contains(LoopPred))
2515        LoopFreq += MBFI->getBlockFreq(LoopPred) *
2516                    MBPI->getEdgeProbability(LoopPred, L.getHeader());
2517
2518    for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2519      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2520      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2521        continue;
2522      LoopBlockSet.insert(LoopBB);
2523    }
2524  } else
2525    LoopBlockSet.insert(L.block_begin(), L.block_end());
2526
2527  return LoopBlockSet;
2528}
2529
2530/// Forms basic block chains from the natural loop structures.
2531///
2532/// These chains are designed to preserve the existing *structure* of the code
2533/// as much as possible. We can then stitch the chains together in a way which
2534/// both preserves the topological structure and minimizes taken conditional
2535/// branches.
2536void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2537  // First recurse through any nested loops, building chains for those inner
2538  // loops.
2539  for (const MachineLoop *InnerLoop : L)
2540    buildLoopChains(*InnerLoop);
2541
2542  assert(BlockWorkList.empty() &&
2543         "BlockWorkList not empty when starting to build loop chains.");
2544  assert(EHPadWorkList.empty() &&
2545         "EHPadWorkList not empty when starting to build loop chains.");
2546  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2547
2548  // Check if we have profile data for this function. If yes, we will rotate
2549  // this loop by modeling costs more precisely which requires the profile data
2550  // for better layout.
2551  bool RotateLoopWithProfile =
2552      ForcePreciseRotationCost ||
2553      (PreciseRotationCost && F->getFunction().hasProfileData());
2554
2555  // First check to see if there is an obviously preferable top block for the
2556  // loop. This will default to the header, but may end up as one of the
2557  // predecessors to the header if there is one which will result in strictly
2558  // fewer branches in the loop body.
2559  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2560
2561  // If we selected just the header for the loop top, look for a potentially
2562  // profitable exit block in the event that rotating the loop can eliminate
2563  // branches by placing an exit edge at the bottom.
2564  //
2565  // Loops are processed innermost to uttermost, make sure we clear
2566  // PreferredLoopExit before processing a new loop.
2567  PreferredLoopExit = nullptr;
2568  BlockFrequency ExitFreq;
2569  if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2570    PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2571
2572  BlockChain &LoopChain = *BlockToChain[LoopTop];
2573
2574  // FIXME: This is a really lame way of walking the chains in the loop: we
2575  // walk the blocks, and use a set to prevent visiting a particular chain
2576  // twice.
2577  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2578  assert(LoopChain.UnscheduledPredecessors == 0 &&
2579         "LoopChain should not have unscheduled predecessors.");
2580  UpdatedPreds.insert(&LoopChain);
2581
2582  for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2583    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2584
2585  buildChain(LoopTop, LoopChain, &LoopBlockSet);
2586
2587  if (RotateLoopWithProfile)
2588    rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2589  else
2590    rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2591
2592  LLVM_DEBUG({
2593    // Crash at the end so we get all of the debugging output first.
2594    bool BadLoop = false;
2595    if (LoopChain.UnscheduledPredecessors) {
2596      BadLoop = true;
2597      dbgs() << "Loop chain contains a block without its preds placed!\n"
2598             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2599             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2600    }
2601    for (MachineBasicBlock *ChainBB : LoopChain) {
2602      dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
2603      if (!LoopBlockSet.remove(ChainBB)) {
2604        // We don't mark the loop as bad here because there are real situations
2605        // where this can occur. For example, with an unanalyzable fallthrough
2606        // from a loop block to a non-loop block or vice versa.
2607        dbgs() << "Loop chain contains a block not contained by the loop!\n"
2608               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2609               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2610               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2611      }
2612    }
2613
2614    if (!LoopBlockSet.empty()) {
2615      BadLoop = true;
2616      for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2617        dbgs() << "Loop contains blocks never placed into a chain!\n"
2618               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
2619               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2620               << "  Bad block:    " << getBlockName(LoopBB) << "\n";
2621    }
2622    assert(!BadLoop && "Detected problems with the placement of this loop.");
2623  });
2624
2625  BlockWorkList.clear();
2626  EHPadWorkList.clear();
2627}
2628
2629void MachineBlockPlacement::buildCFGChains() {
2630  // Ensure that every BB in the function has an associated chain to simplify
2631  // the assumptions of the remaining algorithm.
