1//===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass (at IR level) to replace atomic instructions with
10// __atomic_* library calls, or target specific instruction which implement the
11// same semantics in a way which better fits the target backend.  This can
12// include the use of (intrinsic-based) load-linked/store-conditional loops,
13// AtomicCmpXchg, or type coercions.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/AtomicExpandUtils.h"
21#include "llvm/CodeGen/RuntimeLibcalls.h"
22#include "llvm/CodeGen/TargetLowering.h"
23#include "llvm/CodeGen/TargetPassConfig.h"
24#include "llvm/CodeGen/TargetSubtargetInfo.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/Constant.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/InstIterator.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/InitializePasses.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetMachine.h"
49#include <cassert>
50#include <cstdint>
51#include <iterator>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "atomic-expand"
56
57namespace {
58
59  class AtomicExpand: public FunctionPass {
60    const TargetLowering *TLI = nullptr;
61
62  public:
63    static char ID; // Pass identification, replacement for typeid
64
65    AtomicExpand() : FunctionPass(ID) {
66      initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67    }
68
69    bool runOnFunction(Function &F) override;
70
71  private:
72    bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73    IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74    LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75    bool tryExpandAtomicLoad(LoadInst *LI);
76    bool expandAtomicLoadToLL(LoadInst *LI);
77    bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78    StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79    bool expandAtomicStore(StoreInst *SI);
80    bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81    Value *
82    insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83                      AtomicOrdering MemOpOrder,
84                      function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85    void expandAtomicOpToLLSC(
86        Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
87        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
88    void expandPartwordAtomicRMW(
89        AtomicRMWInst *I,
90        TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91    AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92    bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93    void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94    void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95
96    AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97    static Value *insertRMWCmpXchgLoop(
98        IRBuilder<> &Builder, Type *ResultType, Value *Addr,
99        AtomicOrdering MemOpOrder,
100        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
101        CreateCmpXchgInstFun CreateCmpXchg);
102    bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103
104    bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105    bool isIdempotentRMW(AtomicRMWInst *RMWI);
106    bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107
108    bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
109                                 Value *PointerOperand, Value *ValueOperand,
110                                 Value *CASExpected, AtomicOrdering Ordering,
111                                 AtomicOrdering Ordering2,
112                                 ArrayRef<RTLIB::Libcall> Libcalls);
113    void expandAtomicLoadToLibcall(LoadInst *LI);
114    void expandAtomicStoreToLibcall(StoreInst *LI);
115    void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116    void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117
118    friend bool
119    llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120                                   CreateCmpXchgInstFun CreateCmpXchg);
121  };
122
123} // end anonymous namespace
124
125char AtomicExpand::ID = 0;
126
127char &llvm::AtomicExpandID = AtomicExpand::ID;
128
129INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
130                false, false)
131
132FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133
134// Helper functions to retrieve the size of atomic instructions.
135static unsigned getAtomicOpSize(LoadInst *LI) {
136  const DataLayout &DL = LI->getModule()->getDataLayout();
137  return DL.getTypeStoreSize(LI->getType());
138}
139
140static unsigned getAtomicOpSize(StoreInst *SI) {
141  const DataLayout &DL = SI->getModule()->getDataLayout();
142  return DL.getTypeStoreSize(SI->getValueOperand()->getType());
143}
144
145static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
146  const DataLayout &DL = RMWI->getModule()->getDataLayout();
147  return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
148}
149
150static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
151  const DataLayout &DL = CASI->getModule()->getDataLayout();
152  return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
153}
154
155// Determine if a particular atomic operation has a supported size,
156// and is of appropriate alignment, to be passed through for target
157// lowering. (Versus turning into a __atomic libcall)
158template <typename Inst>
159static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
160  unsigned Size = getAtomicOpSize(I);
161  Align Alignment = I->getAlign();
162  return Alignment >= Size &&
163         Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
164}
165
166bool AtomicExpand::runOnFunction(Function &F) {
167  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
168  if (!TPC)
169    return false;
170
171  auto &TM = TPC->getTM<TargetMachine>();
172  if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
173    return false;
174  TLI = TM.getSubtargetImpl(F)->getTargetLowering();
175
176  SmallVector<Instruction *, 1> AtomicInsts;
177
178  // Changing control-flow while iterating through it is a bad idea, so gather a
179  // list of all atomic instructions before we start.
180  for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
181    Instruction *I = &*II;
182    if (I->isAtomic() && !isa<FenceInst>(I))
183      AtomicInsts.push_back(I);
184  }
185
186  bool MadeChange = false;
187  for (auto I : AtomicInsts) {
188    auto LI = dyn_cast<LoadInst>(I);
189    auto SI = dyn_cast<StoreInst>(I);
190    auto RMWI = dyn_cast<AtomicRMWInst>(I);
191    auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
192    assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
193
194    // If the Size/Alignment is not supported, replace with a libcall.
195    if (LI) {
196      if (!atomicSizeSupported(TLI, LI)) {
197        expandAtomicLoadToLibcall(LI);
198        MadeChange = true;
199        continue;
200      }
201    } else if (SI) {
202      if (!atomicSizeSupported(TLI, SI)) {
203        expandAtomicStoreToLibcall(SI);
204        MadeChange = true;
205        continue;
206      }
207    } else if (RMWI) {
208      if (!atomicSizeSupported(TLI, RMWI)) {
209        expandAtomicRMWToLibcall(RMWI);
210        MadeChange = true;
211        continue;
212      }
213    } else if (CASI) {
214      if (!atomicSizeSupported(TLI, CASI)) {
215        expandAtomicCASToLibcall(CASI);
216        MadeChange = true;
217        continue;
218      }
219    }
220
221    if (TLI->shouldInsertFencesForAtomic(I)) {
222      auto FenceOrdering = AtomicOrdering::Monotonic;
223      if (LI && isAcquireOrStronger(LI->getOrdering())) {
224        FenceOrdering = LI->getOrdering();
225        LI->setOrdering(AtomicOrdering::Monotonic);
226      } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
227        FenceOrdering = SI->getOrdering();
228        SI->setOrdering(AtomicOrdering::Monotonic);
229      } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
230                          isAcquireOrStronger(RMWI->getOrdering()))) {
231        FenceOrdering = RMWI->getOrdering();
232        RMWI->setOrdering(AtomicOrdering::Monotonic);
233      } else if (CASI &&
234                 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
235                     TargetLoweringBase::AtomicExpansionKind::None &&
236                 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
237                  isAcquireOrStronger(CASI->getSuccessOrdering()))) {
238        // If a compare and swap is lowered to LL/SC, we can do smarter fence
239        // insertion, with a stronger one on the success path than on the
240        // failure path. As a result, fence insertion is directly done by
241        // expandAtomicCmpXchg in that case.
242        FenceOrdering = CASI->getSuccessOrdering();
243        CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
244        CASI->setFailureOrdering(AtomicOrdering::Monotonic);
245      }
246
247      if (FenceOrdering != AtomicOrdering::Monotonic) {
248        MadeChange |= bracketInstWithFences(I, FenceOrdering);
249      }
250    }
251
252    if (LI) {
253      if (LI->getType()->isFloatingPointTy()) {
254        // TODO: add a TLI hook to control this so that each target can
255        // convert to lowering the original type one at a time.
