1//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the machine instruction level if-conversion pass, which
10// tries to convert conditional branches into predicated instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "BranchFolding.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/ScopeExit.h"
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/SparseSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/iterator_range.h"
22#include "llvm/Analysis/ProfileSummaryInfo.h"
23#include "llvm/CodeGen/LivePhysRegs.h"
24#include "llvm/CodeGen/MachineBasicBlock.h"
25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineOperand.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/MBFIWrapper.h"
35#include "llvm/CodeGen/TargetInstrInfo.h"
36#include "llvm/CodeGen/TargetLowering.h"
37#include "llvm/CodeGen/TargetRegisterInfo.h"
38#include "llvm/CodeGen/TargetSchedule.h"
39#include "llvm/CodeGen/TargetSubtargetInfo.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/InitializePasses.h"
43#include "llvm/MC/MCRegisterInfo.h"
44#include "llvm/Pass.h"
45#include "llvm/Support/BranchProbability.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <functional>
53#include <iterator>
54#include <memory>
55#include <utility>
56#include <vector>
57
58using namespace llvm;
59
60#define DEBUG_TYPE "if-converter"
61
62// Hidden options for help debugging.
63static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
64static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
65static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
66static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
67                                   cl::init(false), cl::Hidden);
68static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
69                                    cl::init(false), cl::Hidden);
70static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
71                                     cl::init(false), cl::Hidden);
72static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
73                                      cl::init(false), cl::Hidden);
74static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
75                                      cl::init(false), cl::Hidden);
76static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
77                                       cl::init(false), cl::Hidden);
78static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
79                                    cl::init(false), cl::Hidden);
80static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
81                                        cl::init(false), cl::Hidden);
82static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
83                                     cl::init(true), cl::Hidden);
84
85STATISTIC(NumSimple,       "Number of simple if-conversions performed");
86STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
87STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
88STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
89STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
90STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
91STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
92STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
93STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
94STATISTIC(NumDupBBs,       "Number of duplicated blocks");
95STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");
96
97namespace {
98
99  class IfConverter : public MachineFunctionPass {
100    enum IfcvtKind {
101      ICNotClassfied,  // BB data valid, but not classified.
102      ICSimpleFalse,   // Same as ICSimple, but on the false path.
103      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
104      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
105      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
106      ICTriangleFalse, // Same as ICTriangle, but on the false path.
107      ICTriangle,      // BB is entry of a triangle sub-CFG.
108      ICDiamond,       // BB is entry of a diamond sub-CFG.
109      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
110                       // common tail that can be shared.
111    };
112
113    /// One per MachineBasicBlock, this is used to cache the result
114    /// if-conversion feasibility analysis. This includes results from
115    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
116    /// classification, and common tail block of its successors (if it's a
117    /// diamond shape), its size, whether it's predicable, and whether any
118    /// instruction can clobber the 'would-be' predicate.
119    ///
120    /// IsDone          - True if BB is not to be considered for ifcvt.
121    /// IsBeingAnalyzed - True if BB is currently being analyzed.
122    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
123    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
124    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
125    /// HasFallThrough  - True if BB may fallthrough to the following BB.
126    /// IsUnpredicable  - True if BB is known to be unpredicable.
127    /// ClobbersPred    - True if BB could modify predicates (e.g. has
128    ///                   cmp, call, etc.)
129    /// NonPredSize     - Number of non-predicated instructions.
130    /// ExtraCost       - Extra cost for multi-cycle instructions.
131    /// ExtraCost2      - Some instructions are slower when predicated
132    /// BB              - Corresponding MachineBasicBlock.
133    /// TrueBB / FalseBB- See analyzeBranch().
134    /// BrCond          - Conditions for end of block conditional branches.
135    /// Predicate       - Predicate used in the BB.
136    struct BBInfo {
137      bool IsDone          : 1;
138      bool IsBeingAnalyzed : 1;
139      bool IsAnalyzed      : 1;
140      bool IsEnqueued      : 1;
141      bool IsBrAnalyzable  : 1;
142      bool IsBrReversible  : 1;
143      bool HasFallThrough  : 1;
144      bool IsUnpredicable  : 1;
145      bool CannotBeCopied  : 1;
146      bool ClobbersPred    : 1;
147      unsigned NonPredSize = 0;
148      unsigned ExtraCost = 0;
149      unsigned ExtraCost2 = 0;
150      MachineBasicBlock *BB = nullptr;
151      MachineBasicBlock *TrueBB = nullptr;
152      MachineBasicBlock *FalseBB = nullptr;
153      SmallVector<MachineOperand, 4> BrCond;
154      SmallVector<MachineOperand, 4> Predicate;
155
156      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
157                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
158                 IsBrReversible(false), HasFallThrough(false),
159                 IsUnpredicable(false), CannotBeCopied(false),
160                 ClobbersPred(false) {}
161    };
162
163    /// Record information about pending if-conversions to attempt:
164    /// BBI             - Corresponding BBInfo.
165    /// Kind            - Type of block. See IfcvtKind.
166    /// NeedSubsumption - True if the to-be-predicated BB has already been
167    ///                   predicated.
168    /// NumDups      - Number of instructions that would be duplicated due
169    ///                   to this if-conversion. (For diamonds, the number of
170    ///                   identical instructions at the beginnings of both
171    ///                   paths).
172    /// NumDups2     - For diamonds, the number of identical instructions
173    ///                   at the ends of both paths.
174    struct IfcvtToken {
175      BBInfo &BBI;
176      IfcvtKind Kind;
177      unsigned NumDups;
178      unsigned NumDups2;
179      bool NeedSubsumption : 1;
180      bool TClobbersPred : 1;
181      bool FClobbersPred : 1;
182
183      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
184                 bool tc = false, bool fc = false)
185        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
186          TClobbersPred(tc), FClobbersPred(fc) {}
187    };
188
189    /// Results of if-conversion feasibility analysis indexed by basic block
190    /// number.
191    std::vector<BBInfo> BBAnalysis;
192    TargetSchedModel SchedModel;
193
194    const TargetLoweringBase *TLI;
195    const TargetInstrInfo *TII;
196    const TargetRegisterInfo *TRI;
197    const MachineBranchProbabilityInfo *MBPI;
198    MachineRegisterInfo *MRI;
199
200    LivePhysRegs Redefs;
201
202    bool PreRegAlloc;
203    bool MadeChange;
204    int FnNum = -1;
205    std::function<bool(const MachineFunction &)> PredicateFtor;
206
207  public:
208    static char ID;
209
210    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
211        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
212      initializeIfConverterPass(*PassRegistry::getPassRegistry());
213    }
214
215    void getAnalysisUsage(AnalysisUsage &AU) const override {
216      AU.addRequired<MachineBlockFrequencyInfo>();
217      AU.addRequired<MachineBranchProbabilityInfo>();
218      AU.addRequired<ProfileSummaryInfoWrapperPass>();
219      MachineFunctionPass::getAnalysisUsage(AU);
220    }
221
222    bool runOnMachineFunction(MachineFunction &MF) override;
223
224    MachineFunctionProperties getRequiredProperties() const override {
225      return MachineFunctionProperties().set(
226          MachineFunctionProperties::Property::NoVRegs);
227    }
228
229  private:
230    bool reverseBranchCondition(BBInfo &BBI) const;
231    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
232                     BranchProbability Prediction) const;
233    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
234                       bool FalseBranch, unsigned &Dups,
235                       BranchProbability Prediction) const;
236    bool CountDuplicatedInstructions(
237        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
238        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
239        unsigned &Dups1, unsigned &Dups2,
240        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
241        bool SkipUnconditionalBranches) const;
242    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
243                      unsigned &Dups1, unsigned &Dups2,
244                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
245    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
246                            unsigned &Dups1, unsigned &Dups2,
247                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
248    void AnalyzeBranches(BBInfo &BBI);
249    void ScanInstructions(BBInfo &BBI,
250                          MachineBasicBlock::iterator &Begin,
251                          MachineBasicBlock::iterator &End,
252                          bool BranchUnpredicable = false) const;
253    bool RescanInstructions(
254        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
255        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
256        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
257    void AnalyzeBlock(MachineBasicBlock &MBB,
258                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
259    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
260                             bool isTriangle = false, bool RevBranch = false,
261                             bool hasCommonTail = false);
262    void AnalyzeBlocks(MachineFunction &MF,
263                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
264    void InvalidatePreds(MachineBasicBlock &MBB);
265    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
266    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
267    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
268                                unsigned NumDups1, unsigned NumDups2,
269                                bool TClobbersPred, bool FClobbersPred,
270                                bool RemoveBranch, bool MergeAddEdges);
271    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
272                          unsigned NumDups1, unsigned NumDups2,
273                          bool TClobbers, bool FClobbers);
274    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
275                              unsigned NumDups1, unsigned NumDups2,
276                              bool TClobbers, bool FClobbers);
277    void PredicateBlock(BBInfo &BBI,
278                        MachineBasicBlock::iterator E,
279                        SmallVectorImpl<MachineOperand> &Cond,
280                        SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
281    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
282                               SmallVectorImpl<MachineOperand> &Cond,
283                               bool IgnoreBr = false);
284    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
285
286    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
287                            unsigned Cycle, unsigned Extra,
288                            BranchProbability Prediction) const {
289      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
290                                                   Prediction);
291    }
292
293    bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
294                            MachineBasicBlock &CommBB, unsigned Dups,
295                            BranchProbability Prediction, bool Forked) const {
296      const MachineFunction &MF = *TBBInfo.BB->getParent();
297      if (MF.getFunction().hasMinSize()) {
298        MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
299        MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
300        MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
301        MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
302
303        unsigned Dups1, Dups2;
304        if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
305                                         *TBBInfo.BB, *FBBInfo.BB,
306                                         /*SkipUnconditionalBranches*/ true))
307          llvm_unreachable("should already have been checked by ValidDiamond");
308
309        unsigned BranchBytes = 0;
310        unsigned CommonBytes = 0;
311
312        // Count common instructions at the start of the true and false blocks.
