1//===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CriticalAntiDepBreaker class, which
10// implements register anti-dependence breaking along a blocks
11// critical path during post-RA scheduler.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CriticalAntiDepBreaker.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/RegisterClassInfo.h"
26#include "llvm/CodeGen/ScheduleDAG.h"
27#include "llvm/CodeGen/TargetInstrInfo.h"
28#include "llvm/CodeGen/TargetRegisterInfo.h"
29#include "llvm/CodeGen/TargetSubtargetInfo.h"
30#include "llvm/MC/MCInstrDesc.h"
31#include "llvm/MC/MCRegisterInfo.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include <cassert>
35#include <utility>
36
37using namespace llvm;
38
39#define DEBUG_TYPE "post-RA-sched"
40
41CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
42                                               const RegisterClassInfo &RCI)
43    : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
44      TII(MF.getSubtarget().getInstrInfo()),
45      TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
46      Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
47      DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
48
49CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
50
51void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
52  const unsigned BBSize = BB->size();
53  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
54    // Clear out the register class data.
55    Classes[i] = nullptr;
56
57    // Initialize the indices to indicate that no registers are live.
58    KillIndices[i] = ~0u;
59    DefIndices[i] = BBSize;
60  }
61
62  // Clear "do not change" set.
63  KeepRegs.reset();
64
65  bool IsReturnBlock = BB->isReturnBlock();
66
67  // Examine the live-in regs of all successors.
68  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
69         SE = BB->succ_end(); SI != SE; ++SI)
70    for (const auto &LI : (*SI)->liveins()) {
71      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
72        unsigned Reg = *AI;
73        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
74        KillIndices[Reg] = BBSize;
75        DefIndices[Reg] = ~0u;
76      }
77    }
78
79  // Mark live-out callee-saved registers. In a return block this is
80  // all callee-saved registers. In non-return this is any
81  // callee-saved register that is not saved in the prolog.
82  const MachineFrameInfo &MFI = MF.getFrameInfo();
83  BitVector Pristine = MFI.getPristineRegs(MF);
84  for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
85       ++I) {
86    unsigned Reg = *I;
87    if (!IsReturnBlock && !Pristine.test(Reg))
88      continue;
89    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
90      unsigned Reg = *AI;
91      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
92      KillIndices[Reg] = BBSize;
93      DefIndices[Reg] = ~0u;
94    }
95  }
96}
97
98void CriticalAntiDepBreaker::FinishBlock() {
99  RegRefs.clear();
100  KeepRegs.reset();
101}
102
103void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
104                                     unsigned InsertPosIndex) {
105  // Kill instructions can define registers but are really nops, and there might
106  // be a real definition earlier that needs to be paired with uses dominated by
107  // this kill.
108
109  // FIXME: It may be possible to remove the isKill() restriction once PR18663
110  // has been properly fixed. There can be value in processing kills as seen in
111  // the AggressiveAntiDepBreaker class.
112  if (MI.isDebugInstr() || MI.isKill())
113    return;
114  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
115
116  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
117    if (KillIndices[Reg] != ~0u) {
118      // If Reg is currently live, then mark that it can't be renamed as
119      // we don't know the extent of its live-range anymore (now that it
120      // has been scheduled).
121      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
122      KillIndices[Reg] = Count;
123    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
124      // Any register which was defined within the previous scheduling region
125      // may have been rescheduled and its lifetime may overlap with registers
126      // in ways not reflected in our current liveness state. For each such
127      // register, adjust the liveness state to be conservatively correct.
128      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
129
130      // Move the def index to the end of the previous region, to reflect
131      // that the def could theoretically have been scheduled at the end.
132      DefIndices[Reg] = InsertPosIndex;
133    }
134  }
135
136  PrescanInstruction(MI);
137  ScanInstruction(MI, Count);
138}
139
140/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
141/// critical path.
142static const SDep *CriticalPathStep(const SUnit *SU) {
143  const SDep *Next = nullptr;
144  unsigned NextDepth = 0;
145  // Find the predecessor edge with the greatest depth.