2632  SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2633  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2634       ++FI) {
2635    MachineBasicBlock *BB = &*FI;
2636    BlockChain *Chain =
2637        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2638    // Also, merge any blocks which we cannot reason about and must preserve
2639    // the exact fallthrough behavior for.
2640    while (true) {
2641      Cond.clear();
2642      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2643      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2644        break;
2645
2646      MachineFunction::iterator NextFI = std::next(FI);
2647      MachineBasicBlock *NextBB = &*NextFI;
2648      // Ensure that the layout successor is a viable block, as we know that
2649      // fallthrough is a possibility.
2650      assert(NextFI != FE && "Can't fallthrough past the last block.");
2651      LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2652                        << getBlockName(BB) << " -> " << getBlockName(NextBB)
2653                        << "\n");
2654      Chain->merge(NextBB, nullptr);
2655#ifndef NDEBUG
2656      BlocksWithUnanalyzableExits.insert(&*BB);
2657#endif
2658      FI = NextFI;
2659      BB = NextBB;
2660    }
2661  }
2662
2663  // Build any loop-based chains.
2664  PreferredLoopExit = nullptr;
2665  for (MachineLoop *L : *MLI)
2666    buildLoopChains(*L);
2667
2668  assert(BlockWorkList.empty() &&
2669         "BlockWorkList should be empty before building final chain.");
2670  assert(EHPadWorkList.empty() &&
2671         "EHPadWorkList should be empty before building final chain.");
2672
2673  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2674  for (MachineBasicBlock &MBB : *F)
2675    fillWorkLists(&MBB, UpdatedPreds);
2676
2677  BlockChain &FunctionChain = *BlockToChain[&F->front()];
2678  buildChain(&F->front(), FunctionChain);
2679
2680#ifndef NDEBUG
2681  using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2682#endif
2683  LLVM_DEBUG({
2684    // Crash at the end so we get all of the debugging output first.
2685    bool BadFunc = false;
2686    FunctionBlockSetType FunctionBlockSet;
2687    for (MachineBasicBlock &MBB : *F)
2688      FunctionBlockSet.insert(&MBB);
2689
2690    for (MachineBasicBlock *ChainBB : FunctionChain)
2691      if (!FunctionBlockSet.erase(ChainBB)) {
2692        BadFunc = true;
2693        dbgs() << "Function chain contains a block not in the function!\n"
2694               << "  Bad block:    " << getBlockName(ChainBB) << "\n";
2695      }
2696
2697    if (!FunctionBlockSet.empty()) {
2698      BadFunc = true;
2699      for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2700        dbgs() << "Function contains blocks never placed into a chain!\n"
2701               << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
2702    }
2703    assert(!BadFunc && "Detected problems with the block placement.");
2704  });
2705
2706  // Remember original layout ordering, so we can update terminators after
2707  // reordering to point to the original layout successor.
2708  SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2709      F->getNumBlockIDs());
2710  {
2711    MachineBasicBlock *LastMBB = nullptr;
2712    for (auto &MBB : *F) {
2713      if (LastMBB != nullptr)
2714        OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2715      LastMBB = &MBB;
2716    }
2717    OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2718  }
2719
2720  // Splice the blocks into place.
2721  MachineFunction::iterator InsertPos = F->begin();
2722  LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2723  for (MachineBasicBlock *ChainBB : FunctionChain) {
2724    LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2725                                                            : "          ... ")
2726                      << getBlockName(ChainBB) << "\n");
2727    if (InsertPos != MachineFunction::iterator(ChainBB))
2728      F->splice(InsertPos, ChainBB);
2729    else
2730      ++InsertPos;
2731
2732    // Update the terminator of the previous block.
2733    if (ChainBB == *FunctionChain.begin())
2734      continue;
2735    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2736
2737    // FIXME: It would be awesome of updateTerminator would just return rather
2738    // than assert when the branch cannot be analyzed in order to remove this
2739    // boiler plate.
2740    Cond.clear();
2741    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2742
2743#ifndef NDEBUG
2744    if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2745      // Given the exact block placement we chose, we may actually not _need_ to
2746      // be able to edit PrevBB's terminator sequence, but not being _able_ to
2747      // do that at this point is a bug.