256        LI = convertAtomicLoadToIntegerType(LI);
257        assert(LI->getType()->isIntegerTy() && "invariant broken");
258        MadeChange = true;
259      }
260
261      MadeChange |= tryExpandAtomicLoad(LI);
262    } else if (SI) {
263      if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
264        // TODO: add a TLI hook to control this so that each target can
265        // convert to lowering the original type one at a time.
266        SI = convertAtomicStoreToIntegerType(SI);
267        assert(SI->getValueOperand()->getType()->isIntegerTy() &&
268               "invariant broken");
269        MadeChange = true;
270      }
271
272      if (TLI->shouldExpandAtomicStoreInIR(SI))
273        MadeChange |= expandAtomicStore(SI);
274    } else if (RMWI) {
275      // There are two different ways of expanding RMW instructions:
276      // - into a load if it is idempotent
277      // - into a Cmpxchg/LL-SC loop otherwise
278      // we try them in that order.
279
280      if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
281        MadeChange = true;
282      } else {
283        unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
284        unsigned ValueSize = getAtomicOpSize(RMWI);
285        AtomicRMWInst::BinOp Op = RMWI->getOperation();
286        if (ValueSize < MinCASSize &&
287            (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
288             Op == AtomicRMWInst::And)) {
289          RMWI = widenPartwordAtomicRMW(RMWI);
290          MadeChange = true;
291        }
292
293        MadeChange |= tryExpandAtomicRMW(RMWI);
294      }
295    } else if (CASI) {
296      // TODO: when we're ready to make the change at the IR level, we can
297      // extend convertCmpXchgToInteger for floating point too.
298      assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
299             "unimplemented - floating point not legal at IR level");
300      if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
301        // TODO: add a TLI hook to control this so that each target can
302        // convert to lowering the original type one at a time.
303        CASI = convertCmpXchgToIntegerType(CASI);
304        assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
305               "invariant broken");
306        MadeChange = true;
307      }
308
309      MadeChange |= tryExpandAtomicCmpXchg(CASI);
310    }
311  }
312  return MadeChange;
313}
314
315bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
316  IRBuilder<> Builder(I);
317
318  auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
319
320  auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
321  // We have a guard here because not every atomic operation generates a
322  // trailing fence.
323  if (TrailingFence)
324    TrailingFence->moveAfter(I);
325
326  return (LeadingFence || TrailingFence);
327}
328
329/// Get the iX type with the same bitwidth as T.
330IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
331                                                       const DataLayout &DL) {
332  EVT VT = TLI->getMemValueType(DL, T);
333  unsigned BitWidth = VT.getStoreSizeInBits();
334  assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
335  return IntegerType::get(T->getContext(), BitWidth);
336}
337
338/// Convert an atomic load of a non-integral type to an integer load of the
339/// equivalent bitwidth.  See the function comment on
340/// convertAtomicStoreToIntegerType for background.
341LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
342  auto *M = LI->getModule();
343  Type *NewTy = getCorrespondingIntegerType(LI->getType(),
344                                            M->getDataLayout());
345
346  IRBuilder<> Builder(LI);
347
348  Value *Addr = LI->getPointerOperand();
349  Type *PT = PointerType::get(NewTy,
350                              Addr->getType()->getPointerAddressSpace());
351  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
352
353  auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
354  NewLI->setAlignment(LI->getAlign());
355  NewLI->setVolatile(LI->isVolatile());
356  NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
357  LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
358
359  Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
360  LI->replaceAllUsesWith(NewVal);
361  LI->eraseFromParent();
362  return NewLI;
363}
364
365bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
366  switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
367  case TargetLoweringBase::AtomicExpansionKind::None:
368    return false;
369  case TargetLoweringBase::AtomicExpansionKind::LLSC:
370    expandAtomicOpToLLSC(
371        LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
372        [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
373    return true;
374  case TargetLoweringBase::AtomicExpansionKind::LLOnly:
375    return expandAtomicLoadToLL(LI);
376  case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
377    return expandAtomicLoadToCmpXchg(LI);
378  default:
379    llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
380  }
381}
382
383bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
384  IRBuilder<> Builder(LI);
385
386  // On some architectures, load-linked instructions are atomic for larger
387  // sizes than normal loads. For example, the only 64-bit load guaranteed
388  // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
389  Value *Val =
390      TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
391  TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
392
393  LI->replaceAllUsesWith(Val);
394  LI->eraseFromParent();
395
396  return true;
397}
398
399bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
400  IRBuilder<> Builder(LI);
401  AtomicOrdering Order = LI->getOrdering();
402  if (Order == AtomicOrdering::Unordered)
403    Order = AtomicOrdering::Monotonic;
404
405  Value *Addr = LI->getPointerOperand();
406  Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
407  Constant *DummyVal = Constant::getNullValue(Ty);
408
409  Value *Pair = Builder.CreateAtomicCmpXchg(
410      Addr, DummyVal, DummyVal, Order,
411      AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
412  Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
413
414  LI->replaceAllUsesWith(Loaded);
415  LI->eraseFromParent();
416
417  return true;
418}
419
420/// Convert an atomic store of a non-integral type to an integer store of the
421/// equivalent bitwidth.  We used to not support floating point or vector
422/// atomics in the IR at all.  The backends learned to deal with the bitcast
423/// idiom because that was the only way of expressing the notion of a atomic
424/// float or vector store.  The long term plan is to teach each backend to
425/// instruction select from the original atomic store, but as a migration
426/// mechanism, we convert back to the old format which the backends understand.
427/// Each backend will need individual work to recognize the new format.
428StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
429  IRBuilder<> Builder(SI);
430  auto *M = SI->getModule();
431  Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
432                                            M->getDataLayout());
433  Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
434
435  Value *Addr = SI->getPointerOperand();
436  Type *PT = PointerType::get(NewTy,
437                              Addr->getType()->getPointerAddressSpace());
438  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
439
440  StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
441  NewSI->setAlignment(SI->getAlign());
442  NewSI->setVolatile(SI->isVolatile());
443  NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
444  LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
445  SI->eraseFromParent();
446  return NewSI;
447}
448
449bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
450  // This function is only called on atomic stores that are too large to be
451  // atomic if implemented as a native store. So we replace them by an
452  // atomic swap, that can be implemented for example as a ldrex/strex on ARM
453  // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
454  // It is the responsibility of the target to only signal expansion via
455  // shouldExpandAtomicRMW in cases where this is required and possible.
456  IRBuilder<> Builder(SI);
457  AtomicRMWInst *AI =
458      Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
459                              SI->getValueOperand(), SI->getOrdering());
460  SI->eraseFromParent();
461
462  // Now we have an appropriate swap instruction, lower it as usual.
463  return tryExpandAtomicRMW(AI);
464}
465
466static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
467                                 Value *Loaded, Value *NewVal,
468                                 AtomicOrdering MemOpOrder,
469                                 Value *&Success, Value *&NewLoaded) {
470  Type *OrigTy = NewVal->getType();
471
472  // This code can go away when cmpxchg supports FP types.