146  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
147       P != PE; ++P) {
148    const SUnit *PredSU = P->getSUnit();
149    unsigned PredLatency = P->getLatency();
150    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
151    // In the case of a latency tie, prefer an anti-dependency edge over
152    // other types of edges.
153    if (NextDepth < PredTotalLatency ||
154        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
155      NextDepth = PredTotalLatency;
156      Next = &*P;
157    }
158  }
159  return Next;
160}
161
162void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
163  // It's not safe to change register allocation for source operands of
164  // instructions that have special allocation requirements. Also assume all
165  // registers used in a call must not be changed (ABI).
166  // FIXME: The issue with predicated instruction is more complex. We are being
167  // conservative here because the kill markers cannot be trusted after
168  // if-conversion:
169  // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
170  // ...
171  // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
172  // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
173  // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
174  //
175  // The first R6 kill is not really a kill since it's killed by a predicated
176  // instruction which may not be executed. The second R6 def may or may not
177  // re-define R6 so it's not safe to change it since the last R6 use cannot be
178  // changed.
179  bool Special =
180      MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
181
182  // Scan the register operands for this instruction and update
183  // Classes and RegRefs.
184  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
185    MachineOperand &MO = MI.getOperand(i);
186    if (!MO.isReg()) continue;
187    Register Reg = MO.getReg();
188    if (Reg == 0) continue;
189    const TargetRegisterClass *NewRC = nullptr;
190
191    if (i < MI.getDesc().getNumOperands())
192      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
193
194    // For now, only allow the register to be changed if its register
195    // class is consistent across all uses.
196    if (!Classes[Reg] && NewRC)
197      Classes[Reg] = NewRC;
198    else if (!NewRC || Classes[Reg] != NewRC)
199      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
200
201    // Now check for aliases.
202    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
203      // If an alias of the reg is used during the live range, give up.
204      // Note that this allows us to skip checking if AntiDepReg
205      // overlaps with any of the aliases, among other things.
206      unsigned AliasReg = *AI;
207      if (Classes[AliasReg]) {
208        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
209        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
210      }
211    }
212
213    // If we're still willing to consider this register, note the reference.
214    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
215      RegRefs.insert(std::make_pair(Reg, &MO));
216
217    // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
218    // it or any of its sub or super regs. We need to use KeepRegs to mark the
219    // reg because not all uses of the same reg within an instruction are
220    // necessarily tagged as tied.
221    // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
222    // def register but not the second (see PR20020 for details).
223    // FIXME: can this check be relaxed to account for undef uses
224    // of a register? In the above 'xor' example, the uses of %eax are undef, so
225    // earlier instructions could still replace %eax even though the 'xor'
226    // itself can't be changed.
227    if (MI.isRegTiedToUseOperand(i) &&
228        Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
229      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
230           SubRegs.isValid(); ++SubRegs) {
231        KeepRegs.set(*SubRegs);
232      }
233      for (MCSuperRegIterator SuperRegs(Reg, TRI);
234           SuperRegs.isValid(); ++SuperRegs) {
235        KeepRegs.set(*SuperRegs);
236      }
237    }
238
239    if (MO.isUse() && Special) {
240      if (!KeepRegs.test(Reg)) {
241        for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
242             SubRegs.isValid(); ++SubRegs)
243          KeepRegs.set(*SubRegs);
244      }
245    }
246  }
247}
248
249void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
250  // Update liveness.
251  // Proceeding upwards, registers that are defed but not used in this
252  // instruction are now dead.
253  assert(!MI.isKill() && "Attempting to scan a kill instruction");
254
255  if (!TII->isPredicated(MI)) {
256    // Predicated defs are modeled as read + write, i.e. similar to two
257    // address updates.