313        for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
314          LLVM_DEBUG(dbgs() << "Common inst: " << I);
315          CommonBytes += TII->getInstSizeInBytes(I);
316        }
317        for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
318          LLVM_DEBUG(dbgs() << "Common inst: " << I);
319          CommonBytes += TII->getInstSizeInBytes(I);
320        }
321
322        // Count instructions at the end of the true and false blocks, after
323        // the ones we plan to predicate. Analyzable branches will be removed
324        // (unless this is a forked diamond), and all other instructions are
325        // common between the two blocks.
326        for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
327          if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
328            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
329            BranchBytes += TII->predictBranchSizeForIfCvt(I);
330          } else {
331            LLVM_DEBUG(dbgs() << "Common inst: " << I);
332            CommonBytes += TII->getInstSizeInBytes(I);
333          }
334        }
335        for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
336          if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
337            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
338            BranchBytes += TII->predictBranchSizeForIfCvt(I);
339          } else {
340            LLVM_DEBUG(dbgs() << "Common inst: " << I);
341            CommonBytes += TII->getInstSizeInBytes(I);
342          }
343        }
344        for (auto &I : CommBB.terminators()) {
345          if (I.isBranch()) {
346            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
347            BranchBytes += TII->predictBranchSizeForIfCvt(I);
348          }
349        }
350
351        // The common instructions in one branch will be eliminated, halving
352        // their code size.
353        CommonBytes /= 2;
354
355        // Count the instructions which we need to predicate.
356        unsigned NumPredicatedInstructions = 0;
357        for (auto &I : make_range(TIB, TIE)) {
358          if (!I.isDebugInstr()) {
359            LLVM_DEBUG(dbgs() << "Predicating: " << I);
360            NumPredicatedInstructions++;
361          }
362        }
363        for (auto &I : make_range(FIB, FIE)) {
364          if (!I.isDebugInstr()) {
365            LLVM_DEBUG(dbgs() << "Predicating: " << I);
366            NumPredicatedInstructions++;
367          }
368        }
369
370        // Even though we're optimising for size at the expense of performance,
371        // avoid creating really long predicated blocks.
372        if (NumPredicatedInstructions > 15)
373          return false;
374
375        // Some targets (e.g. Thumb2) need to insert extra instructions to
376        // start predicated blocks.
377        unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
378            MF, NumPredicatedInstructions);
379
380        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
381                          << ", CommonBytes=" << CommonBytes
382                          << ", NumPredicatedInstructions="
383                          << NumPredicatedInstructions
384                          << ", ExtraPredicateBytes=" << ExtraPredicateBytes
385                          << ")\n");
386        return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
387      } else {
388        unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
389        unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
390        bool Res = TCycle > 0 && FCycle > 0 &&
391                   TII->isProfitableToIfCvt(
392                       *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
393                       FCycle, FBBInfo.ExtraCost2, Prediction);
394        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
395                          << ", FCycle=" << FCycle
396                          << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
397                          << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
398        return Res;
399      }
400    }
401
402    /// Returns true if Block ends without a terminator.
403    bool blockAlwaysFallThrough(BBInfo &BBI) const {
404      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
405    }
406
407    /// Used to sort if-conversion candidates.
408    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
409                              const std::unique_ptr<IfcvtToken> &C2) {
410      int Incr1 = (C1->Kind == ICDiamond)
411        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
412      int Incr2 = (C2->Kind == ICDiamond)
413        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
414      if (Incr1 > Incr2)
415        return true;
416      else if (Incr1 == Incr2) {
417        // Favors subsumption.
418        if (!C1->NeedSubsumption && C2->NeedSubsumption)
419          return true;
420        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
421          // Favors diamond over triangle, etc.
422          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
423            return true;
424          else if (C1->Kind == C2->Kind)
425            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
426        }
427      }
428      return false;
429    }
430  };
431
432} // end anonymous namespace
433
434char IfConverter::ID = 0;
435
436char &llvm::IfConverterID = IfConverter::ID;
437
438INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
439INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
440INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
441INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
442
443bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
444  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
445    return false;
446
447  const TargetSubtargetInfo &ST = MF.getSubtarget();
448  TLI = ST.getTargetLowering();
449  TII = ST.getInstrInfo();
450  TRI = ST.getRegisterInfo();
451  MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
452  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
453  ProfileSummaryInfo *PSI =
454      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
455  MRI = &MF.getRegInfo();
456  SchedModel.init(&ST);
457
458  if (!TII) return false;
459
460  PreRegAlloc = MRI->isSSA();
461
462  bool BFChange = false;
463  if (!PreRegAlloc) {
464    // Tail merge tend to expose more if-conversion opportunities.
465    BranchFolder BF(true, false, MBFI, *MBPI, PSI);
466    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
467  }
468
469  LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
470                    << MF.getName() << "\'");
471
472  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
473    LLVM_DEBUG(dbgs() << " skipped\n");
474    return false;
475  }
476  LLVM_DEBUG(dbgs() << "\n");
477
478  MF.RenumberBlocks();
479  BBAnalysis.resize(MF.getNumBlockIDs());
480
481  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
482  MadeChange = false;
483  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
484    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
485  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
486    // Do an initial analysis for each basic block and find all the potential
487    // candidates to perform if-conversion.
488    bool Change = false;
489    AnalyzeBlocks(MF, Tokens);
490    while (!Tokens.empty()) {
491      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
492      Tokens.pop_back();
493      BBInfo &BBI = Token->BBI;
494      IfcvtKind Kind = Token->Kind;
495      unsigned NumDups = Token->NumDups;
496      unsigned NumDups2 = Token->NumDups2;
497
498      // If the block has been evicted out of the queue or it has already been
499      // marked dead (due to it being predicated), then skip it.
500      if (BBI.IsDone)
501        BBI.IsEnqueued = false;
502      if (!BBI.IsEnqueued)
503        continue;
504
505      BBI.IsEnqueued = false;
506
507      bool RetVal = false;
508      switch (Kind) {
509      default: llvm_unreachable("Unexpected!");
510      case ICSimple:
511      case ICSimpleFalse: {
512        bool isFalse = Kind == ICSimpleFalse;
513        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
514        LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
515                          << (Kind == ICSimpleFalse ? " false" : "")
516                          << "): " << printMBBReference(*BBI.BB) << " ("
517                          << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
518                                                      : BBI.TrueBB->getNumber())
519                          << ") ");
520        RetVal = IfConvertSimple(BBI, Kind);
521        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
522        if (RetVal) {
523          if (isFalse) ++NumSimpleFalse;
524          else         ++NumSimple;
525        }
526       break;
527      }
528      case ICTriangle:
529      case ICTriangleRev:
530      case ICTriangleFalse:
531      case ICTriangleFRev: {
532        bool isFalse = Kind == ICTriangleFalse;
533        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
534        if (DisableTriangle && !isFalse && !isRev) break;
535        if (DisableTriangleR && !isFalse && isRev) break;
536        if (DisableTriangleF && isFalse && !isRev) break;
537        if (DisableTriangleFR && isFalse && isRev) break;
538        LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
539        if (isFalse)
540          LLVM_DEBUG(dbgs() << " false");
541        if (isRev)
542          LLVM_DEBUG(dbgs() << " rev");
543        LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
544                          << " (T:" << BBI.TrueBB->getNumber()
545                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
546        RetVal = IfConvertTriangle(BBI, Kind);
547        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
548        if (RetVal) {
549          if (isFalse) {
550            if (isRev) ++NumTriangleFRev;
551            else       ++NumTriangleFalse;
552          } else {
553            if (isRev) ++NumTriangleRev;
554            else       ++NumTriangle;
555          }
556        }
557        break;
558      }
559      case ICDiamond:
560        if (DisableDiamond) break;
561        LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
562                          << " (T:" << BBI.TrueBB->getNumber()
563                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
564        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
565                                  Token->TClobbersPred,
566                                  Token->FClobbersPred);
567        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
568        if (RetVal) ++NumDiamonds;
569        break;
570      case ICForkedDiamond:
571        if (DisableForkedDiamond) break;
572        LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
573                          << printMBBReference(*BBI.BB)
574                          << " (T:" << BBI.TrueBB->getNumber()
575                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
576        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
577                                      Token->TClobbersPred,
578                                      Token->FClobbersPred);
579        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
580        if (RetVal) ++NumForkedDiamonds;
581        break;
582      }
583
584      if (RetVal && MRI->tracksLiveness())
585        recomputeLivenessFlags(*BBI.BB);
586
587      Change |= RetVal;
588
589      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
590        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
591      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
592        break;
593    }
594
595    if (!Change)
596      break;
597    MadeChange |= Change;
598  }
599
600  Tokens.clear();
601  BBAnalysis.clear();
602
603  if (MadeChange && IfCvtBranchFold) {
604    BranchFolder BF(false, false, MBFI, *MBPI, PSI);
605    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
606  }
607
608  MadeChange |= BFChange;
609  return MadeChange;
610}
611
612/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
613static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
614                                         MachineBasicBlock *TrueBB) {
615  for (MachineBasicBlock *SuccBB : BB->successors()) {
616    if (SuccBB != TrueBB)
617      return SuccBB;
618  }
619  return nullptr;
620}
621
622/// Reverse the condition of the end of the block branch. Swap block's 'true'
623/// and 'false' successors.
624bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
625  DebugLoc dl;  // FIXME: this is nowhere
626  if (!TII->reverseBranchCondition(BBI.BrCond)) {
627    TII->removeBranch(*BBI.BB);
628    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
629    std::swap(BBI.TrueBB, BBI.FalseBB);
630    return true;
631  }
632  return false;
633}
634
635/// Returns the next block in the function blocks ordering. If it is the end,
636/// returns NULL.