473  bool NeedBitcast = OrigTy->isFloatingPointTy();
474  if (NeedBitcast) {
475    IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
476    unsigned AS = Addr->getType()->getPointerAddressSpace();
477    Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
478    NewVal = Builder.CreateBitCast(NewVal, IntTy);
479    Loaded = Builder.CreateBitCast(Loaded, IntTy);
480  }
481
482  Value* Pair = Builder.CreateAtomicCmpXchg(
483      Addr, Loaded, NewVal, MemOpOrder,
484      AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
485  Success = Builder.CreateExtractValue(Pair, 1, "success");
486  NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
487
488  if (NeedBitcast)
489    NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
490}
491
492/// Emit IR to implement the given atomicrmw operation on values in registers,
493/// returning the new value.
494static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
495                              Value *Loaded, Value *Inc) {
496  Value *NewVal;
497  switch (Op) {
498  case AtomicRMWInst::Xchg:
499    return Inc;
500  case AtomicRMWInst::Add:
501    return Builder.CreateAdd(Loaded, Inc, "new");
502  case AtomicRMWInst::Sub:
503    return Builder.CreateSub(Loaded, Inc, "new");
504  case AtomicRMWInst::And:
505    return Builder.CreateAnd(Loaded, Inc, "new");
506  case AtomicRMWInst::Nand:
507    return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
508  case AtomicRMWInst::Or:
509    return Builder.CreateOr(Loaded, Inc, "new");
510  case AtomicRMWInst::Xor:
511    return Builder.CreateXor(Loaded, Inc, "new");
512  case AtomicRMWInst::Max:
513    NewVal = Builder.CreateICmpSGT(Loaded, Inc);
514    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
515  case AtomicRMWInst::Min:
516    NewVal = Builder.CreateICmpSLE(Loaded, Inc);
517    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
518  case AtomicRMWInst::UMax:
519    NewVal = Builder.CreateICmpUGT(Loaded, Inc);
520    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
521  case AtomicRMWInst::UMin:
522    NewVal = Builder.CreateICmpULE(Loaded, Inc);
523    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
524  case AtomicRMWInst::FAdd:
525    return Builder.CreateFAdd(Loaded, Inc, "new");
526  case AtomicRMWInst::FSub:
527    return Builder.CreateFSub(Loaded, Inc, "new");
528  default:
529    llvm_unreachable("Unknown atomic op");
530  }
531}
532
533bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
534  switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
535  case TargetLoweringBase::AtomicExpansionKind::None:
536    return false;
537  case TargetLoweringBase::AtomicExpansionKind::LLSC: {
538    unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
539    unsigned ValueSize = getAtomicOpSize(AI);
540    if (ValueSize < MinCASSize) {
541      expandPartwordAtomicRMW(AI,
542                              TargetLoweringBase::AtomicExpansionKind::LLSC);
543    } else {
544      auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
545        return performAtomicOp(AI->getOperation(), Builder, Loaded,
546                               AI->getValOperand());
547      };
548      expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
549                           AI->getOrdering(), PerformOp);
550    }
551    return true;
552  }
553  case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
554    unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
555    unsigned ValueSize = getAtomicOpSize(AI);
556    if (ValueSize < MinCASSize) {
557      // TODO: Handle atomicrmw fadd/fsub
558      if (AI->getType()->isFloatingPointTy())
559        return false;
560
561      expandPartwordAtomicRMW(AI,
562                              TargetLoweringBase::AtomicExpansionKind::CmpXChg);
563    } else {
564      expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
565    }
566    return true;
567  }
568  case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
569    expandAtomicRMWToMaskedIntrinsic(AI);
570    return true;
571  }
572  default:
573    llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
574  }
575}
576
577namespace {
578
579struct PartwordMaskValues {
580  // These three fields are guaranteed to be set by createMaskInstrs.
581  Type *WordType = nullptr;
582  Type *ValueType = nullptr;
583  Value *AlignedAddr = nullptr;
584  // The remaining fields can be null.
585  Value *ShiftAmt = nullptr;
586  Value *Mask = nullptr;
587  Value *Inv_Mask = nullptr;
588};
589
590LLVM_ATTRIBUTE_UNUSED
591raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
592  auto PrintObj = [&O](auto *V) {
593    if (V)
594      O << *V;
595    else
596      O << "nullptr";
597    O << '\n';
598  };
599  O << "PartwordMaskValues {\n";
600  O << "  WordType: ";
601  PrintObj(PMV.WordType);
602  O << "  ValueType: ";
603  PrintObj(PMV.ValueType);
604  O << "  AlignedAddr: ";
605  PrintObj(PMV.AlignedAddr);
606  O << "  ShiftAmt: ";
607  PrintObj(PMV.ShiftAmt);
608  O << "  Mask: ";
609  PrintObj(PMV.Mask);
610  O << "  Inv_Mask: ";
611  PrintObj(PMV.Inv_Mask);
612  O << "}\n";
613  return O;
614}
615
616} // end anonymous namespace
617
618/// This is a helper function which builds instructions to provide
619/// values necessary for partword atomic operations. It takes an
620/// incoming address, Addr, and ValueType, and constructs the address,
621/// shift-amounts and masks needed to work with a larger value of size
622/// WordSize.
623///
624/// AlignedAddr: Addr rounded down to a multiple of WordSize
625///
626/// ShiftAmt: Number of bits to right-shift a WordSize value loaded
627///           from AlignAddr for it to have the same value as if
628///           ValueType was loaded from Addr.
629///
630/// Mask: Value to mask with the value loaded from AlignAddr to
631///       include only the part that would've been loaded from Addr.
632///
633/// Inv_Mask: The inverse of Mask.
634static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
635                                           Type *ValueType, Value *Addr,
636                                           unsigned MinWordSize) {
637  PartwordMaskValues PMV;
638
639  Module *M = I->getModule();
640  LLVMContext &Ctx = M->getContext();
641  const DataLayout &DL = M->getDataLayout();
642  unsigned ValueSize = DL.getTypeStoreSize(ValueType);
643
644  PMV.ValueType = ValueType;
645  PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
646                                         : ValueType;
647  if (PMV.ValueType == PMV.WordType) {
648    PMV.AlignedAddr = Addr;
649    return PMV;
650  }
651
652  assert(ValueSize < MinWordSize);
653
654  Type *WordPtrType =
655      PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
656
657  Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
658  PMV.AlignedAddr = Builder.CreateIntToPtr(
659      Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
660      "AlignedAddr");
661
662  Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
663  if (DL.isLittleEndian()) {
664    // turn bytes into bits
665    PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
666  } else {
667    // turn bytes into bits, and count from the other side.
668    PMV.ShiftAmt = Builder.CreateShl(
669        Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
670  }
671
672  PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
673  PMV.Mask = Builder.CreateShl(
674      ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
675      "Mask");
676  PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
677  return PMV;
678}
679
680static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
681                                 const PartwordMaskValues &PMV) {
682  assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
683  if (PMV.WordType == PMV.ValueType)
684    return WideWord;
685
686  Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
687  Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
688  return Trunc;
689}
690
691static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
692                                Value *Updated, const PartwordMaskValues &PMV) {
693  assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
694  assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
695  if (PMV.WordType == PMV.ValueType)
696    return Updated;
697
698  Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
699  Value *Shift =
700      Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
701  Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
702  Value *Or = Builder.CreateOr(And, Shift, "inserted");
703  return Or;
704}
705
706/// Emit IR to implement a masked version of a given atomicrmw
707/// operation. (That is, only the bits under the Mask should be
708/// affected by the operation)
709static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
710                                    IRBuilder<> &Builder, Value *Loaded,
711                                    Value *Shifted_Inc, Value *Inc,
712                                    const PartwordMaskValues &PMV) {
713  // TODO: update to use
714  // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
715  // to merge bits from two values without requiring PMV.Inv_Mask.