258    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259      MachineOperand &MO = MI.getOperand(i);
260
261      if (MO.isRegMask()) {
262        auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) {
263          for (MCSubRegIterator SRI(PhysReg, TRI, true); SRI.isValid(); ++SRI)
264            if (!MO.clobbersPhysReg(*SRI))
265              return false;
266
267          return true;
268        };
269
270        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
271          if (ClobbersPhysRegAndSubRegs(i)) {
272            DefIndices[i] = Count;
273            KillIndices[i] = ~0u;
274            KeepRegs.reset(i);
275            Classes[i] = nullptr;
276            RegRefs.erase(i);
277          }
278        }
279      }
280
281      if (!MO.isReg()) continue;
282      Register Reg = MO.getReg();
283      if (Reg == 0) continue;
284      if (!MO.isDef()) continue;
285
286      // Ignore two-addr defs.
287      if (MI.isRegTiedToUseOperand(i))
288        continue;
289
290      // If we've already marked this reg as unchangeable, don't remove
291      // it or any of its subregs from KeepRegs.
292      bool Keep = KeepRegs.test(Reg);
293
294      // For the reg itself and all subregs: update the def to current;
295      // reset the kill state, any restrictions, and references.
296      for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
297        unsigned SubregReg = *SRI;
298        DefIndices[SubregReg] = Count;
299        KillIndices[SubregReg] = ~0u;
300        Classes[SubregReg] = nullptr;
301        RegRefs.erase(SubregReg);
302        if (!Keep)
303          KeepRegs.reset(SubregReg);
304      }
305      // Conservatively mark super-registers as unusable.
306      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
307        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
308    }
309  }
310  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
311    MachineOperand &MO = MI.getOperand(i);
312    if (!MO.isReg()) continue;
313    Register Reg = MO.getReg();
314    if (Reg == 0) continue;
315    if (!MO.isUse()) continue;
316
317    const TargetRegisterClass *NewRC = nullptr;
318    if (i < MI.getDesc().getNumOperands())
319      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
320
321    // For now, only allow the register to be changed if its register
322    // class is consistent across all uses.
323    if (!Classes[Reg] && NewRC)
324      Classes[Reg] = NewRC;
325    else if (!NewRC || Classes[Reg] != NewRC)
326      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
327
328    RegRefs.insert(std::make_pair(Reg, &MO));
329
330    // It wasn't previously live but now it is, this is a kill.
331    // Repeat for all aliases.
332    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
333      unsigned AliasReg = *AI;
334      if (KillIndices[AliasReg] == ~0u) {
335        KillIndices[AliasReg] = Count;
336        DefIndices[AliasReg] = ~0u;
337      }
338    }
339  }
340}
341
342// Check all machine operands that reference the antidependent register and must
343// be replaced by NewReg. Return true if any of their parent instructions may
344// clobber the new register.
345//
346// Note: AntiDepReg may be referenced by a two-address instruction such that
347// it's use operand is tied to a def operand. We guard against the case in which
348// the two-address instruction also defines NewReg, as may happen with
349// pre/postincrement loads. In this case, both the use and def operands are in
350// RegRefs because the def is inserted by PrescanInstruction and not erased
351// during ScanInstruction. So checking for an instruction with definitions of
352// both NewReg and AntiDepReg covers it.
353bool
354CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
355                                                RegRefIter RegRefEnd,
356                                                unsigned NewReg) {
357  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
358    MachineOperand *RefOper = I->second;
359
360    // Don't allow the instruction defining AntiDepReg to earlyclobber its
361    // operands, in case they may be assigned to NewReg. In this case antidep
362    // breaking must fail, but it's too rare to bother optimizing.
363    if (RefOper->isDef() && RefOper->isEarlyClobber())
364      return true;
365
366    // Handle cases in which this instruction defines NewReg.
367    MachineInstr *MI = RefOper->getParent();
368    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
369      const MachineOperand &CheckOper = MI->getOperand(i);
370
371      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
372        return true;
373
374      if (!CheckOper.isReg() || !CheckOper.isDef() ||
375          CheckOper.getReg() != NewReg)
376        continue;
377
378      // Don't allow the instruction to define NewReg and AntiDepReg.