637static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
638  MachineFunction::iterator I = MBB.getIterator();
639  MachineFunction::iterator E = MBB.getParent()->end();
640  if (++I == E)
641    return nullptr;
642  return &*I;
643}
644
645/// Returns true if the 'true' block (along with its predecessor) forms a valid
646/// simple shape for ifcvt. It also returns the number of instructions that the
647/// ifcvt would need to duplicate if performed in Dups.
648bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
649                              BranchProbability Prediction) const {
650  Dups = 0;
651  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
652    return false;
653
654  if (TrueBBI.IsBrAnalyzable)
655    return false;
656
657  if (TrueBBI.BB->pred_size() > 1) {
658    if (TrueBBI.CannotBeCopied ||
659        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
660                                        Prediction))
661      return false;
662    Dups = TrueBBI.NonPredSize;
663  }
664
665  return true;
666}
667
668/// Returns true if the 'true' and 'false' blocks (along with their common
669/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
670/// true, it checks if 'true' block's false branch branches to the 'false' block
671/// rather than the other way around. It also returns the number of instructions
672/// that the ifcvt would need to duplicate if performed in 'Dups'.
673bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
674                                bool FalseBranch, unsigned &Dups,
675                                BranchProbability Prediction) const {
676  Dups = 0;
677  if (TrueBBI.BB == FalseBBI.BB)
678    return false;
679
680  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
681    return false;
682
683  if (TrueBBI.BB->pred_size() > 1) {
684    if (TrueBBI.CannotBeCopied)
685      return false;
686
687    unsigned Size = TrueBBI.NonPredSize;
688    if (TrueBBI.IsBrAnalyzable) {
689      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
690        // Ends with an unconditional branch. It will be removed.
691        --Size;
692      else {
693        MachineBasicBlock *FExit = FalseBranch
694          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
695        if (FExit)
696          // Require a conditional branch
697          ++Size;
698      }
699    }
700    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
701      return false;
702    Dups = Size;
703  }
704
705  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
706  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
707    MachineFunction::iterator I = TrueBBI.BB->getIterator();
708    if (++I == TrueBBI.BB->getParent()->end())
709      return false;
710    TExit = &*I;
711  }
712  return TExit && TExit == FalseBBI.BB;
713}
714
715/// Count duplicated instructions and move the iterators to show where they
716/// are.
717/// @param TIB True Iterator Begin
718/// @param FIB False Iterator Begin
719/// These two iterators initially point to the first instruction of the two
720/// blocks, and finally point to the first non-shared instruction.
721/// @param TIE True Iterator End
722/// @param FIE False Iterator End
723/// These two iterators initially point to End() for the two blocks() and
724/// finally point to the first shared instruction in the tail.
725/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
726/// two blocks.
727/// @param Dups1 count of duplicated instructions at the beginning of the 2
728/// blocks.
729/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
730/// @param SkipUnconditionalBranches if true, Don't make sure that
731/// unconditional branches at the end of the blocks are the same. True is
732/// passed when the blocks are analyzable to allow for fallthrough to be
733/// handled.
734/// @return false if the shared portion prevents if conversion.
735bool IfConverter::CountDuplicatedInstructions(
736    MachineBasicBlock::iterator &TIB,
737    MachineBasicBlock::iterator &FIB,
738    MachineBasicBlock::iterator &TIE,
739    MachineBasicBlock::iterator &FIE,
740    unsigned &Dups1, unsigned &Dups2,
741    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
742    bool SkipUnconditionalBranches) const {
743  while (TIB != TIE && FIB != FIE) {
744    // Skip dbg_value instructions. These do not count.
745    TIB = skipDebugInstructionsForward(TIB, TIE);
746    FIB = skipDebugInstructionsForward(FIB, FIE);
747    if (TIB == TIE || FIB == FIE)
748      break;
749    if (!TIB->isIdenticalTo(*FIB))
750      break;
751    // A pred-clobbering instruction in the shared portion prevents
752    // if-conversion.
753    std::vector<MachineOperand> PredDefs;
754    if (TII->DefinesPredicate(*TIB, PredDefs))
755      return false;
756    // If we get all the way to the branch instructions, don't count them.
757    if (!TIB->isBranch())
758      ++Dups1;
759    ++TIB;
760    ++FIB;
761  }
762
763  // Check for already containing all of the block.
764  if (TIB == TIE || FIB == FIE)
765    return true;
766  // Now, in preparation for counting duplicate instructions at the ends of the
767  // blocks, switch to reverse_iterators. Note that getReverse() returns an
768  // iterator that points to the same instruction, unlike std::reverse_iterator.
769  // We have to do our own shifting so that we get the same range.
770  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
771  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
772  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
773  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
774
775  if (!TBB.succ_empty() || !FBB.succ_empty()) {
776    if (SkipUnconditionalBranches) {
777      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
778        ++RTIE;
779      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
780        ++RFIE;
781    }
782  }
783
784  // Count duplicate instructions at the ends of the blocks.
785  while (RTIE != RTIB && RFIE != RFIB) {
786    // Skip dbg_value instructions. These do not count.
787    // Note that these are reverse iterators going forward.
788    RTIE = skipDebugInstructionsForward(RTIE, RTIB);
789    RFIE = skipDebugInstructionsForward(RFIE, RFIB);
790    if (RTIE == RTIB || RFIE == RFIB)
791      break;
792    if (!RTIE->isIdenticalTo(*RFIE))
793      break;
794    // We have to verify that any branch instructions are the same, and then we
795    // don't count them toward the # of duplicate instructions.
796    if (!RTIE->isBranch())
797      ++Dups2;
798    ++RTIE;
799    ++RFIE;
800  }
801  TIE = std::next(RTIE.getReverse());
802  FIE = std::next(RFIE.getReverse());
803  return true;
804}
805
806/// RescanInstructions - Run ScanInstructions on a pair of blocks.
807/// @param TIB - True Iterator Begin, points to first non-shared instruction
808/// @param FIB - False Iterator Begin, points to first non-shared instruction
809/// @param TIE - True Iterator End, points past last non-shared instruction
810/// @param FIE - False Iterator End, points past last non-shared instruction
811/// @param TrueBBI  - BBInfo to update for the true block.
812/// @param FalseBBI - BBInfo to update for the false block.
813/// @returns - false if either block cannot be predicated or if both blocks end
814///   with a predicate-clobbering instruction.
815bool IfConverter::RescanInstructions(
816    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
817    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
818    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
819  bool BranchUnpredicable = true;
820  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
821  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
822  if (TrueBBI.IsUnpredicable)
823    return false;
824  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
825  if (FalseBBI.IsUnpredicable)
826    return false;
827  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
828    return false;
829  return true;
830}
831
832#ifndef NDEBUG
833static void verifySameBranchInstructions(
834    MachineBasicBlock *MBB1,
835    MachineBasicBlock *MBB2) {
836  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
837  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
838  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
839  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
840  while (E1 != B1 && E2 != B2) {
841    skipDebugInstructionsForward(E1, B1);
842    skipDebugInstructionsForward(E2, B2);
843    if (E1 == B1 && E2 == B2)
844      break;
845
846    if (E1 == B1) {
847      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
848      break;
849    }
850    if (E2 == B2) {
851      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
852      break;
853    }
854
855    if (E1->isBranch() || E2->isBranch())
856      assert(E1->isIdenticalTo(*E2) &&
857             "Branch mis-match, branch instructions don't match.");
858    else
859      break;
860    ++E1;
861    ++E2;
862  }
863}
864#endif
865
866/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
867/// with their common predecessor) form a diamond if a common tail block is
868/// extracted.
869/// While not strictly a diamond, this pattern would form a diamond if
870/// tail-merging had merged the shared tails.
871///           EBB
872///         _/   \_
873///         |     |
874///        TBB   FBB
875///        /  \ /   \
876///  FalseBB TrueBB FalseBB
877/// Currently only handles analyzable branches.
878/// Specifically excludes actual diamonds to avoid overlap.
879bool IfConverter::ValidForkedDiamond(
880    BBInfo &TrueBBI, BBInfo &FalseBBI,
881    unsigned &Dups1, unsigned &Dups2,
882    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
883  Dups1 = Dups2 = 0;
884  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
885      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
886    return false;
887
888  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
889    return false;
890  // Don't IfConvert blocks that can't be folded into their predecessor.
891  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
892    return false;
893
894  // This function is specifically looking for conditional tails, as
895  // unconditional tails are already handled by the standard diamond case.
896  if (TrueBBI.BrCond.size() == 0 ||
897      FalseBBI.BrCond.size() == 0)
898    return false;
899
900  MachineBasicBlock *TT = TrueBBI.TrueBB;
901  MachineBasicBlock *TF = TrueBBI.FalseBB;
902  MachineBasicBlock *FT = FalseBBI.TrueBB;
903  MachineBasicBlock *FF = FalseBBI.FalseBB;
904
905  if (!TT)
906    TT = getNextBlock(*TrueBBI.BB);
907  if (!TF)
908    TF = getNextBlock(*TrueBBI.BB);
909  if (!FT)
910    FT = getNextBlock(*FalseBBI.BB);
911  if (!FF)
912    FF = getNextBlock(*FalseBBI.BB);
913
914  if (!TT || !TF)
915    return false;
916
917  // Check successors. If they don't match, bail.
918  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
919    return false;
920
921  bool FalseReversed = false;
922  if (TF == FT && TT == FF) {
923    // If the branches are opposing, but we can't reverse, don't do it.
924    if (!FalseBBI.IsBrReversible)
925      return false;
926    FalseReversed = true;
927    reverseBranchCondition(FalseBBI);
928  }
929  auto UnReverseOnExit = make_scope_exit([&]() {
930    if (FalseReversed)
931      reverseBranchCondition(FalseBBI);
932  });
933
934  // Count duplicate instructions at the beginning of the true and false blocks.