2748      assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2749              !PrevBB->canFallThrough()) &&
2750             "Unexpected block with un-analyzable fallthrough!");
2751      Cond.clear();
2752      TBB = FBB = nullptr;
2753    }
2754#endif
2755
2756    // The "PrevBB" is not yet updated to reflect current code layout, so,
2757    //   o. it may fall-through to a block without explicit "goto" instruction
2758    //      before layout, and no longer fall-through it after layout; or
2759    //   o. just opposite.
2760    //
2761    // analyzeBranch() may return erroneous value for FBB when these two
2762    // situations take place. For the first scenario FBB is mistakenly set NULL;
2763    // for the 2nd scenario, the FBB, which is expected to be NULL, is
2764    // mistakenly pointing to "*BI".
2765    // Thus, if the future change needs to use FBB before the layout is set, it
2766    // has to correct FBB first by using the code similar to the following:
2767    //
2768    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2769    //   PrevBB->updateTerminator();
2770    //   Cond.clear();
2771    //   TBB = FBB = nullptr;
2772    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2773    //     // FIXME: This should never take place.
2774    //     TBB = FBB = nullptr;
2775    //   }
2776    // }
2777    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2778      PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2779    }
2780  }
2781
2782  // Fixup the last block.
2783  Cond.clear();
2784  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2785  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2786    MachineBasicBlock *PrevBB = &F->back();
2787    PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2788  }
2789
2790  BlockWorkList.clear();
2791  EHPadWorkList.clear();
2792}
2793
2794void MachineBlockPlacement::optimizeBranches() {
2795  BlockChain &FunctionChain = *BlockToChain[&F->front()];
2796  SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2797
2798  // Now that all the basic blocks in the chain have the proper layout,
2799  // make a final call to analyzeBranch with AllowModify set.
2800  // Indeed, the target may be able to optimize the branches in a way we
2801  // cannot because all branches may not be analyzable.
2802  // E.g., the target may be able to remove an unconditional branch to
2803  // a fallthrough when it occurs after predicated terminators.
2804  for (MachineBasicBlock *ChainBB : FunctionChain) {
2805    Cond.clear();
2806    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2807    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2808      // If PrevBB has a two-way branch, try to re-order the branches
2809      // such that we branch to the successor with higher probability first.
2810      if (TBB && !Cond.empty() && FBB &&
2811          MBPI->getEdgeProbability(ChainBB, FBB) >
2812              MBPI->getEdgeProbability(ChainBB, TBB) &&
2813          !TII->reverseBranchCondition(Cond)) {
2814        LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2815                          << getBlockName(ChainBB) << "\n");
2816        LLVM_DEBUG(dbgs() << "    Edge probability: "
2817                          << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2818                          << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2819        DebugLoc dl; // FIXME: this is nowhere
2820        TII->removeBranch(*ChainBB);
2821        TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2822      }
2823    }
2824  }
2825}
2826
2827void MachineBlockPlacement::alignBlocks() {
2828  // Walk through the backedges of the function now that we have fully laid out
2829  // the basic blocks and align the destination of each backedge. We don't rely
2830  // exclusively on the loop info here so that we can align backedges in
2831  // unnatural CFGs and backedges that were introduced purely because of the
2832  // loop rotations done during this layout pass.
2833  if (F->getFunction().hasMinSize() ||
2834      (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2835    return;
2836  BlockChain &FunctionChain = *BlockToChain[&F->front()];
2837  if (FunctionChain.begin() == FunctionChain.end())
2838    return; // Empty chain.
2839
2840  const BranchProbability ColdProb(1, 5); // 20%
2841  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2842  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2843  for (MachineBasicBlock *ChainBB : FunctionChain) {
2844    if (ChainBB == *FunctionChain.begin())
2845      continue;
2846
2847    // Don't align non-looping basic blocks. These are unlikely to execute
2848    // enough times to matter in practice. Note that we'll still handle
2849    // unnatural CFGs inside of a natural outer loop (the common case) and
2850    // rotated loops.
2851    MachineLoop *L = MLI->getLoopFor(ChainBB);
2852    if (!L)
2853      continue;
2854
2855    const Align Align = TLI->getPrefLoopAlignment(L);
2856    if (Align == 1)
2857      continue; // Don't care about loop alignment.
2858
2859    // If the block is cold relative to the function entry don't waste space
2860    // aligning it.