379      // When AntiDepReg is renamed it will be an illegal op.
380      if (RefOper->isDef())
381        return true;
382
383      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
384      // NewReg.
385      if (CheckOper.isEarlyClobber())
386        return true;
387
388      // Don't allow inline asm to define NewReg at all. Who knows what it's
389      // doing with it.
390      if (MI->isInlineAsm())
391        return true;
392    }
393  }
394  return false;
395}
396
397unsigned CriticalAntiDepBreaker::
398findSuitableFreeRegister(RegRefIter RegRefBegin,
399                         RegRefIter RegRefEnd,
400                         unsigned AntiDepReg,
401                         unsigned LastNewReg,
402                         const TargetRegisterClass *RC,
403                         SmallVectorImpl<unsigned> &Forbid) {
404  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
405  for (unsigned i = 0; i != Order.size(); ++i) {
406    unsigned NewReg = Order[i];
407    // Don't replace a register with itself.
408    if (NewReg == AntiDepReg) continue;
409    // Don't replace a register with one that was recently used to repair
410    // an anti-dependence with this AntiDepReg, because that would
411    // re-introduce that anti-dependence.
412    if (NewReg == LastNewReg) continue;
413    // If any instructions that define AntiDepReg also define the NewReg, it's
414    // not suitable.  For example, Instruction with multiple definitions can
415    // result in this condition.
416    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
417    // If NewReg is dead and NewReg's most recent def is not before
418    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
419    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
420           && "Kill and Def maps aren't consistent for AntiDepReg!");
421    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
422           && "Kill and Def maps aren't consistent for NewReg!");
423    if (KillIndices[NewReg] != ~0u ||
424        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
425        KillIndices[AntiDepReg] > DefIndices[NewReg])
426      continue;
427    // If NewReg overlaps any of the forbidden registers, we can't use it.
428    bool Forbidden = false;
429    for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
430           ite = Forbid.end(); it != ite; ++it)
431      if (TRI->regsOverlap(NewReg, *it)) {
432        Forbidden = true;
433        break;
434      }
435    if (Forbidden) continue;
436    return NewReg;
437  }
438
439  // No registers are free and available!
440  return 0;
441}
442
443unsigned CriticalAntiDepBreaker::
444BreakAntiDependencies(const std::vector<SUnit> &SUnits,
445                      MachineBasicBlock::iterator Begin,
446                      MachineBasicBlock::iterator End,
447                      unsigned InsertPosIndex,
448                      DbgValueVector &DbgValues) {
449  // The code below assumes that there is at least one instruction,
450  // so just duck out immediately if the block is empty.
451  if (SUnits.empty()) return 0;
452
453  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
454  // This is used for updating debug information.
455  //
456  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
457  DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
458
459  // Find the node at the bottom of the critical path.
460  const SUnit *Max = nullptr;
461  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
462    const SUnit *SU = &SUnits[i];
463    MISUnitMap[SU->getInstr()] = SU;
464    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
465      Max = SU;
466  }
467  assert(Max && "Failed to find bottom of the critical path");
468
469#ifndef NDEBUG
470  {
471    LLVM_DEBUG(dbgs() << "Critical path has total latency "
472                      << (Max->getDepth() + Max->Latency) << "\n");
473    LLVM_DEBUG(dbgs() << "Available regs:");
474    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
475      if (KillIndices[Reg] == ~0u)
476        LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
477    }
478    LLVM_DEBUG(dbgs() << '\n');
479  }
480#endif
481
482  // Track progress along the critical path through the SUnit graph as we walk
483  // the instructions.
484  const SUnit *CriticalPathSU = Max;
485  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
486
487  // Consider this pattern:
488  //   A = ...
489  //   ... = A
490  //   A = ...
491  //   ... = A
492  //   A = ...
493  //   ... = A
494  //   A = ...
495  //   ... = A
496  // There are three anti-dependencies here, and without special care,
497  // we'd break all of them using the same register:
498  //   A = ...