935  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
936  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
937  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
938  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
939  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
940                                  *TrueBBI.BB, *FalseBBI.BB,
941                                  /* SkipUnconditionalBranches */ true))
942    return false;
943
944  TrueBBICalc.BB = TrueBBI.BB;
945  FalseBBICalc.BB = FalseBBI.BB;
946  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
947  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
948  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
949    return false;
950
951  // The size is used to decide whether to if-convert, and the shared portions
952  // are subtracted off. Because of the subtraction, we just use the size that
953  // was calculated by the original ScanInstructions, as it is correct.
954  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
955  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
956  return true;
957}
958
959/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
960/// with their common predecessor) forms a valid diamond shape for ifcvt.
961bool IfConverter::ValidDiamond(
962    BBInfo &TrueBBI, BBInfo &FalseBBI,
963    unsigned &Dups1, unsigned &Dups2,
964    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
965  Dups1 = Dups2 = 0;
966  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
967      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
968    return false;
969
970  // If the True and False BBs are equal we're dealing with a degenerate case
971  // that we don't treat as a diamond.
972  if (TrueBBI.BB == FalseBBI.BB)
973    return false;
974
975  MachineBasicBlock *TT = TrueBBI.TrueBB;
976  MachineBasicBlock *FT = FalseBBI.TrueBB;
977
978  if (!TT && blockAlwaysFallThrough(TrueBBI))
979    TT = getNextBlock(*TrueBBI.BB);
980  if (!FT && blockAlwaysFallThrough(FalseBBI))
981    FT = getNextBlock(*FalseBBI.BB);
982  if (TT != FT)
983    return false;
984  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
985    return false;
986  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
987    return false;
988
989  // FIXME: Allow true block to have an early exit?
990  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
991    return false;
992
993  // Count duplicate instructions at the beginning and end of the true and
994  // false blocks.
995  // Skip unconditional branches only if we are considering an analyzable
996  // diamond. Otherwise the branches must be the same.
997  bool SkipUnconditionalBranches =
998      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
999  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
1000  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
1001  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
1002  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
1003  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
1004                                  *TrueBBI.BB, *FalseBBI.BB,
1005                                  SkipUnconditionalBranches))
1006    return false;
1007
1008  TrueBBICalc.BB = TrueBBI.BB;
1009  FalseBBICalc.BB = FalseBBI.BB;
1010  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
1011  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
1012  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
1013    return false;
1014  // The size is used to decide whether to if-convert, and the shared portions
1015  // are subtracted off. Because of the subtraction, we just use the size that
1016  // was calculated by the original ScanInstructions, as it is correct.
1017  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
1018  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
1019  return true;
1020}
1021
1022/// AnalyzeBranches - Look at the branches at the end of a block to determine if
1023/// the block is predicable.
1024void IfConverter::AnalyzeBranches(BBInfo &BBI) {
1025  if (BBI.IsDone)
1026    return;
1027
1028  BBI.TrueBB = BBI.FalseBB = nullptr;
1029  BBI.BrCond.clear();
1030  BBI.IsBrAnalyzable =
1031      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
1032  if (!BBI.IsBrAnalyzable) {
1033    BBI.TrueBB = nullptr;
1034    BBI.FalseBB = nullptr;
1035    BBI.BrCond.clear();
1036  }
1037
1038  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1039  BBI.IsBrReversible = (RevCond.size() == 0) ||
1040      !TII->reverseBranchCondition(RevCond);
1041  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
1042
1043  if (BBI.BrCond.size()) {
1044    // No false branch. This BB must end with a conditional branch and a
1045    // fallthrough.
1046    if (!BBI.FalseBB)
1047      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
1048    if (!BBI.FalseBB) {
1049      // Malformed bcc? True and false blocks are the same?
1050      BBI.IsUnpredicable = true;
1051    }
1052  }
1053}
1054
1055/// ScanInstructions - Scan all the instructions in the block to determine if
1056/// the block is predicable. In most cases, that means all the instructions
1057/// in the block are isPredicable(). Also checks if the block contains any
1058/// instruction which can clobber a predicate (e.g. condition code register).
1059/// If so, the block is not predicable unless it's the last instruction.
1060void IfConverter::ScanInstructions(BBInfo &BBI,
1061                                   MachineBasicBlock::iterator &Begin,
1062                                   MachineBasicBlock::iterator &End,
1063                                   bool BranchUnpredicable) const {
1064  if (BBI.IsDone || BBI.IsUnpredicable)
1065    return;
1066
1067  bool AlreadyPredicated = !BBI.Predicate.empty();
1068
1069  BBI.NonPredSize = 0;
1070  BBI.ExtraCost = 0;
1071  BBI.ExtraCost2 = 0;
1072  BBI.ClobbersPred = false;
1073  for (MachineInstr &MI : make_range(Begin, End)) {
1074    if (MI.isDebugInstr())
1075      continue;
1076
1077    // It's unsafe to duplicate convergent instructions in this context, so set
1078    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
1079    // following CFG, which is subject to our "simple" transformation.
1080    //
1081    //    BB0     // if (c1) goto BB1; else goto BB2;
1082    //   /   \
1083    //  BB1   |
1084    //   |   BB2  // if (c2) goto TBB; else goto FBB;
1085    //   |   / |
1086    //   |  /  |
1087    //   TBB   |
1088    //    |    |
1089    //    |   FBB
1090    //    |
1091    //    exit
1092    //
1093    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1094    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1095    // TBB contains a convergent instruction.  This is safe iff doing so does
1096    // not add a control-flow dependency to the convergent instruction -- i.e.,
1097    // it's safe iff the set of control flows that leads us to the convergent
1098    // instruction does not get smaller after the transformation.
1099    //
1100    // Originally we executed TBB if c1 || c2.  After the transformation, there
1101    // are two copies of TBB's instructions.  We get to the first if c1, and we
1102    // get to the second if !c1 && c2.
1103    //
1104    // There are clearly fewer ways to satisfy the condition "c1" than
1105    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
1106    // our convergent instruction, the transformation is unsafe.
1107    if (MI.isNotDuplicable() || MI.isConvergent())
1108      BBI.CannotBeCopied = true;
1109
1110    bool isPredicated = TII->isPredicated(MI);
1111    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
1112
1113    if (BranchUnpredicable && MI.isBranch()) {
1114      BBI.IsUnpredicable = true;
1115      return;
1116    }
1117
1118    // A conditional branch is not predicable, but it may be eliminated.
1119    if (isCondBr)
1120      continue;
1121
1122    if (!isPredicated) {
1123      BBI.NonPredSize++;
1124      unsigned ExtraPredCost = TII->getPredicationCost(MI);
1125      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1126      if (NumCycles > 1)
1127        BBI.ExtraCost += NumCycles-1;
1128      BBI.ExtraCost2 += ExtraPredCost;
1129    } else if (!AlreadyPredicated) {
1130      // FIXME: This instruction is already predicated before the
1131      // if-conversion pass. It's probably something like a conditional move.
1132      // Mark this block unpredicable for now.
1133      BBI.IsUnpredicable = true;
1134      return;
1135    }
1136
1137    if (BBI.ClobbersPred && !isPredicated) {
1138      // Predicate modification instruction should end the block (except for
1139      // already predicated instructions and end of block branches).
1140      // Predicate may have been modified, the subsequent (currently)
1141      // unpredicated instructions cannot be correctly predicated.
1142      BBI.IsUnpredicable = true;
1143      return;
1144    }
1145
1146    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1147    // still potentially predicable.
1148    std::vector<MachineOperand> PredDefs;
1149    if (TII->DefinesPredicate(MI, PredDefs))
1150      BBI.ClobbersPred = true;
1151
1152    if (!TII->isPredicable(MI)) {
1153      BBI.IsUnpredicable = true;
1154      return;
1155    }
1156  }
1157}
1158
1159/// Determine if the block is a suitable candidate to be predicated by the
1160/// specified predicate.
1161/// @param BBI BBInfo for the block to check
1162/// @param Pred Predicate array for the branch that leads to BBI
1163/// @param isTriangle true if the Analysis is for a triangle
1164/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1165///        case
1166/// @param hasCommonTail true if BBI shares a tail with a sibling block that
1167///        contains any instruction that would make the block unpredicable.
1168bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1169                                      SmallVectorImpl<MachineOperand> &Pred,
1170                                      bool isTriangle, bool RevBranch,
1171                                      bool hasCommonTail) {
1172  // If the block is dead or unpredicable, then it cannot be predicated.
1173  // Two blocks may share a common unpredicable tail, but this doesn't prevent
1174  // them from being if-converted. The non-shared portion is assumed to have
1175  // been checked
1176  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1177    return false;
1178
1179  // If it is already predicated but we couldn't analyze its terminator, the
1180  // latter might fallthrough, but we can't determine where to.
1181  // Conservatively avoid if-converting again.
1182  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1183    return false;
1184
1185  // If it is already predicated, check if the new predicate subsumes
1186  // its predicate.
1187  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1188    return false;
1189
1190  if (!hasCommonTail && BBI.BrCond.size()) {
1191    if (!isTriangle)
1192      return false;
1193
1194    // Test predicate subsumption.
1195    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1196    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1197    if (RevBranch) {
1198      if (TII->reverseBranchCondition(Cond))
1199        return false;
1200    }
1201    if (TII->reverseBranchCondition(RevPred) ||
1202        !TII->SubsumesPredicate(Cond, RevPred))
1203      return false;
1204  }
1205
1206  return true;
1207}
1208
1209/// Analyze the structure of the sub-CFG starting from the specified block.
1210/// Record its successors and whether it looks like an if-conversion candidate.
1211void IfConverter::AnalyzeBlock(
1212    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1213  struct BBState {
1214    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1215    MachineBasicBlock *MBB;
1216
1217    /// This flag is true if MBB's successors have been analyzed.
1218    bool SuccsAnalyzed;
1219  };
1220
1221  // Push MBB to the stack.