716  switch (Op) {
717  case AtomicRMWInst::Xchg: {
718    Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
719    Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
720    return FinalVal;
721  }
722  case AtomicRMWInst::Or:
723  case AtomicRMWInst::Xor:
724  case AtomicRMWInst::And:
725    llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
726  case AtomicRMWInst::Add:
727  case AtomicRMWInst::Sub:
728  case AtomicRMWInst::Nand: {
729    // The other arithmetic ops need to be masked into place.
730    Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
731    Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
732    Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
733    Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
734    return FinalVal;
735  }
736  case AtomicRMWInst::Max:
737  case AtomicRMWInst::Min:
738  case AtomicRMWInst::UMax:
739  case AtomicRMWInst::UMin: {
740    // Finally, comparison ops will operate on the full value, so
741    // truncate down to the original size, and expand out again after
742    // doing the operation.
743    Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
744    Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc);
745    Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
746    return FinalVal;
747  }
748  default:
749    llvm_unreachable("Unknown atomic op");
750  }
751}
752
753/// Expand a sub-word atomicrmw operation into an appropriate
754/// word-sized operation.
755///
756/// It will create an LL/SC or cmpxchg loop, as appropriate, the same
757/// way as a typical atomicrmw expansion. The only difference here is
758/// that the operation inside of the loop may operate upon only a
759/// part of the value.
760void AtomicExpand::expandPartwordAtomicRMW(
761    AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
762  AtomicOrdering MemOpOrder = AI->getOrdering();
763
764  IRBuilder<> Builder(AI);
765
766  PartwordMaskValues PMV =
767      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
768                       TLI->getMinCmpXchgSizeInBits() / 8);
769
770  Value *ValOperand_Shifted =
771      Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
772                        PMV.ShiftAmt, "ValOperand_Shifted");
773
774  auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
775    return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
776                                 ValOperand_Shifted, AI->getValOperand(), PMV);
777  };
778
779  Value *OldResult;
780  if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
781    OldResult =
782        insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
783                             PerformPartwordOp, createCmpXchgInstFun);
784  } else {
785    assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
786    OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
787                                  MemOpOrder, PerformPartwordOp);
788  }
789
790  Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
791  AI->replaceAllUsesWith(FinalOldResult);
792  AI->eraseFromParent();
793}
794
795// Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
796AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
797  IRBuilder<> Builder(AI);
798  AtomicRMWInst::BinOp Op = AI->getOperation();
799
800  assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
801          Op == AtomicRMWInst::And) &&
802         "Unable to widen operation");
803
804  PartwordMaskValues PMV =
805      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
806                       TLI->getMinCmpXchgSizeInBits() / 8);
807
808  Value *ValOperand_Shifted =
809      Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
810                        PMV.ShiftAmt, "ValOperand_Shifted");
811
812  Value *NewOperand;
813
814  if (Op == AtomicRMWInst::And)
815    NewOperand =
816        Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
817  else
818    NewOperand = ValOperand_Shifted;
819
820  AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
821                                                 NewOperand, AI->getOrdering());
822
823  Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
824  AI->replaceAllUsesWith(FinalOldResult);
825  AI->eraseFromParent();
826  return NewAI;
827}
828
829bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
830  // The basic idea here is that we're expanding a cmpxchg of a
831  // smaller memory size up to a word-sized cmpxchg. To do this, we
832  // need to add a retry-loop for strong cmpxchg, so that
833  // modifications to other parts of the word don't cause a spurious
834  // failure.
835
836  // This generates code like the following:
837  //     [[Setup mask values PMV.*]]
838  //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
839  //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
840  //     %InitLoaded = load i32* %addr
841  //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
842  //     br partword.cmpxchg.loop
843  // partword.cmpxchg.loop:
844  //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
845  //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
846  //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
847  //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
848  //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
849  //        i32 %FullWord_NewVal success_ordering failure_ordering
850  //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
851  //     %Success = extractvalue { i32, i1 } %NewCI, 1
852  //     br i1 %Success, label %partword.cmpxchg.end,
853  //        label %partword.cmpxchg.failure
854  // partword.cmpxchg.failure:
855  //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
856  //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
857  //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
858  //         label %partword.cmpxchg.end
859  // partword.cmpxchg.end:
860  //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
861  //    %FinalOldVal = trunc i32 %tmp1 to i8
862  //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
863  //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
864
865  Value *Addr = CI->getPointerOperand();
866  Value *Cmp = CI->getCompareOperand();
867  Value *NewVal = CI->getNewValOperand();
868
869  BasicBlock *BB = CI->getParent();
870  Function *F = BB->getParent();
871  IRBuilder<> Builder(CI);
872  LLVMContext &Ctx = Builder.getContext();
873
874  const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
875
876  BasicBlock *EndBB =
877      BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
878  auto FailureBB =
879      BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
880  auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
881
882  // The split call above "helpfully" added a branch at the end of BB
883  // (to the wrong place).
884  std::prev(BB->end())->eraseFromParent();
885  Builder.SetInsertPoint(BB);
886
887  PartwordMaskValues PMV = createMaskInstrs(
888      Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
889
890  // Shift the incoming values over, into the right location in the word.
891  Value *NewVal_Shifted =
892      Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
893  Value *Cmp_Shifted =
894      Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
895
896  // Load the entire current word, and mask into place the expected and new
897  // values
898  LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
899  InitLoaded->setVolatile(CI->isVolatile());
900  Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
901  Builder.CreateBr(LoopBB);
902
903  // partword.cmpxchg.loop:
904  Builder.SetInsertPoint(LoopBB);
905  PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
906  Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
907
908  // Mask/Or the expected and new values into place in the loaded word.
909  Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
910  Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
911  AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
912      PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
913      CI->getFailureOrdering(), CI->getSyncScopeID());
914  NewCI->setVolatile(CI->isVolatile());
915  // When we're building a strong cmpxchg, we need a loop, so you
916  // might think we could use a weak cmpxchg inside. But, using strong
917  // allows the below comparison for ShouldContinue, and we're
918  // expecting the underlying cmpxchg to be a machine instruction,
919  // which is strong anyways.
920  NewCI->setWeak(CI->isWeak());
921
922  Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
923  Value *Success = Builder.CreateExtractValue(NewCI, 1);
924
925  if (CI->isWeak())
926    Builder.CreateBr(EndBB);
927  else
928    Builder.CreateCondBr(Success, EndBB, FailureBB);
929
930  // partword.cmpxchg.failure:
931  Builder.SetInsertPoint(FailureBB);
932  // Upon failure, verify that the masked-out part of the loaded value
933  // has been modified.  If it didn't, abort the cmpxchg, since the
934  // masked-in part must've.
935  Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
936  Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
937  Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
938
939  // Add the second value to the phi from above
940  Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
941
942  // partword.cmpxchg.end:
943  Builder.SetInsertPoint(CI);
944
945  Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
946  Value *Res = UndefValue::get(CI->getType());
947  Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
948  Res = Builder.CreateInsertValue(Res, Success, 1);
949
950  CI->replaceAllUsesWith(Res);
951  CI->eraseFromParent();
952  return true;
953}
954
955void AtomicExpand::expandAtomicOpToLLSC(
956    Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
957    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
958  IRBuilder<> Builder(I);
959  Value *Loaded =
960      insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
961
962  I->replaceAllUsesWith(Loaded);
963  I->eraseFromParent();
964}
965
966void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
967  IRBuilder<> Builder(AI);
968
969  PartwordMaskValues PMV =
970      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
971                       TLI->getMinCmpXchgSizeInBits() / 8);
972
973  // The value operand must be sign-extended for signed min/max so that the
974  // target's signed comparison instructions can be used. Otherwise, just
975  // zero-ext.