2861    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2862    if (Freq < WeightedEntryFreq)
2863      continue;
2864
2865    // If the block is cold relative to its loop header, don't align it
2866    // regardless of what edges into the block exist.
2867    MachineBasicBlock *LoopHeader = L->getHeader();
2868    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2869    if (Freq < (LoopHeaderFreq * ColdProb))
2870      continue;
2871
2872    // If the global profiles indicates so, don't align it.
2873    if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2874        !TLI->alignLoopsWithOptSize())
2875      continue;
2876
2877    // Check for the existence of a non-layout predecessor which would benefit
2878    // from aligning this block.
2879    MachineBasicBlock *LayoutPred =
2880        &*std::prev(MachineFunction::iterator(ChainBB));
2881
2882    // Force alignment if all the predecessors are jumps. We already checked
2883    // that the block isn't cold above.
2884    if (!LayoutPred->isSuccessor(ChainBB)) {
2885      ChainBB->setAlignment(Align);
2886      continue;
2887    }
2888
2889    // Align this block if the layout predecessor's edge into this block is
2890    // cold relative to the block. When this is true, other predecessors make up
2891    // all of the hot entries into the block and thus alignment is likely to be
2892    // important.
2893    BranchProbability LayoutProb =
2894        MBPI->getEdgeProbability(LayoutPred, ChainBB);
2895    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2896    if (LayoutEdgeFreq <= (Freq * ColdProb))
2897      ChainBB->setAlignment(Align);
2898  }
2899}
2900
2901/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2902/// it was duplicated into its chain predecessor and removed.
2903/// \p BB    - Basic block that may be duplicated.
2904///
2905/// \p LPred - Chosen layout predecessor of \p BB.
2906///            Updated to be the chain end if LPred is removed.
2907/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2908/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2909///                  Used to identify which blocks to update predecessor
2910///                  counts.
2911/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2912///                          chosen in the given order due to unnatural CFG
2913///                          only needed if \p BB is removed and
2914///                          \p PrevUnplacedBlockIt pointed to \p BB.
2915/// @return true if \p BB was removed.
2916bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2917    MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2918    const MachineBasicBlock *LoopHeaderBB,
2919    BlockChain &Chain, BlockFilterSet *BlockFilter,
2920    MachineFunction::iterator &PrevUnplacedBlockIt) {
2921  bool Removed, DuplicatedToLPred;
2922  bool DuplicatedToOriginalLPred;
2923  Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2924                                    PrevUnplacedBlockIt,
2925                                    DuplicatedToLPred);
2926  if (!Removed)
2927    return false;
2928  DuplicatedToOriginalLPred = DuplicatedToLPred;
2929  // Iteratively try to duplicate again. It can happen that a block that is
2930  // duplicated into is still small enough to be duplicated again.
2931  // No need to call markBlockSuccessors in this case, as the blocks being
2932  // duplicated from here on are already scheduled.
2933  while (DuplicatedToLPred && Removed) {
2934    MachineBasicBlock *DupBB, *DupPred;
2935    // The removal callback causes Chain.end() to be updated when a block is
2936    // removed. On the first pass through the loop, the chain end should be the
2937    // same as it was on function entry. On subsequent passes, because we are
2938    // duplicating the block at the end of the chain, if it is removed the
2939    // chain will have shrunk by one block.
2940    BlockChain::iterator ChainEnd = Chain.end();
2941    DupBB = *(--ChainEnd);
2942    // Now try to duplicate again.
2943    if (ChainEnd == Chain.begin())
2944      break;
2945    DupPred = *std::prev(ChainEnd);
2946    Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2947                                      PrevUnplacedBlockIt,
2948                                      DuplicatedToLPred);
2949  }
2950  // If BB was duplicated into LPred, it is now scheduled. But because it was
2951  // removed, markChainSuccessors won't be called for its chain. Instead we
2952  // call markBlockSuccessors for LPred to achieve the same effect. This must go
2953  // at the end because repeating the tail duplication can increase the number
2954  // of unscheduled predecessors.
2955  LPred = *std::prev(Chain.end());
2956  if (DuplicatedToOriginalLPred)
2957    markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2958  return true;
2959}
2960
2961/// Tail duplicate \p BB into (some) predecessors if profitable.
2962/// \p BB    - Basic block that may be duplicated
2963/// \p LPred - Chosen layout predecessor of \p BB
2964/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2965/// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2966///                  Used to identify which blocks to update predecessor
2967///                  counts.