1222  SmallVector<BBState, 16> BBStack(1, MBB);
1223
1224  while (!BBStack.empty()) {
1225    BBState &State = BBStack.back();
1226    MachineBasicBlock *BB = State.MBB;
1227    BBInfo &BBI = BBAnalysis[BB->getNumber()];
1228
1229    if (!State.SuccsAnalyzed) {
1230      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1231        BBStack.pop_back();
1232        continue;
1233      }
1234
1235      BBI.BB = BB;
1236      BBI.IsBeingAnalyzed = true;
1237
1238      AnalyzeBranches(BBI);
1239      MachineBasicBlock::iterator Begin = BBI.BB->begin();
1240      MachineBasicBlock::iterator End = BBI.BB->end();
1241      ScanInstructions(BBI, Begin, End);
1242
1243      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1244      // not considered for ifcvt anymore.
1245      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1246        BBI.IsBeingAnalyzed = false;
1247        BBI.IsAnalyzed = true;
1248        BBStack.pop_back();
1249        continue;
1250      }
1251
1252      // Do not ifcvt if either path is a back edge to the entry block.
1253      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1254        BBI.IsBeingAnalyzed = false;
1255        BBI.IsAnalyzed = true;
1256        BBStack.pop_back();
1257        continue;
1258      }
1259
1260      // Do not ifcvt if true and false fallthrough blocks are the same.
1261      if (!BBI.FalseBB) {
1262        BBI.IsBeingAnalyzed = false;
1263        BBI.IsAnalyzed = true;
1264        BBStack.pop_back();
1265        continue;
1266      }
1267
1268      // Push the False and True blocks to the stack.
1269      State.SuccsAnalyzed = true;
1270      BBStack.push_back(*BBI.FalseBB);
1271      BBStack.push_back(*BBI.TrueBB);
1272      continue;
1273    }
1274
1275    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1276    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1277
1278    if (TrueBBI.IsDone && FalseBBI.IsDone) {
1279      BBI.IsBeingAnalyzed = false;
1280      BBI.IsAnalyzed = true;
1281      BBStack.pop_back();
1282      continue;
1283    }
1284
1285    SmallVector<MachineOperand, 4>
1286        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1287    bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1288
1289    unsigned Dups = 0;
1290    unsigned Dups2 = 0;
1291    bool TNeedSub = !TrueBBI.Predicate.empty();
1292    bool FNeedSub = !FalseBBI.Predicate.empty();
1293    bool Enqueued = false;
1294
1295    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1296
1297    if (CanRevCond) {
1298      BBInfo TrueBBICalc, FalseBBICalc;
1299      auto feasibleDiamond = [&](bool Forked) {
1300        bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
1301                                            Dups + Dups2, Prediction, Forked);
1302        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1303                                                /* IsTriangle */ false, /* RevCond */ false,
1304                                                /* hasCommonTail */ true);
1305        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1306                                                 /* IsTriangle */ false, /* RevCond */ false,
1307                                                 /* hasCommonTail */ true);
1308        return MeetsSize && TrueFeasible && FalseFeasible;
1309      };
1310
1311      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1312                       TrueBBICalc, FalseBBICalc)) {
1313        if (feasibleDiamond(false)) {
1314          // Diamond:
1315          //   EBB
1316          //   / \_
1317          //  |   |
1318          // TBB FBB
1319          //   \ /
1320          //  TailBB
1321          // Note TailBB can be empty.
1322          Tokens.push_back(std::make_unique<IfcvtToken>(
1323              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1324              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1325          Enqueued = true;
1326        }
1327      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1328                                    TrueBBICalc, FalseBBICalc)) {
1329        if (feasibleDiamond(true)) {
1330          // ForkedDiamond:
1331          // if TBB and FBB have a common tail that includes their conditional
1332          // branch instructions, then we can If Convert this pattern.
1333          //          EBB
1334          //         _/ \_
1335          //         |   |
1336          //        TBB  FBB
1337          //        / \ /   \
1338          //  FalseBB TrueBB FalseBB
1339          //
1340          Tokens.push_back(std::make_unique<IfcvtToken>(
1341              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1342              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1343          Enqueued = true;
1344        }
1345      }
1346    }
1347
1348    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1349        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1350                           TrueBBI.ExtraCost2, Prediction) &&
1351        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1352      // Triangle:
1353      //   EBB
1354      //   | \_
1355      //   |  |
1356      //   | TBB
1357      //   |  /
1358      //   FBB
1359      Tokens.push_back(
1360          std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1361      Enqueued = true;
1362    }
1363
1364    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1365        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1366                           TrueBBI.ExtraCost2, Prediction) &&
1367        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1368      Tokens.push_back(
1369          std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1370      Enqueued = true;
1371    }
1372
1373    if (ValidSimple(TrueBBI, Dups, Prediction) &&
1374        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1375                           TrueBBI.ExtraCost2, Prediction) &&
1376        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1377      // Simple (split, no rejoin):
1378      //   EBB
1379      //   | \_
1380      //   |  |
1381      //   | TBB---> exit
1382      //   |
1383      //   FBB
1384      Tokens.push_back(
1385          std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1386      Enqueued = true;
1387    }
1388
1389    if (CanRevCond) {
1390      // Try the other path...
1391      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1392                        Prediction.getCompl()) &&
1393          MeetIfcvtSizeLimit(*FalseBBI.BB,
1394                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1395                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1396          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1397        Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1398                                                       FNeedSub, Dups));
1399        Enqueued = true;
1400      }
1401
1402      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1403                        Prediction.getCompl()) &&
1404          MeetIfcvtSizeLimit(*FalseBBI.BB,
1405                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1406                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1407        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1408        Tokens.push_back(
1409            std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1410        Enqueued = true;
1411      }
1412
1413      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1414          MeetIfcvtSizeLimit(*FalseBBI.BB,
1415                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1416                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1417          FeasibilityAnalysis(FalseBBI, RevCond)) {
1418        Tokens.push_back(
1419            std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1420        Enqueued = true;
1421      }
1422    }
1423
1424    BBI.IsEnqueued = Enqueued;
1425    BBI.IsBeingAnalyzed = false;
1426    BBI.IsAnalyzed = true;
1427    BBStack.pop_back();
1428  }
1429}
1430
1431/// Analyze all blocks and find entries for all if-conversion candidates.
1432void IfConverter::AnalyzeBlocks(
1433    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1434  for (MachineBasicBlock &MBB : MF)
1435    AnalyzeBlock(MBB, Tokens);
1436
1437  // Sort to favor more complex ifcvt scheme.
1438  llvm::stable_sort(Tokens, IfcvtTokenCmp);
1439}
1440
1441/// Returns true either if ToMBB is the next block after MBB or that all the
1442/// intervening blocks are empty (given MBB can fall through to its next block).
1443static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1444  MachineFunction::iterator PI = MBB.getIterator();
1445  MachineFunction::iterator I = std::next(PI);
1446  MachineFunction::iterator TI = ToMBB.getIterator();
1447  MachineFunction::iterator E = MBB.getParent()->end();
1448  while (I != TI) {
1449    // Check isSuccessor to avoid case where the next block is empty, but
1450    // it's not a successor.
1451    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1452      return false;
1453    PI = I++;
1454  }
1455  // Finally see if the last I is indeed a successor to PI.
1456  return PI->isSuccessor(&*I);
1457}
1458
1459/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1460/// can be if-converted. If predecessor is already enqueued, dequeue it!
1461void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1462  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1463    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1464    if (PBBI.IsDone || PBBI.BB == &MBB)
1465      continue;
1466    PBBI.IsAnalyzed = false;
1467    PBBI.IsEnqueued = false;
1468  }
1469}
1470
1471/// Inserts an unconditional branch from \p MBB to \p ToMBB.
1472static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1473                               const TargetInstrInfo *TII) {
1474  DebugLoc dl;  // FIXME: this is nowhere
1475  SmallVector<MachineOperand, 0> NoCond;
1476  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1477}
1478
1479/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1480/// values defined in MI which are also live/used by MI.
1481static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1482  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1483
1484  // Before stepping forward past MI, remember which regs were live
1485  // before MI. This is needed to set the Undef flag only when reg is
1486  // dead.
1487  SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1488  LiveBeforeMI.setUniverse(TRI->getNumRegs());
1489  for (unsigned Reg : Redefs)
1490    LiveBeforeMI.insert(Reg);
1491
1492  SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1493  Redefs.stepForward(MI, Clobbers);
1494
1495  // Now add the implicit uses for each of the clobbered values.
1496  for (auto Clobber : Clobbers) {
1497    // FIXME: Const cast here is nasty, but better than making StepForward
1498    // take a mutable instruction instead of const.
1499    unsigned Reg = Clobber.first;
1500    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1501    MachineInstr *OpMI = Op.getParent();
1502    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1503    if (Op.isRegMask()) {
1504      // First handle regmasks.  They clobber any entries in the mask which
1505      // means that we need a def for those registers.
1506      if (LiveBeforeMI.count(Reg))
1507        MIB.addReg(Reg, RegState::Implicit);
1508
1509      // We also need to add an implicit def of this register for the later
1510      // use to read from.
1511      // For the register allocator to have allocated a register clobbered
1512      // by the call which is used later, it must be the case that
1513      // the call doesn't return.
1514      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1515      continue;
1516    }
1517    if (LiveBeforeMI.count(Reg))
1518      MIB.addReg(Reg, RegState::Implicit);
1519    else {
1520      bool HasLiveSubReg = false;
1521      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1522        if (!LiveBeforeMI.count(*S))
1523          continue;
1524        HasLiveSubReg = true;
1525        break;
1526      }
1527      if (HasLiveSubReg)
1528        MIB.addReg(Reg, RegState::Implicit);
1529    }
1530  }
1531}
1532
1533/// If convert a simple (split, no rejoin) sub-CFG.