976  Instruction::CastOps CastOp = Instruction::ZExt;
977  AtomicRMWInst::BinOp RMWOp = AI->getOperation();
978  if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
979    CastOp = Instruction::SExt;
980
981  Value *ValOperand_Shifted = Builder.CreateShl(
982      Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
983      PMV.ShiftAmt, "ValOperand_Shifted");
984  Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
985      Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
986      AI->getOrdering());
987  Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
988  AI->replaceAllUsesWith(FinalOldResult);
989  AI->eraseFromParent();
990}
991
992void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
993  IRBuilder<> Builder(CI);
994
995  PartwordMaskValues PMV = createMaskInstrs(
996      Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
997      TLI->getMinCmpXchgSizeInBits() / 8);
998
999  Value *CmpVal_Shifted = Builder.CreateShl(
1000      Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1001      "CmpVal_Shifted");
1002  Value *NewVal_Shifted = Builder.CreateShl(
1003      Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1004      "NewVal_Shifted");
1005  Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1006      Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1007      CI->getSuccessOrdering());
1008  Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1009  Value *Res = UndefValue::get(CI->getType());
1010  Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1011  Value *Success = Builder.CreateICmpEQ(
1012      CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1013  Res = Builder.CreateInsertValue(Res, Success, 1);
1014
1015  CI->replaceAllUsesWith(Res);
1016  CI->eraseFromParent();
1017}
1018
1019Value *AtomicExpand::insertRMWLLSCLoop(
1020    IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1021    AtomicOrdering MemOpOrder,
1022    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1023  LLVMContext &Ctx = Builder.getContext();
1024  BasicBlock *BB = Builder.GetInsertBlock();
1025  Function *F = BB->getParent();
1026
1027  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1028  //
1029  // The standard expansion we produce is:
1030  //     [...]
1031  // atomicrmw.start:
1032  //     %loaded = @load.linked(%addr)
1033  //     %new = some_op iN %loaded, %incr
1034  //     %stored = @store_conditional(%new, %addr)
1035  //     %try_again = icmp i32 ne %stored, 0
1036  //     br i1 %try_again, label %loop, label %atomicrmw.end
1037  // atomicrmw.end:
1038  //     [...]
1039  BasicBlock *ExitBB =
1040      BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1041  BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1042
1043  // The split call above "helpfully" added a branch at the end of BB (to the
1044  // wrong place).
1045  std::prev(BB->end())->eraseFromParent();
1046  Builder.SetInsertPoint(BB);
1047  Builder.CreateBr(LoopBB);
1048
1049  // Start the main loop block now that we've taken care of the preliminaries.
1050  Builder.SetInsertPoint(LoopBB);
1051  Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1052
1053  Value *NewVal = PerformOp(Builder, Loaded);
1054
1055  Value *StoreSuccess =
1056      TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1057  Value *TryAgain = Builder.CreateICmpNE(
1058      StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1059  Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1060
1061  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1062  return Loaded;
1063}
1064
1065/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1066/// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1067/// IR.  As a migration step, we convert back to what use to be the standard
1068/// way to represent a pointer cmpxchg so that we can update backends one by
1069/// one.
1070AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1071  auto *M = CI->getModule();
1072  Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1073                                            M->getDataLayout());
1074
1075  IRBuilder<> Builder(CI);
1076
1077  Value *Addr = CI->getPointerOperand();
1078  Type *PT = PointerType::get(NewTy,
1079                              Addr->getType()->getPointerAddressSpace());
1080  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1081
1082  Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1083  Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1084
1085
1086  auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1087                                            CI->getSuccessOrdering(),
1088                                            CI->getFailureOrdering(),
1089                                            CI->getSyncScopeID());
1090  NewCI->setVolatile(CI->isVolatile());
1091  NewCI->setWeak(CI->isWeak());
1092  LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1093
1094  Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1095  Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1096
1097  OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1098
1099  Value *Res = UndefValue::get(CI->getType());
1100  Res = Builder.CreateInsertValue(Res, OldVal, 0);
1101  Res = Builder.CreateInsertValue(Res, Succ, 1);
1102
1103  CI->replaceAllUsesWith(Res);
1104  CI->eraseFromParent();
1105  return NewCI;
1106}
1107
1108bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1109  AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1110  AtomicOrdering FailureOrder = CI->getFailureOrdering();
1111  Value *Addr = CI->getPointerOperand();
1112  BasicBlock *BB = CI->getParent();
1113  Function *F = BB->getParent();
1114  LLVMContext &Ctx = F->getContext();
1115  // If shouldInsertFencesForAtomic() returns true, then the target does not
1116  // want to deal with memory orders, and emitLeading/TrailingFence should take
1117  // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1118  // should preserve the ordering.
1119  bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1120  AtomicOrdering MemOpOrder =
1121      ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1122
1123  // In implementations which use a barrier to achieve release semantics, we can
1124  // delay emitting this barrier until we know a store is actually going to be
1125  // attempted. The cost of this delay is that we need 2 copies of the block
1126  // emitting the load-linked, affecting code size.
1127  //
1128  // Ideally, this logic would be unconditional except for the minsize check
1129  // since in other cases the extra blocks naturally collapse down to the
1130  // minimal loop. Unfortunately, this puts too much stress on later
1131  // optimisations so we avoid emitting the extra logic in those cases too.
1132  bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1133                           SuccessOrder != AtomicOrdering::Monotonic &&
1134                           SuccessOrder != AtomicOrdering::Acquire &&
1135                           !F->hasMinSize();
1136
1137  // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1138  // do it even on minsize.
1139  bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1140
1141  // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1142  //
1143  // The full expansion we produce is:
1144  //     [...]
1145  // %aligned.addr = ...
1146  // cmpxchg.start:
1147  //     %unreleasedload = @load.linked(%aligned.addr)
1148  //     %unreleasedload.extract = extract value from %unreleasedload
1149  //     %should_store = icmp eq %unreleasedload.extract, %desired
1150  //     br i1 %should_store, label %cmpxchg.releasingstore,
1151  //                          label %cmpxchg.nostore
1152  // cmpxchg.releasingstore:
1153  //     fence?
1154  //     br label cmpxchg.trystore
1155  // cmpxchg.trystore:
1156  //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1157  //                            [%releasedload, %cmpxchg.releasedload]
1158  //     %updated.new = insert %new into %loaded.trystore
1159  //     %stored = @store_conditional(%updated.new, %aligned.addr)
1160  //     %success = icmp eq i32 %stored, 0
1161  //     br i1 %success, label %cmpxchg.success,
1162  //                     label %cmpxchg.releasedload/%cmpxchg.failure
1163  // cmpxchg.releasedload:
1164  //     %releasedload = @load.linked(%aligned.addr)
1165  //     %releasedload.extract = extract value from %releasedload
1166  //     %should_store = icmp eq %releasedload.extract, %desired
1167  //     br i1 %should_store, label %cmpxchg.trystore,
1168  //                          label %cmpxchg.failure
1169  // cmpxchg.success:
1170  //     fence?