2968/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2969///                          chosen in the given order due to unnatural CFG
2970///                          only needed if \p BB is removed and
2971///                          \p PrevUnplacedBlockIt pointed to \p BB.
2972/// \p DuplicatedToLPred - True if the block was duplicated into LPred.
2973/// \return  - True if the block was duplicated into all preds and removed.
2974bool MachineBlockPlacement::maybeTailDuplicateBlock(
2975    MachineBasicBlock *BB, MachineBasicBlock *LPred,
2976    BlockChain &Chain, BlockFilterSet *BlockFilter,
2977    MachineFunction::iterator &PrevUnplacedBlockIt,
2978    bool &DuplicatedToLPred) {
2979  DuplicatedToLPred = false;
2980  if (!shouldTailDuplicate(BB))
2981    return false;
2982
2983  LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2984                    << "\n");
2985
2986  // This has to be a callback because none of it can be done after
2987  // BB is deleted.
2988  bool Removed = false;
2989  auto RemovalCallback =
2990      [&](MachineBasicBlock *RemBB) {
2991        // Signal to outer function
2992        Removed = true;
2993
2994        // Conservative default.
2995        bool InWorkList = true;
2996        // Remove from the Chain and Chain Map
2997        if (BlockToChain.count(RemBB)) {
2998          BlockChain *Chain = BlockToChain[RemBB];
2999          InWorkList = Chain->UnscheduledPredecessors == 0;
3000          Chain->remove(RemBB);
3001          BlockToChain.erase(RemBB);
3002        }
3003
3004        // Handle the unplaced block iterator
3005        if (&(*PrevUnplacedBlockIt) == RemBB) {
3006          PrevUnplacedBlockIt++;
3007        }
3008
3009        // Handle the Work Lists
3010        if (InWorkList) {
3011          SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3012          if (RemBB->isEHPad())
3013            RemoveList = EHPadWorkList;
3014          RemoveList.erase(
3015              llvm::remove_if(RemoveList,
3016                              [RemBB](MachineBasicBlock *BB) {
3017                                return BB == RemBB;
3018                              }),
3019              RemoveList.end());
3020        }
3021
3022        // Handle the filter set
3023        if (BlockFilter) {
3024          BlockFilter->remove(RemBB);
3025        }
3026
3027        // Remove the block from loop info.
3028        MLI->removeBlock(RemBB);
3029        if (RemBB == PreferredLoopExit)
3030          PreferredLoopExit = nullptr;
3031
3032        LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3033                          << getBlockName(RemBB) << "\n");
3034      };
3035  auto RemovalCallbackRef =
3036      function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3037
3038  SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3039  bool IsSimple = TailDup.isSimpleBB(BB);
3040  SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3041  SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3042  if (F->getFunction().hasProfileData()) {
3043    // We can do partial duplication with precise profile information.
3044    findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3045    if (CandidatePreds.size() == 0)
3046      return false;
3047    if (CandidatePreds.size() < BB->pred_size())
3048      CandidatePtr = &CandidatePreds;
3049  }
3050  TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3051                                 &RemovalCallbackRef, CandidatePtr);
3052
3053  // Update UnscheduledPredecessors to reflect tail-duplication.
3054  DuplicatedToLPred = false;
3055  for (MachineBasicBlock *Pred : DuplicatedPreds) {
3056    // We're only looking for unscheduled predecessors that match the filter.
3057    BlockChain* PredChain = BlockToChain[Pred];
3058    if (Pred == LPred)
3059      DuplicatedToLPred = true;
3060    if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3061        || PredChain == &Chain)
3062      continue;
3063    for (MachineBasicBlock *NewSucc : Pred->successors()) {
3064      if (BlockFilter && !BlockFilter->count(NewSucc))
3065        continue;
3066      BlockChain *NewChain = BlockToChain[NewSucc];
3067      if (NewChain != &Chain && NewChain != PredChain)
3068        NewChain->UnscheduledPredecessors++;
3069    }
3070  }
3071  return Removed;
3072}
3073
3074// Count the number of actual machine instructions.
3075static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3076  uint64_t InstrCount = 0;
3077  for (MachineInstr &MI : *MBB) {
3078    if (!MI.isPHI() && !MI.isMetaInstruction())
3079      InstrCount += 1;
3080  }
3081  return InstrCount;
3082}
3083
3084// The size cost of duplication is the instruction size of the duplicated block.