1534bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1535  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
1536  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1537  BBInfo *CvtBBI = &TrueBBI;
1538  BBInfo *NextBBI = &FalseBBI;
1539
1540  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1541  if (Kind == ICSimpleFalse)
1542    std::swap(CvtBBI, NextBBI);
1543
1544  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1545  MachineBasicBlock &NextMBB = *NextBBI->BB;
1546  if (CvtBBI->IsDone ||
1547      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1548    // Something has changed. It's no longer safe to predicate this block.
1549    BBI.IsAnalyzed = false;
1550    CvtBBI->IsAnalyzed = false;
1551    return false;
1552  }
1553
1554  if (CvtMBB.hasAddressTaken())
1555    // Conservatively abort if-conversion if BB's address is taken.
1556    return false;
1557
1558  if (Kind == ICSimpleFalse)
1559    if (TII->reverseBranchCondition(Cond))
1560      llvm_unreachable("Unable to reverse branch condition!");
1561
1562  Redefs.init(*TRI);
1563
1564  if (MRI->tracksLiveness()) {
1565    // Initialize liveins to the first BB. These are potentially redefined by
1566    // predicated instructions.
1567    Redefs.addLiveIns(CvtMBB);
1568    Redefs.addLiveIns(NextMBB);
1569  }
1570
1571  // Remove the branches from the entry so we can add the contents of the true
1572  // block to it.
1573  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1574
1575  if (CvtMBB.pred_size() > 1) {
1576    // Copy instructions in the true block, predicate them, and add them to
1577    // the entry block.
1578    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1579
1580    // Keep the CFG updated.
1581    BBI.BB->removeSuccessor(&CvtMBB, true);
1582  } else {
1583    // Predicate the instructions in the true block.
1584    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1585
1586    // Merge converted block into entry block. The BB to Cvt edge is removed
1587    // by MergeBlocks.
1588    MergeBlocks(BBI, *CvtBBI);
1589  }
1590
1591  bool IterIfcvt = true;
1592  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1593    InsertUncondBranch(*BBI.BB, NextMBB, TII);
1594    BBI.HasFallThrough = false;
1595    // Now ifcvt'd block will look like this:
1596    // BB:
1597    // ...
1598    // t, f = cmp
1599    // if t op
1600    // b BBf
1601    //
1602    // We cannot further ifcvt this block because the unconditional branch
1603    // will have to be predicated on the new condition, that will not be
1604    // available if cmp executes.
1605    IterIfcvt = false;
1606  }
1607
1608  // Update block info. BB can be iteratively if-converted.
1609  if (!IterIfcvt)
1610    BBI.IsDone = true;
1611  InvalidatePreds(*BBI.BB);
1612  CvtBBI->IsDone = true;
1613
1614  // FIXME: Must maintain LiveIns.
1615  return true;
1616}
1617
1618/// If convert a triangle sub-CFG.
1619bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1620  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1621  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1622  BBInfo *CvtBBI = &TrueBBI;
1623  BBInfo *NextBBI = &FalseBBI;
1624  DebugLoc dl;  // FIXME: this is nowhere
1625
1626  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1627  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1628    std::swap(CvtBBI, NextBBI);
1629
1630  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1631  MachineBasicBlock &NextMBB = *NextBBI->BB;
1632  if (CvtBBI->IsDone ||
1633      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1634    // Something has changed. It's no longer safe to predicate this block.
1635    BBI.IsAnalyzed = false;
1636    CvtBBI->IsAnalyzed = false;
1637    return false;
1638  }
1639
1640  if (CvtMBB.hasAddressTaken())
1641    // Conservatively abort if-conversion if BB's address is taken.
1642    return false;
1643
1644  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1645    if (TII->reverseBranchCondition(Cond))
1646      llvm_unreachable("Unable to reverse branch condition!");
1647
1648  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1649    if (reverseBranchCondition(*CvtBBI)) {
1650      // BB has been changed, modify its predecessors (except for this
1651      // one) so they don't get ifcvt'ed based on bad intel.
1652      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1653        if (PBB == BBI.BB)
1654          continue;
1655        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1656        if (PBBI.IsEnqueued) {
1657          PBBI.IsAnalyzed = false;
1658          PBBI.IsEnqueued = false;
1659        }
1660      }
1661    }
1662  }
1663
1664  // Initialize liveins to the first BB. These are potentially redefined by
1665  // predicated instructions.
1666  Redefs.init(*TRI);
1667  if (MRI->tracksLiveness()) {
1668    Redefs.addLiveIns(CvtMBB);
1669    Redefs.addLiveIns(NextMBB);
1670  }
1671
1672  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1673  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1674
1675  if (HasEarlyExit) {
1676    // Get probabilities before modifying CvtMBB and BBI.BB.
1677    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1678    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1679    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1680    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1681  }
1682
1683  // Remove the branches from the entry so we can add the contents of the true
1684  // block to it.
1685  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1686
1687  if (CvtMBB.pred_size() > 1) {
1688    // Copy instructions in the true block, predicate them, and add them to
1689    // the entry block.
1690    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1691  } else {
1692    // Predicate the 'true' block after removing its branch.
1693    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1694    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1695
1696    // Now merge the entry of the triangle with the true block.
1697    MergeBlocks(BBI, *CvtBBI, false);
1698  }
1699
1700  // Keep the CFG updated.
1701  BBI.BB->removeSuccessor(&CvtMBB, true);
1702
1703  // If 'true' block has a 'false' successor, add an exit branch to it.
1704  if (HasEarlyExit) {
1705    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1706                                           CvtBBI->BrCond.end());
1707    if (TII->reverseBranchCondition(RevCond))
1708      llvm_unreachable("Unable to reverse branch condition!");
1709
1710    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1711    // NewNext = New_Prob(BBI.BB, NextMBB) =
1712    //   Prob(BBI.BB, NextMBB) +
1713    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1714    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1715    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1716    auto NewTrueBB = getNextBlock(*BBI.BB);
1717    auto NewNext = BBNext + BBCvt * CvtNext;
1718    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1719    if (NewTrueBBIter != BBI.BB->succ_end())
1720      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1721
1722    auto NewFalse = BBCvt * CvtFalse;
1723    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1724    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1725  }
1726
1727  // Merge in the 'false' block if the 'false' block has no other
1728  // predecessors. Otherwise, add an unconditional branch to 'false'.
1729  bool FalseBBDead = false;
1730  bool IterIfcvt = true;
1731  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1732  if (!isFallThrough) {
1733    // Only merge them if the true block does not fallthrough to the false
1734    // block. By not merging them, we make it possible to iteratively
1735    // ifcvt the blocks.
1736    if (!HasEarlyExit &&
1737        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1738        !NextMBB.hasAddressTaken()) {
1739      MergeBlocks(BBI, *NextBBI);
1740      FalseBBDead = true;
1741    } else {
1742      InsertUncondBranch(*BBI.BB, NextMBB, TII);
1743      BBI.HasFallThrough = false;
1744    }
1745    // Mixed predicated and unpredicated code. This cannot be iteratively
1746    // predicated.
1747    IterIfcvt = false;
1748  }
1749
1750  // Update block info. BB can be iteratively if-converted.
1751  if (!IterIfcvt)
1752    BBI.IsDone = true;
1753  InvalidatePreds(*BBI.BB);
1754  CvtBBI->IsDone = true;
1755  if (FalseBBDead)
1756    NextBBI->IsDone = true;
1757
1758  // FIXME: Must maintain LiveIns.
1759  return true;
1760}
1761
1762/// Common code shared between diamond conversions.
1763/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1764/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1765///               and FalseBBI
1766/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1767///               and \p FalseBBI
1768/// \p RemoveBranch - Remove the common branch of the two blocks before
1769///                   predicating. Only false for unanalyzable fallthrough
1770///                   cases. The caller will replace the branch if necessary.
1771/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1772///                    unanalyzable fallthrough
1773bool IfConverter::IfConvertDiamondCommon(
1774    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1775    unsigned NumDups1, unsigned NumDups2,
1776    bool TClobbersPred, bool FClobbersPred,
1777    bool RemoveBranch, bool MergeAddEdges) {
1778
1779  if (TrueBBI.IsDone || FalseBBI.IsDone ||
1780      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1781    // Something has changed. It's no longer safe to predicate these blocks.
1782    BBI.IsAnalyzed = false;
1783    TrueBBI.IsAnalyzed = false;
1784    FalseBBI.IsAnalyzed = false;
1785    return false;
1786  }
1787
1788  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1789    // Conservatively abort if-conversion if either BB has its address taken.
1790    return false;
1791
1792  // Put the predicated instructions from the 'true' block before the
1793  // instructions from the 'false' block, unless the true block would clobber
1794  // the predicate, in which case, do the opposite.
1795  BBInfo *BBI1 = &TrueBBI;
1796  BBInfo *BBI2 = &FalseBBI;
1797  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1798  if (TII->reverseBranchCondition(RevCond))
1799    llvm_unreachable("Unable to reverse branch condition!");
1800  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1801  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1802
1803  // Figure out the more profitable ordering.
1804  bool DoSwap = false;
1805  if (TClobbersPred && !FClobbersPred)
1806    DoSwap = true;
1807  else if (!TClobbersPred && !FClobbersPred) {
1808    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1809      DoSwap = true;
1810  } else if (TClobbersPred && FClobbersPred)
1811    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1812  if (DoSwap) {
1813    std::swap(BBI1, BBI2);
1814    std::swap(Cond1, Cond2);
1815  }
1816
1817  // Remove the conditional branch from entry to the blocks.
1818  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1819
1820  MachineBasicBlock &MBB1 = *BBI1->BB;
1821  MachineBasicBlock &MBB2 = *BBI2->BB;
1822
1823  // Initialize the Redefs:
1824  // - BB2 live-in regs need implicit uses before being redefined by BB1
1825  //   instructions.