1171  //     br label %cmpxchg.end
1172  // cmpxchg.nostore:
1173  //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1174  //                           [%releasedload,
1175  //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1176  //     @load_linked_fail_balance()?
1177  //     br label %cmpxchg.failure
1178  // cmpxchg.failure:
1179  //     fence?
1180  //     br label %cmpxchg.end
1181  // cmpxchg.end:
1182  //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1183  //                        [%loaded.trystore, %cmpxchg.trystore]
1184  //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1185  //     %loaded = extract value from %loaded.exit
1186  //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1187  //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1188  //     [...]
1189  BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1190  auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1191  auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1192  auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1193  auto ReleasedLoadBB =
1194      BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1195  auto TryStoreBB =
1196      BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1197  auto ReleasingStoreBB =
1198      BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1199  auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1200
1201  // This grabs the DebugLoc from CI
1202  IRBuilder<> Builder(CI);
1203
1204  // The split call above "helpfully" added a branch at the end of BB (to the
1205  // wrong place), but we might want a fence too. It's easiest to just remove
1206  // the branch entirely.
1207  std::prev(BB->end())->eraseFromParent();
1208  Builder.SetInsertPoint(BB);
1209  if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1210    TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1211
1212  PartwordMaskValues PMV =
1213      createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1214                       TLI->getMinCmpXchgSizeInBits() / 8);
1215  Builder.CreateBr(StartBB);
1216
1217  // Start the main loop block now that we've taken care of the preliminaries.
1218  Builder.SetInsertPoint(StartBB);
1219  Value *UnreleasedLoad =
1220      TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1221  Value *UnreleasedLoadExtract =
1222      extractMaskedValue(Builder, UnreleasedLoad, PMV);
1223  Value *ShouldStore = Builder.CreateICmpEQ(
1224      UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1225
1226  // If the cmpxchg doesn't actually need any ordering when it fails, we can
1227  // jump straight past that fence instruction (if it exists).
1228  Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1229
1230  Builder.SetInsertPoint(ReleasingStoreBB);
1231  if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1232    TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1233  Builder.CreateBr(TryStoreBB);
1234
1235  Builder.SetInsertPoint(TryStoreBB);
1236  PHINode *LoadedTryStore =
1237      Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1238  LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1239  Value *NewValueInsert =
1240      insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1241  Value *StoreSuccess =
1242      TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr,
1243                                MemOpOrder);
1244  StoreSuccess = Builder.CreateICmpEQ(
1245      StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1246  BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1247  Builder.CreateCondBr(StoreSuccess, SuccessBB,
1248                       CI->isWeak() ? FailureBB : RetryBB);
1249
1250  Builder.SetInsertPoint(ReleasedLoadBB);
1251  Value *SecondLoad;
1252  if (HasReleasedLoadBB) {
1253    SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1254    Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1255    ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1256                                       CI->getCompareOperand(), "should_store");
1257
1258    // If the cmpxchg doesn't actually need any ordering when it fails, we can
1259    // jump straight past that fence instruction (if it exists).
1260    Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1261    // Update PHI node in TryStoreBB.
1262    LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1263  } else
1264    Builder.CreateUnreachable();
1265
1266  // Make sure later instructions don't get reordered with a fence if
1267  // necessary.
1268  Builder.SetInsertPoint(SuccessBB);
1269  if (ShouldInsertFencesForAtomic)
1270    TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1271  Builder.CreateBr(ExitBB);
1272
1273  Builder.SetInsertPoint(NoStoreBB);
1274  PHINode *LoadedNoStore =
1275      Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1276  LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1277  if (HasReleasedLoadBB)
1278    LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1279
1280  // In the failing case, where we don't execute the store-conditional, the
1281  // target might want to balance out the load-linked with a dedicated
1282  // instruction (e.g., on ARM, clearing the exclusive monitor).
1283  TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1284  Builder.CreateBr(FailureBB);
1285
1286  Builder.SetInsertPoint(FailureBB);
1287  PHINode *LoadedFailure =
1288      Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1289  LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1290  if (CI->isWeak())
1291    LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1292  if (ShouldInsertFencesForAtomic)
1293    TLI->emitTrailingFence(Builder, CI, FailureOrder);
1294  Builder.CreateBr(ExitBB);
1295
1296  // Finally, we have control-flow based knowledge of whether the cmpxchg
1297  // succeeded or not. We expose this to later passes by converting any
1298  // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1299  // PHI.
1300  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1301  PHINode *LoadedExit =
1302      Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1303  LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1304  LoadedExit->addIncoming(LoadedFailure, FailureBB);
1305  PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1306  Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1307  Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1308
1309  // This is the "exit value" from the cmpxchg expansion. It may be of
1310  // a type wider than the one in the cmpxchg instruction.
1311  Value *LoadedFull = LoadedExit;
1312
1313  Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1314  Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1315
1316  // Look for any users of the cmpxchg that are just comparing the loaded value
1317  // against the desired one, and replace them with the CFG-derived version.
1318  SmallVector<ExtractValueInst *, 2> PrunedInsts;
1319  for (auto User : CI->users()) {
1320    ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1321    if (!EV)
1322      continue;
1323
1324    assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1325           "weird extraction from { iN, i1 }");
1326
1327    if (EV->getIndices()[0] == 0)
1328      EV->replaceAllUsesWith(Loaded);
1329    else
1330      EV->replaceAllUsesWith(Success);
1331
1332    PrunedInsts.push_back(EV);
1333  }
1334
1335  // We can remove the instructions now we're no longer iterating through them.
1336  for (auto EV : PrunedInsts)
1337    EV->eraseFromParent();
1338
1339  if (!CI->use_empty()) {
1340    // Some use of the full struct return that we don't understand has happened,
1341    // so we've got to reconstruct it properly.
1342    Value *Res;
1343    Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1344    Res = Builder.CreateInsertValue(Res, Success, 1);
1345
1346    CI->replaceAllUsesWith(Res);
1347  }
1348
1349  CI->eraseFromParent();
1350  return true;
1351}
1352
1353bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1354  auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1355  if(!C)
1356    return false;
1357
1358  AtomicRMWInst::BinOp Op = RMWI->getOperation();
1359  switch(Op) {
1360    case AtomicRMWInst::Add:
1361    case AtomicRMWInst::Sub:
1362    case AtomicRMWInst::Or:
1363    case AtomicRMWInst::Xor:
1364      return C->isZero();
1365    case AtomicRMWInst::And:
1366      return C->isMinusOne();
1367    // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1368    default:
1369      return false;
1370  }
1371}
1372
1373bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1374  if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1375    tryExpandAtomicLoad(ResultingLoad);
1376    return true;
1377  }
1378  return false;
1379}
1380
1381Value *AtomicExpand::insertRMWCmpXchgLoop(
1382    IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1383    AtomicOrdering MemOpOrder,
1384    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1385    CreateCmpXchgInstFun CreateCmpXchg) {
1386  LLVMContext &Ctx = Builder.getContext();
1387  BasicBlock *BB = Builder.GetInsertBlock();
1388  Function *F = BB->getParent();
1389
1390  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1391  //
1392  // The standard expansion we produce is:
1393  //     [...]