3085// So we should scale the threshold accordingly. But the instruction size is not
3086// available on all targets, so we use the number of instructions instead.
3087BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3088  return DupThreshold.getFrequency() * countMBBInstruction(BB);
3089}
3090
3091// Returns true if BB is Pred's best successor.
3092bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3093                                            MachineBasicBlock *Pred,
3094                                            BlockFilterSet *BlockFilter) {
3095  if (BB == Pred)
3096    return false;
3097  if (BlockFilter && !BlockFilter->count(Pred))
3098    return false;
3099  BlockChain *PredChain = BlockToChain[Pred];
3100  if (PredChain && (Pred != *std::prev(PredChain->end())))
3101    return false;
3102
3103  // Find the successor with largest probability excluding BB.
3104  BranchProbability BestProb = BranchProbability::getZero();
3105  for (MachineBasicBlock *Succ : Pred->successors())
3106    if (Succ != BB) {
3107      if (BlockFilter && !BlockFilter->count(Succ))
3108        continue;
3109      BlockChain *SuccChain = BlockToChain[Succ];
3110      if (SuccChain && (Succ != *SuccChain->begin()))
3111        continue;
3112      BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3113      if (SuccProb > BestProb)
3114        BestProb = SuccProb;
3115    }
3116
3117  BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3118  if (BBProb <= BestProb)
3119    return false;
3120
3121  // Compute the number of reduced taken branches if Pred falls through to BB
3122  // instead of another successor. Then compare it with threshold.
3123  BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
3124  BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3125  return Gain > scaleThreshold(BB);
3126}
3127
3128// Find out the predecessors of BB and BB can be beneficially duplicated into
3129// them.
3130void MachineBlockPlacement::findDuplicateCandidates(
3131    SmallVectorImpl<MachineBasicBlock *> &Candidates,
3132    MachineBasicBlock *BB,
3133    BlockFilterSet *BlockFilter) {
3134  MachineBasicBlock *Fallthrough = nullptr;
3135  BranchProbability DefaultBranchProb = BranchProbability::getZero();
3136  BlockFrequency BBDupThreshold(scaleThreshold(BB));
3137  SmallVector<MachineBasicBlock *, 8> Preds(BB->pred_begin(), BB->pred_end());
3138  SmallVector<MachineBasicBlock *, 8> Succs(BB->succ_begin(), BB->succ_end());
3139
3140  // Sort for highest frequency.
3141  auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3142    return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3143  };
3144  auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3145    return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3146  };
3147  llvm::stable_sort(Succs, CmpSucc);
3148  llvm::stable_sort(Preds, CmpPred);
3149
3150  auto SuccIt = Succs.begin();
3151  if (SuccIt != Succs.end()) {
3152    DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3153  }
3154
3155  // For each predecessors of BB, compute the benefit of duplicating BB,
3156  // if it is larger than the threshold, add it into Candidates.
3157  //
3158  // If we have following control flow.
3159  //
3160  //     PB1 PB2 PB3 PB4
3161  //      \   |  /    /\
3162  //       \  | /    /  \
3163  //        \ |/    /    \
3164  //         BB----/     OB
3165  //         /\
3166  //        /  \
3167  //      SB1 SB2
3168  //
3169  // And it can be partially duplicated as
3170  //
3171  //   PB2+BB
3172  //      |  PB1 PB3 PB4
3173  //      |   |  /    /\
3174  //      |   | /    /  \
3175  //      |   |/    /    \
3176  //      |  BB----/     OB
3177  //      |\ /|
3178  //      | X |
3179  //      |/ \|
3180  //     SB2 SB1
3181  //
3182  // The benefit of duplicating into a predecessor is defined as
3183  //         Orig_taken_branch - Duplicated_taken_branch
3184  //
3185  // The Orig_taken_branch is computed with the assumption that predecessor
3186  // jumps to BB and the most possible successor is laid out after BB.
3187  //
3188  // The Duplicated_taken_branch is computed with the assumption that BB is
3189  // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3190  // SB2 for PB2 in our case). If there is no available successor, the combined
3191  // block jumps to all BB's successor, like PB3 in this example.
3192  //
3193  // If a predecessor has multiple successors, so BB can't be duplicated into
3194  // it. But it can beneficially fall through to BB, and duplicate BB into other
3195  // predecessors.