1826  // - BB1 live-out regs need implicit uses before being redefined by BB2
1827  //   instructions. We start with BB1 live-ins so we have the live-out regs
1828  //   after tracking the BB1 instructions.
1829  Redefs.init(*TRI);
1830  if (MRI->tracksLiveness()) {
1831    Redefs.addLiveIns(MBB1);
1832    Redefs.addLiveIns(MBB2);
1833  }
1834
1835  // Remove the duplicated instructions at the beginnings of both paths.
1836  // Skip dbg_value instructions.
1837  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1838  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1839  BBI1->NonPredSize -= NumDups1;
1840  BBI2->NonPredSize -= NumDups1;
1841
1842  // Skip past the dups on each side separately since there may be
1843  // differing dbg_value entries. NumDups1 can include a "return"
1844  // instruction, if it's not marked as "branch".
1845  for (unsigned i = 0; i < NumDups1; ++DI1) {
1846    if (DI1 == MBB1.end())
1847      break;
1848    if (!DI1->isDebugInstr())
1849      ++i;
1850  }
1851  while (NumDups1 != 0) {
1852    // Since this instruction is going to be deleted, update call
1853    // site info state if the instruction is call instruction.
1854    if (DI2->shouldUpdateCallSiteInfo())
1855      MBB2.getParent()->eraseCallSiteInfo(&*DI2);
1856
1857    ++DI2;
1858    if (DI2 == MBB2.end())
1859      break;
1860    if (!DI2->isDebugInstr())
1861      --NumDups1;
1862  }
1863
1864  if (MRI->tracksLiveness()) {
1865    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1866      SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1867      Redefs.stepForward(MI, Dummy);
1868    }
1869  }
1870
1871  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1872  MBB2.erase(MBB2.begin(), DI2);
1873
1874  // The branches have been checked to match, so it is safe to remove the
1875  // branch in BB1 and rely on the copy in BB2. The complication is that
1876  // the blocks may end with a return instruction, which may or may not
1877  // be marked as "branch". If it's not, then it could be included in
1878  // "dups1", leaving the blocks potentially empty after moving the common
1879  // duplicates.
1880#ifndef NDEBUG
1881  // Unanalyzable branches must match exactly. Check that now.
1882  if (!BBI1->IsBrAnalyzable)
1883    verifySameBranchInstructions(&MBB1, &MBB2);
1884#endif
1885  // Remove duplicated instructions from the tail of MBB1: any branch
1886  // instructions, and the common instructions counted by NumDups2.
1887  DI1 = MBB1.end();
1888  while (DI1 != MBB1.begin()) {
1889    MachineBasicBlock::iterator Prev = std::prev(DI1);
1890    if (!Prev->isBranch() && !Prev->isDebugInstr())
1891      break;
1892    DI1 = Prev;
1893  }
1894  for (unsigned i = 0; i != NumDups2; ) {
1895    // NumDups2 only counted non-dbg_value instructions, so this won't
1896    // run off the head of the list.
1897    assert(DI1 != MBB1.begin());
1898
1899    --DI1;
1900
1901    // Since this instruction is going to be deleted, update call
1902    // site info state if the instruction is call instruction.
1903    if (DI1->shouldUpdateCallSiteInfo())
1904      MBB1.getParent()->eraseCallSiteInfo(&*DI1);
1905
1906    // skip dbg_value instructions
1907    if (!DI1->isDebugInstr())
1908      ++i;
1909  }
1910  MBB1.erase(DI1, MBB1.end());
1911
1912  DI2 = BBI2->BB->end();
1913  // The branches have been checked to match. Skip over the branch in the false
1914  // block so that we don't try to predicate it.
1915  if (RemoveBranch)
1916    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1917  else {
1918    // Make DI2 point to the end of the range where the common "tail"
1919    // instructions could be found.
1920    while (DI2 != MBB2.begin()) {
1921      MachineBasicBlock::iterator Prev = std::prev(DI2);
1922      if (!Prev->isBranch() && !Prev->isDebugInstr())
1923        break;
1924      DI2 = Prev;
1925    }
1926  }
1927  while (NumDups2 != 0) {
1928    // NumDups2 only counted non-dbg_value instructions, so this won't
1929    // run off the head of the list.
1930    assert(DI2 != MBB2.begin());
1931    --DI2;
1932    // skip dbg_value instructions
1933    if (!DI2->isDebugInstr())
1934      --NumDups2;
1935  }
1936
1937  // Remember which registers would later be defined by the false block.
1938  // This allows us not to predicate instructions in the true block that would
1939  // later be re-defined. That is, rather than
1940  //   subeq  r0, r1, #1
1941  //   addne  r0, r1, #1
1942  // generate:
1943  //   sub    r0, r1, #1
1944  //   addne  r0, r1, #1
1945  SmallSet<MCPhysReg, 4> RedefsByFalse;
1946  SmallSet<MCPhysReg, 4> ExtUses;
1947  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1948    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1949      if (FI.isDebugInstr())
1950        continue;
1951      SmallVector<MCPhysReg, 4> Defs;
1952      for (const MachineOperand &MO : FI.operands()) {
1953        if (!MO.isReg())
1954          continue;
1955        Register Reg = MO.getReg();
1956        if (!Reg)
1957          continue;
1958        if (MO.isDef()) {
1959          Defs.push_back(Reg);
1960        } else if (!RedefsByFalse.count(Reg)) {
1961          // These are defined before ctrl flow reach the 'false' instructions.
1962          // They cannot be modified by the 'true' instructions.
1963          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1964               SubRegs.isValid(); ++SubRegs)
1965            ExtUses.insert(*SubRegs);
1966        }
1967      }
1968
1969      for (MCPhysReg Reg : Defs) {
1970        if (!ExtUses.count(Reg)) {
1971          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1972               SubRegs.isValid(); ++SubRegs)
1973            RedefsByFalse.insert(*SubRegs);
1974        }
1975      }
1976    }
1977  }
1978
1979  // Predicate the 'true' block.
1980  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1981
1982  // After predicating BBI1, if there is a predicated terminator in BBI1 and
1983  // a non-predicated in BBI2, then we don't want to predicate the one from
1984  // BBI2. The reason is that if we merged these blocks, we would end up with
1985  // two predicated terminators in the same block.
1986  // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1987  // predicate them either. They were checked to be identical, and so the
1988  // same branch would happen regardless of which path was taken.
1989  if (!MBB2.empty() && (DI2 == MBB2.end())) {
1990    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1991    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1992    bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1993    bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1994    if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1995      --DI2;
1996  }
1997
1998  // Predicate the 'false' block.
1999  PredicateBlock(*BBI2, DI2, *Cond2);
2000
2001  // Merge the true block into the entry of the diamond.
2002  MergeBlocks(BBI, *BBI1, MergeAddEdges);
2003  MergeBlocks(BBI, *BBI2, MergeAddEdges);
2004  return true;
2005}
2006
2007/// If convert an almost-diamond sub-CFG where the true
2008/// and false blocks share a common tail.
2009bool IfConverter::IfConvertForkedDiamond(
2010    BBInfo &BBI, IfcvtKind Kind,
2011    unsigned NumDups1, unsigned NumDups2,
2012    bool TClobbersPred, bool FClobbersPred) {
2013  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
2014  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2015
2016  // Save the debug location for later.
2017  DebugLoc dl;
2018  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
2019  if (TIE != TrueBBI.BB->end())
2020    dl = TIE->getDebugLoc();
2021  // Removing branches from both blocks is safe, because we have already
2022  // determined that both blocks have the same branch instructions. The branch
2023  // will be added back at the end, unpredicated.
2024  if (!IfConvertDiamondCommon(
2025      BBI, TrueBBI, FalseBBI,
2026      NumDups1, NumDups2,
2027      TClobbersPred, FClobbersPred,
2028      /* RemoveBranch */ true, /* MergeAddEdges */ true))
2029    return false;
2030
2031  // Add back the branch.
2032  // Debug location saved above when removing the branch from BBI2
2033  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
2034                    TrueBBI.BrCond, dl);
2035
2036  // Update block info.
2037  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2038  InvalidatePreds(*BBI.BB);
2039
2040  // FIXME: Must maintain LiveIns.
2041  return true;
2042}
2043
2044/// If convert a diamond sub-CFG.
2045bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
2046                                   unsigned NumDups1, unsigned NumDups2,
2047                                   bool TClobbersPred, bool FClobbersPred) {
2048  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
2049  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2050  MachineBasicBlock *TailBB = TrueBBI.TrueBB;
2051
2052  // True block must fall through or end with an unanalyzable terminator.
2053  if (!TailBB) {
2054    if (blockAlwaysFallThrough(TrueBBI))
2055      TailBB = FalseBBI.TrueBB;
2056    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
2057  }
2058
2059  if (!IfConvertDiamondCommon(
2060      BBI, TrueBBI, FalseBBI,
2061      NumDups1, NumDups2,
2062      TClobbersPred, FClobbersPred,
2063      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
2064      /* MergeAddEdges */ TailBB == nullptr))
2065    return false;
2066
2067  // If the if-converted block falls through or unconditionally branches into
2068  // the tail block, and the tail block does not have other predecessors, then
2069  // fold the tail block in as well. Otherwise, unless it falls through to the
2070  // tail, add a unconditional branch to it.
2071  if (TailBB) {
2072    // We need to remove the edges to the true and false blocks manually since
2073    // we didn't let IfConvertDiamondCommon update the CFG.
2074    BBI.BB->removeSuccessor(TrueBBI.BB);
2075    BBI.BB->removeSuccessor(FalseBBI.BB, true);
2076
2077    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
2078    bool CanMergeTail = !TailBBI.HasFallThrough &&
2079      !TailBBI.BB->hasAddressTaken();
2080    // The if-converted block can still have a predicated terminator
2081    // (e.g. a predicated return). If that is the case, we cannot merge
2082    // it with the tail block.
2083    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
2084    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
2085      CanMergeTail = false;
2086    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2087    // check if there are any other predecessors besides those.