1394  //     %init_loaded = load atomic iN* %addr
1395  //     br label %loop
1396  // loop:
1397  //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1398  //     %new = some_op iN %loaded, %incr
1399  //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1400  //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1401  //     %success = extractvalue { iN, i1 } %pair, 1
1402  //     br i1 %success, label %atomicrmw.end, label %loop
1403  // atomicrmw.end:
1404  //     [...]
1405  BasicBlock *ExitBB =
1406      BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1407  BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1408
1409  // The split call above "helpfully" added a branch at the end of BB (to the
1410  // wrong place), but we want a load. It's easiest to just remove
1411  // the branch entirely.
1412  std::prev(BB->end())->eraseFromParent();
1413  Builder.SetInsertPoint(BB);
1414  LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1415  // Atomics require at least natural alignment.
1416  InitLoaded->setAlignment(Align(ResultTy->getPrimitiveSizeInBits() / 8));
1417  Builder.CreateBr(LoopBB);
1418
1419  // Start the main loop block now that we've taken care of the preliminaries.
1420  Builder.SetInsertPoint(LoopBB);
1421  PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1422  Loaded->addIncoming(InitLoaded, BB);
1423
1424  Value *NewVal = PerformOp(Builder, Loaded);
1425
1426  Value *NewLoaded = nullptr;
1427  Value *Success = nullptr;
1428
1429  CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1430                MemOpOrder == AtomicOrdering::Unordered
1431                    ? AtomicOrdering::Monotonic
1432                    : MemOpOrder,
1433                Success, NewLoaded);
1434  assert(Success && NewLoaded);
1435
1436  Loaded->addIncoming(NewLoaded, LoopBB);
1437
1438  Builder.CreateCondBr(Success, ExitBB, LoopBB);
1439
1440  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1441  return NewLoaded;
1442}
1443
1444bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1445  unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1446  unsigned ValueSize = getAtomicOpSize(CI);
1447
1448  switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1449  default:
1450    llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1451  case TargetLoweringBase::AtomicExpansionKind::None:
1452    if (ValueSize < MinCASSize)
1453      return expandPartwordCmpXchg(CI);
1454    return false;
1455  case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1456    return expandAtomicCmpXchg(CI);
1457  }
1458  case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1459    expandAtomicCmpXchgToMaskedIntrinsic(CI);
1460    return true;
1461  }
1462}
1463
1464// Note: This function is exposed externally by AtomicExpandUtils.h
1465bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1466                                    CreateCmpXchgInstFun CreateCmpXchg) {
1467  IRBuilder<> Builder(AI);
1468  Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1469      Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1470      [&](IRBuilder<> &Builder, Value *Loaded) {
1471        return performAtomicOp(AI->getOperation(), Builder, Loaded,
1472                               AI->getValOperand());
1473      },
1474      CreateCmpXchg);
1475
1476  AI->replaceAllUsesWith(Loaded);
1477  AI->eraseFromParent();
1478  return true;
1479}
1480
1481// In order to use one of the sized library calls such as
1482// __atomic_fetch_add_4, the alignment must be sufficient, the size
1483// must be one of the potentially-specialized sizes, and the value
1484// type must actually exist in C on the target (otherwise, the
1485// function wouldn't actually be defined.)
1486static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1487                                  const DataLayout &DL) {
1488  // TODO: "LargestSize" is an approximation for "largest type that
1489  // you can express in C". It seems to be the case that int128 is
1490  // supported on all 64-bit platforms, otherwise only up to 64-bit
1491  // integers are supported. If we get this wrong, then we'll try to
1492  // call a sized libcall that doesn't actually exist. There should
1493  // really be some more reliable way in LLVM of determining integer
1494  // sizes which are valid in the target's C ABI...
1495  unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1496  return Alignment >= Size &&
1497         (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1498         Size <= LargestSize;
1499}
1500
1501void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1502  static const RTLIB::Libcall Libcalls[6] = {
1503      RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1504      RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1505  unsigned Size = getAtomicOpSize(I);
1506
1507  bool expanded = expandAtomicOpToLibcall(
1508      I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1509      I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1510  (void)expanded;
1511  assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1512}
1513
1514void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1515  static const RTLIB::Libcall Libcalls[6] = {
1516      RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1517      RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1518  unsigned Size = getAtomicOpSize(I);
1519
1520  bool expanded = expandAtomicOpToLibcall(
1521      I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1522      nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1523  (void)expanded;
1524  assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1525}
1526
1527void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1528  static const RTLIB::Libcall Libcalls[6] = {
1529      RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1530      RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1531      RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1532  unsigned Size = getAtomicOpSize(I);
1533
1534  bool expanded = expandAtomicOpToLibcall(
1535      I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1536      I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1537      Libcalls);
1538  (void)expanded;
1539  assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1540}
1541
1542static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1543  static const RTLIB::Libcall LibcallsXchg[6] = {
1544      RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1545      RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1546      RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1547  static const RTLIB::Libcall LibcallsAdd[6] = {
1548      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1549      RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1550      RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1551  static const RTLIB::Libcall LibcallsSub[6] = {
1552      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1553      RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1554      RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1555  static const RTLIB::Libcall LibcallsAnd[6] = {
1556      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1557      RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1558      RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1559  static const RTLIB::Libcall LibcallsOr[6] = {
1560      RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1561      RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1562      RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1563  static const RTLIB::Libcall LibcallsXor[6] = {
1564      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1565      RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1566      RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1567  static const RTLIB::Libcall LibcallsNand[6] = {
1568      RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1569      RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1570      RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1571
1572  switch (Op) {
1573  case AtomicRMWInst::BAD_BINOP:
1574    llvm_unreachable("Should not have BAD_BINOP.");
1575  case AtomicRMWInst::Xchg:
1576    return makeArrayRef(LibcallsXchg);
1577  case AtomicRMWInst::Add:
1578    return makeArrayRef(LibcallsAdd);
1579  case AtomicRMWInst::Sub:
1580    return makeArrayRef(LibcallsSub);
1581  case AtomicRMWInst::And:
1582    return makeArrayRef(LibcallsAnd);
1583  case AtomicRMWInst::Or:
1584    return makeArrayRef(LibcallsOr);
1585  case AtomicRMWInst::Xor:
1586    return makeArrayRef(LibcallsXor);
1587  case AtomicRMWInst::Nand:
1588    return makeArrayRef(LibcallsNand);
1589  case AtomicRMWInst::Max:
1590  case AtomicRMWInst::Min:
1591  case AtomicRMWInst::UMax:
1592  case AtomicRMWInst::UMin:
1593  case AtomicRMWInst::FAdd:
1594  case AtomicRMWInst::FSub:
1595    // No atomic libcalls are available for max/min/umax/umin.
1596    return {};
1597  }
1598  llvm_unreachable("Unexpected AtomicRMW operation.");
1599}
1600
1601void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1602  ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1603
1604  unsigned Size = getAtomicOpSize(I);
1605
1606  bool Success = false;
1607  if (!Libcalls.empty())
1608    Success = expandAtomicOpToLibcall(
1609        I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1610        nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1611
1612  // The expansion failed: either there were no libcalls at all for
1613  // the operation (min/max), or there were only size-specialized
1614  // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1615  // CAS libcall, via a CAS loop, instead.
1616  if (!Success) {
1617    expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1618                                       Value *Loaded, Value *NewVal,
1619                                       AtomicOrdering MemOpOrder,
1620                                       Value *&Success, Value *&NewLoaded) {
1621      // Create the CAS instruction normally...