3196  for (MachineBasicBlock *Pred : Preds) {
3197    BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
3198
3199    if (!TailDup.canTailDuplicate(BB, Pred)) {
3200      // BB can't be duplicated into Pred, but it is possible to be layout
3201      // below Pred.
3202      if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3203        Fallthrough = Pred;
3204        if (SuccIt != Succs.end())
3205          SuccIt++;
3206      }
3207      continue;
3208    }
3209
3210    BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3211    BlockFrequency DupCost;
3212    if (SuccIt == Succs.end()) {
3213      // Jump to all successors;
3214      if (Succs.size() > 0)
3215        DupCost += PredFreq;
3216    } else {
3217      // Fallthrough to *SuccIt, jump to all other successors;
3218      DupCost += PredFreq;
3219      DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3220    }
3221
3222    assert(OrigCost >= DupCost);
3223    OrigCost -= DupCost;
3224    if (OrigCost > BBDupThreshold) {
3225      Candidates.push_back(Pred);
3226      if (SuccIt != Succs.end())
3227        SuccIt++;
3228    }
3229  }
3230
3231  // No predecessors can optimally fallthrough to BB.
3232  // So we can change one duplication into fallthrough.
3233  if (!Fallthrough) {
3234    if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3235      Candidates[0] = Candidates.back();
3236      Candidates.pop_back();
3237    }
3238  }
3239}
3240
3241void MachineBlockPlacement::initDupThreshold() {
3242  DupThreshold = 0;
3243  if (!F->getFunction().hasProfileData())
3244    return;
3245
3246  BlockFrequency MaxFreq = 0;
3247  for (MachineBasicBlock &MBB : *F) {
3248    BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3249    if (Freq > MaxFreq)
3250      MaxFreq = Freq;
3251  }
3252
3253  // FIXME: we may use profile count instead of frequency,
3254  // and need more fine tuning.
3255  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3256  DupThreshold = MaxFreq * ThresholdProb;
3257}
3258
3259bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3260  if (skipFunction(MF.getFunction()))
3261    return false;
3262
3263  // Check for single-block functions and skip them.
3264  if (std::next(MF.begin()) == MF.end())
3265    return false;
3266
3267  F = &MF;
3268  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3269  MBFI = std::make_unique<MBFIWrapper>(
3270      getAnalysis<MachineBlockFrequencyInfo>());
3271  MLI = &getAnalysis<MachineLoopInfo>();
3272  TII = MF.getSubtarget().getInstrInfo();
3273  TLI = MF.getSubtarget().getTargetLowering();
3274  MPDT = nullptr;
3275  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3276
3277  initDupThreshold();
3278
3279  // Initialize PreferredLoopExit to nullptr here since it may never be set if
3280  // there are no MachineLoops.
3281  PreferredLoopExit = nullptr;
3282
3283  assert(BlockToChain.empty() &&
3284         "BlockToChain map should be empty before starting placement.");
3285  assert(ComputedEdges.empty() &&
3286         "Computed Edge map should be empty before starting placement.");
3287
3288  unsigned TailDupSize = TailDupPlacementThreshold;
3289  // If only the aggressive threshold is explicitly set, use it.
3290  if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3291      TailDupPlacementThreshold.getNumOccurrences() == 0)
3292    TailDupSize = TailDupPlacementAggressiveThreshold;
3293
3294  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3295  // For aggressive optimization, we can adjust some thresholds to be less
3296  // conservative.
3297  if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3298    // At O3 we should be more willing to copy blocks for tail duplication. This
3299    // increases size pressure, so we only do it at O3
3300    // Do this unless only the regular threshold is explicitly set.
3301    if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3302        TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3303      TailDupSize = TailDupPlacementAggressiveThreshold;
3304  }
3305
3306  if (allowTailDupPlacement()) {
3307    MPDT = &getAnalysis<MachinePostDominatorTree>();
3308    bool OptForSize = MF.getFunction().hasOptSize() ||
3309                      llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3310    if (OptForSize)
3311      TailDupSize = 1;
3312    bool PreRegAlloc = false;
3313    TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3314                   /* LayoutMode */ true, TailDupSize);
3315    precomputeTriangleChains();
3316  }
3317
3318  buildCFGChains();
3319
3320  // Changing the layout can create new tail merging opportunities.