499  //   ... = A
500  //   B = ...
501  //   ... = B
502  //   B = ...
503  //   ... = B
504  //   B = ...
505  //   ... = B
506  // because at each anti-dependence, B is the first register that
507  // isn't A which is free.  This re-introduces anti-dependencies
508  // at all but one of the original anti-dependencies that we were
509  // trying to break.  To avoid this, keep track of the most recent
510  // register that each register was replaced with, avoid
511  // using it to repair an anti-dependence on the same register.
512  // This lets us produce this:
513  //   A = ...
514  //   ... = A
515  //   B = ...
516  //   ... = B
517  //   C = ...
518  //   ... = C
519  //   B = ...
520  //   ... = B
521  // This still has an anti-dependence on B, but at least it isn't on the
522  // original critical path.
523  //
524  // TODO: If we tracked more than one register here, we could potentially
525  // fix that remaining critical edge too. This is a little more involved,
526  // because unlike the most recent register, less recent registers should
527  // still be considered, though only if no other registers are available.
528  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
529
530  // Attempt to break anti-dependence edges on the critical path. Walk the
531  // instructions from the bottom up, tracking information about liveness
532  // as we go to help determine which registers are available.
533  unsigned Broken = 0;
534  unsigned Count = InsertPosIndex - 1;
535  for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
536    MachineInstr &MI = *--I;
537    // Kill instructions can define registers but are really nops, and there
538    // might be a real definition earlier that needs to be paired with uses
539    // dominated by this kill.
540
541    // FIXME: It may be possible to remove the isKill() restriction once PR18663
542    // has been properly fixed. There can be value in processing kills as seen
543    // in the AggressiveAntiDepBreaker class.
544    if (MI.isDebugInstr() || MI.isKill())
545      continue;
546
547    // Check if this instruction has a dependence on the critical path that
548    // is an anti-dependence that we may be able to break. If it is, set
549    // AntiDepReg to the non-zero register associated with the anti-dependence.
550    //
551    // We limit our attention to the critical path as a heuristic to avoid
552    // breaking anti-dependence edges that aren't going to significantly
553    // impact the overall schedule. There are a limited number of registers
554    // and we want to save them for the important edges.
555    //
556    // TODO: Instructions with multiple defs could have multiple
557    // anti-dependencies. The current code here only knows how to break one
558    // edge per instruction. Note that we'd have to be able to break all of
559    // the anti-dependencies in an instruction in order to be effective.
560    unsigned AntiDepReg = 0;
561    if (&MI == CriticalPathMI) {
562      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
563        const SUnit *NextSU = Edge->getSUnit();
564
565        // Only consider anti-dependence edges.
566        if (Edge->getKind() == SDep::Anti) {
567          AntiDepReg = Edge->getReg();
568          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
569          if (!MRI.isAllocatable(AntiDepReg))
570            // Don't break anti-dependencies on non-allocatable registers.
571            AntiDepReg = 0;
572          else if (KeepRegs.test(AntiDepReg))
573            // Don't break anti-dependencies if a use down below requires
574            // this exact register.
575            AntiDepReg = 0;
576          else {
577            // If the SUnit has other dependencies on the SUnit that it
578            // anti-depends on, don't bother breaking the anti-dependency
579            // since those edges would prevent such units from being
580            // scheduled past each other regardless.
581            //
582            // Also, if there are dependencies on other SUnits with the
583            // same register as the anti-dependency, don't attempt to
584            // break it.
585            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
586                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
587              if (P->getSUnit() == NextSU ?
588                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
589                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
590                AntiDepReg = 0;
591                break;
592              }
593          }
594        }
595        CriticalPathSU = NextSU;
596        CriticalPathMI = CriticalPathSU->getInstr();
597      } else {
598        // We've reached the end of the critical path.