1622      AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1623          Addr, Loaded, NewVal, MemOpOrder,
1624          AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1625      Success = Builder.CreateExtractValue(Pair, 1, "success");
1626      NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1627
1628      // ...and then expand the CAS into a libcall.
1629      expandAtomicCASToLibcall(Pair);
1630    });
1631  }
1632}
1633
1634// A helper routine for the above expandAtomic*ToLibcall functions.
1635//
1636// 'Libcalls' contains an array of enum values for the particular
1637// ATOMIC libcalls to be emitted. All of the other arguments besides
1638// 'I' are extracted from the Instruction subclass by the
1639// caller. Depending on the particular call, some will be null.
1640bool AtomicExpand::expandAtomicOpToLibcall(
1641    Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1642    Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1643    AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1644  assert(Libcalls.size() == 6);
1645
1646  LLVMContext &Ctx = I->getContext();
1647  Module *M = I->getModule();
1648  const DataLayout &DL = M->getDataLayout();
1649  IRBuilder<> Builder(I);
1650  IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1651
1652  bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1653  Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1654
1655  const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1656
1657  // TODO: the "order" argument type is "int", not int32. So
1658  // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1659  ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1660  assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1661  Constant *OrderingVal =
1662      ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1663  Constant *Ordering2Val = nullptr;
1664  if (CASExpected) {
1665    assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1666    Ordering2Val =
1667        ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1668  }
1669  bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1670
1671  RTLIB::Libcall RTLibType;
1672  if (UseSizedLibcall) {
1673    switch (Size) {
1674    case 1: RTLibType = Libcalls[1]; break;
1675    case 2: RTLibType = Libcalls[2]; break;
1676    case 4: RTLibType = Libcalls[3]; break;
1677    case 8: RTLibType = Libcalls[4]; break;
1678    case 16: RTLibType = Libcalls[5]; break;
1679    }
1680  } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1681    RTLibType = Libcalls[0];
1682  } else {
1683    // Can't use sized function, and there's no generic for this
1684    // operation, so give up.
1685    return false;
1686  }
1687
1688  // Build up the function call. There's two kinds. First, the sized
1689  // variants.  These calls are going to be one of the following (with
1690  // N=1,2,4,8,16):
1691  //  iN    __atomic_load_N(iN *ptr, int ordering)
1692  //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1693  //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1694  //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1695  //                                    int success_order, int failure_order)
1696  //
1697  // Note that these functions can be used for non-integer atomic
1698  // operations, the values just need to be bitcast to integers on the
1699  // way in and out.
1700  //
1701  // And, then, the generic variants. They look like the following:
1702  //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1703  //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1704  //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1705  //                          int ordering)
1706  //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1707  //                                  void *desired, int success_order,
1708  //                                  int failure_order)
1709  //
1710  // The different signatures are built up depending on the
1711  // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1712  // variables.
1713
1714  AllocaInst *AllocaCASExpected = nullptr;
1715  Value *AllocaCASExpected_i8 = nullptr;
1716  AllocaInst *AllocaValue = nullptr;
1717  Value *AllocaValue_i8 = nullptr;
1718  AllocaInst *AllocaResult = nullptr;
1719  Value *AllocaResult_i8 = nullptr;
1720
1721  Type *ResultTy;
1722  SmallVector<Value *, 6> Args;
1723  AttributeList Attr;
1724
1725  // 'size' argument.
1726  if (!UseSizedLibcall) {
1727    // Note, getIntPtrType is assumed equivalent to size_t.
1728    Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1729  }
1730
1731  // 'ptr' argument.
1732  // note: This assumes all address spaces share a common libfunc
1733  // implementation and that addresses are convertable.  For systems without
1734  // that property, we'd need to extend this mechanism to support AS-specific
1735  // families of atomic intrinsics.
1736  auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1737  Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1738                                        Type::getInt8PtrTy(Ctx, PtrTypeAS));
1739  PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1740  Args.push_back(PtrVal);
1741
1742  // 'expected' argument, if present.
1743  if (CASExpected) {
1744    AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1745    AllocaCASExpected->setAlignment(AllocaAlignment);
1746    unsigned AllocaAS =  AllocaCASExpected->getType()->getPointerAddressSpace();
1747
1748    AllocaCASExpected_i8 =
1749      Builder.CreateBitCast(AllocaCASExpected,
1750                            Type::getInt8PtrTy(Ctx, AllocaAS));
1751    Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1752    Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1753    Args.push_back(AllocaCASExpected_i8);
1754  }
1755
1756  // 'val' argument ('desired' for cas), if present.
1757  if (ValueOperand) {
1758    if (UseSizedLibcall) {
1759      Value *IntValue =
1760          Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1761      Args.push_back(IntValue);
1762    } else {
1763      AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1764      AllocaValue->setAlignment(AllocaAlignment);
1765      AllocaValue_i8 =
1766          Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1767      Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1768      Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1769      Args.push_back(AllocaValue_i8);
1770    }
1771  }
1772
1773  // 'ret' argument.
1774  if (!CASExpected && HasResult && !UseSizedLibcall) {
1775    AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1776    AllocaResult->setAlignment(AllocaAlignment);
1777    unsigned AllocaAS =  AllocaResult->getType()->getPointerAddressSpace();
1778    AllocaResult_i8 =
1779      Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1780    Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1781    Args.push_back(AllocaResult_i8);
1782  }
1783
1784  // 'ordering' ('success_order' for cas) argument.
1785  Args.push_back(OrderingVal);
1786
1787  // 'failure_order' argument, if present.
1788  if (Ordering2Val)
1789    Args.push_back(Ordering2Val);
1790
1791  // Now, the return type.
1792  if (CASExpected) {
1793    ResultTy = Type::getInt1Ty(Ctx);
1794    Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1795  } else if (HasResult && UseSizedLibcall)
1796    ResultTy = SizedIntTy;
1797  else
1798    ResultTy = Type::getVoidTy(Ctx);
1799
1800  // Done with setting up arguments and return types, create the call:
1801  SmallVector<Type *, 6> ArgTys;
1802  for (Value *Arg : Args)
1803    ArgTys.push_back(Arg->getType());
1804  FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1805  FunctionCallee LibcallFn =
1806      M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1807  CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1808  Call->setAttributes(Attr);
1809  Value *Result = Call;
1810
1811  // And then, extract the results...
1812  if (ValueOperand && !UseSizedLibcall)
1813    Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1814
1815  if (CASExpected) {
1816    // The final result from the CAS is {load of 'expected' alloca, bool result
1817    // from call}
1818    Type *FinalResultTy = I->getType();
1819    Value *V = UndefValue::get(FinalResultTy);
1820    Value *ExpectedOut = Builder.CreateAlignedLoad(
1821        CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1822    Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1823    V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1824    V = Builder.CreateInsertValue(V, Result, 1);
1825    I->replaceAllUsesWith(V);
1826  } else if (HasResult) {
1827    Value *V;
1828    if (UseSizedLibcall)
1829      V = Builder.CreateBitOrPointerCast(Result, I->getType());
1830    else {
1831      V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1832                                    AllocaAlignment);
1833      Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1834    }
1835    I->replaceAllUsesWith(V);
1836  }
1837  I->eraseFromParent();
1838  return true;
1839}
1840