3321  // TailMerge can create jump into if branches that make CFG irreducible for
3322  // HW that requires structured CFG.
3323  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3324                         PassConfig->getEnableTailMerge() &&
3325                         BranchFoldPlacement;
3326  // No tail merging opportunities if the block number is less than four.
3327  if (MF.size() > 3 && EnableTailMerge) {
3328    unsigned TailMergeSize = TailDupSize + 1;
3329    BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3330                    *MBPI, PSI, TailMergeSize);
3331
3332    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3333                            /*AfterPlacement=*/true)) {
3334      // Redo the layout if tail merging creates/removes/moves blocks.
3335      BlockToChain.clear();
3336      ComputedEdges.clear();
3337      // Must redo the post-dominator tree if blocks were changed.
3338      if (MPDT)
3339        MPDT->runOnMachineFunction(MF);
3340      ChainAllocator.DestroyAll();
3341      buildCFGChains();
3342    }
3343  }
3344
3345  optimizeBranches();
3346  alignBlocks();
3347
3348  BlockToChain.clear();
3349  ComputedEdges.clear();
3350  ChainAllocator.DestroyAll();
3351
3352  if (AlignAllBlock)
3353    // Align all of the blocks in the function to a specific alignment.
3354    for (MachineBasicBlock &MBB : MF)
3355      MBB.setAlignment(Align(1ULL << AlignAllBlock));
3356  else if (AlignAllNonFallThruBlocks) {
3357    // Align all of the blocks that have no fall-through predecessors to a
3358    // specific alignment.
3359    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3360      auto LayoutPred = std::prev(MBI);
3361      if (!LayoutPred->isSuccessor(&*MBI))
3362        MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3363    }
3364  }
3365  if (ViewBlockLayoutWithBFI != GVDT_None &&
3366      (ViewBlockFreqFuncName.empty() ||
3367       F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3368    MBFI->view("MBP." + MF.getName(), false);
3369  }
3370
3371
3372  // We always return true as we have no way to track whether the final order
3373  // differs from the original order.
3374  return true;
3375}
3376
3377namespace {
3378
3379/// A pass to compute block placement statistics.
3380///
3381/// A separate pass to compute interesting statistics for evaluating block
3382/// placement. This is separate from the actual placement pass so that they can
3383/// be computed in the absence of any placement transformations or when using
3384/// alternative placement strategies.
3385class MachineBlockPlacementStats : public MachineFunctionPass {
3386  /// A handle to the branch probability pass.
3387  const MachineBranchProbabilityInfo *MBPI;
3388
3389  /// A handle to the function-wide block frequency pass.
3390  const MachineBlockFrequencyInfo *MBFI;
3391
3392public:
3393  static char ID; // Pass identification, replacement for typeid
3394
3395  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3396    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3397  }
3398
3399  bool runOnMachineFunction(MachineFunction &F) override;
3400
3401  void getAnalysisUsage(AnalysisUsage &AU) const override {
3402    AU.addRequired<MachineBranchProbabilityInfo>();
3403    AU.addRequired<MachineBlockFrequencyInfo>();
3404    AU.setPreservesAll();
3405    MachineFunctionPass::getAnalysisUsage(AU);
3406  }
3407};
3408
3409} // end anonymous namespace
3410
3411char MachineBlockPlacementStats::ID = 0;
3412
3413char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3414
3415INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3416                      "Basic Block Placement Stats", false, false)
3417INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3418INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3419INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3420                    "Basic Block Placement Stats", false, false)
3421
3422bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3423  // Check for single-block functions and skip them.
3424  if (std::next(F.begin()) == F.end())
3425    return false;
3426
3427  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3428  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3429
3430  for (MachineBasicBlock &MBB : F) {
3431    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3432    Statistic &NumBranches =
3433        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3434    Statistic &BranchTakenFreq =
3435        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3436    for (MachineBasicBlock *Succ : MBB.successors()) {
3437      // Skip if this successor is a fallthrough.
3438      if (MBB.isLayoutSuccessor(Succ))
3439        continue;
3440
3441      BlockFrequency EdgeFreq =
3442          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3443      ++NumBranches;
3444      BranchTakenFreq += EdgeFreq.getFrequency();
3445    }
3446  }
3447
3448  return false;
3449}
3450