599        CriticalPathSU = nullptr;
600        CriticalPathMI = nullptr;
601      }
602    }
603
604    PrescanInstruction(MI);
605
606    SmallVector<unsigned, 2> ForbidRegs;
607
608    // If MI's defs have a special allocation requirement, don't allow
609    // any def registers to be changed. Also assume all registers
610    // defined in a call must not be changed (ABI).
611    if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
612      // If this instruction's defs have special allocation requirement, don't
613      // break this anti-dependency.
614      AntiDepReg = 0;
615    else if (AntiDepReg) {
616      // If this instruction has a use of AntiDepReg, breaking it
617      // is invalid.  If the instruction defines other registers,
618      // save a list of them so that we don't pick a new register
619      // that overlaps any of them.
620      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
621        MachineOperand &MO = MI.getOperand(i);
622        if (!MO.isReg()) continue;
623        Register Reg = MO.getReg();
624        if (Reg == 0) continue;
625        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
626          AntiDepReg = 0;
627          break;
628        }
629        if (MO.isDef() && Reg != AntiDepReg)
630          ForbidRegs.push_back(Reg);
631      }
632    }
633
634    // Determine AntiDepReg's register class, if it is live and is
635    // consistently used within a single class.
636    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
637                                                    : nullptr;
638    assert((AntiDepReg == 0 || RC != nullptr) &&
639           "Register should be live if it's causing an anti-dependence!");
640    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
641      AntiDepReg = 0;
642
643    // Look for a suitable register to use to break the anti-dependence.
644    //
645    // TODO: Instead of picking the first free register, consider which might
646    // be the best.
647    if (AntiDepReg != 0) {
648      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
649                std::multimap<unsigned, MachineOperand *>::iterator>
650        Range = RegRefs.equal_range(AntiDepReg);
651      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
652                                                     AntiDepReg,
653                                                     LastNewReg[AntiDepReg],
654                                                     RC, ForbidRegs)) {
655        LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
656                          << printReg(AntiDepReg, TRI) << " with "
657                          << RegRefs.count(AntiDepReg) << " references"
658                          << " using " << printReg(NewReg, TRI) << "!\n");
659
660        // Update the references to the old register to refer to the new
661        // register.
662        for (std::multimap<unsigned, MachineOperand *>::iterator
663             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
664          Q->second->setReg(NewReg);
665          // If the SU for the instruction being updated has debug information
666          // related to the anti-dependency register, make sure to update that
667          // as well.
668          const SUnit *SU = MISUnitMap[Q->second->getParent()];
669          if (!SU) continue;
670          UpdateDbgValues(DbgValues, Q->second->getParent(),
671                          AntiDepReg, NewReg);
672        }
673
674        // We just went back in time and modified history; the
675        // liveness information for the anti-dependence reg is now
676        // inconsistent. Set the state as if it were dead.
677        Classes[NewReg] = Classes[AntiDepReg];
678        DefIndices[NewReg] = DefIndices[AntiDepReg];
679        KillIndices[NewReg] = KillIndices[AntiDepReg];
680        assert(((KillIndices[NewReg] == ~0u) !=
681                (DefIndices[NewReg] == ~0u)) &&
682             "Kill and Def maps aren't consistent for NewReg!");
683
684        Classes[AntiDepReg] = nullptr;
685        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
686        KillIndices[AntiDepReg] = ~0u;
687        assert(((KillIndices[AntiDepReg] == ~0u) !=
688                (DefIndices[AntiDepReg] == ~0u)) &&
689             "Kill and Def maps aren't consistent for AntiDepReg!");
690
691        RegRefs.erase(AntiDepReg);
692        LastNewReg[AntiDepReg] = NewReg;
693        ++Broken;
694      }
695    }
696
697    ScanInstruction(MI, Count);
698  }
699
700  return Broken;
701}
702
703AntiDepBreaker *
704llvm::createCriticalAntiDepBreaker(MachineFunction &MFi,
705                                   const RegisterClassInfo &RCI) {
706  return new CriticalAntiDepBreaker(MFi, RCI);
707}
708