2088    unsigned NumPreds = TailBB->pred_size();
2089    if (NumPreds > 1)
2090      CanMergeTail = false;
2091    else if (NumPreds == 1 && CanMergeTail) {
2092      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
2093      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
2094        CanMergeTail = false;
2095    }
2096    if (CanMergeTail) {
2097      MergeBlocks(BBI, TailBBI);
2098      TailBBI.IsDone = true;
2099    } else {
2100      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
2101      InsertUncondBranch(*BBI.BB, *TailBB, TII);
2102      BBI.HasFallThrough = false;
2103    }
2104  }
2105
2106  // Update block info.
2107  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2108  InvalidatePreds(*BBI.BB);
2109
2110  // FIXME: Must maintain LiveIns.
2111  return true;
2112}
2113
2114static bool MaySpeculate(const MachineInstr &MI,
2115                         SmallSet<MCPhysReg, 4> &LaterRedefs) {
2116  bool SawStore = true;
2117  if (!MI.isSafeToMove(nullptr, SawStore))
2118    return false;
2119
2120  for (const MachineOperand &MO : MI.operands()) {
2121    if (!MO.isReg())
2122      continue;
2123    Register Reg = MO.getReg();
2124    if (!Reg)
2125      continue;
2126    if (MO.isDef() && !LaterRedefs.count(Reg))
2127      return false;
2128  }
2129
2130  return true;
2131}
2132
2133/// Predicate instructions from the start of the block to the specified end with
2134/// the specified condition.
2135void IfConverter::PredicateBlock(BBInfo &BBI,
2136                                 MachineBasicBlock::iterator E,
2137                                 SmallVectorImpl<MachineOperand> &Cond,
2138                                 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2139  bool AnyUnpred = false;
2140  bool MaySpec = LaterRedefs != nullptr;
2141  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2142    if (I.isDebugInstr() || TII->isPredicated(I))
2143      continue;
2144    // It may be possible not to predicate an instruction if it's the 'true'
2145    // side of a diamond and the 'false' side may re-define the instruction's
2146    // defs.
2147    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2148      AnyUnpred = true;
2149      continue;
2150    }
2151    // If any instruction is predicated, then every instruction after it must
2152    // be predicated.
2153    MaySpec = false;
2154    if (!TII->PredicateInstruction(I, Cond)) {
2155#ifndef NDEBUG
2156      dbgs() << "Unable to predicate " << I << "!\n";
2157#endif
2158      llvm_unreachable(nullptr);
2159    }
2160
2161    // If the predicated instruction now redefines a register as the result of
2162    // if-conversion, add an implicit kill.
2163    UpdatePredRedefs(I, Redefs);
2164  }
2165
2166  BBI.Predicate.append(Cond.begin(), Cond.end());
2167
2168  BBI.IsAnalyzed = false;
2169  BBI.NonPredSize = 0;
2170
2171  ++NumIfConvBBs;
2172  if (AnyUnpred)
2173    ++NumUnpred;
2174}
2175
2176/// Copy and predicate instructions from source BB to the destination block.
2177/// Skip end of block branches if IgnoreBr is true.
2178void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2179                                        SmallVectorImpl<MachineOperand> &Cond,
2180                                        bool IgnoreBr) {
2181  MachineFunction &MF = *ToBBI.BB->getParent();
2182
2183  MachineBasicBlock &FromMBB = *FromBBI.BB;
2184  for (MachineInstr &I : FromMBB) {
2185    // Do not copy the end of the block branches.
2186    if (IgnoreBr && I.isBranch())
2187      break;
2188
2189    MachineInstr *MI = MF.CloneMachineInstr(&I);
2190    // Make a copy of the call site info.
2191    if (I.isCandidateForCallSiteEntry())
2192      MF.copyCallSiteInfo(&I, MI);
2193
2194    ToBBI.BB->insert(ToBBI.BB->end(), MI);
2195    ToBBI.NonPredSize++;
2196    unsigned ExtraPredCost = TII->getPredicationCost(I);
2197    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2198    if (NumCycles > 1)
2199      ToBBI.ExtraCost += NumCycles-1;
2200    ToBBI.ExtraCost2 += ExtraPredCost;
2201
2202    if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2203      if (!TII->PredicateInstruction(*MI, Cond)) {
2204#ifndef NDEBUG
2205        dbgs() << "Unable to predicate " << I << "!\n";
2206#endif
2207        llvm_unreachable(nullptr);
2208      }
2209    }
2210
2211    // If the predicated instruction now redefines a register as the result of
2212    // if-conversion, add an implicit kill.
2213    UpdatePredRedefs(*MI, Redefs);
2214  }
2215
2216  if (!IgnoreBr) {
2217    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2218                                           FromMBB.succ_end());
2219    MachineBasicBlock *NBB = getNextBlock(FromMBB);
2220    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2221
2222    for (MachineBasicBlock *Succ : Succs) {
2223      // Fallthrough edge can't be transferred.
2224      if (Succ == FallThrough)
2225        continue;
2226      ToBBI.BB->addSuccessor(Succ);
2227    }
2228  }
2229
2230  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2231  ToBBI.Predicate.append(Cond.begin(), Cond.end());
2232
2233  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2234  ToBBI.IsAnalyzed = false;
2235
2236  ++NumDupBBs;
2237}
2238
2239/// Move all instructions from FromBB to the end of ToBB.  This will leave
2240/// FromBB as an empty block, so remove all of its successor edges and move it
2241/// to the end of the function.  If AddEdges is true, i.e., when FromBBI's
2242/// branch is being moved, add those successor edges to ToBBI and remove the old
2243/// edge from ToBBI to FromBBI.
2244void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2245  MachineBasicBlock &FromMBB = *FromBBI.BB;
2246  assert(!FromMBB.hasAddressTaken() &&
2247         "Removing a BB whose address is taken!");
2248
2249  // In case FromMBB contains terminators (e.g. return instruction),
2250  // first move the non-terminator instructions, then the terminators.
2251  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2252  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2253  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2254
2255  // If FromBB has non-predicated terminator we should copy it at the end.
2256  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2257    ToTI = ToBBI.BB->end();
2258  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2259
2260  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2261  // unknown probabilities into known ones.
2262  // FIXME: This usage is too tricky and in the future we would like to
2263  // eliminate all unknown probabilities in MBB.
2264  if (ToBBI.IsBrAnalyzable)
2265    ToBBI.BB->normalizeSuccProbs();
2266
2267  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2268                                                FromMBB.succ_end());
2269  MachineBasicBlock *NBB = getNextBlock(FromMBB);
2270  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2271  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2272  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2273  auto To2FromProb = BranchProbability::getZero();
2274  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2275    // Remove the old edge but remember the edge probability so we can calculate
2276    // the correct weights on the new edges being added further down.
2277    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2278    ToBBI.BB->removeSuccessor(&FromMBB);
2279  }
2280
2281  for (MachineBasicBlock *Succ : FromSuccs) {
2282    // Fallthrough edge can't be transferred.
2283    if (Succ == FallThrough) {
2284      FromMBB.removeSuccessor(Succ);
2285      continue;
2286    }
2287
2288    auto NewProb = BranchProbability::getZero();
2289    if (AddEdges) {
2290      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2291      // which is a portion of the edge probability from FromMBB to Succ. The
2292      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2293      // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2294      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2295
2296      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2297      // only happens when if-converting a diamond CFG and FromMBB is the
2298      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
2299      // could just use the probabilities on FromMBB's out-edges when adding
2300      // new successors.
2301      if (!To2FromProb.isZero())
2302        NewProb *= To2FromProb;
2303    }
2304
2305    FromMBB.removeSuccessor(Succ);
2306
2307    if (AddEdges) {
2308      // If the edge from ToBBI.BB to Succ already exists, update the
2309      // probability of this edge by adding NewProb to it. An example is shown
2310      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2311      // don't have to set C as A's successor as it already is. We only need to
2312      // update the edge probability on A->C. Note that B will not be
2313      // immediately removed from A's successors. It is possible that B->D is
2314      // not removed either if D is a fallthrough of B. Later the edge A->D
2315      // (generated here) and B->D will be combined into one edge. To maintain
2316      // correct edge probability of this combined edge, we need to set the edge
2317      // probability of A->B to zero, which is already done above. The edge
2318      // probability on A->D is calculated by scaling the original probability
2319      // on A->B by the probability of B->D.
2320      //
2321      // Before ifcvt:      After ifcvt (assume B->D is kept):
2322      //
2323      //       A                A
2324      //      /|               /|\
2325      //     / B              / B|
2326      //    | /|             |  ||
2327      //    |/ |             |  |/
2328      //    C  D             C  D
2329      //
2330      if (ToBBI.BB->isSuccessor(Succ))
2331        ToBBI.BB->setSuccProbability(
2332            find(ToBBI.BB->successors(), Succ),
2333            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2334      else
2335        ToBBI.BB->addSuccessor(Succ, NewProb);
2336    }
2337  }
2338
2339  // Move the now empty FromMBB out of the way to the end of the function so
2340  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2341  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2342  if (Last != &FromMBB)
2343    FromMBB.moveAfter(Last);
2344
2345  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2346  // we've done above.
2347  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2348    ToBBI.BB->normalizeSuccProbs();
2349
2350  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2351  FromBBI.Predicate.clear();
2352
2353  ToBBI.NonPredSize += FromBBI.NonPredSize;
2354  ToBBI.ExtraCost += FromBBI.ExtraCost;
2355  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2356  FromBBI.NonPredSize = 0;
2357  FromBBI.ExtraCost = 0;
2358  FromBBI.ExtraCost2 = 0;
2359
2360  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2361  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2362  ToBBI.IsAnalyzed = false;
2363  FromBBI.IsAnalyzed = false;
2364}
2365
2366FunctionPass *
2367llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2368  return new IfConverter(std::move(Ftor));
2369}
2370